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Abstract—The success of artificial neural networks (ANNs) in 

machine vision techniques has driven hardware researchers to 
explore more efficient computing elements for energy-expensive 
operations such as vector-matrix multiplication (VMM). In this 
work, InP-based floating-gate photo-field-effective transistors 
(FG-PFETs) are demonstrated as computing elements that 
integrate both photodetection and initial signal processing at the 
sensor level. These devices are fabricated from semiconductor 
channels grown via a back-end CMOS compatible templated-
liquid phase (TLP) approach. Individual devices are shown to 
exhibit programmable responsivity, mimicking the effect of a 
synapse connecting the photodetector to a neuron. Using these 
devices, a simulated optical neural network (ONN) where the 
experimentally measured performance of FG-PFETs is used as an 
input shows excellent image recognition accuracy for color-mixed 
handwritten digits.  
 
Index Terms— Machine vision, optical neural network, 

phototransistors, indium phosphide. 
 

I. INTRODUCTION 
N the past few decades, machine vision has become a key 
component of various intelligent systems, including 
autonomous vehicles, automated fabrication systems, and 

robotics [1-4]. Due to the variety and sophistication of 
algorithms for machine vision, and in particular artificial neural 
networks (ANN) and convolutional neural networks (CNN), 
image recognition accuracy for well-trained machines can 
surpass human beings in specific tasks [5, 6]. However, this is 
typically achieved through large sets of training data, long 
training times, considerable hardware, and a optimization of 
parameters for the task at hand. To continue progress, 
development of new device structures and circuit architectures 
are heavily explored with the aim of reducing energy 
consumption, improving speed, and maintaining overall 
accuracy. 
Many hardware level solutions based on CMOS technology 

and emerging devices built with advanced materials have been 
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proposed to emulate biological neural or synaptic behaviors and 
boost the computation speed of ANNs [7, 8]. At the device 
level,  resistive random access memory (RRAM) [9, 10], phase 
change memory (PCM) [8, 11], ferroelectric field effective 
transistor (FeFET) [12], ion-based electrolyte-gated 
transistor[13-15], and spin transfer torque magnetoresistive 
random access memory (STT-MRAM) [16] have been heavily 
studied. Most of the key computationally required synaptic 
behaviors like short- and long-term plasticity, spike-number-
dependent plasticity, and spike-timing-dependent plasticity are 
successfully emulated [17-19]. Importantly, chip level 
acceleration of the vector matrix multiplication (VMM) 
operation has also been demonstrated by several research 
groups [20-23]. In addition, many novel computing elements 
coupled with biometric sensing functions were reported[14, 24, 
25]. Among these, photonic synapses combine sensing and 
processing in a single device, which eliminates the additional 
sensing element, possessing the advantages of low energy 
consumption and large bandwidth[26, 27]. Conventionally, the 
image recognition algorithms with ANNs require digitized 
image inputs, a conversion that consumes energy and process 
time. But the characteristics of photonic synapses potentially 
can solve the bottleneck here. One such approach was a WSe2 
based two-dimensional (2D) semiconductor photodiode array 
reported to be able to sense and classify the image projected to 
the chip and demonstrated ultrafast processing time [1]. One 
challenge faced by such approaches however are the 
manufacturability and scalability of such processes, which 
require growth and transfer, as well as the relatively weak light 
absorption in thin 2-D materials. Additionally, the synaptic 
weight was stored off chip and used to modify the voltage 
applied to the gate of the device, an approach which is not 
feasible on a chip as it would require a tremendous number of 
voltages. 
To approach this challenge, we use a scalable III-V growth 

approach that potentially enables monolithic integration with Si 
CMOS circuits and a device architecture that contains memory 
to store the responsivity values required. Specifically, we report 
an indium phosphide (InP) based floating-gate photo-field-
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effect transistors (FG-PFETs) and demonstrate that it can 
function as the computing element for an optical neural network 
(ONN), sensing and classifying images simultaneously. The 
floating gate is used to modulate the responsivity in the channel 
region, which  mimics the behavior of a synapse.  A simulated 
ONN indicated the accuracy up to ~94% for color-mix MNIST 
hand-written digits recognition. In addition, combined with the 
merits of non-volatility, back end of the line (BEOL) 
compatible process, and scalable material integration 
techniques, the FG-PFETs are demonstrated as potentially 
promising computing elements for machine vision.  

II. DEVICE PERFORMANCE AND MECHANISM 

A. Device Structure 
The FG-PFETs were directly integrated on Si/SiO2 wafer 

using a similar device architecture reported previously [28]. 
Here, the InP channel was chosen due to its direct bandgap 
property, good responsivity at visible wavelength, and high 
electron mobility. Moreover, the cost effective templated liquid 
phase (TLP) approach removed the requirement for single 
crystalline substrate, and enabled the monolithic InP integration 
directly on amorphous substrate even at low growth 
temperature[29, 30]. To be more specific,  a patterned In/SiO2 
bilayer was deposited  on the oxide substrate with photo 
lithography, thermal evaporation, and lift-off process. Then the 
samples were heated in a phosphine ambient, and 
supersaturated phosphorus in the liquid phase indium drives the 
a phase transformation from In to InP. By tuning the growth 
condition, it is possible to ensure that each channel region 
grows from a single nucleus. And with time, the entire area of 
is transformed to InP, retaining the same geometry as patterned. 
The fully grown InP channel is with dimension of 25 	𝜇𝑚 
length, 6 𝜇𝑚 width, and 300 nm thickness.  
After the growth of InP channel, diluted hydrofluoric acid 

(HF:H2O = 1:10) was used to etch away the SiO2 capping layer, 
and patterned 5 nm Ge, 20 nm Au, and 80 nm Ni were deposited 
by electron-beam evaporation as the source and drain contact. 
A 380℃ rapid thermal annealing in N2 was carried out to reduce 
the contact resistance.  

 

Fig. 1. Schematic and post-synaptic current of FG-PFETs. (a) Schematic of FG-
PFETs and the cross-section film stack. (b) PSCs with one -5V Vprog pulse in 
dark, and illumination of three wavelengths (𝜆 = 655, 532, 𝑎𝑛𝑑	445	𝑛𝑚). (c) 
PSCs with one +4V Vprog pulse in dark, illumination of three wavelengths (𝜆 =
655, 532, 𝑎𝑛𝑑	445	𝑛𝑚).  
 
As shown by the schematic in Fig. 1(a), the heterogeneous 

structured dielectric stack composed of 5 nm Al2O3, 5 nm TiO2, 
and 50 nm Al2O3 were deposited by atomic layer deposition 
(ALD) at 200℃, it enabled the devices with both static and time 
dependent programmable conductance in a wide temporal scale 
of 10-3 to 105s. This dielectric stack is similar with Oxide-
Nitride-Oxide (ONO) structure used in industry[31]. And the 
indium tin oxide (ITO) was deposited as the gate electrode to 
enable the interaction between InP channels and optical 
stimulations, due to its wide bandgap (3.5-4.3 eV) and the high 
transmission in the visible light spectrum. The representative 
output and transfer curves are shown in Methods. Notably, this 
device structure can work as the computing element for spiking 
neural networks as well, even without interference with optical 
spikes[28].  

B. Device Performance 
The synaptic behavior under electrical and optical 

stimulation was investigated by exposing the gate terminal to 
programming voltage pulses (Vprog), while maintaining the 
source drain bias, Vds = 0.4V, and illuminating the device with 
wavelengths of 655, 532, and 445 nm. The post-synaptic 
currents (PSCs) are measured when light is incident on the 
channel area. The synaptic potentiation and depression of the 
device under illuminations are shown in Fig. 1(b) and Fig. 1(c). 
For this measurement, the optical signal with 0.3 mW/cm2 
power density was kept on during the measurement, and a 
single 10 ms long  -5V/+4V Vprog pulse was applied. 
Independent of the illumination condition, the PSCs showed 
modulated conductance of the channels up to 50s after the Vprog 
pulse, suggesting the number of trapped or detrapped carriers in 
the heterogeneous dielectric structure sustained more than 50s. 
Notably, the segregated PSCs resulting from the wavelength of 
irradiations is expected due to the wavelength dependent 
absorption coefficient for the thin InP channels. 
 

 
Fig. 2. Programmable responsivities of FG-PFETs. (a) PSCs with 20 pieces of 
-5V Vprog pulse and ~10s light pulse (𝜆 = 655	𝑛𝑚)  20s after the Vprog. (b)-(e) 
The relationship of responsivities of FG-PFETs extracted from (b) increased 
number of potentiation Vprog pulses, (c) increased number of depression Vprog 
pulses, (d) decreased amplitude of Vprog in the negative region, and (e) increased 
amplitude of Vprog in the positive region.  
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Unlike the floating-gate photo synapses that rely on the 
injection of carriers into the floating-gate via optical pulses [26, 
27], the responsivity of FG-PFETs can be directly programmed 
by electrical spikes, which potentially enables fast and energy 
efficient image recognition. To demonstrate this property, 
electrical and optical stimuli are split in temporal space as 
shown in the upper panel of Fig. 2(a). Twenty -5V Vprog pulses 
were applied to the gate of the FG-PFETs  and followed by a 
10s optical pulse with 20s interval time. As indicated by the 
bottom graph in Fig. 2(a). The FG-PFETs demonstrated good 
overall responsivity of 55.6 A/W. The responsivity was 
calculated by measuring the PSC under the dark and light and 
then subtracting the values. The relationships between 
responsivity and Vprog pulse number and amplitude are 
extracted and shown in Fig. 2(b) to (e). Clearly, the 
responsivities of the FG-PFETs can be tuned up by the 
increased number of -5V Vprog pulses, and can be tuned down 
with +5V amplitude. Here we argue that the charge trapping in 
the dielectric gate modifies the transconductance of the channel 
at a fixed gate bias, thus modifying the photogating effect. 
Additionally, photoexcitation of the channel provides 
additional carries which may be trapped in the dielectric/at the 
interface. Therefore, the responsivities demonstrated saturation 
behavior in Fig. 2(b) and (c) with increased pulse number. It is 
observed that the responsivity changes more dramatically when 
the pulse number is small (<20), and then begins to saturate 
when the pulse number is larger than 20. The behavior versus 
programming pulse voltage does not show any saturation, as 
shown in Fig. 2(d) and (e), as the increase Vprog amplitude 
enables a greater density of carriers to be trapped or detrapped 
from the charge-trapping dielectric. For each measurement, pre-
conditioning electrical stimuli were applied to reset the FG-
PFEs to ground states (see Methods). Here, the wavelength-
related segregation was also observed and generally matches 
the trends observed in Fig. 1(b) and (c).  

C. Device Mechanism  
The tunable responsivity in FG-PFETs is attributed to the 

combination of charger trapping in the heterostructured gate 
dielectric and the photogating mechanism of the InP channel 
region. As demonstrated in previous work [28], a TiO2 layer in 
an Al2O3 “cladding layer” provides a potential well, and allows 
long-term carrier trapping. The total trapped charge in the TiO2 
layer is modified by the Vprog pulses applied to the gate, 
modifying the threshold voltage as shown in Fig. 3(a).  
Photoconductive gain is widely observed in the low-

dimensional semiconductor-based photoconductors [32]. The 
equation 𝐺 =	𝜏 𝜏!(  (𝜏 is the minority carrier lifetime, 𝜏!is the 
carrier transit time) is commonly used to estimate the gain. 
Another way is using 𝐺 =	 (𝐼"#/𝑒)/(𝑃𝐴 ∙ 𝜂/ℎ𝜈), where 𝑃 is 
the incident power density,	ℎ𝜈 is the incident photon energy, 𝐴 
is the irradiated area, and 𝜂 is the quantum efficiency defined 
as the product of light absorption efficiency and charge transfer 
efficiency [32-34]. Taking the measured results from the FG-
PFETs shown in Fig. 2(a) and assumed 𝜂~	45.1%  (see 
Methods) into the equation resulted in a photoconductive gain 
𝐺~230. Conventionally, photoconductive gain originated from 
the distinct mobility of electrons and holes. The net 
photocurrent ∆𝐼 = Δ𝜎𝐴 $

%
= 𝑞A∆𝑛 ∙ 𝜇& + ∆𝑝 ∙ 𝜇'E𝐴

$
%
 ,  where 

∆𝑛 and ∆𝑝 are the excess electron and hole concentrations,  𝜇& 
and 𝜇'  are the electron and hole mobilities, 𝐴  is the 
semiconductor channel cross-section area, 𝑙  is the channel 
length, and 𝑉  is the bias provided. Consider the low-level 
injection, then the excess electron or hole ( ∆𝑛 =	∆𝑝 ) 
concentration can be described by 𝜕∆𝑛 𝜕𝑡( = 𝑔(𝑡) − ∆𝑛 𝜏&( , 
where 𝑔(𝑡)  is the net optical generation rate, and 𝜏&  is the 
excess electron lifetime. If 𝑔(𝑡) is independent of time, and at 
𝜕∆𝑛

𝜕𝑡( = 0  state, then ∆𝑛 = 𝑔𝜏& . With additional 
assumption: 𝜇& ≫ 𝜇' , and transit time of electrons 𝜏! =

%
(!
=

%"

)!$
 , it yields: ∆𝐼	 ≅ 𝑞𝜇&𝑔𝜏&𝐴

$
%
= 𝑞𝑔𝑙𝐴 *!

*#
 , and the term *!

*#
 is 

in the same photoconductive gain expression for 𝐺 . It can be 
understood that with incident light, electron-hole pairs are 
generated and separated by the applied bias. A fraction of the 
electrons and holes recombine immediately, and a fraction 
move in the opposite direction due to the electric field. 
However, if the transit time for an electron is shorter than the 
excess minority carrier lifetime, when excess electrons reach 
the anode, the same amount of electrons enter the 
photoconductor from the cathode to maintain the charge 
neutrality until the electrons recombine with the holes.  
As for the photogating effect, although the equation of gain 

𝐺 =	𝜏 𝜏!(  is identical, it describes the phenomenon that one 
type of the photogenerated carriers (holes in our case) is trapped 
in localized states, and work as a local gate voltage that 
influences the channel conductance. These states in the FG-
PFETs may come from the inhomogeneous potential caused by 
defects and interfacial trap states. The relationship between the 
photocurrent and the local gate voltage can be written as: ∆𝐼 =
	+,$%
+$&

	∆𝑉- = 𝑔.∆𝑉- . For the FG-PFETs in this work, when 

plotting the measured gate voltage-dependent photocurrent and 
transconductance with the same range shown by Fig. 3(b), the 
photocurrent under 655nm illumination closely followed the 
transconductance trajectory during the Vg sweep from -2V to 
6V. It suggests that photogating effect is the dominant 
mechanism in the devices.   
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Fig. 3. The mechanisms behind the FG-PFETs. (a) Ids-Vgs sweep before and 
after applying  20 +7V and -7V Vprog pulses. (b) Dependency of Iph to Vgs with 
655 nm irradiation and transconductance swept at the same range. (c) Band 
diagram corresponding to the three working regions in (b).  
 
 
For the better understanding, we can divide the gate voltage-

dependent photocurrent into three regions, and the 
corresponding band diagram are demonstrated in Fig. 3(c). 
When the negative gate voltage is applied to the device, Fermi 
level is close to mid-gap. The trap states above the Fermi level 
can capture electrons, and the states with energies below the 
Fermi level are able to capture holes. At this condition, the 
numbers of trap states for electrons and holes are close to each 
other, which results in a similar number of both kinds of carriers 
and small photocurrent (region I in Fig. 3(c)). With the 
increased Vg, the Fermi level move closer to the conduction 
band causes the increase of the electrons in the channel region, 
therefore, more electron trap states are occupied. On the other 
side, the decreased number of holes causes most hole traps to 
be accessible. In this condition, more photogenerated holes are 
trapped than photogenerated electrons and it causes the strong 
photogating effect manifested by the higher photocurrent with 
increased Vg as show in region II in Fig. 3(c). However, when 
the Vg increases to a higher value (region III), due to the finite 
number of hole traps and decreased carrier transport efficiency 
because of the higher metal-semiconductor barrier, 
photocurrent reaches its maximum point and starts to drop. In 
short, due to the modulation of the number of available trap 
states for carriers and the carrier transport efficiency, the 
responsivity of the device demonstrates strong dependency of 
Vg. This also explained why the Vprog pulse number and 
amplitude can program the responsivity with the heterogeneous 
gate dielectrics structure in the devices.  
 

 
 
Fig. 4. Variation and duration of programmed responsivity. (a) Responsivities 
of FG-PFETs when circulating +6V Vprog pulse train and -6V Vprog pulse train. 
(b) Responsivities of FG-PFETs extracted from 2, 5, and 8s after illuminating 
the light pulse, and their dependencies to interval time between Vprog and 
irradiation. (c) and (d) Histogram of HRS and LRS, and their Gaussian 
distribution fitting curve.  
 

D. Statistical Performance 
The variation for programming the responsivity of the FG-

PFETs was examined by circulating positive and negative Vprog 
pulses shown in Fig. 4(a). Twenty +6V Vprog pulses were 
applied first to the gate electrode with 0.4V bias between the 
source and the drain, and 655 nm laser with power density 0.3 
mW/cm2 was irradiated to the channel region 20s after the last 
piece of Vprog pulse. The duration of the illumination is 10s. 
After 30s, twenty -6V Vprog pulses were applied to the gate with 
the same Vds and illumination. This measurement was looped 
20 times and the results are shown in Fig. 4(a). Two distinct 
responsivity levels, high responsivity state (HRS) around 50 
A/W, and low responsivity state (LRS) around 9.8 A/W are 
demonstrated. The variations for both states are low, and their 
distribution are fit using a Gaussian distribution as illustrated in 
Fig. 4(c) and (d). This results in the mean (𝜇) and standard 
deviation (𝜎) to be  𝜇#/0 = 50.39, 𝜎#/0 = 3.33 and 𝜇1/0 =
9.83, 𝜎#/0 = 1.39 , respectively. The values here were also 
used for estimate noise in the neural network simulation 
discussed in the later section.  
To work as a programmable photosensor and carry out image 

processing offline, the programmed responsivities in the FG-
PFETs need to persist till the input images are illuminated on 
the device array. In Fig. 4 (b), the responsivities are extracted 
when the interval time between the last piece of Vprog pulse and 
illumination was varied from 2 to 100s. The preconditioning 
and Vprog pulse train (20 pieces of +6 V Vprog pulses with 20s 
resting time, then followed by 20 pieces of -7V Vprog pulses) 
were applied to the devices, and 𝑡2&!34(5% (= 2, 5, 10, 20, 50, 
100s) after the last pulse, a 655 nm laser is irradiated for 10s. 
The responsivities were sampled at 2, 5, and 8s after the rising 
edge of the synaptic current caused by illumination. As shown 
in Fig. 4(b), the responsivities measured 100s after the Vprog 
slightly dropped to 87%-93% of their value measured at 2s after 
the Vprog. And the sampling timing only causes a 7% difference 
in the worst case (at 𝑡2&!34(5%= 10s).  

III. SIMULATION OF ONN  

A. ONN Structure 
Human beings can distinguish colorful objects or disentangle 

the overlayed colorful images without much effort. This task 
can be finished as well using sensor arrays built by InP-based 
FG-PFETs. The optical neural network (ONN) constructed by 
FG-PFETs was simulated as shown in Fig. 5. The MNIST 
dataset [35] was modified to generate input images for the 
ONN. As the examples in Fig. 5(a), 1500 handwritten number 
“7” and “1” images were picked out and stacked into red (R), 
green (G), and blue (B) channels, and generated 6 classes of 
input images (R7G1, R7B1, G7R1, G7B1, B7G1, and B7R1). 
The ONN was developed with the simple two-layer structure as 
indicated in Fig. 5(b). The input layer contained 784 neuron 
arrays with color-filtering function to mimic the biological cone 
cells of human vision system, this step can be implemented by 
directly illuminating the colorful images to the 28 × 28 pixel 
array consists of 28 × 28 × 6	FG-PFETs and color filters. As 
shown in Fig. 5(c), in each pixel, the input signal is separated 
by red, green, and blue filters, then sensed and processed by 6 
FG-PFETs at the same pixel position. The synaptic connections 
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between the input layer and output layer are corresponding to 
the responsivity values of the 784× 6	FG-PFETs. Each output 
node is fully connected to one of the subpixels. Consequently, 
when the colorful image is directly irradiated to the FG-PFETs 
array, the sensing process and Kirchhoff’s law conducted the 
matrix multiplication 𝑃 ∙ 𝑅 = 𝐼 . After subtracting the dark 
current, the results can be processed by the SoftMax activation 
function:  𝜙.(𝐼) = 	 𝑒

,'6

∑ 𝑒,(67
89:

V  where 𝜉 is a scaling factor, 

and cross-entropy 𝐿𝑜𝑠𝑠 = 	− :
7
∑ 𝑦.log	[𝜙.(𝐼)]7
.9:  is used to 

calculate the loss from the output 𝜙.(𝐼) and the label 𝑦.. 
The circuit diagram of the first three pixels is shown in Fig. 

5(d). The other 781 pixels and corresponding output current that 
will merge with them are not shown here. At each pixel 
position, 6 FG-PFETs with 3 color filters sense and process the 
different wavelength signals and output 6 current values. Each 
current node measures the sum of 784 current values from each 
pixel due to parallel connection, then the current values will be 
processed by the SoftMax activation function in the software. 
Here the gate voltage Vnm, where n is pixel number, m is sub-
pixel number, is 0 V for reading operation, and Vprogram during 
the programming operation. This circuit is different with the 
crossbar array since the three-terminal devices are used, and the 
voltage values applied to the crossbar array typically carry the 
input information through parameters like amplitude, 
frequency, and duty cycles. 

B. Update Rules 
For each training and testing epoch, 1200 training images and 

300 test images were shuffled, and the backpropagation and 
gradient descent approaches were implemented to know the 
tuning direction for the responsivity of each FG-PFET. The 
initial responsivities of the devices are randomly generated 
between the Rmax and Rmin with uniform distribution. We 
implemented the stepped updating rule based on the fitting 
curves of the measured responsivities dependency to Vprog pulse 
number [36]. More specifically the rules are:  
When 𝑑(𝐿𝑜𝑠𝑠) 𝑑𝑅( > 0: 

𝑅&;: =	𝑅& + ∆𝑅' =	𝑅& +	𝛼'𝑒
<=)	

/!</'*!
/'+,</'*! 

 
When 𝑑(𝐿𝑜𝑠𝑠) 𝑑𝑅( = 0: 

 
		𝑅&;: =	𝑅&																																																																																														 

 
When 𝑑(𝐿𝑜𝑠𝑠) 𝑑𝑅( < 0: 

	𝑅&;: =	𝑅& + ∆𝑅? =	𝑅& −	𝛼?𝑒
<=-	

/'+,</!
/'+,</'*! 

 
Where 𝑅&;:  is the target updating responsivity, 𝑅&  is the 

current responsivity, 𝛼'	and 𝛼? are the fitting factors from the 
potentiation and depression curve, 𝛽' and 𝛽? are the non-linear 
factors, 𝑅.5@  and 𝑅.2&  are the turning range of the 
responsivities. When the 𝑅&;:  is out of the range between 
𝑅.5@ and 𝑅.2&, clipping is applied during the value updating.  
 

 
Fig. 5. ONN built with FG-PFETs. (a) Examples of stacked MNIST digits, 
working as the color-mixed input images to the ONN. (b) Schematic of the 
ONN built with FG-PFETs. (c) Schematic of pixel array, and pixel with color 
filters. (d) Circuit diagram of first 3 pixels, each pixel contain 6 FG-PFETs and 
three color filters.  
 

C. Simulation Results 
In addition, the updating noise based on the measured results 

and gaussian distribution fitting curve in Fig. 4(a) was included 
for the simulation. The resulted accuracy and loss over 40 
training and testing epochs are shown in Fig. 6(c) and (d), 
plotted with projected results from the devices having lower 
updating noise. Clearly, within 10 training epochs, the accuracy 
can reach up to ~94%, higher than ONN reported in reference 
paper[36], and the loss drops rapidly even for the devices with 
the highest update noise. However, after 10 epochs, lower 
update noise led to higher accuracy and more stable 
performance. This is due to the update noise contributing more 
to the overall number of available states and effect of small 
weight updates [37]. Overall, the simulation results based on 
the measured performance of FG-PFETs suggest that the ONN 
constructed by FG-PFETs can be developed for color-mixed 
handwritten digits recognition, and the accuracy can be further 
improved by lowering the responsivity updating noise.  
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Fig.6 (a) Accuracy and (b) loss of the simulated ONN over 40 epochs of training 
and testing.  
 

IV. CONCLUSION 
 
In this work, top-gated FG-PFETs based on single crystalline 

InP channels grown by the TLP approach were reported. A 
floating gate is shown to modify the responsivity of the device 
by tuning the photogating effect, and enabling programming of 
the responsivities of the FG-PFETs. It was shown by both the 
number or amplitude of Vprog pulses could be used for this, but 
it is expected that pulse number programming is more practical 
for real circuits. Using this behavior, the FG-PFETs was shown 
to perform the sensing and classification simultaneously when 
working as the computing element in an ONN. Due to the large 
tuning range, and low variation of FG-PFETs, the constructed 
ONN shows a steep decline of loss and the image recognition 
accuracy ramp-up to ~94% during training and testing epochs.  
When coupled with the BEOL compatible LT-TLP approach, 
InP based FG-PFETs may pave the way to more energy 
efficient hardware level machine vision.  

V. METHODS 

A. Output and Transfer Curves 
Fig. S1 below shows the representative output curves and 

transfer curves of PF-PFETs in this work.  
 

 
Fig. S1. (a) Output curves of FG-PFETs with Vg from 0.1 to 4.1V. (b) 
Transfer curves of FG-PFETs with Vd=0.1 and 1.1V.  

B. Ground States Alignment 
To align the device status before applying various Vprog pulse 

train, pre-conditioning pulses are applied. When the Vprog pulse 
trains use the negative amplitude like for Fig. 2(b) and (d), 20 
pieces of +7V pulses with 10ms pulse width, 1s pulse period, 
and 20sec resting time are applied. And when the amplitude is 
positive as for the measurements for Fig. 2 (c) and (e), 20 pieces 

of -7V pulses with 10ms pulse width, 1s pulse period, and 20sec 
resting time are applied. All of them used the Vds=0.4V.  

C. Quantum Efficiency estimation 
𝜂 was calculated to be 45.1% using the Lambert-Beer’s law 

: 𝐴(𝜔) = 1 −	𝑒<A(C)EF  where 𝐴(𝜔)  is the material 
absorption, 𝜔  is the light frequency, Δ𝑍  = 300 nm is the 
thickness of the InP channels. Here the charge transfer 
efficiency is assumed to be 1.  
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