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Abstract—The success of artificial neural networks (ANNSs) in
machine vision techniques has driven hardware researchers to
explore more efficient computing elements for energy-expensive
operations such as vector-matrix multiplication (VMM). In this
work, InP-based floating-gate photo-field-effective transistors
(FG-PFETs) are demonstrated as computing elements that
integrate both photodetection and initial signal processing at the
sensor level. These devices are fabricated from semiconductor
channels grown via a back-end CMOS compatible templated-
liquid phase (TLP) approach. Individual devices are shown to
exhibit programmable responsivity, mimicking the effect of a
synapse connecting the photodetector to a neuron. Using these
devices, a simulated optical neural network (ONN) where the
experimentally measured performance of FG-PFETs is used as an
input shows excellent image recognition accuracy for color-mixed
handwritten digits.

Index Terms— Machine vision, optical neural network,
phototransistors, indium phosphide.

I. INTRODUCTION

N the past few decades, machine vision has become a key

component of various intelligent systems, including

autonomous vehicles, automated fabrication systems, and
robotics [1-4]. Due to the variety and sophistication of
algorithms for machine vision, and in particular artificial neural
networks (ANN) and convolutional neural networks (CNN),
image recognition accuracy for well-trained machines can
surpass human beings in specific tasks [5, 6]. However, this is
typically achieved through large sets of training data, long
training times, considerable hardware, and a optimization of
parameters for the task at hand. To continue progress,
development of new device structures and circuit architectures
are heavily explored with the aim of reducing energy
consumption, improving speed, and maintaining overall
accuracy.

Many hardware level solutions based on CMOS technology
and emerging devices built with advanced materials have been
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proposed to emulate biological neural or synaptic behaviors and
boost the computation speed of ANNs [7, 8]. At the device
level, resistive random access memory (RRAM) [9, 10], phase
change memory (PCM) [8, 11], ferroelectric field effective
transistor  (FeFET) [12], ion-based electrolyte-gated
transistor[13-15], and spin transfer torque magnetoresistive
random access memory (STT-MRAM) [16] have been heavily
studied. Most of the key computationally required synaptic
behaviors like short- and long-term plasticity, spike-number-
dependent plasticity, and spike-timing-dependent plasticity are
successfully emulated [17-19]. Importantly, chip level
acceleration of the vector matrix multiplication (VMM)
operation has also been demonstrated by several research
groups [20-23]. In addition, many novel computing elements
coupled with biometric sensing functions were reported[ 14, 24,
25]. Among these, photonic synapses combine sensing and
processing in a single device, which eliminates the additional
sensing element, possessing the advantages of low energy
consumption and large bandwidth[26, 27]. Conventionally, the
image recognition algorithms with ANNs require digitized
image inputs, a conversion that consumes energy and process
time. But the characteristics of photonic synapses potentially
can solve the bottleneck here. One such approach was a WSe»
based two-dimensional (2D) semiconductor photodiode array
reported to be able to sense and classify the image projected to
the chip and demonstrated ultrafast processing time [1]. One
challenge faced by such approaches however are the
manufacturability and scalability of such processes, which
require growth and transfer, as well as the relatively weak light
absorption in thin 2-D materials. Additionally, the synaptic
weight was stored off chip and used to modify the voltage
applied to the gate of the device, an approach which is not
feasible on a chip as it would require a tremendous number of
voltages.

To approach this challenge, we use a scalable III-V growth
approach that potentially enables monolithic integration with Si
CMOS circuits and a device architecture that contains memory
to store the responsivity values required. Specifically, we report
an indium phosphide (InP) based floating-gate photo-field-
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effect transistors (FG-PFETs) and demonstrate that it can
function as the computing element for an optical neural network
(ONN), sensing and classifying images simultaneously. The
floating gate is used to modulate the responsivity in the channel
region, which mimics the behavior of a synapse. A simulated
ONN indicated the accuracy up to ~94% for color-mix MNIST
hand-written digits recognition. In addition, combined with the
merits of non-volatility, back end of the line (BEOL)
compatible process, and scalable material integration
techniques, the FG-PFETs are demonstrated as potentially
promising computing elements for machine vision.

II. DEVICE PERFORMANCE AND MECHANISM

A. Device Structure

The FG-PFETs were directly integrated on Si/SiO. wafer
using a similar device architecture reported previously [28].
Here, the InP channel was chosen due to its direct bandgap
property, good responsivity at visible wavelength, and high
electron mobility. Moreover, the cost effective templated liquid
phase (TLP) approach removed the requirement for single
crystalline substrate, and enabled the monolithic InP integration
directly on amorphous substrate even at low growth
temperature[29, 30]. To be more specific, a patterned In/SiOa
bilayer was deposited on the oxide substrate with photo
lithography, thermal evaporation, and lift-off process. Then the
samples were heated in a phosphine ambient, and
supersaturated phosphorus in the liquid phase indium drives the
a phase transformation from In to InP. By tuning the growth
condition, it is possible to ensure that each channel region
grows from a single nucleus. And with time, the entire area of
is transformed to InP, retaining the same geometry as patterned.
The fully grown InP channel is with dimension of 25 um
length, 6 um width, and 300 nm thickness.

After the growth of InP channel, diluted hydrofluoric acid
(HF:H20 = 1:10) was used to etch away the SiOz capping layer,
and patterned 5 nm Ge, 20 nm Au, and 80 nm Ni were deposited
by electron-beam evaporation as the source and drain contact.
A 380°C rapid thermal annealing in N2 was carried out to reduce

the contact resistance.
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Fig. 1. Schematic and post-synaptic current of FG-PFETs. (a) Schematic of FG-
PFETs and the cross-section film stack. (b) PSCs with one -5V Vg pulse in
dark, and illumination of three wavelengths (4 = 655,532, and 445 nm). (c)
PSCs with one +4V Vg pulse in dark, illumination of three wavelengths (4 =
655,532, and 445 nm).

As shown by the schematic in Fig. 1(a), the heterogeneous
structured dielectric stack composed of 5 nm Al2O3, 5 nm TiO»,
and 50 nm ALLOs were deposited by atomic layer deposition
(ALD) at 200°C, it enabled the devices with both static and time
dependent programmable conductance in a wide temporal scale
of 103 to 10%. This dielectric stack is similar with Oxide-
Nitride-Oxide (ONO) structure used in industry[31]. And the
indium tin oxide (ITO) was deposited as the gate electrode to
enable the interaction between InP channels and optical
stimulations, due to its wide bandgap (3.5-4.3 eV) and the high
transmission in the visible light spectrum. The representative
output and transfer curves are shown in Methods. Notably, this
device structure can work as the computing element for spiking
neural networks as well, even without interference with optical
spikes[28].

B. Device Performance

The synaptic behavior under electrical and optical
stimulation was investigated by exposing the gate terminal to
programming voltage pulses (Vprog), While maintaining the
source drain bias, Vis= 0.4V, and illuminating the device with
wavelengths of 655, 532, and 445 nm. The post-synaptic
currents (PSCs) are measured when light is incident on the
channel area. The synaptic potentiation and depression of the
device under illuminations are shown in Fig. 1(b) and Fig. 1(c).
For this measurement, the optical signal with 0.3 mW/cm?
power density was kept on during the measurement, and a
single 10 ms long -5V/+4V Vi pulse was applied.
Independent of the illumination condition, the PSCs showed
modulated conductance of the channels up to 50s after the Virog
pulse, suggesting the number of trapped or detrapped carriers in
the heterogeneous dielectric structure sustained more than 50s.
Notably, the segregated PSCs resulting from the wavelength of
irradiations is expected due to the wavelength dependent
absorption coefficient for the thin InP channels.
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Fig. 2. Programmable responsivities of FG-PFETSs. (a) PSCs with 20 pieces of
-5V Vpog pulse and ~10s light pulse (1 = 655 nm) 20s after the Vprog. (b)-(e)
The relationship of responsivities of FG-PFETSs extracted from (b) increased
number of potentiation Vg pulses, (c) increased number of depression Vprog
pulses, (d) decreased amplitude of Vo in the negative region, and (e) increased
amplitude of Vo in the positive region.
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Unlike the floating-gate photo synapses that rely on the
injection of carriers into the floating-gate via optical pulses [26,
27], the responsivity of FG-PFETs can be directly programmed
by electrical spikes, which potentially enables fast and energy
efficient image recognition._To demonstrate this property,
electrical and optical stimuli are split in temporal space as
shown in the upper panel of Fig. 2(a). Twenty -5V Vg pulses
were applied to the gate of the FG-PFETs and followed by a
10s optical pulse with 20s interval time. As indicated by the
bottom graph in Fig. 2(a). The FG-PFETs demonstrated good
overall responsivity of 55.6 A/W. The responsivity was
calculated by measuring the PSC under the dark and light and
then subtracting the values. The relationships between
responsivity and Vpog pulse number and amplitude are
extracted and shown in Fig. 2(b) to (e). Clearly, the
responsivities of the FG-PFETs can be tuned up by the
increased number of -5V Ve pulses, and can be tuned down
with +5V amplitude. Here we argue that the charge trapping in
the dielectric gate modifies the transconductance of the channel
at a fixed gate bias, thus modifying the photogating effect.
Additionally, photoexcitation of the channel provides
additional carries which may be trapped in the dielectric/at the
interface. Therefore, the responsivities demonstrated saturation
behavior in Fig. 2(b) and (c) with increased pulse number. It is
observed that the responsivity changes more dramatically when
the pulse number is small (<20), and then begins to saturate
when the pulse number is larger than 20. The behavior versus
programming pulse voltage does not show any saturation, as
shown in Fig. 2(d) and (e), as the increase Vprog amplitude
enables a greater density of carriers to be trapped or detrapped
from the charge-trapping dielectric. For each measurement, pre-
conditioning electrical stimuli were applied to reset the FG-
PFEs to ground states (see Methods). Here, the wavelength-
related segregation was also observed and generally matches
the trends observed in Fig. 1(b) and (¢).

C. Device Mechanism

The tunable responsivity in FG-PFETs is attributed to the
combination of charger trapping in the heterostructured gate
dielectric and the photogating mechanism of the InP channel
region. As demonstrated in previous work [28], a TiOz layer in
an Al2Os “cladding layer” provides a potential well, and allows
long-term carrier trapping. The total trapped charge in the TiO2
layer is modified by the Vpog pulses applied to the gate,
modifying the threshold voltage as shown in Fig. 3(a).

Photoconductive gain is widely observed in the low-
dimensional semiconductor-based photoconductors [32]. The
equation G = T/Tt (7 is the minority carrier lifetime, 7,is the
carrier transit time) is commonly used to estimate the gain.
Another way is using G = (Ipy/e)/(PA-n/hv), where P is
the incident power density, hv is the incident photon energy, A
is the irradiated area, and 7 is the quantum efficiency defined
as the product of light absorption efficiency and charge transfer
efficiency [32-34]. Taking the measured results from the FG-
PFETs shown in Fig. 2(a) and assumed n~ 45.1% (see
Methods) into the equation resulted in a photoconductive gain
G~230. Conventionally, photoconductive gain originated from
the distinct mobility of electrons and holes. The net

photocurrent Al = AO‘A% = q(An ‘U, +Ap - /,Lp)A% , Wwhere
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An and Ap are the excess electron and hole concentrations, p,
and p, are the electron and hole mobilities, A is the

semiconductor channel cross-section area, [ is the channel
length, and V is the bias provided. Consider the low-level
injection, then the excess electron or hole (An = Ap)

concentration can be described by aAn/ 5 =9 — An/fn,

where g(t) is the net optical generation rate, and t,, is the
excess electron lifetime. If g(t) is independent of time, and at

aAn/ 5; =0 state, then An=gr, With

assumption: f,, » (i, , and transit time of electrons 7, = UL =
n

additional

Ll , it yields: Al = qu,gt,A L= qglA= | and the term = is
unV l Tt Tt
in the same photoconductive gain expression for G . It can be
understood that with incident light, electron-hole pairs are
generated and separated by the applied bias. A fraction of the
electrons and holes recombine immediately, and a fraction
move in the opposite direction due to the electric field.
However, if the transit time for an electron is shorter than the
excess minority carrier lifetime, when excess electrons reach
the anode, the same amount of electrons enter the
photoconductor from the cathode to maintain the charge
neutrality until the electrons recombine with the holes.

As for the photogating effect, although the equation of gain
G = T/Tt is identical, it describes the phenomenon that one

type of the photogenerated carriers (holes in our case) is trapped
in localized states, and work as a local gate voltage that
influences the channel conductance. These states in the FG-
PFETs may come from the inhomogeneous potential caused by
defects and interfacial trap states. The relationship between the
photocurrent and the local gate voltage can be written as: Al =

Olag AV, = g AV, . For the FG-PFETs in this work, when
avy

plotting the measured gate voltage-dependent photocurrent and
transconductance with the same range shown by Fig. 3(b), the
photocurrent under 655nm illumination closely followed the
transconductance trajectory during the Vg sweep from -2V to
6V. It suggests that photogating effect is the dominant
mechanism in the devices.

5 C
(a) 107 F— virgin state | ( ) |)
after -7V Vog Source Drain
— after +7V Vyoq —/-__‘—‘—ﬁ—

3 E = e

1)

Vs (V)
(b) 200F
A =655nm
_ 150 i
<
£ 100- ]
£ 50,
1]
0 c : ! ) Source
U
g 3007 _El ___________________________________
g 200+ e S
& 100- -
= -9 _r -
0 —;-_5/—
2 0 2 4 6 [+] [+]
Vgs (V)

0018-9197 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or /Eublicationsfstandards/ ublications/rights/index.html for more information.
niversity of Southern California. Downloaded on June 23,2022 a

2:13:19 UTC from IEEE Xplore. "Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JQE.2022.3169565, IEEE Journal of

Quantum Electronics

JQE-135895-2021

Fig. 3. The mechanisms behind the FG-PFETs. (a) las-Vgs sweep before and
after applying 20 +7V and -7V Vg pulses. (b) Dependency of Iy to Vs with
655 nm irradiation and transconductance swept at the same range. (c) Band
diagram corresponding to the three working regions in (b).

For the better understanding, we can divide the gate voltage-
dependent photocurrent into three regions, and the
corresponding band diagram are demonstrated in Fig. 3(c).
When the negative gate voltage is applied to the device, Fermi
level is close to mid-gap. The trap states above the Fermi level
can capture electrons, and the states with energies below the
Fermi level are able to capture holes. At this condition, the
numbers of trap states for electrons and holes are close to each
other, which results in a similar number of both kinds of carriers
and small photocurrent (region I in Fig. 3(c)). With the
increased Vg, the Fermi level move closer to the conduction
band causes the increase of the electrons in the channel region,
therefore, more electron trap states are occupied. On the other
side, the decreased number of holes causes most hole traps to
be accessible. In this condition, more photogenerated holes are
trapped than photogenerated electrons and it causes the strong
photogating effect manifested by the higher photocurrent with
increased Vg as show in region II in Fig. 3(c). However, when
the Vy increases to a higher value (region III), due to the finite
number of hole traps and decreased carrier transport efficiency
because of the higher metal-semiconductor barrier,
photocurrent reaches its maximum point and starts to drop. In
short, due to the modulation of the number of available trap
states for carriers and the carrier transport efficiency, the
responsivity of the device demonstrates strong dependency of
V. This also explained why the Ve pulse number and
amplitude can program the responsivity with the heterogeneous
gate dielectrics structure in the devices.
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D. Statistical Performance

The variation for programming the responsivity of the FG-
PFETs was examined by circulating positive and negative Vprog
pulses shown in Fig. 4(a). Twenty +6V Vg pulses were
applied first to the gate electrode with 0.4V bias between the
source and the drain, and 655 nm laser with power density 0.3
mW/cm? was irradiated to the channel region 20s after the last
piece of Vg pulse. The duration of the illumination is 10s.
After 30s, twenty -6V Vprog pulses were applied to the gate with
the same Vgs and illumination. This measurement was looped
20 times and the results are shown in Fig. 4(a). Two distinct
responsivity levels, high responsivity state (HRS) around 50
A/W, and low responsivity state (LRS) around 9.8 A/W are
demonstrated. The variations for both states are low, and their
distribution are fit using a Gaussian distribution as illustrated in
Fig. 4(c) and (d). This results in the mean (u) and standard
deviation (o) to be pyrs = 50.39, gyps = 3.33 and Y =
9.83, gyrs = 1.39, respectively. The values here were also
used for estimate noise in the neural network simulation
discussed in the later section.

To work as a programmable photosensor and carry out image
processing offline, the programmed responsivities in the FG-
PFETs need to persist till the input images are illuminated on
the device array. In Fig. 4 (b), the responsivities are extracted
when the interval time between the last piece of Vprog pulse and
illumination was varied from 2 to 100s. The preconditioning
and Vprog pulse train (20 pieces of +6 V Vprog pulses with 20s
resting time, then followed by 20 pieces of -7V Vprog pulses)
were applied to the devices, and t;,tervar & 2, 5, 10, 20, 50,
100s) after the last pulse, a 655 nm laser is irradiated for 10s.
The responsivities were sampled at 2, 5, and 8s after the rising
edge of the synaptic current caused by illumination. As shown
in Fig. 4(b), the responsivities measured 100s after the Vprog
slightly dropped to 87%-93% of their value measured at 2s after
the Vprog. And the sampling timing only causes a 7% difference
in the worst case (at t;,terpar= 108).

III. SIMULATION OF ONN

A. ONN Structure

Human beings can distinguish colorful objects or disentangle
the overlayed colorful images without much effort. This task
can be finished as well using sensor arrays built by InP-based
FG-PFETs. The optical neural network (ONN) constructed by
FG-PFETs was simulated as shown in Fig. 5. The MNIST
dataset [35] was modified to generate input images for the
ONN. As the examples in Fig. 5(a), 1500 handwritten number
“7” and “1” images were picked out and stacked into red (R),
green (G), and blue (B) channels, and generated 6 classes of
input images (R7G1, R7B1, G7R1, G7B1, B7G1, and B7R1).
The ONN was developed with the simple two-layer structure as
indicated in Fig. 5(b). The input layer contained 784 neuron
arrays with color-filtering function to mimic the biological cone
cells of human vision system, this step can be implemented by
directly illuminating the colorful images to the 28 X 28 pixel
array consists of 28 X 28 X 6 FG-PFETs and color filters. As
shown in Fig. 5(c), in each pixel, the input signal is separated
by red, green, and blue filters, then sensed and processed by 6
FG-PFETs at the same pixel position. The synaptic connections
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between the input layer and output layer are corresponding to
the responsivity values of the 784x 6 FG-PFETs. Each output
node is fully connected to one of the subpixels. Consequently,
when the colorful image is directly irradiated to the FG-PFETs
array, the sensing process and Kirchhoft’s law conducted the
matrix multiplication P -R = 1. After subtracting the dark
current, the results can be processed by the SoftMax activation

function: ¢,,(I) = € fmé M L1E where ¢ is a scaling factor,
Yk=1€

and cross-entropy Loss = —% M Ymlog [¢n (1] is used to

calculate the loss from the output ¢,, (I) and the label y,,.

The circuit diagram of the first three pixels is shown in Fig.
5(d). The other 781 pixels and corresponding output current that
will merge with them are not shown here. At each pixel
position, 6 FG-PFETs with 3 color filters sense and process the
different wavelength signals and output 6 current values. Each
current node measures the sum of 784 current values from each
pixel due to parallel connection, then the current values will be
processed by the SoftMax activation function in the software.
Here the gate voltage Vum, where n is pixel number, m is sub-
pixel number, is 0 V for reading operation, and Vprogram during
the programming operation. This circuit is different with the
crossbar array since the three-terminal devices are used, and the
voltage values applied to the crossbar array typically carry the
input information through parameters like amplitude,
frequency, and duty cycles.

B. Update Rules

For each training and testing epoch, 1200 training images and
300 test images were shuffled, and the backpropagation and
gradient descent approaches were implemented to know the
tuning direction for the responsivity of each FG-PFET. The
initial responsivities of the devices are randomly generated
between the Rmax and Rmin with uniform distribution. We
implemented the stepped updating rule based on the fitting
curves of the measured responsivities dependency to Vprog pulse
number [36]. More specifically the rules are:

When d(LOSS)/dR > 0:

-B Rn—Rmin
Ryy1 = R, + AR, = R, + aye " Fmax=Rmin

When d(LOSS)/dR =0:
Rn+1 = Rn

When d(LOSS)/dR <0

D Rmax—Rn
Rmax—Rmin

Ryi1= R, +AR, = R, — ape

Where R,,,; is the target updating responsivity, R, is the
current responsivity, @, and a/, are the fitting factors from the
potentiation and depression curve, f8, and S, are the non-linear
factors, R, and R,,;, are the turning range of the
responsivities. When the R, ,; is out of the range between
Rax and R,,in, clipping is applied during the value updating.
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Fig. 5. ONN built with FG-PFETs. (a) Examples of stacked MNIST digits,
working as the color-mixed input images to the ONN. (b) Schematic of the
ONN built with FG-PFETs. (c) Schematic of pixel array, and pixel with color
filters. (d) Circuit diagram of first 3 pixels, each pixel contain 6 FG-PFETs and
three color filters.

C. Simulation Results

In addition, the updating noise based on the measured results
and gaussian distribution fitting curve in Fig. 4(a) was included
for the simulation. The resulted accuracy and loss over 40
training and testing epochs are shown in Fig. 6(c) and (d),
plotted with projected results from the devices having lower
updating noise. Clearly, within 10 training epochs, the accuracy
can reach up to ~94%, higher than ONN reported in reference
paper[36], and the loss drops rapidly even for the devices with
the highest update noise. However, after 10 epochs, lower
update noise led to higher accuracy and more stable
performance. This is due to the update noise contributing more
to the overall number of available states and effect of small
weight updates [37]. Overall, the simulation results based on
the measured performance of FG-PFETs suggest that the ONN
constructed by FG-PFETs can be developed for color-mixed
handwritten digits recognition, and the accuracy can be further
improved by lowering the responsivity updating noise.
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Fig.6 (a) Accuracy and (b) loss of the simulated ONN over 40 epochs of training
and testing.

IV. CONCLUSION

In this work, top-gated FG-PFETs based on single crystalline
InP channels grown by the TLP approach were reported. A
floating gate is shown to modify the responsivity of the device
by tuning the photogating effect, and enabling programming of
the responsivities of the FG-PFETs. It was shown by both the
number or amplitude of Vprog pulses could be used for this, but
it is expected that pulse number programming is more practical
for real circuits. Using this behavior, the FG-PFETs was shown
to perform the sensing and classification simultaneously when
working as the computing element in an ONN. Due to the large
tuning range, and low variation of FG-PFETs, the constructed
ONN shows a steep decline of loss and the image recognition
accuracy ramp-up to ~94% during training and testing epochs.
When coupled with the BEOL compatible LT-TLP approach,
InP based FG-PFETs may pave the way to more energy
efficient hardware level machine vision.

V. METHODS

A. Output and Transfer Curves

Fig. S1 below shows the representative output curves and
transfer curves of PF-PFETs in this work.

25
@ ] ©
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g B V=21V 3
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Fig. S1. (a) Output curves of FG-PFETs with V, from 0.1 to 4.1V. (b)
Transfer curves of FG-PFETs with V¢=0.1 and 1.1V.

B. Ground States Alignment

To align the device status before applying various Vprog pulse
train, pre-conditioning pulses are applied. When the Vyrog pulse
trains use the negative amplitude like for Fig. 2(b) and (d), 20
pieces of +7V pulses with 10ms pulse width, 1s pulse period,
and 20sec resting time are applied. And when the amplitude is
positive as for the measurements for Fig. 2 (c) and (e), 20 pieces
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