Session: High-Level Tools and Abstractions

HeteroFlow: An Accelerator Programming Model with
Decoupled Data Placement for Software-Defined FPGAs

Shaojie Xiang®, Yi-Hsiang Lai, Yuan Zhou, Hongzheng Chen, Niansong Zhang, Debjit Pal, Zhiru Zhang*
1 School of Electrical and Computer Engineering, Cornell University, USA
*{sx233,zhiruz}@cornell.edu

ABSTRACT

To achieve high performance with FPGA-equipped heterogeneous
compute systems, it is crucial to co-optimize data placement and
compute scheduling to maximize data reuse and bandwidth utiliza-
tion for both on- and off-chip memory accesses. However, optimizing
the data placement for FPGA accelerators is a complex task. One
must acquire in-depth knowledge of the target FPGA device and
its associated memory system in order to apply a set of advanced
optimizations. Even with the latest high-level synthesis (HLS) tools,
programmers often have to insert many low-level vendor-specific
pragmas and substantially restructure the algorithmic code so that
the right data are accessed at the right loop level using the right
communication schemes. These code changes can significantly com-
promise the composability and portability of the original program.

To address these challenges, we propose HeteroFlow, an FPGA
accelerator programming model that decouples the algorithm speci-
fication from optimizations related to orchestrating the placement
of data across a customized memory hierarchy. Specifically, we in-
troduce a new primitive named .to(), which provides a unified
programming interface for specifying data placement optimizations
at different levels of granularity: (1) coarse-grained data placement
between host and accelerator, (2) medium-grained kernel-level data
placement within an accelerator, and (3) fine-grained data placement
within a kernel. We build HeteroFlow on top of the open-source
HeteroCL DSL and compilation framework. Experimental results
on a set of realistic benchmarks show that, programs written in
HeteroFlow can match the performance of extensively optimized
manual HLS design with much fewer lines of code.

CCS CONCEPTS

+ Hardware — Hardware description languages and compila-
tion; High-level and register-transfer level synthesis;

KEYWORDS
Programming Model; Decoupled Data Placement; DSL

ACM Reference Format:

Shaojie Xiang, Yi-Hsiang Lai, Yuan Zhou, Hongzheng Chen, Niansong Zhang,
Debjit Pal, Zhiru Zhang. 2022. HeteroFlow: An Accelerator Programming
Model with Decoupled Data Placement for Software-Defined FPGAs. In Pro-
ceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9149-8/22/02...$15.00

https://doi.org/10.1145/3490422.3502369

78

Gate Arrays (FPGA °22), February 27-March 1, 2022, Virtual Event, CA, USA.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3490422.3502369

1 INTRODUCTION

FPGA accelerators leverage distributed, specialized datapaths to en-
able massively parallel and/or deeply pipelined computation on-chip.
In comparison, off-chip memory accesses remain a bottleneck in
terms of both latency and bandwidth. Hence contemporary accel-
erators typically allocate significant resources to form customized
memory hierarchies that ensure the many parallel compute engines
are fed with data at a sufficient rate.

A key distinction from general-purpose computing is that FPGA
programmers must leverage the application/domain knowledge to
explicitly manage the orchestration of the important data, namely,
choosing the “right” type of memory storage to place the “right”
granularity of data and moving them in and out at the “right” mo-
ment. For example, a recent study shows that carefully managing the
data layout and communication schemes of the FPGA accelerators
can result in a 3-8 performance improvement on a collection of
benchmarks [30]. In this paper, we use the term data placement to
broadly refer to the programmer-managed control of data orches-
tration and marshaling across the accelerator’s memory hierarchy.
A well-designed data placement scheme should act in concert with
compute scheduling to maximize data reuse and bandwidth utiliza-
tion for both on- and off-chip memory accesses.

Optimizing the data placement for FPGA accelerators is by no
means an easy task, especially using the conventional RTL-based de-
sign methodology. Modern high-level synthesis (HLS) tools improve
the programmability of FPGAs by raising the level of design ab-
straction using software programming languages [11, 26]. However,
there are still several major downsides of the current HLS program-
ming models, which often result in less satisfactory performance
and repeated engineering effort:

e To achieve a high-performance, programmers must acquire in-
depth knowledge of the target FPGA device and its associated
memory system before applying a set of optimizations that account
for the host-accelerator communications as well as the interactions
between different sub-modules within the accelerator.

Current HLS programming models entangle algorithm descrip-
tions with hardware customization techniques including data
placement. HLS users often have to substantially perturb the struc-
ture of the (originally algorithmic) code and insert many low-level
vendor-specific constructs such as pragmas and library calls. This
significantly lowers the readability and portability of the design.
The contemporary C-based HLS methodology lacks a concise
and consistent abstraction for expressing data placement schemes
across different levels of the custom memory hierarchy, compro-
mising the design modularity and composability. The lack of ex-
plicit programming abstraction of data placement may also hinder
effective compiler analyses and optimizations.

Session: High-Level Tools and Abstractions

Some recent HLS research has proposed end-to-end compila-
tion flow using polyhedral analysis to generate high-performance
FPGA accelerators from C/C++ programs in a push-button man-
ner [6, 9, 12, 43]. The high-level goal is to allow programmers to
focus on the algorithms, while the compiler automatically explores
architecture design space. However, these methods mainly focus on
kernel-level compilation,! where the compute kernels are restricted
to highly regular loop nests such as those commonly seen in systolic
algorithms. For example, AutoSA [43] automatically builds systolic
arrays from a plain C/C++ program without sophisticated manual
annotations or code changes. While it provides autotuning capa-
bilities that explore different data placement schemes (e.g., weight-
versus output-stationary), the AutoSA compiler is limited to systolic
kernels and it does not offer a programming abstraction to facilitate
the integration with other non-systolic portions of the accelerator.

Another active line of work attempts to further raise the abstrac-
tion level of FPGA programming by leveraging domain-specific lan-
guages (DSLs) and promoting separation of concerns [24, 25, 27,
35, 40]. One recent example is HeteroCL [24], which provides a
Python-based embedded DSL and compiler for FPGA accelerator
programming. Inspired by Halide [36] and TVM [8], HeteroCL sepa-
rates an algorithm specification from a temporal compute schedule
such as loop reordering and tiling. HeteroCL further decouples the
algorithm from on-chip memory customization and data quantiza-
tion schemes. However, it does not provide programming support
for the explicit management of data placement.

In this paper we propose HeteroFlow, an FPGA accelerator pro-
gramming model that supports a data placement specification de-
coupled from the algorithm description and other hardware cus-
tomizations. HeteroFlow provides a unified programming interface
for customizing: (1) host-accelerator data placement, where a pro-
grammer can specify in a concise and portable manner the data
schemes between the CPU host memory and the FPGA accelerator
(or the device memory associated with the accelerator); (2) inter-
kernel data placement, where efficient on-chip data streaming (via
FIFO and multi-buffers) can be easily enabled between different com-
pute kernels within an accelerator; (3) intra-kernel data placement,
which allows productive yet expressive specifications of various fine-
grained dataflow patterns commonly used in spatial architectures
such as systolic arrays.

Our main technical contributions are as follows:

To our knowledge, this is the first work to introduce an FPGA-
focused high-level programming model with decoupled data
placement specifications. The proposed HeteroFlow approach
separates the concerns of algorithmic optimizations from or-
chestrating the placement of data across a customized memory
hierarchy, improving both design productivity and portability.

Unlike conventional HLS, HeteroFlow provides a unified pro-
gramming interface named .to (), for expressing data placement
optimizations at different levels of the design/memory hierarchy
(i.e., host-accelerator, kernel-to-kernel, and intra-kernel), result-
ing in a more modular and composable design specification.

We extend the open-source HeteroCL framework [24] to imple-
ment the .to() primitive, enabling programmers to co-optimize

Here we use a generic term “kernel” to loosely define a sub-module in the accelerator
design that contains a loop nest (or function) with tens to hundreds of operations.

79

FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

data placement schemes with other hardware customization tech-
niques such as tiling and data quantization. With HeteroFlow,
a programmer can further leverage .to() to seamlessly inte-
grate non-systolic kernels with optimized systolic arrays (either
directly specified in HeteroFlow or generated by an existing
optimizing compiler [43]).

« We evaluate our proposed framework on a set of realistic bench-
marks and show that programs written in HeteroFlow can match
the performance of extensively optimized manual HLS design
with much fewer lines of code.

2 BACKGROUND

Data Placement for FPGA Accelerators. When programming an
FPGA using HLS, the designer is responsible for orchestrating the
placement and movement of data between memory buffers inside
the FPGA chip, and between the FPGA and the CPU host. Common
methods for on-chip memory management include single buffer,
double buffer, and streaming FIFO. CPU-FPGA communication can
be realized using DMA engines. On certain platforms, the FPGA is
allowed to directly read data from the CPU’s host memory or cache.

Inspired by [33], we categorize these data placement methods
along two dimensions. The first dimension is whether the requester
of data loading is also the consumer of the data. This is common
for traditional computational platforms (e.g., CPUs with caches and
GPUs with shared scratchpad memories) and we refer to this data
access scheme as coupled access-execute. In this scenario, data ac-
cess and computation cannot be performed at the same time. For
heterogeneous CPU-FPGA platforms, directly reading from the host
memory or performing communication using a single buffer inside
the FPGA fall into this category. On the contrary, it is common for
one stage of an FPGA accelerator to consume the data in a buffer
while a separate stage is storing data into the buffer. This approach
is referred to as decoupled access-execute (DAE) because data access
and execution can be performed in parallel. Loading data from the
host using DMA, and performing on-chip communication through
FIFO or double buffers fall into this category.

The second dimension is whether the requester of data loading
has complete knowledge and control about the exact location of
the data in the memory hierarchy. When caches are present in the
memory hierarchy, the load initiator only interacts with the first-
level cache, and the memory system decides how to transfer the
data and where to keep the data. Such a scheme is implicit and al-
leviates the designer’s burden of managing the memory hierarchy.
However, the area and performance penalty of implicit data orches-
tration is often too high for hardware accelerators. As a result, FPGA
accelerators usually adopt explicit data orchestration. For on-chip
communication, the accelerator knows the exact location of the data
when passing data using FIFOs or buffers. Specifically, loading data
from host memory using DMA belongs to explicit data orchestration,
because the DMA engine in the accelerator knows the address to
the host memory buffer.

Programming with Decoupled Hardware Customizations. The core
tenet of a decoupled programming model is to separate the algo-
rithmic description from the specification of target-dependent opti-
mizations (e.g., vectorization). The algorithm only describes what is
computed, while the customizations specify how the computation
should be performed on hardware. The decoupled programming

Session: High-Level Tools and Abstractions

Table 1: Example customization primitives in HeteroCL [24].

(a) Compute Customization

s[stage] .pipeline(axis, ii): pipeline loop with II=ii
s[stage] .unroll(axis, factor): unroll loop with target factor
s[stage] .tile(i, factors): tile loop with factors

(b) Memory Customization

s.reuse_at (tensor, stage): create reuse buffer for tensor in stage
(c) Data Type Customization

s.quantize(tensor, dtype): quantize tensor to fixed-point type

model was original proposed in Halide [36], and it is later adopted
by several other frameworks such as TVM [8]and HeteroCL [24].

Among these decoupled programming models, HeteroCL is the
one primarily focusing on FPGA-based computing. Similar to Halide,
HeteroCL separates an algorithm specification from compute cus-
tomization techniques such as loop reordering, tiling, unrolling, and
pipelining. HeteroCL further decouples the algorithm from mem-
ory architectures and data quantization schemes, which are both
essential for efficient hardware acceleration. With respect to mem-
ory customization, HeteroCL provides primitives to create custom
on-chip memory hierarchy through banking and reuse buffers.

Table 1 shows a subset of customization primitives provided by
HeteroCL. In HeteroCL, a kernel, which contains a loop nest or
function to perform computations, is defined as a compute stage. The
decoupled customization primitives are applied to either a stage (i.e.,
compute customization) or the memory and data used by a stage
(e.g., memory and data type customization).

It is worth noting that HeteroCL does not provide an explicit
abstraction to model data placement, which essentially captures the
interdependence between custom memories and compute units. The
programmers need to either embed their placement schemes into the
algorithm code or rely on the compiler to generate a default scheme.

3 MOTIVATIONAL EXAMPLE

We use image blurring as a motivational example to demonstrate
the limitations of programming data placement and related opti-
mizations in HLS. The algorithm takes in a 2D image as an input
and computes the output by pushing it through two back-to-back
1D convolution kernels. To achieve better performance, we apply
several hardware customization techniques such as loop tiling, data
reuse, and data quantization. In the following, we focus on constructs
and optimizations related to data placement.

To begin with, we describe the boundary between host and ac-
celerator. In HLS, we need to maintain two sets of codes: one for
describing the offloaded logic (i.e., the accelerator code) and one
for handling data transfer (i.e., the host code). We show the opti-
mized accelerator code in Figure 1. Throughout this example, we use
Vivado HLS syntax . With HLS, in addition to defining a top-level
function (L3-4), we need to specify the data communication interface
via vendor-specific directives such as pragma HLS interface (L5-6).
If a user decides to shift the boundary between host and accelera-
tor, they need to extensively restructure the code by modifying the
top-level function signature, the directives, and the function body,
which is less productive and more error-prone.

More work needs to be done when the number of data transferred
exceeds the number of physical ports. In this case, programmers need
to manually schedule the I/O. Here, after loop tiling and unrolling,
we end up with 8 compute units executing in parallel. As shown in L8,

80

FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

typedef ap_int<W> DTYPE;

// max number of ports per DRAM bank = 14

void blur (DTYPE* inputO, ..., DTYPE* input6,
4 DTYPE* outputO, ..., DTYPE* output6) {
5 #pragma HLS interface port=inputO bundle=g0 burst=32
6 #pragma HLS interface port=inputl bundle=gl burst=32

stream<DTYPE> fifo_in[8], fifo_out[8];

9 input_io_schedule(fifo_in, inputO, ..., inputé);
10 compute_units(fifo_in, fifo_out);
11 output_io_schedule(fifo_out, outputO, ..., output6);}

Figure 1: Accelerator code for blur in HLS.

we need 8 input and 8 output ports (i.e., 16 ports in total). However,
assuming the target accelerator only has 14 ports per DRAM bank,
we need to schedule the I/O due to insufficient ports (L9 and L11).

void compute_units(stream<DTYPE> fifo_in[8], fifo_out[8]) {
2 stream<DTYPE> fifo_inter[8]; #pragma HLS dataflow
#pragma HLS stream var=fifo_inter[0] depth=32
! #pragma HLS stream var=fifo_inter[1] depth=32

6 convl(fifo_in, fifo_inter);
conv2(fifo_inter, fifo_out);}

Figure 2: Describing task-level dataflow with FIFOs and
vendor-specific directives in HLS.

To exploit task-level parallelism, one way is to execute the two
convolution kernels in a dataflow fashion. In HLS, as shown in
Figure 2, we need to first define the FIFOs that connect the two
compute kernels in L3. We also need to configure the FIFO depth
in L4-5. Finally, we may need to include vendor-specific directives
such as pragma dataflow for the HLS compiler to generate the right
hardware architecture (L2). Such an approach does not scale well
when the number of compute kernels increases.

void PE(DTYPE weight, stream<DTYPE> Xin, Yin, Yout)
2 Yout.write(weight * Xin.read() + Yin.read());

void conv2(stream<DTYPE> fifo_inter[8], fifo_out[8]) {
! for (yo=0; yo<128; yo++)

for (x00=0; x00<16; xoo++) {
6 for (x0i=0; x0i<8; xoi++) { #pragma HLS unroll
stream<DTYPE> Xin[3], Yin[3], Yout[3];

8 broadcast(fifo_inter, Xin[0], Xin[1], Xin[2]);
9 PE(w2[0],Xin[0],Yin[0],Yout[0]); Yin[1]=Yout[0];
10 PE(w2[1],Xin[1],Yin[1],Yout[1]1); Yin[2]=Yout[1];
1 PE(w2[2],Xin[2],Yin[2],Yout[2]);
12 data_drainer(Yout[2], fifo_out);}}}

Figure 3: Realizing loop-level dataflow using a systolic array.

Finally, for loop-level dataflow, a common approach is to generate
high-performance spatial architectures such as systolic arrays. Fig-
ure 3 shows the HLS code that implements the second convolution
kernel as a weight-stationary (semi-)systolic array. With HLS, de-
scribing a systolic array is usually widely different from describing
general computation. For instance, we need to define the behavior
of each processing element (PE) in the array (L1-2). We also need
to define the connections between the PEs (L7-12), which includes
nontrivial data orchestration such as broadcasting and draining. Any
misconnections may break functionality or result in deadlocks.

To summarize, to apply data placement at different levels, we need
not only to use a wide variety of vendor-specific directives but to take
care of low-level target-specific details as well. The tightly entangled
algorithm specification and data placement schemes make the codes

Session: High-Level Tools and Abstractions

FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

Table 2: Semantics of the .to() primitive for data placement — At each level of placement, multiple data orchestration methods with
different performance-area trade-offs are supported. We mark the default mode(s) as bold. Inter- and intra-kernel data placement schemes

share the same set of modes.

.to(data, destination, mode=default)

Level of Data Destination Mode Access Hardware Area DAE Data
Placement Granularity Order Implementation Overhead Movement
Cache Arbitrary ~ Cache/Cache Interface High N Implicit
Host-accelerator Tensor Storage Sequential FIFO+BRAM Medium Y Explicit
Media DMA

Arbitrary FIFO+BRAM Medium-High N Explicit
Stream Sequential SRL, BRAM, etc. Low Y Explicit

Inter-kernel Tensor
Cs(t)n;pl(Jt)e Single Buffer ~ Arbitrary =~ BRAM, Register, etc. ~Low-Medium N Explicit

age(s

Intra-kernel Scalar Double Buffer Arbitrary ~BRAM, Register, etc. ~ Medium Y Explicit

void convl(stream<DTYPE> fifo_in[8], fifo_inter([8]) {
DTYPE buffer[2] [8] [64];
for (yo=0; yo<128; yo++) {
4 for (x00=0; x00<16; xoo++) {
5 for (x0i=0; x0i<8; xoi++) { #pragma HLS unroll
write_buffer (buffer[x00%2] [xoi], fifo_in[xo0il);
compute_conv (buffer [1-xo00%2] [xoi], fifo_inter[xo0il);

s }}}}

Figure 4: Co-optimizing data placement with other hardware

customization in HLS.
HOST (CPU+DDR)

Host-accelerator (§4.1)
Inter-kernel (§4.2)

img 2 convl m conv2

Intra-kernel (§4.3)

—
img; imgg
yout

1 import heteroflow as hf

convl = convid(img, wl)
+ conv2 = convid(convl, w2)
;s = hf.create_schedule()
¢ p = platform.xcel_system

host-accelerator JRER

to([img,wl,w2], p.xcel)
.to(conv2, p.host)
inter-kernel

.to(convl, conv2)

0w #= o0 n #

13 # intra—-kernel

14 PEs=s[convil].unroll (axis=1) PE, PE, PE,

15 pe0O, pel, pe2 = PEs

16 s.to(img.v, [pe0,pel,pe2]) W !

17 s.to(pe0.Y, pel).to(pe2) .
L) out

Figure 5: Overview of HeteroFlow programming model.

even more tedious. Not to mention the increased coding complexity
brought by co-optimizations with other hardware customization.
Thus, we need a unified yet concise programming abstraction to
describe data placement from all design levels for better productivity
and composability.

4 THE PROGRAMMING MODEL

To overcome the deficiencies of HLS programming mentioned in
Section 3, we propose HeteroFlow to enable programmers to specify
data placement at different levels of design hierarchy and data gran-
ularity using a unified interface via the .to() primitive. Figure 5
provides an overview of the HeteroFlow programming model using
the image blur example. With the .to() primitive, programmers
can concisely specify data placement at multiple design hierarchies
without changing the algorithm description as shown in the code
snippet on the left. The resulting accelerator implementation on a
CPU+FPGA platform is sketched on the right.

81

Table 2 describes the semantics of the .to () primitive, which takes
in three arguments: the data to be placed, the destination where the
data is placed, and the mode of placement. The types and values of
these arguments may vary at different levels of design hierarchy:

« At the host-accelerator level, a tensor object (single or multi-
dimensional array) is typically transferred between the host mem-
ory and the FPGA accelerator (either to/from the device memory
or directly to/from the on-chip memories). The data can be ac-
cessed either through DMA or a cache-coherent interface.

At the inter-kernel level, .to() can be used to place the data
produced by one kernel (or a compute stage) to another kernel.
Here each kernel is loosely defined as a loop nest or a function
and typically each kernel produces one or more tensor objects.
If the data elements in the tensor object are produced and con-
sumed in the same sequential order, the compiler infers a FIFO to
decouple the kernel computation from the communication. If the
access order is arbitrary, a multi-buffer (typically a double-buffer)
is generated. Unlike existing dataflow-oriented programming lan-
guages [5, 9, 14, 28, 34, 41], HeteroFlow does not require the ex-
plicit insertion of FIFO reads/writes. It is worth noting that .to ()
does not define the data dependence between kernels. Instead,
the dependence is already defined by the algorithm specification.
Here, .to() only describes the mechanism of the data placement.

Finally, at the intra-kernel level, a sequence of .to() primitives
can be combined to describe various fine-grained dataflow pat-
terns within a kernel (i.e., a loop nest). The compiler can then
leverage these explicitly specified patterns to infer highly efficient
spatial architectures such as systolic arrays.

Table 2 also shows some additional attributes associated with the
different modes of data placement. In the following, we describe how
.to() and its associated modes operate at each level in more detail.

4.1 Host-Accelerator Data Placement

For a realistic application, it is usually not practical or beneficial to
offload the entire program to the FPGA. Thus, programmers need to
determine which portion(s) of the program should be accelerated.
As shown in Section 3, the HLS users need to maintain both the
accelerator code and host code. Using such an approach, if a user
decides to change the placement of certain data (e.g., from host to
accelerator), they have to extensively modify both portions. More-
over, programmers need to carefully manage the I/O scheduling with
vendor-specific directives and other low-level library calls.

Session: High-Level Tools and Abstractions

Host CPU Accelerator
1 import heteroflow as hf

|Processor| | FPGA | p = hf.Platform.xcel_system

- 1 (>> H - : 3 # Case 1. DMA (direct streaming)
I Cache | @' 1 Cache/IF | 1 s.to(data, p.xcel)

= 5 # Case 2. DMA (via device DRAM)

I I f 6 s.to(data,p.xcel.DRAM).to(p.host)

| Hos! i RAMl # Case 3. Data access over
@ cache-coherent interface

. 5 s.to(t , p-xcel, hf.I0.Cach
(a) Different data placement e s, [ache)

modes on an FPGA platform

(b) HeteroFlow code
Figure 6: Example use cases of host-accelerator .to().

In contrast, HeteroFlow uses the .to() primitive to decouple the
host-accelerator data placement from the algorithm specification,
which has several advantages. First, the decoupled primitive allows
the programmer to flexibly move the boundary between the host
and accelerator. In other words, users only need to add or remove
primitives, or change the data or destination without tainting the
algorithmic code. Second, since the primitive is largely device in-
dependent, it is much easier to port the same program to other
FPGA-equipped platforms. Meanwhile, the HeteroFlow compiler
performs legality checks on the compatibility of the specified data
placement modes. Finally, the I/O management and its optimization
are now taken care of by the HeteroFlow compiler (more details
available in Section 5.1).

The common use cases of .to() for host-accelerator data place-
ment is shown in Figure 6. First, we import the predefined platform
from HeteroFlow in L1-2. We then specify the destination and the
mode for data placement. For the destination, every platform has two
attributes: host and xcel. In Case 1, without specifying the mode,
it is set to DMA by default. The HeteroFlow compiler automatically
infers the low-level target-specific communication mechanism. By
default, the data is transferred via direct streaming. However, if the
data cannot be accessed in sequence, the data is first placed on the
device memory (e.g., DRAM). Then, the data is loaded to the accel-
erator via communication protocols such as AXI. Instead of letting
the compiler infer the communication mechanism, users can also
explicitly specify the exact storage to place data. For example, in
Case 2, we specify that we transfer data back to the host via device
DRAM. Users can also set mode to Cache as in Case 3 if the target
device provides on-chip caches or cache-coherent interfaces (i.e.,
Cache/IF in Figure 6).

4.2 Inter-Kernel Data Placement

To achieve efficient data streaming between compute kernels, the
common practice is to use FIFOs to connect kernels or use double
buffers to store the intermediate results. However, as we have shown
in Section 3, both approaches are non-trivial in HLS. For FIFO-based
connections, programmers need to explicitly replace the original ar-
ray accesses with FIFO reads/writes (e.g., hls: : stream) and provide
additional vendor-specific directives (e.g., pragma HLS dataflow).
For double buffers, programmers need to manage the buffer indices
and the read/write behaviors. Both methods require tremendous
effort to restructure the original program.

With the .to() primitive, programmers can easily apply various
data placement schemes by setting the mode without touching the
algorithm specification. Figure 7 shows examples of use cases of
.to().If no .to() is specified, the HeteroFlow compiler generates a
single buffer by default. However, once it is specified as in Case 1,
we now transfer the tensor to the consumer stage via either FIFO

82

FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

| i T

| | | | | |]]]]->.
producer consumer producer
@ FIFO (Stream) (@ FIFO (in tiles)

consumer producer consumers

(3 Broadcast/Scatter

Case 1. User-specified FIFO with depth

.to(tensor, consumer, hf.IO.Stream, depth=10)

Case 2. Generate buffer under specific loop level
.to(tensor, consumer, hf.I0.Buffer, axis=consumer.axis[1])
Case 3. Broadcast/scatter tensor to consumers via FIFOs
.to(tensor, [consumerO, consumerl, ...], hf.I0.Stream)
Case 4. Auto-infer double buffer or FIFO

.to(tensor, p.xcel).to(consumer)

voe W

n HO HFEO HON H

Figure 7: Example use cases of inter-kernel .to Q.

or double buffer depending on the access order. The programmer
can also enforce the use of FIFO with a specific depth. Case 2 shows
a more advanced use case, which further specifies the loop axis of
the consumer stage. This is useful for both single and double buffer
modes when we only want to transfer a subset of the data (e.g., a tile)
at a time. In addition to one-to-one connection between two kernels,
we can use .to() to concisely express the broadcast to a list of
kernels as shown in Case 3. Finally, we can also combine inter-kernel
data placement with host-accelerator data placement by cascading
.to (). In Case 4, by cascading the two primitives, depending on the
access order, if it is sequential, we directly transfer the tensor to
the consumer stage via FIFO. Otherwise, an on-chip double buffer is
generated to store the tensor. With the double buffer, the compiler
generates a stream to transfer the tensor to the accelerator via FIFO.

4.3 Intra-Kernel Data Placement

With HeteroFlow, a programmer can further leverage .to() to spec-
ify fine-grained data placement schemes. More concretely, a se-
quence of . to () primitives can be cascaded to describe near-neighbor
connections that are commonly seen in efficient spatial architectures
such as systolic arrays. In Figure 8, Case 1 shows an example of
the cascaded .to()’s, where a scalar is propagated through multi-
ple PEs. Here PEs are also compute stages, which can result from
loop unrolling (i.e., if a loop is unrolled N times, we end up with N
new stages). We can also use .to() to broadcast a scalar to a set of
PEs as shown in Case 2. Here we use tensor.v to differentiate from
tensor; the former is a scalar while the latter is a tensor. By concisely
expressing these commonly-used design patterns such as cascade
and broadcast, we can productively describe (and explore) various
systolic and semi-systolic structures in a decoupled way without
changing the algorithm code. Note that If we opt to use systolic array
compilers such as AutoSA [43] as a back end, we can still leverage
the user-specified dataflow patterns to constrain the search space of
backend optimization.

1 # Case 1. Propagate a scalar through PEs by cascading .to()
2 s.to(PE0.X, PE1).to(PE2).to(PE3)
3 # Case 2. Broadcast a scalar to a list of PEs

1 s.to(tensor.v, [PEO, ...]);

Figure 8: Example use cases of intra-kernel .to().

Figure 9 shows a more complete example with general matrix
multiplication (GEMM). The algorithm is defined in Figure 9b L1-5.
In this example, we generate a 2X2 systolic array for simplicity. It can
be easily extended to a larger size. If we unroll the loop in L6 without

Session: High-Level Tools and Abstractions

B[K][0] | B[K][1]

Without .to() Output-Stationary Input-Stationary

(a) Hardware architecture for PE arrays

1 def gemm(A, B):
k = hf.reduce_axis(0,2)
3 return hf.compute((2,2), lambda i, j:
4 sum(A[i,k] * B[k,jl, axis=k), "C")
5 s = hf.create_schedule (gemm)
¢ PEs = s[C].unroll(axis=[i,j])
output-stationary systolic array
s [s.to(A[il.v, PEs[i,0]).to(PEs[i,1]) for i in range(0,2)]
o [s.to(B[:1[j].v, PEs[0,j]).to(PEs[1,j]1) for j in range(0,2)]
input-stationary systolic array
11 [s.to(B[:]1[j].v, PEs[0,j]).to(PEs[1,j]) for j in range(0,2)]
[s.to(PEs[i,0].C, PEs[i,1]).to(C[i].v) for i in range(0,2)]

(b) Describing different systolic arrays using .to ().
Figure 9: Systolic arrays with GEMM in HeteroFlow.

using .to(), we end up with four PEs with no data movement in be-
tween. Each PE performs a multiplication and accumulation (MAC)
operation (i.e., Figure 9a left). To describe an output-stationary sys-
tolic array (Figure 9a middle), we describe the data movement of
both inputs A and B (L9-10). For input A, we propagate it horizontally
through the PEs by using cascading .to (). Similarly, B is propagated
vertically through the PEs. To describe a different dataflow pattern,
users only need to use a different set of .to() without modifying
the algorithm. For instance, to generate an input-stationary systolic
array (Figure 9a right), we just need to specify the data placement
for input B and output ¢ (L13-14).

4.4 A Complete Example

Figure 10 shows a complete image blur example that uses the .to()
primitives. We first describe the image blurring algorithm using Het-
eroCL APIs (L1-10). We then apply host-accelerator data placement
in L18 and 21. For kernel-level data placement, we generate a local
buffer by cascading two .to() in L18-19 and connect the two convo-
lution kernels with another .to() in L29. In addition, we specify a
weight-stationary systolic structure for the convolution in L32-33.
To achieve a high performance, we can further combine .to()
with other hardware customization primitives to co-optimize com-
pute units and memory. As we have seen in Section 3, with HLS,
many different hardware customization techniques are embedded
into the algorithmic code and tightly entangled with each other. On
the other hand, with decoupled hardware customization, HeteroFlow
can easily combine different customization techniques without the
need of modifying the algorithm. One example is to combine loop
tiling with both host-accelerator and inter-kernel data placement.
With the image blur example in Figure 10, we first tile, split, and re-
order the loop of the first convolution kernel (L14-16). Then, we use
.to() along with a specified axis to load tiles to an on-chip double

83

FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

1 import heteroflow as hf

2 image = hf.placeholder(1024,1024)

3 def conv_1d(W, X):

4 k = hf.reduce_axis(0, 3)

5 return hf.compute(X.shape, lambda i,j:
6 sum(X[i,j+kI*W[k]), "Y")

7 convil conv_1d(image, weightl)

s conv2 conv_1d(convl, weight2)

9 s f.create_schedule()

P f.Platform.xcel_system

= h
= h

12 # host-accelerator data placement
co-optimization with tiling and data reuse
yo, yi, xo, xi=sl[convil].tile(axis=[0,1], factor=[8,8])
15 x00, xoi = s[convl].split(axis=xo, factor=8)
s[convi].reorder(yo, xoo, xoi, yi, xi)
17 s[convl] .unroll (axis=xo0i)
buf = s.to(image, p.xcel)
.to(convl, hf.I0.DoubleBuffer, axis=xoi)
0 s.reuse_at(buf, convl)
s.to(conv2, p.host)

3 # inter—kernel data placement

24 # co—optimization with tiling

25 yo, yi, xo, xi=s[conv2].tile(axis=[0,1], factor=[8,8])
6 xo00, xo0i = s[conv2].split(axis=xo, factor=8)

27 slconv2].reorder(yo, xoo, xoi, yi, xi)

23 sl[conv2] .unroll(axis=xoi)

29 s.to(convl, conv2)

31 # intra-kernel data placement

32 PEs = s[conv2].unroll(axis=5)

s.to(convl, [peO, pel, pe2]); s.to(pe0.Y, pel).to(pe2)
co-optimization with data quantization
s.quantize([pe0.Y, pel.Y, pe2.Y], hcl.Fixed(32,12))

Figure 10: Complete image blur example in HeteroFlow.
HeteroFlow program Annotated DFG Partitioned DFG 1/O optimized DFG

A = convi(input, wl)

R B) o

gorithm | < - create_schedule() m‘ FPGA FPGA.

Host-accel | s.to(input, p.xcel) °

Inter-kernel | s-to(A, B, axis=e) %

Intra-kernel | pee.,pe1,pe2=s.unro11(s) é é OpenCL
s.to(pe.B,pel).to(pe2) HOST HOsST @ HLS code

Lowering Placement Auto I/O CodeGen
Inference (§5.1) Opt (§5.2) (85.3)

Figure 11: Compilation Flow in HeteroFlow — In the DFG, grey
denotes the edge (vertex) missing placement information. Orange
denotes that the edge (vertex) is placed off-chip, while blue denotes
on-chip placement. Green denotes optimized I/O access.

buffer (L18). Similarly, we apply the same set of compute customiza-
tion to the second convolution kernel (L24-26) for proper streaming.
Another important optimization to ensure the FIFO connection is
inserting reuse buffers via .reuse_at () (L20). We also unroll the
tiled loops to have multiple compute units calculate the outputs in
parallel (L17 and 28). Finally, we combine data type customization
using .quantize() (L36). To sum up, HeteroFlow provides a uni-
fied and compact programming interface via .to (), which applies
to different levels of the design hierarchy and inter-operates with
other hardware customization primitives. It is worth noting that
aside from the example shown in Figure 10, programmers can also
compose .to() with other primitives to explore various trade-offs in
the comprehensive design space for data placement customization.

5 COMPILATION FLOW

This section describes an end-to-end compilation flow that generates
HLS code from an input HeteroFlow program, as shown in Figure 11.
The HeteroFlow compiler is built on the open-source HeteroCL

Session: High-Level Tools and Abstractions

framework [24]. It first lowers the input program to an intermediate
representation (IR) and constructs a dataflow graph (DFG) annotated
with user-specified data placement. Since users may only specify
placement for a subset of the data objects, the compiler infers the
placement for other objects and also the compute. The DFG is then
partitioned into subgraphs based on the inference results (i.e., either
host or accelerator). Notably, the HeteroFlow compiler opportunisti-
cally applies a set of optimizations for off-chip memory accesses to
improve the bandwidth utilization. Finally, HeteroFlow generates
optimized HLS C/C++ or OpenCL code. In the following, we provide
more details on the placement inference, off-chip memory access
optimization, and code generation.

5.1 Inference of Compute/Data Placement

To free programmers from tediously marking the placements of all
data in the program, HeteroFlow automatically infers placement
scheme for the portion of data and compute that is not explicitly an-
notated with .to (). We formulate placement inference as an integer
linear programming (ILP) problem. Given a HeteroFlow program
modeled as a DFG, G = (V, E), where each vertex v € V represents a
compute stage, and each edge e € E represents the data dependency
between a pair of vertices with respect to a particular data object,
we define a set of binary variables N, to represent the placement of
computation at each node. For Vo € V, N, = 1 if and only if node v
is mapped to the accelerator. To represent the data placement, we
define another set of binary variables M., where for Ve = (u,0v) € E,
Mg = XOR(Ny, Ny), i.e., M = 1if and only if the edge e corresponds
to an off-chip memory read or write. Each node is associated with
a list of resource estimates res;(v), if this node is implemented on
the accelerator. Each edge is associated with an estimated latency
lat(e) = data_size(e)/bw, if the edge involves off-chip communica-
tion. Here the off-chip memory bandwidth bw is measured through
profiling. For each data array with user-specified data placement,
we constrain its direct consumers in the DFG to be placed onto the
same device as the data itself. As an example, if the user specifies
.to(image, p.xcel),then any DFG node that directly consumes the
array image will be placed onto the accelerator. The set of DFG nodes
affected by these user-specified constraints is denoted as U C V.
We use a set of binary constants ¢, to represent the user-specified
constraints: for Vo € U, ¢, = 1 if and only if the node v must be
placed onto the accelerator. With these definitions, we can formulate
the ILP as follows:

Minimize Z lat(e) X M,

ecE

Yo e U, Ny=cy

Ve = (u,0) € E, Me < Ny + Ny, Mg > Ny — Ny,
Me > Ny — Ny, Me <2—-Ny, — N,

subject to

(optional) Vi € {BRAM, LUT, FF, DSP}, Z resi(v) X Ny < b;

veV

where the second set of constraints linearize the XOR relationship
between M., Ny, and N,,. The last set of constraints imply that the
total resource utilization of all DFG nodes mapped to the accelerator
must be below the amount of available resources. Figure 11 shows
an example of placement inference, , where the inference algorithm
takes in the partially annotated DFG and decides placement schemes
for each data and compute. With complete placement information

84

FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

for all nodes and edges in the DFG, the accelerator-specific subgraph
can be extracted, and hardware customizations can be applied to
improve the performance of the accelerator.

5.2 Automatic I/O Optimizations

After graph partitioning, the HeteroFlow compiler automatically
optimizes the off-chip memory accesses at the boundaries of the
FPGA subgraph(s). These optimizations aim to saturate the off-chip
memory bandwidth and maximize the throughput of memory ac-
cesses. The hardware information (e.g., device DRAM capacity and
physical I/O port limit) needed by the compiler to make optimization
decisions is included in the Platform object in HeteroFlow code.

Memory Coalescing: The maximum number of data bits that can
be read out from the off-chip memory per access is usually larger
than the data bitwidths used in the program. Memory coalescing
tries to saturate the off-chip memory bandwidth by grouping multi-
ple narrow memory accesses into one wider access. For each loop
nest with a contiguous off-chip memory access pattern, HeteroFlow
replaces the narrow memory operation with a bit-slice from a coa-
lesced memory operation. The loop trip count and the bitwidth of
the affected memory ports are also updated accordingly.

AXI Controller Configuration: The off-chip memory requests are
initiated by on-chip AXI controllers and sent to off-chip memory
controllers through the AXI bus. For modern FPGAs, the AXI con-
troller is software-configurable and the configuration (e.g., burst
length, I/O bundle) can affect the bandwidth efficiency in a subtle
way. We employ a similar approach as proposed in [30] to profile
microbenchmarks on a target platform and empirically decide the
default threshold for each parameter based on the data size/bitwidth.

Memory Banking: Modern FPGA platforms are often equipped
with multi-bank off-chip memories, e.g., DRAM or high bandwidth
memory (HBM). To maximize off-chip memory throughput, the
HeteroFlow compiler explores different off-chip data layouts and
tries to minimize memory access conflicts by assigning competing
off-chip memory accesses to different off-chip memory banks. Cur-
rently, HeteroFlow uses a simple greedy algorithm to decide the
memory banking assignment — the compiler determines the priority
of different memory requests based on their data transfer size, and
then assigns the off-chip memory requests to any available off-chip
memory that gives best performance for that memory request.

I/0 Scheduling: Each off-chip memory bank on an FPGA can only
serve a limited number of off-chip memory requests from different
AXI controllers at the same time. An accelerator cannot be synthe-
sized if it has too many parallel off-chip memory access requests. In
such cases, the HeteroFlow compiler will insert a static scheduler
inside the accelerator to arbitrate the off-chip memory requests to a
limited number of AXI controllers. Similar to the memory banking
optimization, the HeteroFlow compiler uses a greedy algorithm to
assign the memory requests to the AXI controllers based on their
priority (i.e., data transfer size). For memory requests that are as-
signed to the same AXI controller, the HeteroFlow compiler creates
a for-loop in the generated HLS code to access data through the
shared AXI controller. The AXI controller is shared between differ-
ent requesters in a time-multiplexed fashion.

FIFO Inference: In addition to off-chip I/O optimization, HeteroFlow
also automatically optimizes on-chip communication. Specifically,

Session: High-Level Tools and Abstractions

// intra-kernel data placement with FIFOs
void conv_systolic_array(stream<DTYPE>%& fifo_interO,
stream<DTYPE>& fifo_interl) {
3 #pragma HLS dataflow
4 stream<DTYPE> fifo_in[M], fifo_out[N];
#pragma HLS stream var=fifo_in[0]
6 data_loader(fifo_inter0, fifo_in);
PE<0,0>(fifo_in[0], fifo_out[0]);
9 PE<M,N>(fifo_in[M-1], fifo_out[N-1]);
10 data_drainer(fifo_in[M-1], fifo_interl);}
11 // top-level function on accelerator
12 void fpga(DTYPE* dma_mm, stream<DTYPE>& dma_fifo, int iter) {
13 #pragma HLS interface m_axi port=dma_mm burst=factor
14 #pragma HLS interface axis port=dma_fifo burst=factor
15 for (i=0; i<K;i++) {
16 DTYPE inl = dma_fifo.read();
17 DTYPE.in2 = dma_mm[INDEX[i]];
18 computel(inl.range(31,0), in2.range(63,32), ..
19 // inter-kernel FIFOs and double buffer
stream<DTYPE> fifo_inter[N];
21 #pragma HLS stream var=fifo_inter[0]
DTYPE double_buf [2] [SIZE];
23 conv_systolic_array(fifo_inter[0], fifo_inter[1]);
4 compute2(fifo_inter[1], double_buf [iter)2]);
25 compute3(double_buf [1-iter%2]) ;}

L

Figure 12: Example of HLS code generated by HeteroFlow.

our compiler can infer FIFO channels for sequential in-order inter-
kernel communication. For intra-kernel data placement, the compiler
automates several aspects of the systolic array generation such as in-
sertions of data loader and drainer modules and the inter-PE commu-
nication media (FIFOs or shift registers), according to user-specified
dataflow patterns using the .to() primitives.

5.3 Code Generation

The HeteroFlow compiler backend emits OpenCL or HLS C/C++
code that can be compiled and deployed on mainstream FPGA plat-
forms. This backend generates high-performance code for the com-
munication channels with vendor-specific libraries and pragmas,
and further leverages the existing HeteroCL compiler to realize an
optimized accelerator according to other user-specified hardware
customizations. Figure 12 shows the HLS code snippets generated by
HeteroFlow, which includes data placement specification at differ-
ent levels. Inside the compute kernel function mapped to a systolic
array, HeteroFlow generates parallel PEs connected by FIFOs for
intra-kernel data movement (L3-9). In the top-level function on the
FPGA accelerator, HeteroFlow assigns different memory interfaces
according to the memory access pattern to achieve the best memory
bandwidth with minimal hardware overhead (L13-14). Additionally,
HeteroFlow automatically applies memory coalescing in the data
loading loop to saturate the off-chip memory bandwidth (L15-18).
On-chip FIFOs and double buffers are automatically generated to
fulfill the requirements for inter-kernel data placement (L20-25).

6 EVALUATION

In this section, we select a set of realistic benchmarks and evaluate
the accelerators generated by HeteroFlow. We target two mainstream
commercial FPGA boards: Xilinx Alveo U280 Accelerator Card and
Intel Stratix 10 (S10) GX2800. We use Xilinx Vitis 2019.2 [44] and
Intel FPGA SDK for OpenCL 18.0 [19] to synthesize bitstream.

85

FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

Gradient X&Y

conv1pp{convib]s{ outProduct |»|convib]+|convin}>
DotProduct[\weight X WeightY OutProd

Gradient Z

[Fack Jo{onpad]

Tensor X TensorY

(a) data placement between xcel and off-chip memory
.to(packed_frames, p.xcel); s.to(output, p.host)

(b) data placement between compute kernels
.to(tensor_y, tensor_weight_y)

(c) reuse input in kernel and quantize intermediate data
.reuse_at (tensor_weight_y.in_, tensor_weight_y.axis[0])
.quantize([grad_x, ...], Fixed(23,12))

-
non H®n HFEOH

Figure 13: DFG and HeteroFlow code for optical flow.

void optical_flow(frame_t* frames, output_t* outputs) {
#pragma HLS INTERFACE m_axi port=frames bundle=gmemO

4 #pragma HLS dataflow
5 hls::stream<DTYPE> inter_fifo_O;
6 #pragma HLS stream var=inter_fifo_0 depth=1024

tensor_weight_y(inter_fifo_5, inter_fifo_6);
9 tensor_weight_x(inter_fifo_6, inter_fifo_7);
10 flow_calc(inter_fifo_7, outputs);}

Figure 14: Manually optimized HLS code for optical flow.

6.1 Case Study: Optical Flow

Optical flow is a widely used video processing algorithm for motion
detection. We show the dataflow graph in Figure 13, where each
block represents a loop nest that processes the input frame(s) and
generates output in raster scan order. We choose the algorithm
implemented in the Rosetta benchmark suite [46]. The algorithm
reads in a sequence of HD video frames (436x1024) and outputs a
2D vector field that reveals the object’s motion.

Figure 13 also shows the HeteroFlow code to optimize optical
flow. In L2, we move the packed input frames from Pack stage to
the accelerator, and the final output back to the host. Consequently,
the Pack stage is computed on the host, and all other stages are
accelerated on the FPGA device. The Unpack stage reads the packed
frame from off-chip device memory, unpacks it, and sends it to the
following stages. We also connect stages with inter-kernel FIFOs (L4)
and co-optimize data placements with reuse buffer and quantization
(L6-7). For comparison, Figure 14 shows the HLS counterpart for
defining the I/O interface, which is much more verbose.

We evaluate the design on different FPGAs and compare the
performance with manually optimized HLS design from [46]. The
results are shown in Table 3. Our design matches the performance
of the manually optimized design in HLS C++, while requiring 3.6X
fewer lines of code. To evaluate portability, we also map the design
to an Intel Stratix 10 FPGA. Since the Intel OpenCL SDK for FPGA
does not provide direct support for fixed-point data types, we use
floating-point data types for evaluation. The full-precision design
results in more resource consumption on Intel Stratix 10 FPGA, and
its run time is slightly longer due to a lower frequency.

6.2 Case Study: GEMM

We use 64x64x64 GEMM as an example and use .to () to implement
it with systolic arrays of different dataflow patterns. Due to limited
on-chip resource on an FPGA, we can fully unroll the loops to build
a 64x64 systolic array. Instead, we tile the loop nest with a factor of
(4,4) and implement the inner loops with a 4x4 systolic array that

Session: High-Level Tools and Abstractions

Table 3: Evaluation on optical flow in HeteroFlow — In addition
to the resource usage, we show the maximum frequency (Fmax), run
time (RT), and the number of lines of code (LoC).

FPGA #LUTs/FF #BRAM/DSP Fmax(MHz) RT(ms) LoC

Rosetta [46] U280 21.7K/30.5K 66/196 300 3.49 742
HeteroFlow U280 23.8K/32.6K 64/182 300 3.43 206
HeteroFlow S10 29.5K/58.1K 484/106 286 3.82 206

computes GEMM in tiles. Due to space limitation, we do not show
HeteroFlow code here, which is similar to Figure 9b. The systolic
array can be implemented in different dataflow patterns as discussed
in Section 4.3. Here we evaluate two representative dataflow patterns:
output-stationary (OS) and input-stationary (IS).

HeteroFlow can generate systolic arrays using AutoSA [43] or
the HLS C/OpenCL backend. The AutoSA backend provides a push-
button solution to generate high-performance systolic array code,
but it has limited support for quantization. We run the experiments
on Xilinx U280 FPGA, where the input and output data are trans-
ferred between host and accelerator through HBM banks. The re-
sults are shown in Table 4. The IS/OS systolic array generated by
the AutoSA backend has close performance. AutoSA generates a
different I/O network to load (drain) data to (from) systolic arrays
of different dataflow patterns. Such an I/O network could be com-
plex and consume more on-chip resource. In HeteroFlow, we used
.to() to optimize the off-chip memory (i.e., double buffer and mem-
ory coalescing), and we are able to achieve very close performance
with AutoSA using less resource. We can further quantize the de-
sign to fixed-point to achieve an even better throughput. Notably,
HeteroFlow can also integrate optimized systolic arrays generated
by AutoSA with other kernels using the .to () interface, although
currently AutoSA only generates single systolic array kernel.

Table 4: Evaluation on GEMM systolic array in HeteroFlow —
We measure the throughput in Giga operations per second (GOPS).

Data type #LUT/FF #BRAM/DSP GOPS
IS (HF-AutoSA) FP32 30.9K/44.1K 47/48 2.07
OS (HF-AutoSA) FP32 42.3K/57.9K 103/48 2.06
OS (HF-HLSC) FP32 25.4K/32.9K 23/48 2.03
OS (HF-HLSC) Fixed<16,4> 10.2K/15.2K 15/16 4.26

6.3 Case Study: K-Nearest Neighbors

K-nearest neighbors (KNN) is a classification algorithm used in a
wide range of domains such as machine learning and data mining [3,
15]. In this case study, we port an HLS-based KNN implementation
from uBench [30] to HeteroFlow and show that the HeteroFlow
compiler can automatically optimize I/O to improve the performance.

Figure 15 shows the KNN code snippet in HeteroFlow. Since paired
distances between the query point and data points in the KNN search
space can be calculated independently, we duplicate multiple PEs to
compute (L5). After each PE calculates and sorts the local distance,
it sends the top-K results to a global merger to generate the final
top-K distances (L6). These PEs access input data from the off-chip
DRAM bank, and output is written back to the same location (L9).
In this case study, we map the KNN design to a Xilinx U280 FPGA,
and use only one DRAM bank on U280 to evaluate HeteroFlow’s
automatic I/O optimizations in a resource constrained situation. A
single DRAM bank can only serve memory requests from up to 15

86

FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

def KNN(query, inputs):
def PE(input_):
local_dis = compute_distance(input_, query)
4 return sort(local_dis)
PEs = [PE(inputs[n]) for n in range(N)]
6 output = merger(PEs); return output

s # (a) data movement between host and accelerator
s.to(inputs,p.xcel.DRAM); s.to(output,p.xcel.DRAM).to(p.host)
(b) data movement between compute kernels

11 [s.to(KNN.PEs[n], KNN.merger) for n in range(N)]

Figure 15: KNN algorithm in HeteroFlow.

Table 5: Ablation analysis on automatic I/O optimization in
HeteroFlow — N/A means the design is not synthesizable because
physical I/O ports on FPGA are not enough to serve 28 PEs.

(a) KNN with 14 PEs. (b) KNN with 28 PEs.
Optimization RT(s) Speedup Optimization RT(s) Speedup
baseline 49.37 1.00x baseline N/A -
+mem-coalescing 24.29 2.03x +mem-coalescing N/A -
+axi-controller [30] 10.14 4.82x +axi-controller [30] N/A -
+io-scheduling 10.14 4.82x +io-scheduling 9.31 5.30x

AXI controllers at the same time. To make PEs and the global merger
execute in parallel, programmers need to reserve one AXI controller
for the global merger to write outputs to, and 14 AXI controllers for
14 PEs to read inputs from the same off-chip DRAM bank.

From the results shown in Table 5(a), we can obtain 4.82x speedup
with optimizations in memory coalescing and AXI controller con-
figuration. Since the total number of off-chip memory accesses in
14-PE KNN does not exceed the physical port limit, the I/O sched-
uling optimization does not improve the performance. HeteroFlow
automatically optimizes off-chip memory accesses in 14-PE KNN
and achieves same performance as the manually optimized design
in [30] with much fewer lines of code. In Table 5(b), we increase
the PE number to 28. This doubles the number of total parallel I/O
requests, which exceeds the physical port limit of one DRAM bank.
As aresult, the design becomes non-synthesizable. With I/O schedul-
ing optimization, HeteroFlow assigns two PEs to one AXI controller,
which requests data from off-chip memory and sends data to the two
PEs. Consequently, the 28-PE KNN design becomes synthesizable
with limited I/O ports and achieves an even higher speedup of 5.30x.

6.4 Case Study: UltraNet

UltraNet [45] is an object detection neural network implemented
on FPGAs, and the winner of the 2020 DAC System Design Contest.
UltraNet has 9 convolution layers implemented as matrix multiplica-
tion units. Figure 16 shows the HeteroFlow code for UltraNet where
we map the third Conv2D layer to a systolic array. The algorithm is
defined in L1-4. We connect the second and third layers with a FIFO
(L7). To map the third Conv2D layer to a systolic array, we first tile
and reorder the outermost loops (L9-10), unroll the middle loops to
spatial PEs (L11), and customize inter-PE data placement to build an
output-stationary systolic array (L12-15). Then, we vectorize PE’s
inner loop (L17) to compute multiple MAC operations in SIMD. We
further quantize inputs and weights to 4-bit integers (L18).

We evaluate the optimized UltraNet design with a systolic array
and compare the results with the original design as baseline. The
baseline implementation has eight vectorized PEs with 16 SIMD
lanes. Each SIMD lane computes input pixels in parallel, and each
PE computes output channels in parallel. Our 4x4 systolic array

Session: High-Level Tools and Abstractions

def ultranet(image):

outl = layerl_conv2d_im2col(image, weightl)
out2 = layer2_conv2d_im2col(outl, weight2)
= layer3_conv2d_im2col(out2, weight3)

4 out3

6 # inter-kernel data placement

7 s.to(out2, layer3_conv2d_im2col)

s # build output-stationary systolic array

9 yo, yi, xo, xi s[out3].tile(axis=[0,1], factor=[4,4])
s[out3] .reorder(yo, xo, yi, xi)

11 PEs = s[out3].unroll(axis=[yi, xi])

12 for r in range(4):

13 s.to(out2[r][:]1.X, PEs[r,0]).to(PEs[r,1]).to(PEs[r,2])...
for c¢ in range(4):

15 s.to(out2[:][c].W, PEs[0,c]).to(PEs[1,c]).to(PEs[2,c])...
16 for PE in PEs:

17 s[PE] .vectorize(axis=PE.j, factor=32)

s.quantize(PE.X, PE,W], hf.Int(4))

#LUTs #FFs #BRAM #DSPs Fmax(MHz) RT(ms)

60.2K 39.6K
69.8K 39.4K

377
375

508
594

231
233.8

2.97
2.27

Baseline
+Systolic Array

Figure 16: Evaluation on UltraNet in HeteroFlow.

with 32 SIMD lanes theoretically offers 4x acceleration for the third
layer. Hardware emulation shows that the third layer in baseline
design takes 1.843M cycles to complete, while the systolic array
implementation only takes 0.461M cycles. We show that with less
than 10 lines of code, we achieve 3.99x speed up for the third layer,
and an overall latency improvement from 2.97ms to 2.27ms.

7 RELATED WORK

Dataflow HLS: FPGA is an excellent fit for dataflow execution due
to the availability of massive distributed hardware resources. Many
HLS tools [20-22, 42] can automatically convert dataflow HLS pro-
grams into dataflow graphs followed by generation of dataflow cir-
cuits. Dynamatic [20, 22] generates fine-grained elastic circuits to
enable dynamically scheduled HLS. TAPA [10] defines a program-
ming interface to describe dataflow parallelism within an application
to construct heterogeneous pipelines. Optimus [18], Maxeler [31],
and ST-Accel [37] propose a programming model to describe stream-
ing applications as dataflow graphs. In comparison, HeteroFlow
introduces a programming model with decoupled data placement
and leverages the capability of downstream HLS tools to generate
efficient dataflow accelerators for FPGAs.

Dataflow DSL: Several works propose DSLs and compilers [2, 5, 9,
13, 29, 38, 39] to automatically synthesize dataflow circuits. Dark-
room [17] compiles image-processing programs directly into line-
buffered pipelines. Spatial [23] defines special constructs to describe
data movements between kernels in the program. SODA [9] is a
DSL for stencil applications, and it compiles declarative operations
into high performance dataflow architectures. In comparison, Het-
eroFlow provides a decoupled and unified programming interface for
expressing data placement at different levels of memory hierarchy
resulting in a modular and composable design specification.

DSLs with Decoupled Optimization: Halide [36] and TVM [8]
decouple the algorithm definition from its schedule for building
high performance kernels for image processing and deep learning
applications. T2S [40] and SuSy [25] provide decoupled schedul-
ing primitives to generate high-performance systolic architectures

87

FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

Design Decoupled Decoupled Unified DP* Design

Entry Compute DP* Interface Complexity
HLS C++ No No No Complete design
Spatial [23] DSL No No No Complete design
SODA [9] DSL No No No Single kernel (stencil)
AutoSA [43] C++ No No No Single kernel (systolic)
HeteroHalide [27] DSL Yes No No Complete design
T2S [40], SuSy [25] DSL Yes Partially No Single kernel (systolic)
HeteroCL [24] DSL Yes No No Single kernel
HeteroFlow DSL Yes Yes Yes Complete design

Table 6: Comparison between HeteroFlow and other pro-
gramming frameworks. "DP stands for data placement.

on FPGAs. HeteroCL [24] decouples the algorithm from a tempo-
ral compute schedule, on-chip memory customization, and data-
quantanization scheme. TIRAMISU [4] is based on the polyhedral
model with a rich scheduling language allowing fine-grained control
of optimizations. Fireiron [16] is a data-movement-aware schedul-
ing language for GPUs that customizes compute of kernel and data
movements between memory hierarchies. HeteroFlow represents
the first FPGA-focused DSL that enables fully decoupled data place-
ment and co-optimization with other hardware customizations such
as tiling and data quantization.

Data Placement in Deep Learning Frameworks PyTorch [32]
provides a .to() interface for users to explicitly move tensors and
computation to accelerator devices. In contrast, TensorFlow [1] and
MXnet [7] can automatically infer the location of the computation
based on the manually-specified placement of input tensors. While
the .to() interface in HeteroFlow shares some similar features with
PyTorch, HeteroFlow can also infer the placement of computations
like TensorFlow and MXNet. HeteroFlow also supports fine-grained
control over on-chip data communication, which is important for
achieving high performance and area efficiency on FPGAs.

Table 6 shows a comprehensive comparison between HeteroFlow
and a set of representative prior arts. To summarize, HeteroFlow is
the first to provide a decoupled and unified programming interface
for expressing data placement optimizations for complete accelerator
design (instead of a single kernel).

8 CONCLUSION

We have presented HeteroFlow, an FPGA accelerator programming
model that provides a unified interface .to() for describing data
placement optimizations from different design levels in host-accelerator,
inter-kernel, and intra-kernel. Furthermore, we decouple the data
placement specification from the algorithm specification and other
hardware customizations, which enables better productivity and
portability. Our evaluation results on a set of realistic benchmarks
show that programs written in HeteroFlow can match the perfor-
mance of highly optimized manual HLS counterparts with much
fewer lines of code. Our future work will focus on automating the co-
optimization of data placement and temporal loop-level scheduling
to further reduce the FPGA design complexity.

ACKNOWLEDGEMENTS

This research was supported in part by CRISP, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA, NSF Awards #1453378, #1909661, #2118709,
NSF/Intel CAPA Awards #1723715, and research gifts from Intel and
Xilinx. We thank Xingyu Tian and Prof. Zhenman Fang of Simon
Fraser for their helpful discussions and the anonymous reviewers
for their feedback on earlier versions of this manuscript.

Session: High-Level Tools and Abstractions FPGA °22, February 27-March 1, 2022, Virtual Event, CA, USA

REFERENCES [24] Y-H.Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and Z. Zhang. HeteroCL:

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A Multi-Paradigm Programming I]'}frastructure for Software-Defined Reconfig-
A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-Scale Machine Learning on urable C_omputmg. Int’l Symp. on FIEId-Prog.ramrr_table Gate Armys_(FPGA), 2019.

Heterogeneous Distributed Systems. USENIX Symp. on Operating Systems Design [25] Y.-H.Lai, H. Rong, S. Zheng, W. Zhang, X. Cui, Y. Jia, J. Wang, B. Sullivan, Z. Zhang,

and Implementation (OSDI), 2016. Y. Liang, et al. SuSy: A Programming Model for Productive Construction of High-
[2] M. Abid, K. Jerbi, M. Raulet, O. Déforges, and M. Abid. System Level Synthesis of Performance Systolic Arrays on FPGAs. Int’l Conf. on Computer-Aided Design

Dataflow Programs: HEVC Decoder Case Study. Electronic System Level Synthesis UCCAD)} 2020. . .

Conf. (ESLsyn), 2013, [26] Y.-H.Lai, E. Ustun, S. Xiang, Z. Fang, H. Rong, and Z. Zhang. Programming and

[3] N.S. Altman. An Introduction to Kernel and Nearest-Neighbor Nonparametric Synthesis for Software-defined FPGA Acceleration: Status and Future Prospects.
Regression. The American Statistician, 46(3):175-185, 1992. ACM Trans: on Reconfigurable Technglogy and .?ystems (TRETS), 14(4):1-39, 2921.
[4] R.Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang, P. Suriana, [27] J.Li, Y. Chi, anq J. Con,g. HeteroHa!lde: From image processing DSL to efficient
S. Kamil, and S. Amarasinghe. Tiramisu: A Polyhedral Compiler for Expressing FPGA acceleration. Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2020.

s . Lo [28] R.Li, Y. Yang, L. Berkley, and R. Manohar. Fluid: An Asynchronous High-level
lz:gjgand Portable Code. Int’l Symp. on Code Generation and Optimization (CGO), Synthesis Tool for Complex Program Structures. IEEE Int’l Symp. on Asynchronous

[5] S.S.Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. von Platen, M. Mattavelli, Circuits and Systems (ASYNC), 2021.

y [29] T. Liang, J. Zhao, L. Feng, S. Sinha, and W. Zhang. Hi-ClockFlow: Multi-Clock
and M Raulet. OpenDF: A Dataflow TDOIS?t for Reconfigurable Hardware and Dataflow Automation and Throughput Optimization in High-Level Synthesis. Int’l
Multicore Systems. SIGARCH Comput. Archit. News, 2009. Conf, on Computer-Aided Design (ICCAD), 2019

(6] U.Bondhugula, J. Ramanujam, and P. Sadayap(par}. Automatic Mapping of Nested [30] A.Lu, Z. Fang, W. Liu, and L. Shannon. De’mystifying the Memory System of Mod-
Loops tf) FP})G})A;'})AZC;)A(;I7SIGPLAN Conf. on Principles and Practice of Parallel Pro- ern Datacenter FPGAs for Software Programmers through Microbenchmarking.
7 %racr;tlmm}gvl(L.a Y)’L. M' Lin. N. W M. W, T Xiao. B. Xu. C. Zh d Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2021.
(7] T Chen, M. Li, ¥. Li, M. o, N Wang, . Wang, 1. £1a0, B. Au, L. £hang, an [31] Maxeler. Maxeler high-performance dataflow computing systems. https://www.
Z. Zhang. MXNet: A Flexible and Efficient Machine Learning Library for Hetero- maxeler.com/products/software/maxcompiler/. Accessed: 2021-12-27
4 g}eré;ous ,]1? 1ls\/t[r1butedZSy§ tems]-.‘ azr})l(wp rép ;mt a}rIXg:ISIIZ\}[OIéM, ZOIE'W Y i [32] A.Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
(81 L. C en 101_’;\3./1;;{. A]lagg, : eggé d an,E aoenl, owcan, "l ar}g, D W N. Gimelshein, L. Antiga, et al. Pytorch: An Imperative Style, High-Performance
ez, etal FAn utomate. nd-to-En _ptlmlzmg omprier 1or Leep Deep Learning Library. Advances in Neural Information Processing Systems (NIPS),
Learning. USENIX Symp. on Operating Systems Design and Implementation (OSDI), 2019
2018. .
. . . o L. [33] M.Pellauer, Y.S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan, S. W. Keckler,
0] IY\ C}?i J t Con%, tI’)l éVel, andCP. thou._ ASSE% SFenC}ICEVXB)()Z%t;;nlzed Dataflow C. W. Fletcher, and J. Emer. Buffets: An Efficient and Composable Storage Idiom
reiecture. fn of’f' on Computer-Atded Design (. e) . for Explicit Decoupled Data Orchestration. Int’l Conf. on Architectural Support for
[10] Y. Chi, L. Guo, Y. Choi, J. Wang, and J. Cong. Extending High-Level Synthesis for

Programming Languages and Operating Systems (ASPLOS), 2019.

[34] F.Peverelli, M. Rabozzi, E. Del Sozzo, and M. D. Santambrogio. OXiGen: A Tool
for Automatic Acceleration of C Functions into Dataflow FPGA-Based Kernels.
Int’l Parallel and Distributed Processing Symp. Workshops (IPDPSW), 2018.

Task-Parallel Programs. Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2021.

[11] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-Level
Synthesis for FPGAs: From Prototyping to Deployment. IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., 2011 [35] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz.
[12] J. Cong and J. Wang. PolySA: Polyhedral-Based Systolic Array Auto-Compilation. Proira;?mmg Hetedrocgednegus .Sylstexps fr(])}l:cegl Ixznoalg; Processing DSL. ACM Trans.
Int’l Conf. on Computer-Aided Design (ICCAD), 2018. 36 onR e lt%ctﬁre mé BO ¢ p;t‘mll\zdutlon (S P)’ F D d and S. A ingh
[13] D. Diamantopoulos and C. Kachris. High-level Synthesizable Dataflow MapReduce [36] {-I l%l(%a}’l[; f €y, & arx;eé, § 1 aI;lS’ 0' ans, £ Puraﬁ l,‘an L- Taras:x(ligRe.
Accelerator for FPGA-Coupled Data Centers. Int’l Conf. on Embedded Computer alide: A Language and Compiler for Optimizing Parallelism, Locality, and Re-
Systems: Architectures, Modeling, and Simulat;‘on (SAMO:S) 2015. computation in Imgge Processing Pipelines. ACM SIGPA;N Notices, 2013. .
[14] J. Eker and J. Janneck. CAL Language Report: Specification of the CAL Actor (37) Z.Ruan, T. He, B. Li, P. Zhou, and J. Cong. ST-Accel: A ngh—Le:vel Programming
Language. ERL Technical Memo UCB/ERL, 2003 Platform for Streaming Applications on FPGA. IEEE Symp. on Field Programmable
: ’ R ’ : e Custom Computing Machines (FCCM), 2018.
[15] E.Fix and J. L. Hodges. Discriminatory Analysis. Nonparametric Discrimination: [38] C.Rubattu, F. Palumbo, C. Sau, R. Salvador, J. Sérot, K. Desnos, L. Raffo, and M. Pel-

Consistency Properties. Int’l Statistical Review / Revue Internationale de Statistique,
57(3):238-247, 1989.

[16] B.Hagedorn, A. S. Elliott, H. Barthels, R. Bodik, and V. Grover. Fireiron: A data-
movement-aware scheduling language for GPUs. Int’l Conf. on Parallel Architec-
tures and Compilation Techniques (PACT), 2020.

[17] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell, A. Vasilyev,
M. Horowitz, and P. Hanrahan. Darkroom: Compiling High-Level Image Processing
Code into Hardware Pipelines. ACM Trans. Graph., 2014.

[18] A.Hormati, M. Kudlur, S. Mahlke, D. Bacon, and R. Rabbah. Optimus: Efficient Real-

ization of Streaming Applications on FPGAs. Intl’l Conf. on Compilers, Architectures

and Synthesis of Embedded Systems (CASES), 2008.

Intel. Intel FPGA SDK for OpenCL. https://www.intel.com/content/www/us/en/

software/programmable/sdk-for-opencl/overview.html. Accessed: 2021-12-27.

[20] L.Josipovi¢, R. Ghosal, and P. Ienne. Dynamically Scheduled High-Level Synthesis.
Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2018.

[21] L.Josipovic, A. Guerrieri, and P. Ienne. Synthesizing General-Purpose Code Into

cat. Dataflow-Functional High-Level Synthesis for Coarse-Grained Reconfigurable
Accelerators. IEEE Embedded Systems Letters, 2019.

[39] J. Sérot, F. Berry, and S. Ahmed. CAPH: A Language for Implementing Stream-

Processing Applications on FPGAs. Embedded Systems Design with FPGAs, 2013.

N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. Albonesi, V. Sarkar,

W. Chen, P. Petersen, et al. T2S-Tensor: Productively Generating High-Performance

Spatial Hardware for Dense Tensor Computations. IEEE Symp. on Field Pro-

grammable Custom Computing Machines (FCCM), 2019.

[41] M. Technologies. Maxcompiler white paper. https://www.maxeler.com/media/do
cuments/MaxelerWhitePaperMaxCompiler.pdf. Accessed: 2021-12-27.

[42] R.Townsend, M. A.Kim, and S. A. Edwards. From Functional Programs to Pipelined
Dataflow Circuits. Int’l Conf. on Compiler Construction (CC), 2017.

[43] J. Wang, L. Guo, and J. Cong. AutoSA: A Polyhedral Compiler for High-
Performance Systolic Arrays on FPGA. Int’l Symp. on Field-Programmable Gate
Arrays (FPGA), 2021.

[40

[19

Dynamically Scheduled Circuits. IEEE Circuits and Systems Magazine, 2021. [44] Xilinx. Viti§ Unified Software P!atform 2019.2. http§://www:xilinxcom/sup por't/d
[22] L. Josipovié, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella B’uffer Place- qumentatlgn/swﬁmanuals/xﬂlanO1971/ug9027V1vadofhlgh—levelfsynthesxs.p
X T Lo P ’ o o) . Accessed: 2021-12-27.
- : : g 45] K. Zhan, J. Guo, B. Song, W. Zhang, and Z. Bao. UltraNet: -base: ject
ment and Sizing for High-Performance Dataflow Circuits. Int’l Symp. on Field K. Zhan, J. Guo, B. Song, W. Zhang, and Z. Bao. UltraNet: An FPGA-based Ob

Programmable Gate Arrays (FPGA), 2020.

[23] D.Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel, T. Zhao,
L. Nardi, A. Pedram, C. Kozyrakis, et al. Spatial: A Language and Compiler for
Application Accelerators. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), 2018.

Detection for the DAC-SDC 2020. https://github.com/heheda365/ultra_net, 2020.

[46] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston, Y.-H. Lai,
G. Liu, G. A. Velasquez, et al. Rosetta: A Realistic High-Level Synthesis Benchmark
Suite for Software Programmable FPGAs. Int’l Symp. on Field-Programmable Gate
Arrays (FPGA), 2018.

88

	Abstract
	1 Introduction
	2 Background
	3 Motivational Example
	4 The Programming Model
	4.1 Host-Accelerator Data Placement
	4.2 Inter-Kernel Data Placement
	4.3 Intra-Kernel Data Placement
	4.4 A Complete Example

	5 Compilation Flow
	5.1 Inference of Compute/Data Placement
	5.2 Automatic I/O Optimizations
	5.3 Code Generation

	6 Evaluation
	6.1 Case Study: Optical Flow
	6.2 Case Study: GEMM
	6.3 Case Study: K-Nearest Neighbors
	6.4 Case Study: UltraNet

	7 Related Work
	8 Conclusion
	References

