


vector replication and banking to feed a large number of parallel

processing engines (PEs). Furthermore, to support arbitrarily large

matrices (within the capacity of HBM), we partition the matrices

along both rows and columns according to the size of the on-chip

buffers. One synchronization per partition is required since the

buffers need to be cleared when switching partitions.

We implement HiSparse using high-level synthesis (HLS). While

recent years have seen a rapidly increasing adoption of HLS for

accelerator development, a majority of existing HLS designs target

dense computations, such as dense matrix multiplication [9ś11],

image/video processing [12ś14], and convolutional neural networks

[15ś17]. Developing high-performance sparse accelerators using

HLS is more challenging because the irregular compute pattern of

sparse workloads causes bank conflicts and carried dependencies.

We manage to develop a pipelined, non-blocking arbiter and a

pipelined PE with load-store forwarding to resolve bank conflicts

and carried dependencies, respectively, usingHLS through iteration-

level modeling and a proper coding style.

We tackle the challenge of timing closure on multi-die HBM-

equipped FPGAs by adopting a split-kernel design methodology.

More concretely, we split the hardware modules of HiSparse (e.g.,

data loaders, PEs) into multiple groups, implement each group as

one OpenCL kernel, and use pipelined interfaces for inter-kernel

communication. We further apply two optimizations: (1) Confining

each kernel to a specific die during floorplanning to eliminate die

boundary crossings caused by centralized combinational control

signals; (2) Adding registers and relay units between the HBM

and data loaders that are placed at a die far from the HBM. The

split-kernel design achieves a higher frequency than a monolithic

counterpart Ð 237 MHz vs. 117 MHz. The main drawback of the

split-kernel design is the increased programming effort.

We implement HiSparse on a Xilinx Alveo U280 FPGA platform,

using 18 HBM channels delivering 258 GB/s bandwidth in total.

Evaluation results on a variety of matrix datasets show that com-

pared to MKL running on a 32-core Xeon CPU, HiSparse achieves

4.1× higher throughput and 4.6× higher bandwidth efficiency; com-

pared to cuSPARSE running on a GTX 1080 Ti GPU, HiSparse

achieves comparable throughput and 1.9× higher bandwidth effi-

ciency. HiSparse is 37× and 3.7× more energy-efficient than MKL

and cuSPARSE, respectively. We further compare HiSparse to Vitis

Sparse Library (VSL), which is the only existing SpMV accelerator

on HBM-equipped FPGAs to our knowledge. The current SpMV im-

plementation in VSL cannot handle large matrices and is 30% slower

than HiSparse on small matrices. We give a detailed comparison

against VSL in the evaluation and related work sections.

The main contributions of this paper are as follows:

· We identify the opportunities of using HBM-equipped FPGAs

for accelerating sparse linear algebra and discuss the challenges

in four aspects Ð HBM bandwidth utilization, on-chip memory

utilization, compute occupancy, and timing closure.

· We propose HiSparse, a high-performance SpMV accelerator

on HBM-equipped FPGAs. Using HiSparse as a case study, we

present techniques to tackle the aforementioned four challenges.

We study HiSparse under both fixed-point and floating-point

data types. Evaluation results show that HiSparse delivers promis-

ing speedup with increased bandwidth efficiency when com-

pared to prior arts on CPUs, GPUs, and FPGAs.

· We illustrate best practices of using HLS to implement hardware

modules that dynamically resolve bank conflicts and carried

dependencies for achieving high compute occupancy. We also

discuss potential enhancements in HLS tools to better support

developing high-performance sparse accelerators. HiSparse is

available at https://github.com/cornell-zhang/HiSparse.

The rest of this paper is organized as follows. Section 2 reviews

the background on SpMV and modern multi-die HBM-equipped

FPGAs and discusses the major challenges to effective SpMV ac-

celeration on FPGAs with HBM support. Section 3 presents the

sparse matrix format and accelerator architecture co-design of HiS-

parse. Section 4 describes frequency optimizations. Section 5 studies

HiSparse under floating-point datatype. We evaluate HiSparse in

Section 6 and discuss how to extend HiSparse to support sparse

linear algebra operators beyond SpMV in Section 7. We talk about

related work in Section 8 and summarize in Section 9.

2 BACKGROUND AND MOTIVATION

2.1 Sparse Matrix-Vector Multiplication (SpMV)

Representative applications of SpMV include graph analytics, such

as PageRank [18], as well as inference of compressed neural net-

works, such as Transformers [19]. PageRank can be computed by

iteratively applying SpMV, where the sparse matrix is the adjacency

matrix of the graph and the dense vector is the ranks of the vertices.

One layer of a compressed Transformer can be computed as an

SpMV, where the sparse matrix is the compressed weight and the

dense vector is the embedding. In PageRank, the sparse matrices are

usually large (with millions of rows and columns) and highly sparse

with a typical density below 0.1%. In contrast, the sparse matrices

of compressed Transformers are smaller (with thousands of rows

and columns) and less sparse with a typical density of 10-40%.

In this work, we focus on SpMV mainly for three reasons: (1)

There are two major data access patterns in SpMV Ð streaming

accesses of the sparse matrix exhibiting no data reuse and random

accesses of the dense vector exhibiting data reuse. Both data access

patterns are typical in sparse linear algebra, and each poses a unique

challenge to the accelerator design. The first pattern demands a high

off-chipmemory bandwidth, while the second demands efficient use

of on-chip buffers; (2) SpMV, similar to other sparse linear algebra

operators, has irregular compute patterns, which pose challenges

to achieving high occupancy of the parallel processing engines

(PEs) in an accelerator; (3) In addition, it is possible to extend an

SpMV accelerator to handle other sparse linear algebra operators.

For example, we can compute SpMM as a batch of SpMV; we can

support SpMSpV by considering the sparsity of the vector.

2.2 Multi-Die HBM-Equipped FPGAs

HBM[20] is a new memory technology that offers high bandwidth

by vertically stacking multiple memory dies. Logically, an HBM

device provides multiple memory channels that can be accessed

concurrently. HBMs have been adopted into modern FPGAs such as

Intel Stratix 10 MX and Xilinx Alveo U280. To fully utilize the high

bandwidth of HBM devices, the hardware must perform parallel,

vectorized, and streaming accesses at a high clock frequency.
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Table 3: Throughput (GOPS) and bandwidth efficiency

(MOPS/(GB/s)) compared to MKL and cuSPARSE.

Dataset
Throughput Bandwidth efficiency

MKL cuSPARSE HiSparse MKL cuSPARSE HiSparse

transformer-50 5.9 26.9 21.9 20.9 55.5 84.7

transformer-60 5.6 21.5 18.9 19.9 44.5 73.4

transformer-70 5.2 17.7 16.5 18.3 36.6 63.9

transformer-80 4.1 19.4 14.8 14.6 40.1 57.4

transformer-90 2.3 13.6 9.7 8.1 28.0 37.8

transformer-95 1.2 10.7 5.7 4.3 22.2 22.0

Geomean 3.5 17.5 13.3 12.5 36.2 51.7

mouse-gene 12.1 29.0 27.2 43.0 59.9 105.4

googleplus 5.1 27.2 21.2 18.0 56.4 82.2

ogbl-ppa 4.1 18.0 24.4 14.7 37.2 94.6

hollywood 4.4 22.6 24.9 15.6 46.6 96.7

pokec 3.0 10.5 11.2 10.7 21.8 43.6

ogbn-products 3.1 5.0 20.6 11.0 10.3 79.9

Geomean 4.7 16.0 20.8 16.6 33.1 80.7

Overall Geomean 4.1 16.8 16.7 14.0 33.2 64.5

respectively; also 4.9× and 2.4× higher in bandwidth efficiency.

On the Transformer datasets, the numbers are 3.8× and 0.8× in

throughput, 4.1× and 1.4× in bandwidth efficiency, respectively.

Table 4: Comparison with ThunderGP.

Dataset
Throughput Bandwidth efficiency

ThunderGP HiSparse ThunderGP HiSparse

mouse-gene 8.4 27.2 109.0 105.4

hollywood 9.7 24.9 126.0 96.7

pokec 8.7 11.2 113.7 43.6

Geometric mean 8.9 19.6 116.0 76.3

Table 5: Comparison with Vitis Sparse Library.

Dataset
Throughput Bandwidth efficiency

VSL HiSparse VSL HiSparse

transformer-50 17.5 20.6 65.2 79.8

transformer-60 14.6 17.8 54.4 69.0

transformer-70 13.0 15.3 48.7 59.5

transformer-80 10.5 13.4 39.1 51.9

transformer-90 5.8 10.6 21.8 41.0

transformer-95 3.3 5.1 12.4 19.7

Geometric mean 9.4 12.6 34.9 48.9

Table 4 shows the comparison with ThunderGP [24]. HiSparse

delivers a 2.2× higher throughput than ThunderGP, but with a lower

bandwidth efficiency (at 0.7×). The main reason is ThunderGP

assigns more processing engines to one memory channel than

HiSparse, compensating for the under-utilization of PEs due to

bank conflicts and load imbalance. This approach is feasible in

ThunderGP since the total number of memory channels is only 4.

When scaled to 16 or more channels, the complexity of the shuffle

unit can easily cause routability problems. Therefore, to further

increase the bandwidth efficiency, a more lightweight shuffle unit

is required to assign more PEs to one memory channel.

Table 5 shows the comparison with VSL. Since the SpMV in VSL

is a floating-point design using the partial buffer approach, we also

use the partial-buffer floating-point design for a fair comparison.

HiSparse is 1.4× higher in both throughput and bandwidth effi-

ciency. The main reason is that the VSL SpMV only assigns 4 PEs

to one HBM channel. In addition, the vector buffer size and output

buffer size are only 2 KB and 8 KB, respectively. Using the smaller

buffers also increases the tiling and synchronization overhead.

Table 6: Power consumption and energy efficiency.

MKL 32 threads cuSPARSE HiSparse

Power (W) 276 153 45

Energy efficiency (GOPS/W) 0.01 0.10 0.37

Table 6 shows the real-measured power consumption and energy

efficiency of MKL, cuSPARSE, and HiSparse. HiSparse is 37× and

3.7× more energy-efficient than MKL and cuSPARSE.

6.4 Floating-Point vs. Fixed-Point

Table 7: Fixed-point (FX), partial buffer (PB) floating-point,

and row interleaving (RI) floating-point designs.

Dataset Size
Throughput

FX PB RI

transformer-80 512 × 33K 14.8 13.4 6.3

mouse-gene 45K × 45K 27.2 25.0 13.1

pokec 1632K × 1632K 11.2 3.4 9.1

ogbn-products 2449K × 2449K 20.6 6.7 16.3

Table 7 shows the comparison among the fixed-point design and

two floating-point designs proposed in Section 5 with similar total

on-chip buffer utilization. The operating frequency of the partial

buffer (PB) design and the row interleaving (RI) design are 218 MHz

and 206 MHz, respectively. On small matrices such as mouse-gene

and transformer-80, the PB design is comparable to the fixed-

point design, while the RI design only achieves less than 50% of the

throughput of the fixed-point design. However, on large datasets,

the increased tiling overhead of the PB design significantly degrades

the performance. The RI design, on the other hand, achieved 80%

throughput of the fixed-point counterpart. The results clearly show

that adopting fixed-point delivers the best performance with high

hardware efficiency. The partial buffer design is better at processing

small matrices while the row interleaving approach is suitable to

handle larger datasets.

6.5 Preprocessing Cost

Preprocessing refers to converting a CSR matrix into our custom

format. Table 8 shows the preprocessing cost of HiSparse and VSL,

both using only one thread. On 8 out of the 12 datasets, the pre-

processing can finish within a second. Even on the largest dataset,

ogbn-products, the preprocessing can finish within 11 seconds. In

comparison, the preprocessing of VSL on ogbn-products takes 49

seconds. For graph analytics such as PageRank, the preprocessing

cost is amortized over multiple iterations; for compressed machine

learning inference like Transformers, the preprocessing cost can

be ignored since a trained model runs inference for a long time, at

least days, before being retained.

7 DISCUSSION

Extending HiSparse beyond SpMV. HiSparse can be easily ex-

tended to other sparse linear algebra operators such as SpMSpV

and SpMM, by reusing the optimized hardware modules.

SpMSpV exploits the sparsity in the input vector and only loads

the necessary columns of the sparse matrix. We can accelerate SpM-

SpV using similar architecture as HiSparse with small modifications.
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Table 8: Preprocessing time with one thread.

Dataset
Time (s)

Dataset
Time (s)

HiSparse VSL HiSparse VSL

transformer-50 0.24 7.72 mouse-gene 0.87 20.58

transformer-60 0.16 6.18 googleplus 0.39 8.09

transformer-70 0.11 4.38 ogbl-ppa 1.89 17.24

transformer-80 0.08 2.80 hollywood 4.68 59.40

transformer-90 0.04 1.66 pokec 3.43 13.00

transformer-95 0.02 0.74 ogbn-products 10.60 49.45

The vector loader assigns different vector values to different clusters

instead of duplicating the same vector value. The result draining

unit merges partial results from clusters by addition rather than

concatenation. The clusters compute the scalar-vector product be-

tween one vector value and the corresponding column from the

matrix. Since the accesses to the output buffer are random, we can

reuse the shuffle unit to assign matrix non-zeros to PEs and resolve

the bank conflicts on the output buffer. The compute pattern in the

PEs is not changed, so the PEs can also be reused.

SpMM can be expressed in a batch of SpMV, therefore it has the

same access pattern as SpMV. The rows of the sparse matrix are

streamed in and duplicated to multiple SpMV instances. The vector

loaders of different SpMV instances load different columns from

the input dense matrix. Each SpMV instance generates one column

of the result dense matrix.

Potential Enhancements in HLS Tools. Based on the lessons

learned from developing HiSparse, we give the following sugges-

tions on how HLS tools can be improved to better support devel-

oping high-performance sparse accelerators. First, sparse linear

algebra operators all contain random access patterns with data

reuse, which requires efficient on-chip buffering. We suggest hard-

ware templates similar to the shuffle unit be included in the HLS

libraries. Second, sparse linear algebra operators often imply ac-

cumulation. The load-store forwarding in HiSparse can serve as a

general approach to resolving inter-iteration carried dependencies.

The HLS tools can offer pragmas or options to implement the IFWQ

and the dependence resolution logic at compile time. Finally, when

any module consumes resources more than one die, the HLS tool

can automatically switch to pipelined communication protocols

and insert registers or at least warn the programmer of potential

timing degradation.

8 RELATEDWORK

Sparse Formats and Sparse Accelerators. There is an active

body of research on accelerating sparse linear algebra operators [5,

28ś34]. The cyclic channel interleaving scheme in our customized

format is adopted from cyclic channel sparse rows (C2SR), a format

proposed for a sparse-sparse matrix multiplication (SpGEMM) ac-

celerator [29]. One major difference between C2SR and our format

is that C2SR performs vectorized memory accesses to every single

row, while our format performs vectorized memory accesses to

packed rows. The latter better exploits the parallelism in SpMV.

Our format also draws inspiration from compressed interleaved

sparse rows (CISR), a format proposed for an SpMV accelerator

[5]. Our format borrows from CISR the general idea of explicitly

encoding parallelism into the sparse matrix format, but avoids the

centralized row encoding/decoding in CISR. Therefore we achieve

higher throughput when scaling to multiple HBM channels and

lower preprocessing cost.

Graph Accelerators on FPGAs. ThunderGP [24] implements

SpMV using the programming model for graph algorithms. Thun-

derGP provides optimized kernels with high bandwidth efficiency

and frequency, but the performance is limited by DDR memory

bandwidth. GraphLily [34] formulates graph algorithms with SpMV

in one unified FPGA bitstream. Although utilizing HBM, GraphLily

only operates at 165 MHz, which limits its performance. We believe

the techniques mentioned in this paper, especially kernel splitting,

can be applied to GraphLily to further improve its performance.

Vitis Sparse Library. To the best of our knowledge, the Vitis

Sparse Library (VSL) [25] is the only work prior to HiSparse that

accelerates SpMV on a multi-die HBM-equipped FPGA. It adopts

compressed sparse column format to exploit the parallelism across

columns, with the floating-point data type. Our performance gain

over VSL comes from the increased number of PEs and buffer size.

VSL utilizes combinational arbiters to resolve bank conflicts so that

the numbers of PEs and shared banks are limited to 4 for high

frequency. The compute pattern of VSL requires the results from

different PEs to be added instead of concatenated, and it follows the

partial buffer approach to handle floating-point. These two factors

significantly decrease the on-chip buffer utilization efficiency.

Timing Optimization of FPGA HLS. There are several prior

attempts aiming at improving the frequency of the HLS designs by

considering the physical information at an early stage. AutoBridge

[21] proposes floorplan-guided pipelining for HLS dataflow designs

to achieve substantial timing improvements on multi-die FPGAs.

AutoBridge does not support pipelining the control signals and the

remote accesses to HBM; hence currently it cannot be applied to

our sparse accelerator design. Guo et al. [35] propose to pipeline the

high-fanout signals generated by HLS, although this work does not

target multi-die HBM-equipped FPGAs. Zheng et al. [36] propose

an iterative HLS flow that incorporates place-and-route (PAR) to

gradually optimize the critical paths. For large-scale designs that

saturate the HBM bandwidth, the long running time of PAR would

undermine the productivity benefits of HLS.

9 CONCLUSION

This paper proposes HiSparse, a high-performance SpMV acceler-

ator on HBM-equipped FPGAs. We present techniques to tackle

challenges in four aspects Ð HBM bandwidth utilization, on-chip

memory utilization, compute occupancy, and timing closure on

multi-die heterogeneous fabrics. Evaluation results verify the ad-

vantages of HiSparse over competitive CPU, GPU, and FPGA base-

lines in throughput and bandwidth efficiency. We further discuss

how to extend HiSparse to support sparse linear algebra operators

beyond SpMV, such as SpMSpV and SpMM. Our study also provides

guidance on potential enhancements in HLS tools to better support

developing high-performance sparse accelerators.
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