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A B S T R A C T   

Collaborative research is common practice in modern life sciences. For most projects several researchers from 
multiple universities collaborate on a specific topic. Frequently, these research projects produce a wealth of data 
that requires central and secure storage, which should also allow for easy sharing among project participants. 
Only under best circumstances, this comes with minimal technical overhead for the researchers. Moreover, the 
need for data to be analyzed in a reproducible way often poses a challenge for researchers without a data science 
background and thus represents an overly time-consuming process. Here, we report on the integration of CyVerse 
Austria (CAT), a new cyberinfrastructure for a local community of life science researchers, and provide two 
examples how it can be used to facilitate FAIR data management and reproducible analytics for teaching and 
research. In particular, we describe in detail how CAT can be used (i) as a teaching platform with a defined 
software environment and data management/sharing possibilities, and (ii) to build a data analysis pipeline using 
the Docker technology tailored to the needs and interests of the researcher.   

1. Introduction 

With experiments nowadays generating a wealth of research data, 
the term ‘Big data’ has become a buzzword in life science. Thus, dealing 
with large amounts of data has become exceedingly challenging for life 
science researchers without a data science background. A substantial 
boost in handling these amounts of data came from establishing re
sources and methods for data management/archival as well as 
discipline-specific standardized data formats, to ensure reproducibility. 
However, there is an apparent lack of tools, which support life science 
researchers to efficiently use their data, specifically with respect to data 

analytics and collaborative research on large datasets. As a result, 
rendering research data FAIR (findable, accessible, interoperable and 
reusable) before and after publication represents an overly time- 
consuming process for researchers. CyVerse US (https://www.cyverse. 
org, 2021), an initiative from the University of Arizona, supports 
research-related processes from data generation, management, sharing 
and collaboration for data analytics and storage. All those processes are 
essential for following a FAIR approach to research data. 

The initiative started with a strong community in life science and is 
now expanding to other disciplines, with several entities deploying the 
CyVerse infrastructure outside the US, such as CyVerse UK 

* Corresponding author at: Institute of Biochemistry, Graz University of Technology, 8010, Graz, Austria. 
** Corresponding author at: Institute for Interactive Systems and Data Science, Graz University of Technology, 8010, Graz, Austria. 

E-mail addresses: slind@know-center.at (S. Lindstaedt), gustav.oberdorfer@tugraz.at (G. Oberdorfer).   
1 Equal contribution. 

Contents lists available at ScienceDirect 

Journal of Biotechnology 

journal homepage: www.elsevier.com/locate/jbiotec 

https://doi.org/10.1016/j.jbiotec.2021.08.004 
Received 31 January 2021; Received in revised form 24 June 2021; Accepted 4 August 2021   

mailto:slind@know-center.at
mailto:gustav.oberdorfer@tugraz.at
www.sciencedirect.com/science/journal/01681656
https://www.elsevier.com/locate/jbiotec
https://doi.org/10.1016/j.jbiotec.2021.08.004
https://doi.org/10.1016/j.jbiotec.2021.08.004
https://doi.org/10.1016/j.jbiotec.2021.08.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiotec.2021.08.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Biotechnology 341 (2021) 43–50

44

(https://cyverseuk.org, 2021) or initiatives in Australia (https://cy
verse.org/Researchers-Explore-Creation-of-CyVerse-Australia, 2021). 
However, all those initiatives are still linked to CyVerse US 
(https://www.cyverse.org, 2021). We deployed an independent 
instance of CyVerse in Austria, which is currently used by three uni
versities – Graz University of Technology (TUG), University of Graz and 
Medical University of Graz – as a shared research data platform 
(https://cyverse.tugraz.at, 2021; Lang et al., 2020). CyVerse Austria 
(CAT) introduces a new cyberinfrastructure (CI) for a local community 
of life science researchers and additionally provides a huge potential to 
serve researchers beyond the life science domain at various institutions 
within Austria. Moreover, this project sets a new basis to support col
laborations and reproducible research between universities by (i) 
creating a distributed computational and data management architecture 
for FAIR research data, (ii) hosting relevant tools as Docker containers 
(Devisetty et al., 2016; https://www.docker.com, 2021) to ensure 
reproducible analytics and (iii) integrating researchers into a global 
community. Previously published work on CAT focused on the detailed 
technical setup of CAT (Lang et al., 2020). In this article, we elucidate 
CAT from the user perspective, illustrated by two step-by-step tutorials 
which should serve as protocols for researchers who intend to use CAT 
for their research or teaching. It is essential to understand the value of a 
CI without the need of having extensive knowledge in data/computer 
science or high-performance computing (HPC) infrastructure. Here, we 
mainly address researchers that need analytical tools for their research 
but do not have extensive a priori knowledge about the underlying 
technical requirements. Therefore, we highlight and describe in detail 
how CAT can be used (i) as a teaching platform with a defined software 
environment and data management/sharing possibilities, and (ii) to 
build a data analysis pipeline using the Docker technology tailored to the 

needs and interests of the researcher. 

2. Methods 

2.1. Implementation 

TUG provides the core system for user management and the web 
front-end together with storage and computational hardware. Distrib
uted storage is provided using the integrated Rule Oriented Data System 
(iRODS) technology (https://irods.org, 2021). Each participating insti
tution integrates its own storage resources via the iRODS resource 
server. Since each of the institutions provides local storage devices, it is 
ensured that research data is stored at the corresponding institution – a 
legal requirement when analyzing personal data, patient data or data 
generated within industry related projects (Fig. 1). 

Jobs for data analytics submitted in CAT are scheduled to the 
computing resources through HTCondor (https://research.cs.wisc. 
edu/htcondor, 2021; Litzkow et al., 1988; Thain et al., 2005). These can 
either be submitted to the central resources at TUG or to high perfor
mance computing (HPC) clusters of the other participating institutions. 
For submission of jobs to the HPC clusters, there are HTCondor transfer 
nodes deployed at the servers of each participating institution to connect 
with other schedulers such as SGE (https://arc.liv.ac.uk/trac/SGE, 
2021) or Slurm (https://www.schedmd.com, 2021; Yoo et al., 2003). 
Jobs are submitted as Docker containers (https://www.docker.com, 
2021) and converted to Singularity containers (Kurtzer et al., 2017) at 
the HPC clusters if required to adhere to security restrictions of the 
participating institutions. 

The user sees all these services combined in the CAT Discovery 
Environment (DE). The DE offers a graphical user interface (GUI) to 

Fig. 1. Overview of the current hardware organization of CAT. Each participating institution has their own resource servers connected to the core system of TU Graz, 
which hosts the DE and the iCAT metadata catalogue. Institutions have access to both, their internal HPC hardware as well as the central HPC infrastructure at 
TU Graz. 
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present (i) the data in the folder structure with files managed in CAT, (ii) 
the Apps representing all available tools as Docker containers in CAT 
and (iii) the status of currently running, as well as completed jobs. Data 
analytics in CAT can either be run as a script in the background or by 
using a visual and interactive computing environment (VICE). 

CAT is based on the open-source code provided by CyVerse US, 
however, specific adaptions had to be implemented to be adhere to 
university regulations. Thus, some of the CAT modules are deployed 
differently. For instance, CAT establishes the connection to HPC clusters 
at different institutions, whereas CyVerse originally was built to provide 
central computational power and connects the CI to the OpenScience 
Grid (Pordes et al., 2007). In addition, the user account management is 
different from its original implementation. Currently, user accounts are 
created by the CAT team. In the future, Keycloak (https://www.key
cloak.org, 2021) will be used as Open Source Identity and Access 
Management tool to enable single sign-on for members of Austrian 
universities. 

3. Results 

3.1. Operation 

CAT is a local, independent instance based on CyVerse US (1). Uni
versity employees of the participating institutions can request a user 
account from the CAT team and connect to it through the university 
network or using a Virtual Private Network (VPN) client. All services are 
running in CAT, and there are no specific requirements for the under
lying system used by the researcher, except the connection to the 
institutional network. Solely preparation of new containers has to be 
performed locally using Docker (Devisetty et al., 2016; https://www. 
docker.com, 2021), which serve as the basis for Apps designed in the DE. 

3.2. Usability 

In CAT, users interact mostly with the DE, which offers a GUI for 
intuitive research data management, data storage, data sharing, initi
ating and monitoring of computational processes, as well as accessing 
results of executed workflows and analyses (Fig. 2). CAT allows users to 
store and access their data in an easy and intuitive way using the 
CyVerse Data Store (DS) with the DE GUI. Here, a researcher stores files 
containing research data in folders and subfolders. 

3.3. Documentation is key 

Research in different disciplines suffers from the reproducibility 
crisis (Doleman et al., 2019; Fanelli, 2010; Ioannidis and Trikalinos, 
2007). Therefore, there are top-down (Directorate, 2021) and bottom-up 
(Schönbrodt et al., 2021) movements supporting adequate research data 
management (RDM) and open science practices. Funding agencies and 
publishers demand RDM according to FAIR principles. In order to meet 
those requirements, it is essential to have the technical infrastructure in 
place. 

Features in CAT that support all FAIR guiding principles are 
described below (letter/number pairs in this section correspond to 
(Wilkinson et al., 2016): 

3.3.1. Findable 
Unlike most repositories that only support data during and after 

publication, CAT supports users in generating FAIR data throughout the 
entire data life cycle. CAT is not intended as a long-term data archive, 
but it provides an API to transfer data to long-term repositories (e.g. 
InvenioRDM). Published data with globally unique and persistent 
identifiers (also known as PIDs), can be linked to CAT datasets (F1, F3). 
All data in CAT are described with rich metadata (F2). Additional sci
entific metadata, based on community input and standards, are required 
for certain data types (F2). CAT data are indexed and discoverable 
through the CyVerse instance of ElasticSearch (F4). 

3.3.2. Accessible 
Data and metadata in CAT are retrievable through standard 

communication protocols with other members (A1.2). CAT provides 
pipelines to publish to canonical repositories such as NCBI, as well as 
institutional repositories (e.g. InvenioRDM) to make (meta)data 
retrievable by their PID through open, free and universally imple
mentable protocols (A1.1). Metadata are stored in the iCAT metadata 
catalogue and can be kept even if data are no longer available (A2) to 
provide a high degree of FAIRness of the research. 

3.3.3. Interoperable 
Data in CAT must be in non-proprietary formats that are readable by 

widely accessible software (I1). Metadata for published datasets are 
available as download in JSON, with citations as BibTeX and EndNote 
(I1, I2). Vocabularies and standards are always evolving, especially for 

Fig. 2. Layout of the DE in CAT. On the left the user can open and switch between the three main windows, which encompass a data browser, list of available apps, as 
well as an analysis window. All features of CAT can be accessed via this interface. 
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newer data types, so CAT continues to work with communities on 
specification and adoption. Using data attributes such as relatedIdenti
fer, (meta)data in CAT can be linked to other data (I3). The CAT met
adata API is engineered to support links among metadata elements (i.e. 
metadata graphs) using formal ontological and RDF properties and al
lows the use of data models (I3). Data models provide a way to relate 
data elements to one another and are essential for managing large, 
complex datasets. 

3.3.4. Reusable 
To meet the FAIR reusability criterion, (meta)data must be richly 

described with accurate and relevant attributes including a clear and 
accessible data usage license and detailed information about its origin, 
following domain-relevant community standards. All of this CAT 
currently does for published data (R1.1–1.3). Dublin Core 
(https://www.dublincore.org/specifications/dublin-core/dcmi-terms, 
2021) and DataCite (Martone, 2014) do not truly support reusability due 
to their focus on publication rather than science. Therefore, CAT adopts 
standards developed by scientific communities and works closely with 
communities that want to encourage rich metadata usage. 

In addition to FAIR data principles, CAT supports reproducible sci
ence by the deployment of Docker containers and through good data 
management practices, such as tracking data origin through analysis 
steps, recording results in standardized formats, and providing access to 
scripts, runs, and results. 

3.4. Reproducible research with containers 

A Docker container is a standard execution unit that packages code 
and all its dependencies, thereby making it easily portable to other 
computing environments. However, on HPC clusters Singularity con
tainers are preferred, as they can be executed without root privileges. 
Therefore, root privilege escalation is reduced. HPC environments are 
typically multi-user systems, where users should only have access to 
their own data. For all practical purposes, Docker requires superuser 
privileges, which does not adhere to the security requirements of most 
HPC clusters. To this end, Docker containers can be easily converted to 
Singularity containers, which means that dockerized tools stored in the 
DE can be send to the HPC cluster, converted into Singularity format and 
run on the HPC cluster. 

3.5. Life science towards data science 

Life science research is becoming increasingly ‘data heavy’, with 
analysis workflows often exceeding the computational capabilities of 
regular laptops or desktop computers. Institutions therefore provide 
HPC clusters where researchers can request access and perform their 
respective computation. CAT enables researchers to directly submit a 
computing job to the HPC clusters by starting an App. As CAT users are 
assigned to specific computing resources, their job will be directly 
submitted to the appropriate HPC and the output will be transferred 
back to the CAT data system. 

3.6. Collaboration enables research 

For efficient collaboration, it is essential that researchers have tools 
to share their research data. CAT enables sharing by providing distrib
uted storage at different research institutions. However, for the user it 
does not matter where the data is stored. All data that is owned by or 
shared with the user, potentially via multiple separate storage servers, 
will be visible through the GUI of the CAT DE. Thus, researchers using 
CAT adhere to institutional regulations (https://www.forschungsdaten. 
info/fdm-im-deutschsprachigen-raum/oesterreich/fdm-policies, 2021). 
In the CAT DE, a user can assign read-, write- or ownership permissions 
to collaboration partners/groups for individual files, folders or datasets. 
Data can also be kept invisible for all users but the owner to adhere to 

data security guidelines. 

4. CAT for teaching 

4.1. Preparation prior to courses 

University courses often include hands-on exercises, where the stu
dents have to use a specific software package to perform certain tasks or 
answer questions. The exercises often rely on a specific version of the 
software to function properly. Extensions of the software package may 
be necessary to perform a task, where also a certain release is required to 
yield reproducible results. In short, setting up the environment for 
computational exercises is often far from trivial and requires expertise, 
frequently beyond the level of early-stage students. There are basically 
three options to provide the students with a defined software environ
ment for a course: (i) give detailed instructions on how the required 
version of the software package and its extensions are to be installed on 
the student’s computer; (ii) hold the course in a computer lab with its 
defined hardware and software environment; and (iii) provide the 
defined software environment as web-accessible service. Option (i) is 
feasible in principle, but subtle differences caused by the used operating 
system or extensive hardware requirements may prevent a successful 
setup of the course’s software environment. This is especially true for 
software packages with a short release cycle. Option (ii) is the preferred 
one when courses are held face to face, as the instructors have full 
control over the hard- and software environment and can be supported 
by the university’s IT department. However, if a course has to be held 
virtually, because participants are at different locations or physical 
contact is prohibited like in the COVID-19 pandemic, option (iii) is the 
most suitable. 

In summer 2020, we offered two courses “Biostatistics and R” and 
“Applied Bioinformatics” to interested PhD students from all three 
universities in Graz in the context of the BioTechMed-Graz initiative 
(https://biotechmedgraz.at). Both courses require a defined R-environ
ment (R Development Core Team, 2019) to allow the students to 
perform their tasks, where the bioinformatics course depends heavily on 
additional R-packages and requires significant hardware resources. We 
used the CAT infrastructure to provide the students with a defined 
software environment as an R-Studio (RStudio Team, 2020) instance. 

Prior to the course, we configured a Docker container, fully equipped 
to serve as a visual and interactive computing environment, for the 
course participants via CAT. Our container built on an Rstudio server 
image, as provided by the Rocker project (Boettiger and Eddelbuettel, 
2017; https://www.rocker-project.org, 2021), and was reconfigur
ed/extended with nginx and iCommands to be compatible with the 
HTCondor and Kubernetes orchestration implemented in CyVerse 
(Swetnam, 2019) (see also https://github.com/cyverse-vice/rstudio-bas 
e). The resulting container was further extended with the particular li
braries and R-packages required for the course (the Dockerfile detailing 
the setup can be found in the Supplementary Materials). 

Students received a link from the help desk for direct access to a 
running RStudio instance, which was initiated beforehand by the plat
form team using the Docker container available in CAT. 

4.2. Procedure during the course 

To avoid students having to familiarize themselves with CAT as well 
as accessing and starting RStudio on their own, provisioning of appli
cations was done by providing a simple URL. This allowed students to 
access RStudio using a web browser, which immensely simplified the 
process for the students, and furthermore ensured that all students 
worked with the same tool versions and were not restricted by certain 
hardware requirements or underlying dependencies. We used two stra
tegies of data sharing to provide lecture notes, report templates and 
input files for the exercises: (i) students were provided with files 
externally (downloadable on a website with user-restricted access) and 
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uploaded them on their own using the ‘files’ pane of the RStudio 
instance; and (ii) we established common data access directly through 
CAT. Data was synchronized with each student’s container automati
cally as soon as the lecturer added data needed for exercises in the DE. 
The students could access the data directly in R, as well as download it 
using the ‘files’ pane, if required. The latter facilitated simple data access 
for the students and proved to be particularly convenient for sharing 
large data files. During the course the students used RStudio in CAT to 
create their own scripts. Thereby the students could perform diverse 
analyses of varying complexity in R, ranging from the use of descriptive 
and inferential statistics to bioinformatics analyses such as a basic RNA- 
seq analysis workflow, using the R-packages Rsubread (Liao et al., 2019) 
and limma (Ritchie et al., 2015). The hardware resources available to 
each student were adjusted to meet the increasing demands of the given 
examples. The support team defined the resource limits for the con
tainers used by the students and raised them upon request. The use of 
HPC resources allowed to perform more sophisticated and computa
tionally intensive analyses such as the alignment of sequencing reads to 
a reference genome using the R-package Rsubread (Liao et al., 2019). 
Interaction between the students and lecturers was facilitated using an 
online meeting tool that allowed for breakout rooms. This enabled the 
students to work in teams as well as to ask questions via (video) chat and 
screen sharing. Finally, the students completed a report based on a 
provided template, which was handed in at the end of each unit. 

4.3. Technical support during the course 

To provide a unified way to communicate between students (users) 
and the support team, we decided to implement a communication 
channel with two access points and a unified back-end to handle such 
requests: (i) direct emails to a dedicated address, which are handled by 
the support team; (ii) filling out a contact form available on the website, 
which requires specifying the user’s email address to effectively start 
communicating. Our choice for a unified back-end was Zammad 
(https://www.zammad.org, 2021), a web-based, open source and freely 
available user support and ticketing system. 

There are simpler ways to implement the communication and sup
port channel for web-forms and email entry points, but with the plans to 
integrate a direct chat function and other social media channels into the 
CAT platform in the future, Zammad became the tool of choice. Other 
tools are either focused on issue tracking (https://otrs.com, 2021; 
https://www.intercom.com, 2021) or not available as open source and 
free solutions. Furthermore, cloud-based solutions may also be hosted 
outside the EU where General Data Protection Regulation issues need to 
be considered. 

5. CAT for reproducible analytics 

5.1. Integration of an automated workflow into the CAT DE 

Multi-staged computational pipelines where executables not only 
depend on the computational output of the preceding process, but also 
on a specific version, are typical in bioinformatics (Devisetty et al., 
2016). With the possibility to implement multi-staged automated 
workflows in the DE and the direct access to high-performance 
computing resources, CAT provides a well-suited infrastructure for 
complex pipelines and computationally demanding tasks. We therefore 
chose the integration of a protein structure prediction pipeline as the 
prototypical example of a user-friendly automated workflow. In partic
ular, we integrated the ab initio structure prediction protocol from the 
software package Rosetta (Leaver-Fay et al., 2011; Rohl et al., 2004). 

The ab initio structure prediction protocol (Bender et al., 2016; 
Leman et al., 2020) attempts to solve the common problem of finding the 
lowest energy protein structure for a given amino-acid input sequence 
(Huang et al., 2016). It is frequently applied to proteins for which no 
homologous structure is available, as well as a self-consistency check 

after a protein sequence design task (Leman et al., 2020; Boyken et al., 
2016; Huang et al., 2014). Fig. 3 shows a workflow diagram of the entire 
ab initio pipeline. 

5.2. Workflow description 

The pipeline is initiated by predicting a protein’s sequence profile 
and secondary structure by using the algorithms PSIBLAST and PISPRED 
(Altschul et al., 1997; Jones, 1999). These algorithms take the amino 
acid sequence in FASTA format as input. Using the information of the 
sequence profile and the secondary structure, a protocol in Rosetta 
collects fragment sets from known protein structures for each position of 
the amino acid query sequence. These fragments typically range in the 
size of 3, 6 or 9 amino acids and include the bond angles of the backbone 
and/or the side chain atoms (Gront et al., 2011). Guided by an energy 
function and sampling via a Monte Carlo search (Leaver-Fay et al., 2011; 
Rohl et al., 2004), the actual ab initio protocol assembles the fragments 
in an attempt to find an energy minimum, which is considered as final 
prediction, presumably resembling the native state of the protein (Baker 
and Sali, 2001). 

In order to identify the native state, a vast number of structure 
conformations have to be sampled which makes these kinds of algo
rithms in general computationally very demanding. Thus, production 
runs, during which 10.000–100.000 structures are computed, are usu
ally performed on highly parallel, HPC systems (Kuhlman and Bradley, 
2019; Raman et al., 2008). 

During the last decade efforts have been made to make Rosetta 
accessible to a broader range of scientists, and particularly to users 
without a software-engineering related background. Hence two high- 
level interfaces called RosettaScripts and PyRosetta have been imple
mented (Lyskov et al., 2013). The latter is a Python-based imple
mentation of Rosetta and allows to write custom structure prediction 
and design protocols either interactively using iPython, or script-based 
using Python scripting. An integration of PyRosetta into the CAT DE is 
intended in the future (Ford et al., 2020). 

RosettaScripts on the other hand provides protocol-level access to 
almost all of Rosetta’s modeling features with the aid of an XML-like 
language interface in which the user defines a set of RosettaScripts ob
jects and their order of execution (Bender et al., 2016; Fleishman et al., 
2011). These XML scripts are straight forward to write without having to 
know the underlying C++ code base. Moreover, they are easily ported to 
other systems that support Rosetta and make recompilation of the 
Rosetta source code obsolete (Fleishman et al., 2011). Hence we decided 
to integrate RosettaScripts as the second tool into the CAT DE. All 
Dockerfiles and wrapper scripts implemented within this project are 
available online at https://github.com/FlorianWieser1/rosetta-at-cyver 
se. 

5.3. Generating docker containers 

All containers created in this project are based on the current Ubuntu 
Long Term Support version 20.04 (Supplementary Materials, sample 
Dockerfile 2). Each Rosetta Docker container consists of one or more 
statically pre-compiled Rosetta executables (Supplementary Materials, 
sample Dockerfile 2, line 11), a wrapper start script (Supplementary 
Materials, sample Dockerfile 2, line 12) and the Rosetta main database. 
In order to keep the containers small, the Rosetta database is stored 
externally in the CAT data store. If the container is executed in the DE, 
the database will be mounted with the HTCondor node’s working 
directory alongside with the other input files by using a combination of 
the docker run flags -v and -w (Devisetty et al., 2016). The -v flag (for 
volume) bind-mounts the Rosetta database to the container at runtime. 
Two other options that are especially useful to test the container’s 
functionality offline on a computer are the -i (for interactive) and -t (for 
tty) flags. In combination with the ‘entrypoint’ flag they will start the 
container in manual mode, where the user has access to the 
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command-line inside the container. A full command line example can be 
found in the Supplementary Materials. 

In the command-line based Rosetta protocols the colon character (‘:’) 
is extensively used within the execution parameters. Unfortunately, in 
the current version of the CAT DE (version 2.16.0) the colon is, due to 
security reasons, one of the forbidden special characters. This limitation 
was overcome by utilizing wrapper start scripts as entry points (see 
example code in Supplementary Materials). 

Options of Rosetta executables can also be read from a text file. These 
text files, usually called ‘flags’ or ‘options’-files are widely used in 
command-line based analyses, as the parameters for such computations 
are thereby inherently saved for re-use or sharing. If the wrapper script 
finds a file named ‘flags’ or ‘options’ (Supplementary Materials, sample 
Dockerfile 2, line 13 and 18) in the current working directory, the flags 
file will be passed as command line argument when executing the 
Rosetta protocol. If no such file is provided, it will pass the command 
line parameters provided in the launch menu of the application. In this 
case, the ‘-parser:protocol’ flag will be appended, as this argument 
cannot be set in the DE due to the reasons mentioned above. Addition
ally, the wrapper script allows to run more than one executable at once 
and also handles the post-processing of output files, necessary for file 
transfer between Docker containers within workflows (see next Section). 
Furthermore, it is easy to debug a failed job in the CAT DE: Passing the 
output of basic bash commands such as “ls” or “pwd” into a textfile while 
running the container on CAT, will provide useful information such as 
the name of the Condor’s current working directory or list all files in the 
working directory. 

The CAT DE offers the possibility to assemble the individual Docker 
containers into concatenated workflows. In these workflows, the 
computational output of a preceding container is automatically passed 
as input to the subsequent one. The user has to solely provide the input 
files that are not automatically transferred (see arrows with preceding 
dot in Fig. 1). Workflows are convenient for comprehensive bioinfor
matics tasks, since once they are established, they can be easily adapted, 
re-used or shared with collaborators. 

5.4. Setting up workflows in CAT 

Workflows are set up by following the instructions under ‘Workflow’ 
– ‘Create New…’ in the DE. After providing general information, such as 
the workflow name and a description, the desired apps are added and 
arranged in the appropriate order of execution. Finally, the user has to 
define which output files will serve as input files for the subsequent 
computing step. Note that output files can only be forwarded and used as 

input files if they are labeled as such in advance in the corresponding 
apps. All passable output files in our ab initio pipeline are named ‘outfile’ 
followed by the appropriate file extension and were set not to be dis
played in the launch menu of the application. In this way, computational 
output files predestined for transfer to the next container can easily be 
distinguished from the actual output of interest of the current container. 
In order to retain meaningful file names, computational outputs are 
copied to a results folder before renaming them to ‘outfile’ (Supple
mentary Materials, example script, lines 23–26) by the wrapper script. 
This has the beneficial side-effect that all intermediate computational 
results are stored in separate folders. By default, all outputs would be 
just left in the HTCondor’s working directory (de-app-work), which 
would quickly become confusing, as in total more than 15 files are 
produced during one complete ab initio workflow run. Additionally, a 
clean-up container was integrated at the very end of the pipeline. It 
solely includes a bash script which will remove all files transferred be
tween the containers containing the string ‘outfile’. 

6. Discussion 

We introduced CAT, a new local CI for collaborative data research 
and simple data sharing for three universities in Austria. The infra
structure is set up in a fashion that guarantees data is handled according 
to FAIR principles. The platform has been broadly accepted by all 
participating institutions and fosters a fruitful environment for data 
management and analysis. In future, life science researchers need to 
intensify and build new collaborations with computer and data scien
tists. CAT is an example of a platform that can facilitate such collabo
rations, especially for highly interdisciplinary research. In general, CAT 
is composed of microservices, which makes it fully customizable 
depending on the requirements of users. 

In our setup, we focused on three main areas: First, CAT makes it 
possible for new users to make efficient use of HPC resources without the 
need to have in-depth knowledge about high performance computing. 

Second, we showed that CAT can easily be used for teaching pur
poses. We used the CAT environment to provide students with a defined 
software environment and sufficient hardware resources to hold two 
summer-school courses in lifescience data analysis using R. However, 
setup and test of the used R-Studio instance proved somewhat 
demanding, especially the installation of additional R-packages caused 
some difficulties. All packages had to be installed from source in the 
Linux-based Docker container, which often required installation of 
additional Linux packages to allow a successful compilation. This is in 
contrast to the Windows-based computer labs at the university, where 

Fig. 3. Workflow diagram of the ab initio pipeline. Each rectangle represents an individual version-controlled Docker container. Continuous arrows indicate files 
transferred between containers, while arrows starting with a dot denote files which have to be submitted by the user. Containers in the first row are responsible for 
the actual protein structure prediction (see text for description). Containers in the second row compute quality metrics and generate charts. 
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self-contained binary packages are installed, which do not require 
installation of operating system components. A very important aspect in 
the setup of the environment is a comprehensive test using the exem
plary solution R-scripts to avoid any problems during the lecture. 
Nevertheless, the R-Studio instance within CAT provided an excellent 
option for our hands-on courses in the online setting. In combination 
with an open-source web-conferencing application it allowed us to cover 
all requirements for a successful virtual implementation of the courses. 
All data needed for the exercises could be stored in CAT and accessed 
directly from R-Studio by the students without the need to upload any 
additional data. This central data management system simplified data 
sharing between the lecturers and the students, who in this case were 
affiliated with different universities. 

And third, we showed that CAT provides easy access to complex 
analysis pipelines that can otherwise be cumbersome to set up locally. 
The advantages of establishing a multi-staged workflow in the CAT DE 
for users include that (i) researchers with no command line experience 
have now access to a complex analytical pipeline via a GUI, (ii) the 
implemented analytics pipeline is preserved and allows reproducible 
analyses, (iii) researchers developing the pipeline become part of the 
global CyVerse community, which has a strong background in life sci
ence research and analytics, and (iv) other researchers can use the same 
pipeline and support/troubleshooting is simplified, since all input and 
output data are available via the iRODS resource server. This proves the 
value of a CI for collaborative and reproducible research. 

In addition to the above-mentioned examples, we also scheduled 
regular user meetings and trainings to foster communication and ex
change within the CAT community and across different universities. 

7. Conclusion 

CAT has been deployed in Graz, Austria to connect universities to 
improve collaborations and data sharing in this local research commu
nity. It connects three different institutions in Graz and serves life sci
ence researchers. The broader vision is to render CAT as a national 
platform for researchers to facilitate and implement interdisciplinary 
and collaborative research projects, strengthening research and FAIR 
data handling in Austria and abroad. 

Apart from setting up the technical infrastructure, which enables 
data management and analytics as a service, it is equally important to 
ensure that the platform is indeed used and accepted. Therefore, it is 
essential to consider institutional culture with respect to data handling. 
In fact, this can mean that some aspects of how data is handled at the 
respective institution needs to change. This is, however, not an easy task 
but can, in our experience, be accelerated if appropriate training is 
offered regularly and documentation material is distributed widely. In 
addition, users have to be brought together to ensure that a community 
is built. This community will enhance the visibility of the platform and 
drive use case development as well as reinforce usage of built-in tools 
and workflows. As a result, the barrier for researchers to work with such 
a platform is lowered. Here we showcased examples of how such an 
infrastructure can benefit research collaborations and teaching efforts at 
the university level and provide a compact, yet comprehensive resource 
for building similar use cases elsewhere. Specific examples were given 
via two use cases for (i) data management and (ii) data analytics using 
CAT and an argument for the necessity and a net-value gain that a 
collaborative CI provides for researchers was made. In the future, we 
will further develop the platform according to the needs of our users. 
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Software availability 

CAT is based on CyVerse US and derived from the source code 
available at GitHub (https://github.com/cyverse), where specific 
implementations for CAT can be found in the CyVerse Austria Github 
Repository (https://github.com/cyverse-at). The platform is built using 
Google Web Toolkit (http://www.gwtproject.org/) for the user interface 
with an architecture of microservices deployed on a Kubernetes cluster 
to facilitate scalability and maintainability. 

The code for DE of CyVerse is available on GitHub (https://github. 
com/cyverse-de) with specific implementations for CAT to be found at 
(https://github.com/cyverse-at). 
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