
Journal of Biotechnology 341 (2021) 43–50

Available online 13 August 2021
0168-1656/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A local platform for user-friendly FAIR data management and
reproducible analytics

Florian Wieser a,1, Sarah Stryeck b,c,1, Konrad Lang b,c, Christoph Hahn d,
Gerhard G. Thallinger e,i, Julia Feichtinger f,i, Philipp Hack g, Manfred Stepponat g,
Nirav Merchant h, Stefanie Lindstaedt b,c,**, Gustav Oberdorfer a,i,*
a Institute of Biochemistry, Graz University of Technology, 8010, Graz, Austria
b Institute for Interactive Systems and Data Science, Graz University of Technology, 8010, Graz, Austria
c Know-Center GmbH, 8010, Graz, Austria
d Institute of Biology, University of Graz, 8010, Graz, Austria
e Institute of Biomedical Informatics, Graz University of Technology, 8010, Graz, Austria
f Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
g Central Information Technology, Graz University of Technology, 8010, Graz, Austria
h Data Science Institute, University of Arizona, BSRL 200 A, Tucson, AZ, 85721, United States
i BioTechMed-Graz, Austria

A R T I C L E I N F O

Keywords:
Cyberinfrastructure
Bioinformatics
Research data management
FAIR
Teaching
CyVerse

A B S T R A C T

Collaborative research is common practice in modern life sciences. For most projects several researchers from
multiple universities collaborate on a specific topic. Frequently, these research projects produce a wealth of data
that requires central and secure storage, which should also allow for easy sharing among project participants.
Only under best circumstances, this comes with minimal technical overhead for the researchers. Moreover, the
need for data to be analyzed in a reproducible way often poses a challenge for researchers without a data science
background and thus represents an overly time-consuming process. Here, we report on the integration of CyVerse
Austria (CAT), a new cyberinfrastructure for a local community of life science researchers, and provide two
examples how it can be used to facilitate FAIR data management and reproducible analytics for teaching and
research. In particular, we describe in detail how CAT can be used (i) as a teaching platform with a defined
software environment and data management/sharing possibilities, and (ii) to build a data analysis pipeline using
the Docker technology tailored to the needs and interests of the researcher.

1. Introduction

With experiments nowadays generating a wealth of research data,
the term ‘Big data’ has become a buzzword in life science. Thus, dealing
with large amounts of data has become exceedingly challenging for life
science researchers without a data science background. A substantial
boost in handling these amounts of data came from establishing re
sources and methods for data management/archival as well as
discipline-specific standardized data formats, to ensure reproducibility.
However, there is an apparent lack of tools, which support life science
researchers to efficiently use their data, specifically with respect to data

analytics and collaborative research on large datasets. As a result,
rendering research data FAIR (findable, accessible, interoperable and
reusable) before and after publication represents an overly time-
consuming process for researchers. CyVerse US (https://www.cyverse.
org, 2021), an initiative from the University of Arizona, supports
research-related processes from data generation, management, sharing
and collaboration for data analytics and storage. All those processes are
essential for following a FAIR approach to research data.

The initiative started with a strong community in life science and is
now expanding to other disciplines, with several entities deploying the
CyVerse infrastructure outside the US, such as CyVerse UK

* Corresponding author at: Institute of Biochemistry, Graz University of Technology, 8010, Graz, Austria.
** Corresponding author at: Institute for Interactive Systems and Data Science, Graz University of Technology, 8010, Graz, Austria.

E-mail addresses: slind@know-center.at (S. Lindstaedt), gustav.oberdorfer@tugraz.at (G. Oberdorfer).
1 Equal contribution.

Contents lists available at ScienceDirect

Journal of Biotechnology

journal homepage: www.elsevier.com/locate/jbiotec

https://doi.org/10.1016/j.jbiotec.2021.08.004
Received 31 January 2021; Received in revised form 24 June 2021; Accepted 4 August 2021

mailto:slind@know-center.at
mailto:gustav.oberdorfer@tugraz.at
www.sciencedirect.com/science/journal/01681656
https://www.elsevier.com/locate/jbiotec
https://doi.org/10.1016/j.jbiotec.2021.08.004
https://doi.org/10.1016/j.jbiotec.2021.08.004
https://doi.org/10.1016/j.jbiotec.2021.08.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiotec.2021.08.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Biotechnology 341 (2021) 43–50

44

(https://cyverseuk.org, 2021) or initiatives in Australia (https://cy
verse.org/Researchers-Explore-Creation-of-CyVerse-Australia, 2021).
However, all those initiatives are still linked to CyVerse US
(https://www.cyverse.org, 2021). We deployed an independent
instance of CyVerse in Austria, which is currently used by three uni
versities – Graz University of Technology (TUG), University of Graz and
Medical University of Graz – as a shared research data platform
(https://cyverse.tugraz.at, 2021; Lang et al., 2020). CyVerse Austria
(CAT) introduces a new cyberinfrastructure (CI) for a local community
of life science researchers and additionally provides a huge potential to
serve researchers beyond the life science domain at various institutions
within Austria. Moreover, this project sets a new basis to support col
laborations and reproducible research between universities by (i)
creating a distributed computational and data management architecture
for FAIR research data, (ii) hosting relevant tools as Docker containers
(Devisetty et al., 2016; https://www.docker.com, 2021) to ensure
reproducible analytics and (iii) integrating researchers into a global
community. Previously published work on CAT focused on the detailed
technical setup of CAT (Lang et al., 2020). In this article, we elucidate
CAT from the user perspective, illustrated by two step-by-step tutorials
which should serve as protocols for researchers who intend to use CAT
for their research or teaching. It is essential to understand the value of a
CI without the need of having extensive knowledge in data/computer
science or high-performance computing (HPC) infrastructure. Here, we
mainly address researchers that need analytical tools for their research
but do not have extensive a priori knowledge about the underlying
technical requirements. Therefore, we highlight and describe in detail
how CAT can be used (i) as a teaching platform with a defined software
environment and data management/sharing possibilities, and (ii) to
build a data analysis pipeline using the Docker technology tailored to the

needs and interests of the researcher.

2. Methods

2.1. Implementation

TUG provides the core system for user management and the web
front-end together with storage and computational hardware. Distrib
uted storage is provided using the integrated Rule Oriented Data System
(iRODS) technology (https://irods.org, 2021). Each participating insti
tution integrates its own storage resources via the iRODS resource
server. Since each of the institutions provides local storage devices, it is
ensured that research data is stored at the corresponding institution – a
legal requirement when analyzing personal data, patient data or data
generated within industry related projects (Fig. 1).

Jobs for data analytics submitted in CAT are scheduled to the
computing resources through HTCondor (https://research.cs.wisc.
edu/htcondor, 2021; Litzkow et al., 1988; Thain et al., 2005). These can
either be submitted to the central resources at TUG or to high perfor
mance computing (HPC) clusters of the other participating institutions.
For submission of jobs to the HPC clusters, there are HTCondor transfer
nodes deployed at the servers of each participating institution to connect
with other schedulers such as SGE (https://arc.liv.ac.uk/trac/SGE,
2021) or Slurm (https://www.schedmd.com, 2021; Yoo et al., 2003).
Jobs are submitted as Docker containers (https://www.docker.com,
2021) and converted to Singularity containers (Kurtzer et al., 2017) at
the HPC clusters if required to adhere to security restrictions of the
participating institutions.

The user sees all these services combined in the CAT Discovery
Environment (DE). The DE offers a graphical user interface (GUI) to

Fig. 1. Overview of the current hardware organization of CAT. Each participating institution has their own resource servers connected to the core system of TU Graz,
which hosts the DE and the iCAT metadata catalogue. Institutions have access to both, their internal HPC hardware as well as the central HPC infrastructure at
TU Graz.

F. Wieser et al.

Journal of Biotechnology 341 (2021) 43–50

45

present (i) the data in the folder structure with files managed in CAT, (ii)
the Apps representing all available tools as Docker containers in CAT
and (iii) the status of currently running, as well as completed jobs. Data
analytics in CAT can either be run as a script in the background or by
using a visual and interactive computing environment (VICE).

CAT is based on the open-source code provided by CyVerse US,
however, specific adaptions had to be implemented to be adhere to
university regulations. Thus, some of the CAT modules are deployed
differently. For instance, CAT establishes the connection to HPC clusters
at different institutions, whereas CyVerse originally was built to provide
central computational power and connects the CI to the OpenScience
Grid (Pordes et al., 2007). In addition, the user account management is
different from its original implementation. Currently, user accounts are
created by the CAT team. In the future, Keycloak (https://www.key
cloak.org, 2021) will be used as Open Source Identity and Access
Management tool to enable single sign-on for members of Austrian
universities.

3. Results

3.1. Operation

CAT is a local, independent instance based on CyVerse US (1). Uni
versity employees of the participating institutions can request a user
account from the CAT team and connect to it through the university
network or using a Virtual Private Network (VPN) client. All services are
running in CAT, and there are no specific requirements for the under
lying system used by the researcher, except the connection to the
institutional network. Solely preparation of new containers has to be
performed locally using Docker (Devisetty et al., 2016; https://www.
docker.com, 2021), which serve as the basis for Apps designed in the DE.

3.2. Usability

In CAT, users interact mostly with the DE, which offers a GUI for
intuitive research data management, data storage, data sharing, initi
ating and monitoring of computational processes, as well as accessing
results of executed workflows and analyses (Fig. 2). CAT allows users to
store and access their data in an easy and intuitive way using the
CyVerse Data Store (DS) with the DE GUI. Here, a researcher stores files
containing research data in folders and subfolders.

3.3. Documentation is key

Research in different disciplines suffers from the reproducibility
crisis (Doleman et al., 2019; Fanelli, 2010; Ioannidis and Trikalinos,
2007). Therefore, there are top-down (Directorate, 2021) and bottom-up
(Schönbrodt et al., 2021) movements supporting adequate research data
management (RDM) and open science practices. Funding agencies and
publishers demand RDM according to FAIR principles. In order to meet
those requirements, it is essential to have the technical infrastructure in
place.

Features in CAT that support all FAIR guiding principles are
described below (letter/number pairs in this section correspond to
(Wilkinson et al., 2016):

3.3.1. Findable
Unlike most repositories that only support data during and after

publication, CAT supports users in generating FAIR data throughout the
entire data life cycle. CAT is not intended as a long-term data archive,
but it provides an API to transfer data to long-term repositories (e.g.
InvenioRDM). Published data with globally unique and persistent
identifiers (also known as PIDs), can be linked to CAT datasets (F1, F3).
All data in CAT are described with rich metadata (F2). Additional sci
entific metadata, based on community input and standards, are required
for certain data types (F2). CAT data are indexed and discoverable
through the CyVerse instance of ElasticSearch (F4).

3.3.2. Accessible
Data and metadata in CAT are retrievable through standard

communication protocols with other members (A1.2). CAT provides
pipelines to publish to canonical repositories such as NCBI, as well as
institutional repositories (e.g. InvenioRDM) to make (meta)data
retrievable by their PID through open, free and universally imple
mentable protocols (A1.1). Metadata are stored in the iCAT metadata
catalogue and can be kept even if data are no longer available (A2) to
provide a high degree of FAIRness of the research.

3.3.3. Interoperable
Data in CAT must be in non-proprietary formats that are readable by

widely accessible software (I1). Metadata for published datasets are
available as download in JSON, with citations as BibTeX and EndNote
(I1, I2). Vocabularies and standards are always evolving, especially for

Fig. 2. Layout of the DE in CAT. On the left the user can open and switch between the three main windows, which encompass a data browser, list of available apps, as
well as an analysis window. All features of CAT can be accessed via this interface.

F. Wieser et al.

Journal of Biotechnology 341 (2021) 43–50

46

newer data types, so CAT continues to work with communities on
specification and adoption. Using data attributes such as relatedIdenti
fer, (meta)data in CAT can be linked to other data (I3). The CAT met
adata API is engineered to support links among metadata elements (i.e.
metadata graphs) using formal ontological and RDF properties and al
lows the use of data models (I3). Data models provide a way to relate
data elements to one another and are essential for managing large,
complex datasets.

3.3.4. Reusable
To meet the FAIR reusability criterion, (meta)data must be richly

described with accurate and relevant attributes including a clear and
accessible data usage license and detailed information about its origin,
following domain-relevant community standards. All of this CAT
currently does for published data (R1.1–1.3). Dublin Core
(https://www.dublincore.org/specifications/dublin-core/dcmi-terms,
2021) and DataCite (Martone, 2014) do not truly support reusability due
to their focus on publication rather than science. Therefore, CAT adopts
standards developed by scientific communities and works closely with
communities that want to encourage rich metadata usage.

In addition to FAIR data principles, CAT supports reproducible sci
ence by the deployment of Docker containers and through good data
management practices, such as tracking data origin through analysis
steps, recording results in standardized formats, and providing access to
scripts, runs, and results.

3.4. Reproducible research with containers

A Docker container is a standard execution unit that packages code
and all its dependencies, thereby making it easily portable to other
computing environments. However, on HPC clusters Singularity con
tainers are preferred, as they can be executed without root privileges.
Therefore, root privilege escalation is reduced. HPC environments are
typically multi-user systems, where users should only have access to
their own data. For all practical purposes, Docker requires superuser
privileges, which does not adhere to the security requirements of most
HPC clusters. To this end, Docker containers can be easily converted to
Singularity containers, which means that dockerized tools stored in the
DE can be send to the HPC cluster, converted into Singularity format and
run on the HPC cluster.

3.5. Life science towards data science

Life science research is becoming increasingly ‘data heavy’, with
analysis workflows often exceeding the computational capabilities of
regular laptops or desktop computers. Institutions therefore provide
HPC clusters where researchers can request access and perform their
respective computation. CAT enables researchers to directly submit a
computing job to the HPC clusters by starting an App. As CAT users are
assigned to specific computing resources, their job will be directly
submitted to the appropriate HPC and the output will be transferred
back to the CAT data system.

3.6. Collaboration enables research

For efficient collaboration, it is essential that researchers have tools
to share their research data. CAT enables sharing by providing distrib
uted storage at different research institutions. However, for the user it
does not matter where the data is stored. All data that is owned by or
shared with the user, potentially via multiple separate storage servers,
will be visible through the GUI of the CAT DE. Thus, researchers using
CAT adhere to institutional regulations (https://www.forschungsdaten.
info/fdm-im-deutschsprachigen-raum/oesterreich/fdm-policies, 2021).
In the CAT DE, a user can assign read-, write- or ownership permissions
to collaboration partners/groups for individual files, folders or datasets.
Data can also be kept invisible for all users but the owner to adhere to

data security guidelines.

4. CAT for teaching

4.1. Preparation prior to courses

University courses often include hands-on exercises, where the stu
dents have to use a specific software package to perform certain tasks or
answer questions. The exercises often rely on a specific version of the
software to function properly. Extensions of the software package may
be necessary to perform a task, where also a certain release is required to
yield reproducible results. In short, setting up the environment for
computational exercises is often far from trivial and requires expertise,
frequently beyond the level of early-stage students. There are basically
three options to provide the students with a defined software environ
ment for a course: (i) give detailed instructions on how the required
version of the software package and its extensions are to be installed on
the student’s computer; (ii) hold the course in a computer lab with its
defined hardware and software environment; and (iii) provide the
defined software environment as web-accessible service. Option (i) is
feasible in principle, but subtle differences caused by the used operating
system or extensive hardware requirements may prevent a successful
setup of the course’s software environment. This is especially true for
software packages with a short release cycle. Option (ii) is the preferred
one when courses are held face to face, as the instructors have full
control over the hard- and software environment and can be supported
by the university’s IT department. However, if a course has to be held
virtually, because participants are at different locations or physical
contact is prohibited like in the COVID-19 pandemic, option (iii) is the
most suitable.

In summer 2020, we offered two courses “Biostatistics and R” and
“Applied Bioinformatics” to interested PhD students from all three
universities in Graz in the context of the BioTechMed-Graz initiative
(https://biotechmedgraz.at). Both courses require a defined R-environ
ment (R Development Core Team, 2019) to allow the students to
perform their tasks, where the bioinformatics course depends heavily on
additional R-packages and requires significant hardware resources. We
used the CAT infrastructure to provide the students with a defined
software environment as an R-Studio (RStudio Team, 2020) instance.

Prior to the course, we configured a Docker container, fully equipped
to serve as a visual and interactive computing environment, for the
course participants via CAT. Our container built on an Rstudio server
image, as provided by the Rocker project (Boettiger and Eddelbuettel,
2017; https://www.rocker-project.org, 2021), and was reconfigur
ed/extended with nginx and iCommands to be compatible with the
HTCondor and Kubernetes orchestration implemented in CyVerse
(Swetnam, 2019) (see also https://github.com/cyverse-vice/rstudio-bas
e). The resulting container was further extended with the particular li
braries and R-packages required for the course (the Dockerfile detailing
the setup can be found in the Supplementary Materials).

Students received a link from the help desk for direct access to a
running RStudio instance, which was initiated beforehand by the plat
form team using the Docker container available in CAT.

4.2. Procedure during the course

To avoid students having to familiarize themselves with CAT as well
as accessing and starting RStudio on their own, provisioning of appli
cations was done by providing a simple URL. This allowed students to
access RStudio using a web browser, which immensely simplified the
process for the students, and furthermore ensured that all students
worked with the same tool versions and were not restricted by certain
hardware requirements or underlying dependencies. We used two stra
tegies of data sharing to provide lecture notes, report templates and
input files for the exercises: (i) students were provided with files
externally (downloadable on a website with user-restricted access) and

F. Wieser et al.

https://biotechmedgraz.at
https://github.com/cyverse-vice/rstudio-base
https://github.com/cyverse-vice/rstudio-base

Journal of Biotechnology 341 (2021) 43–50

47

uploaded them on their own using the ‘files’ pane of the RStudio
instance; and (ii) we established common data access directly through
CAT. Data was synchronized with each student’s container automati
cally as soon as the lecturer added data needed for exercises in the DE.
The students could access the data directly in R, as well as download it
using the ‘files’ pane, if required. The latter facilitated simple data access
for the students and proved to be particularly convenient for sharing
large data files. During the course the students used RStudio in CAT to
create their own scripts. Thereby the students could perform diverse
analyses of varying complexity in R, ranging from the use of descriptive
and inferential statistics to bioinformatics analyses such as a basic RNA-
seq analysis workflow, using the R-packages Rsubread (Liao et al., 2019)
and limma (Ritchie et al., 2015). The hardware resources available to
each student were adjusted to meet the increasing demands of the given
examples. The support team defined the resource limits for the con
tainers used by the students and raised them upon request. The use of
HPC resources allowed to perform more sophisticated and computa
tionally intensive analyses such as the alignment of sequencing reads to
a reference genome using the R-package Rsubread (Liao et al., 2019).
Interaction between the students and lecturers was facilitated using an
online meeting tool that allowed for breakout rooms. This enabled the
students to work in teams as well as to ask questions via (video) chat and
screen sharing. Finally, the students completed a report based on a
provided template, which was handed in at the end of each unit.

4.3. Technical support during the course

To provide a unified way to communicate between students (users)
and the support team, we decided to implement a communication
channel with two access points and a unified back-end to handle such
requests: (i) direct emails to a dedicated address, which are handled by
the support team; (ii) filling out a contact form available on the website,
which requires specifying the user’s email address to effectively start
communicating. Our choice for a unified back-end was Zammad
(https://www.zammad.org, 2021), a web-based, open source and freely
available user support and ticketing system.

There are simpler ways to implement the communication and sup
port channel for web-forms and email entry points, but with the plans to
integrate a direct chat function and other social media channels into the
CAT platform in the future, Zammad became the tool of choice. Other
tools are either focused on issue tracking (https://otrs.com, 2021;
https://www.intercom.com, 2021) or not available as open source and
free solutions. Furthermore, cloud-based solutions may also be hosted
outside the EU where General Data Protection Regulation issues need to
be considered.

5. CAT for reproducible analytics

5.1. Integration of an automated workflow into the CAT DE

Multi-staged computational pipelines where executables not only
depend on the computational output of the preceding process, but also
on a specific version, are typical in bioinformatics (Devisetty et al.,
2016). With the possibility to implement multi-staged automated
workflows in the DE and the direct access to high-performance
computing resources, CAT provides a well-suited infrastructure for
complex pipelines and computationally demanding tasks. We therefore
chose the integration of a protein structure prediction pipeline as the
prototypical example of a user-friendly automated workflow. In partic
ular, we integrated the ab initio structure prediction protocol from the
software package Rosetta (Leaver-Fay et al., 2011; Rohl et al., 2004).

The ab initio structure prediction protocol (Bender et al., 2016;
Leman et al., 2020) attempts to solve the common problem of finding the
lowest energy protein structure for a given amino-acid input sequence
(Huang et al., 2016). It is frequently applied to proteins for which no
homologous structure is available, as well as a self-consistency check

after a protein sequence design task (Leman et al., 2020; Boyken et al.,
2016; Huang et al., 2014). Fig. 3 shows a workflow diagram of the entire
ab initio pipeline.

5.2. Workflow description

The pipeline is initiated by predicting a protein’s sequence profile
and secondary structure by using the algorithms PSIBLAST and PISPRED
(Altschul et al., 1997; Jones, 1999). These algorithms take the amino
acid sequence in FASTA format as input. Using the information of the
sequence profile and the secondary structure, a protocol in Rosetta
collects fragment sets from known protein structures for each position of
the amino acid query sequence. These fragments typically range in the
size of 3, 6 or 9 amino acids and include the bond angles of the backbone
and/or the side chain atoms (Gront et al., 2011). Guided by an energy
function and sampling via a Monte Carlo search (Leaver-Fay et al., 2011;
Rohl et al., 2004), the actual ab initio protocol assembles the fragments
in an attempt to find an energy minimum, which is considered as final
prediction, presumably resembling the native state of the protein (Baker
and Sali, 2001).

In order to identify the native state, a vast number of structure
conformations have to be sampled which makes these kinds of algo
rithms in general computationally very demanding. Thus, production
runs, during which 10.000–100.000 structures are computed, are usu
ally performed on highly parallel, HPC systems (Kuhlman and Bradley,
2019; Raman et al., 2008).

During the last decade efforts have been made to make Rosetta
accessible to a broader range of scientists, and particularly to users
without a software-engineering related background. Hence two high-
level interfaces called RosettaScripts and PyRosetta have been imple
mented (Lyskov et al., 2013). The latter is a Python-based imple
mentation of Rosetta and allows to write custom structure prediction
and design protocols either interactively using iPython, or script-based
using Python scripting. An integration of PyRosetta into the CAT DE is
intended in the future (Ford et al., 2020).

RosettaScripts on the other hand provides protocol-level access to
almost all of Rosetta’s modeling features with the aid of an XML-like
language interface in which the user defines a set of RosettaScripts ob
jects and their order of execution (Bender et al., 2016; Fleishman et al.,
2011). These XML scripts are straight forward to write without having to
know the underlying C++ code base. Moreover, they are easily ported to
other systems that support Rosetta and make recompilation of the
Rosetta source code obsolete (Fleishman et al., 2011). Hence we decided
to integrate RosettaScripts as the second tool into the CAT DE. All
Dockerfiles and wrapper scripts implemented within this project are
available online at https://github.com/FlorianWieser1/rosetta-at-cyver
se.

5.3. Generating docker containers

All containers created in this project are based on the current Ubuntu
Long Term Support version 20.04 (Supplementary Materials, sample
Dockerfile 2). Each Rosetta Docker container consists of one or more
statically pre-compiled Rosetta executables (Supplementary Materials,
sample Dockerfile 2, line 11), a wrapper start script (Supplementary
Materials, sample Dockerfile 2, line 12) and the Rosetta main database.
In order to keep the containers small, the Rosetta database is stored
externally in the CAT data store. If the container is executed in the DE,
the database will be mounted with the HTCondor node’s working
directory alongside with the other input files by using a combination of
the docker run flags -v and -w (Devisetty et al., 2016). The -v flag (for
volume) bind-mounts the Rosetta database to the container at runtime.
Two other options that are especially useful to test the container’s
functionality offline on a computer are the -i (for interactive) and -t (for
tty) flags. In combination with the ‘entrypoint’ flag they will start the
container in manual mode, where the user has access to the

F. Wieser et al.

https://github.com/FlorianWieser1/rosetta-at-cyverse
https://github.com/FlorianWieser1/rosetta-at-cyverse

Journal of Biotechnology 341 (2021) 43–50

48

command-line inside the container. A full command line example can be
found in the Supplementary Materials.

In the command-line based Rosetta protocols the colon character (‘:’)
is extensively used within the execution parameters. Unfortunately, in
the current version of the CAT DE (version 2.16.0) the colon is, due to
security reasons, one of the forbidden special characters. This limitation
was overcome by utilizing wrapper start scripts as entry points (see
example code in Supplementary Materials).

Options of Rosetta executables can also be read from a text file. These
text files, usually called ‘flags’ or ‘options’-files are widely used in
command-line based analyses, as the parameters for such computations
are thereby inherently saved for re-use or sharing. If the wrapper script
finds a file named ‘flags’ or ‘options’ (Supplementary Materials, sample
Dockerfile 2, line 13 and 18) in the current working directory, the flags
file will be passed as command line argument when executing the
Rosetta protocol. If no such file is provided, it will pass the command
line parameters provided in the launch menu of the application. In this
case, the ‘-parser:protocol’ flag will be appended, as this argument
cannot be set in the DE due to the reasons mentioned above. Addition
ally, the wrapper script allows to run more than one executable at once
and also handles the post-processing of output files, necessary for file
transfer between Docker containers within workflows (see next Section).
Furthermore, it is easy to debug a failed job in the CAT DE: Passing the
output of basic bash commands such as “ls” or “pwd” into a textfile while
running the container on CAT, will provide useful information such as
the name of the Condor’s current working directory or list all files in the
working directory.

The CAT DE offers the possibility to assemble the individual Docker
containers into concatenated workflows. In these workflows, the
computational output of a preceding container is automatically passed
as input to the subsequent one. The user has to solely provide the input
files that are not automatically transferred (see arrows with preceding
dot in Fig. 1). Workflows are convenient for comprehensive bioinfor
matics tasks, since once they are established, they can be easily adapted,
re-used or shared with collaborators.

5.4. Setting up workflows in CAT

Workflows are set up by following the instructions under ‘Workflow’
– ‘Create New…’ in the DE. After providing general information, such as
the workflow name and a description, the desired apps are added and
arranged in the appropriate order of execution. Finally, the user has to
define which output files will serve as input files for the subsequent
computing step. Note that output files can only be forwarded and used as

input files if they are labeled as such in advance in the corresponding
apps. All passable output files in our ab initio pipeline are named ‘outfile’
followed by the appropriate file extension and were set not to be dis
played in the launch menu of the application. In this way, computational
output files predestined for transfer to the next container can easily be
distinguished from the actual output of interest of the current container.
In order to retain meaningful file names, computational outputs are
copied to a results folder before renaming them to ‘outfile’ (Supple
mentary Materials, example script, lines 23–26) by the wrapper script.
This has the beneficial side-effect that all intermediate computational
results are stored in separate folders. By default, all outputs would be
just left in the HTCondor’s working directory (de-app-work), which
would quickly become confusing, as in total more than 15 files are
produced during one complete ab initio workflow run. Additionally, a
clean-up container was integrated at the very end of the pipeline. It
solely includes a bash script which will remove all files transferred be
tween the containers containing the string ‘outfile’.

6. Discussion

We introduced CAT, a new local CI for collaborative data research
and simple data sharing for three universities in Austria. The infra
structure is set up in a fashion that guarantees data is handled according
to FAIR principles. The platform has been broadly accepted by all
participating institutions and fosters a fruitful environment for data
management and analysis. In future, life science researchers need to
intensify and build new collaborations with computer and data scien
tists. CAT is an example of a platform that can facilitate such collabo
rations, especially for highly interdisciplinary research. In general, CAT
is composed of microservices, which makes it fully customizable
depending on the requirements of users.

In our setup, we focused on three main areas: First, CAT makes it
possible for new users to make efficient use of HPC resources without the
need to have in-depth knowledge about high performance computing.

Second, we showed that CAT can easily be used for teaching pur
poses. We used the CAT environment to provide students with a defined
software environment and sufficient hardware resources to hold two
summer-school courses in lifescience data analysis using R. However,
setup and test of the used R-Studio instance proved somewhat
demanding, especially the installation of additional R-packages caused
some difficulties. All packages had to be installed from source in the
Linux-based Docker container, which often required installation of
additional Linux packages to allow a successful compilation. This is in
contrast to the Windows-based computer labs at the university, where

Fig. 3. Workflow diagram of the ab initio pipeline. Each rectangle represents an individual version-controlled Docker container. Continuous arrows indicate files
transferred between containers, while arrows starting with a dot denote files which have to be submitted by the user. Containers in the first row are responsible for
the actual protein structure prediction (see text for description). Containers in the second row compute quality metrics and generate charts.

F. Wieser et al.

Journal of Biotechnology 341 (2021) 43–50

49

self-contained binary packages are installed, which do not require
installation of operating system components. A very important aspect in
the setup of the environment is a comprehensive test using the exem
plary solution R-scripts to avoid any problems during the lecture.
Nevertheless, the R-Studio instance within CAT provided an excellent
option for our hands-on courses in the online setting. In combination
with an open-source web-conferencing application it allowed us to cover
all requirements for a successful virtual implementation of the courses.
All data needed for the exercises could be stored in CAT and accessed
directly from R-Studio by the students without the need to upload any
additional data. This central data management system simplified data
sharing between the lecturers and the students, who in this case were
affiliated with different universities.

And third, we showed that CAT provides easy access to complex
analysis pipelines that can otherwise be cumbersome to set up locally.
The advantages of establishing a multi-staged workflow in the CAT DE
for users include that (i) researchers with no command line experience
have now access to a complex analytical pipeline via a GUI, (ii) the
implemented analytics pipeline is preserved and allows reproducible
analyses, (iii) researchers developing the pipeline become part of the
global CyVerse community, which has a strong background in life sci
ence research and analytics, and (iv) other researchers can use the same
pipeline and support/troubleshooting is simplified, since all input and
output data are available via the iRODS resource server. This proves the
value of a CI for collaborative and reproducible research.

In addition to the above-mentioned examples, we also scheduled
regular user meetings and trainings to foster communication and ex
change within the CAT community and across different universities.

7. Conclusion

CAT has been deployed in Graz, Austria to connect universities to
improve collaborations and data sharing in this local research commu
nity. It connects three different institutions in Graz and serves life sci
ence researchers. The broader vision is to render CAT as a national
platform for researchers to facilitate and implement interdisciplinary
and collaborative research projects, strengthening research and FAIR
data handling in Austria and abroad.

Apart from setting up the technical infrastructure, which enables
data management and analytics as a service, it is equally important to
ensure that the platform is indeed used and accepted. Therefore, it is
essential to consider institutional culture with respect to data handling.
In fact, this can mean that some aspects of how data is handled at the
respective institution needs to change. This is, however, not an easy task
but can, in our experience, be accelerated if appropriate training is
offered regularly and documentation material is distributed widely. In
addition, users have to be brought together to ensure that a community
is built. This community will enhance the visibility of the platform and
drive use case development as well as reinforce usage of built-in tools
and workflows. As a result, the barrier for researchers to work with such
a platform is lowered. Here we showcased examples of how such an
infrastructure can benefit research collaborations and teaching efforts at
the university level and provide a compact, yet comprehensive resource
for building similar use cases elsewhere. Specific examples were given
via two use cases for (i) data management and (ii) data analytics using
CAT and an argument for the necessity and a net-value gain that a
collaborative CI provides for researchers was made. In the future, we
will further develop the platform according to the needs of our users.

8. Author contributions

FW, SS, KL, CH, GH, JF, SL and GO designed the research; FW, SS,
CH, GGT and JF developed tools in CAT and conceptualized the use-
cases; PH, MS, KL and SL helped with technical setup; NM, advised
and help with the implementation of CAT; CH, GGT and JF developed
and implemented all tools in CAT for use-case #1; FW and GO worked on

use-case #2; FW developed and implemented all tools and containers for
use-case #2; FW, SS, KL, CH, GGT, JF, NM and GO wrote the manuscript;
all authors discussed the results and commented on the manuscript.

Software availability

CAT is based on CyVerse US and derived from the source code
available at GitHub (https://github.com/cyverse), where specific
implementations for CAT can be found in the CyVerse Austria Github
Repository (https://github.com/cyverse-at). The platform is built using
Google Web Toolkit (http://www.gwtproject.org/) for the user interface
with an architecture of microservices deployed on a Kubernetes cluster
to facilitate scalability and maintainability.

The code for DE of CyVerse is available on GitHub (https://github.
com/cyverse-de) with specific implementations for CAT to be found at
(https://github.com/cyverse-at).

Declaration of Competing Interest

The authors declare no conflict of interest. The funders had no role in
the design of the study; in the collection, analyses, or interpretation of
data; in the writing of the manuscript, or in the decision to publish the
results.

Acknowledgements

This research was funded by the Austrian infrastructure program
2016/2017, Bundesministerium für Bildung, Wissenschaft und For
schung Austria, BioTechMed/Graz Hochschulraum-Strukturmittel
‘Integriertes Datenmanagement’. The project was supported by Digi
tale TU Graz (Graz University of Technology). F.W. and G.O were sup
ported by an ERC-StG (802217, HelixMold). J.F. was supported by a
grant from the Austrian Science Fund (FWF): T923-B26.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.jbiotec.2021.08.004.

References

Altschul, S.F., et al., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 25, 3389–3402.

https://www.zammad.org, Accessed 22 June 2021.
https://www.cyverse.org, Accessed 22 June 2021.
https://cyverseuk.org, Accessed 22 June 2021.
https://cyverse.org/Researchers-Explore-Creation-of-CyVerse-Australia, Accessed 22

June 2021.
https://cyverse.tugraz.at, Accessed 22 June 2021.
https://www.docker.com, Accessed 22 June 2021.
https://irods.org, Accessed 22 June 2021.
https://research.cs.wisc.edu/htcondor/, Accessed 22 June 2021.
https://arc.liv.ac.uk/trac/SGE, Accessed 22 June 2021.
https://www.schedmd.com/, Accessed 22 June 2021.
https://www.keycloak.org/, Accessed 22 June 2021.
https://www.forschungsdaten.info/fdm-im-deutschsprachigen-raum/oesterreich/fdm-p

olicies/, Accessed 22 June 2021.
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/, Accessed 22 June

2021.
https://www.rocker-project.org/, Accessed 22 June 2021.
Baker, D., Sali, A., 2001. Protein structure prediction and structural genomics. Science

294, 93–96.
Bender, B.J., et al., 2016. Protocols for Molecular Modeling with Rosetta3 and

RosettaScripts. Biochemistry 55, 4748–4763.
Boettiger, C., Eddelbuettel, D., 2017. An introduction to Rocker: Docker containers for R.

R Journal 9, 527–536.
Boyken, S.E., et al., 2016. De novo design of protein homo-oligomers with modular

hydrogen-bond network-mediated specificity. Science 352, 680–687.
Devisetty, U.K., Kennedy, K., Sarando, P., Merchant, N., Lyons, E., 2016. Bringing your

tools to CyVerse Discovery Environment using Docker. F1000Res.
Doleman, B., Williams, J.P., Lund, J., 2019. Why most published meta-analysis findings

are false. Tech. Coloproctol. 23, 925–928.

F. Wieser et al.

https://github.com/cyverse
https://github.com/cyverse-at
http://www.gwtproject.org/
https://github.com/cyverse-de
https://github.com/cyverse-de
https://github.com/cyverse-at
https://doi.org/10.1016/j.jbiotec.2021.08.004
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0005
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0005
https://www.zammad.org
https://www.cyverse.org
https://cyverseuk.org
https://cyverse.org/Researchers-Explore-Creation-of-CyVerse-Australia
https://cyverse.tugraz.at
https://www.docker.com
https://irods.org
https://research.cs.wisc.edu/htcondor/
https://arc.liv.ac.uk/trac/SGE
https://www.schedmd.com/
https://www.keycloak.org/
https://www.forschungsdaten.info/fdm-im-deutschsprachigen-raum/oesterreich/fdm-policies/
https://www.forschungsdaten.info/fdm-im-deutschsprachigen-raum/oesterreich/fdm-policies/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.rocker-project.org/
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0080
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0080
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0085
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0085
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0090
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0090
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0095
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0095
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0100
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0100
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0105
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0105

Journal of Biotechnology 341 (2021) 43–50

50

Fanelli, D., 2010. Positive" results increase down the hierarchy of the sciences. PLoS One
5.

Fleishman, S.J., et al., 2011. Rosettascripts: A scripting language interface to the Rosetta
Macromolecular modeling suite. PLoS One 6.

Ford, A.S., Weitzner, B.D., Bahl, C.D., 2020. Integration of the Rosetta suite with the
python software stack via reproducible packaging and core programming interfaces
for distributed simulation. Protein Sci. 29, 43–51.

Gront, D., Kulp, D.W., Vernon, R.M., Strauss, C.E.M., Baker, D., 2011. Generalized
fragment picking in rosetta: Design, protocols and applications. PLoS One 6.

Huang, P.S., et al., 2014. High thermodynamic stability of parametrically designed
helical bundles. Science 346, 481–485.

Huang, P.S., Boyken, S.E., Baker, D., 2016. The coming of age of de novo protein design.
Nature 537, 320–327.

Ioannidis, J.P.A., Trikalinos, T.A., 2007. An exploratory test for an excess of significant
findings. Clin. Trials 4, 245–253.

Jones, D.T., 1999. Protein secondary structure prediction based on position-specific
scoring matrices. J. Mol. Biol. 292, 195–202.

Kuhlman, B., Bradley, P., 2019. Advances in protein structure prediction and design. Nat.
Rev. Mol. Cell Biol. 20, 681–697.

Kurtzer, G.M., Sochat, V., Bauer, M.W., 2017. Singularity: Scientific containers for
mobility of compute. PLoS One 12.

Lang, K., et al., 2020. CyVerse Austria—A Local, Collaborative Cyberinfrastructure.
Math. Comput. Appl. 25.

Leaver-Fay, A., et al., 2011. Meth. Enzymol. 487, 545–574.
Leman, J.K., et al., 2020. Macromolecular modeling and design in Rosetta: recent

methods and frameworks. Nat. Methods 17, 665–680.
Liao, Y., Smyth, G.K., Shi, W., 2019. The R package Rsubread is easier, faster, cheaper

and better for alignment and quantification of RNA sequencing reads. Nucleic Acids
Res. 47.

Litzkow, M.J., Livny, M., Mutka, M.W., 1988. Proceedings - International Conference on
Distributed Computing Systems, vol. 8, pp. 104–111.

Lyskov, S., et al., 2013. Serverification of Molecular Modeling Applications: The Rosetta
Online Server That Includes Everyone (ROSIE). PLoS One 8.

Martone, M. (Ed.), 2014. Data Citation Synthesis Group, Joint Declaration of Data
Citation Principles. FORCE11, San Diego CA.

Pordes, R., et al., 2007. J. Phys. Conf. Ser. 78.
R Development Core Team, 2019. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.
Raman, S., Qian, B., Baker, D., Walker, R.C., 2008. Advances in Rosetta protein structure

prediction on massively parallel systems. Ibm J. Res. Dev. 52, 7–18.
Ritchie, M.E., et al., 2015. Limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Res. 43, e47.
Rohl, C.A., Strauss, C.E.M., Misura, K.M.S., Baker, D., 2004. Meth. Enzymol. 383, 66–93.
RStudio Team, 2020. RStudio: Integrated Development for R. RStudio. PBC, Boston, MA.
Schönbrodt, F., et al., 2021. Netzwerk Der Open-Science-Initiativen (NOSI). OSF 22. Jan.

2021. Web.
Swetnam, T.L., 2019. cyverse-vice/rstudio-base: First Release (Version v0.1). Zenodo.
Thain, D., Tannenbaum, T., Livny, M., 2005. Distributed computing in practice: the

Condor experience. Concurr. Comput. Pract. Exp. 17, 323–356.
Wilkinson, M.D., et al., 2016. Comment: the FAIR guiding Principles for scientific data

management and stewardship. Sci. Data 3.
Yoo, A.B., Jette, M.A., Grondona, M., 2003. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 2862, pp. 44–60.

Directorate-General for Research and Innovation (European Commission), Options for
Strengthening Responsible Research and Innovation, 2013. Publications Office of the
EU.

https://otrs.com/, Accessed 22 June 2021.
https://www.intercom.com, Accessed 22 June 2021.

F. Wieser et al.

http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0110
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0110
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0115
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0115
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0120
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0120
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0120
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0125
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0125
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0130
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0130
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0135
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0135
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0140
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0140
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0145
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0145
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0150
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0150
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0155
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0155
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0160
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0160
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0165
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0170
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0170
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0175
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0175
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0175
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0180
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0180
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0185
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0185
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0190
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0190
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0195
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0200
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0200
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0205
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0205
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0210
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0210
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0215
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0220
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0225
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0225
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0230
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0235
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0235
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0240
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0240
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0245
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0245
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0245
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0250
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0250
http://refhub.elsevier.com/S0168-1656(21)00209-1/sbref0250
https://otrs.com/
https://www.intercom.com

	A local platform for user-friendly FAIR data management and reproducible analytics
	1 Introduction
	2 Methods
	2.1 Implementation

	3 Results
	3.1 Operation
	3.2 Usability
	3.3 Documentation is key
	3.3.1 Findable
	3.3.2 Accessible
	3.3.3 Interoperable
	3.3.4 Reusable

	3.4 Reproducible research with containers
	3.5 Life science towards data science
	3.6 Collaboration enables research

	4 CAT for teaching
	4.1 Preparation prior to courses
	4.2 Procedure during the course
	4.3 Technical support during the course

	5 CAT for reproducible analytics
	5.1 Integration of an automated workflow into the CAT DE
	5.2 Workflow description
	5.3 Generating docker containers
	5.4 Setting up workflows in CAT

	6 Discussion
	7 Conclusion
	8 Author contributions
	Software availability
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References

