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Topological modes in a laser cavity through
exceptional state transfer
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Shaping the light emission characteristics of laser systems is of great importance in various areas
of science and technology. In a typical lasing arrangement, the transverse spatial profile of a laser
mode tends to remain self-similar throughout the entire cavity. Going beyond this paradigm, we
demonstrate here how to shape a spatially evolving mode such that it faithfully settles into a pair of
bi-orthogonal states at the two opposing facets of a laser cavity. This was achieved by purposely
designing a structure that allows the lasing mode to encircle a non-Hermitian exceptional point while
deliberately avoiding non-adiabatic jumps. The resulting state transfer reflects the unique topology
of the associated Riemann surfaces associated with this singularity. Our approach provides a route to
developing versatile mode-selective active devices and sheds light on the interesting topological
features of exceptional points.

T
he quantum adiabatic theorem, a corol-
lary of the Schrödinger equation, pro-
vides excellent insights into the behavior
of slowly varying quantum systems.When
the Hamiltonian gradually changes in

time, the associated probability densities tend
to evolve smoothly, thus allowing a quantum
system to remain in its initial eigenstate. If
this evolution follows a cyclic path around a
spectral degeneracy, then the related eigen-
value can acquire a geometric phase that
solely depends on the traversed trajectory in
parameter space (1, 2). In condensed-matter
physics, when dealing with momentum space,
it can be shown that the related concepts of
Berry connection and curvature, which lift
the path dependency of the observables, give
rise to a host of fundamental topological
properties such as nonzero Chern number
and integer quantum Hall conductance in
solids (3).
Non-Hermitian systems and their spec-

tral degeneracies, better known as excep-
tional points (EPs), have attracted attention
in various physical disciplines ranging from
optics to electronics, optomechanics, and
acoustics (4–14). An interesting feature of
these non-Hermitian systems is that, under
the appropriate conditions, their eigenval-
ues and corresponding eigenvectors tend
to simultaneously coalesce, forming spec-
tral degeneracies known as EPs (4, 15). The
presence of EPs not only affects a configu-

ration that is statically operating in their
vicinity but also alters the dynamical response
of non-Hermitian systems. In contrast to a
quasistatic encirclement of a Hermitian de-
generacy (Fig. 1C), cyclic parameter variations
in non-Hermitian systems do not necessarily
reproduce the input state (apart from a geo-
metric phase) after completing a loop around
an EP. Instead, a quasistatic cycle leads to
a swap of the instantaneous eigenstates (Fig.
1D) (3, 8, 9, 16, 17). Even more interesting is
the behavior of a non-Hermitian systemwhen
the EP encirclement is carried out dynam-
ically. In this latter case, the complex nature
of the eigenvalues inhibits adiabatic evo-
lution for all eigenvectors except for the one
with the largest imaginary part of the cor-
responding eigenvalue due to non-adiabatic
jumps (17–19). Instead, these jumps produce
a chiral behavior unique to non-Hermitian
systems, in which the final state after a dy-
namic loop around an EP depends on the
loop’s winding direction rather than on the ini-
tial state at the loop’s outset (Fig. 1F) (9, 19–25).
Although this chiral behavior has recently
been observed in a number of physical systems
(9, 20–22, 24, 26), little has been done to ex-
ploit this concept to establish a purely topolo-
gical state in non-Hermitian configurations
(27–29).
We introduce a type of topological mode

appearing in non-Hermitian cavities that
feature dynamical EP encirclement. In these
systems, the interplay among the Riemann
surfaces, the net gain, and gain saturation
favors a spatially evolving lasing mode that
morphs from one eigenstate profile to another
while avoiding the aforementioned non-
adiabatic jumps. As a result, we demonstrate
a topologically operating single transverse
mode laser that is capable of simultaneously
emitting in two different, but topologically
linked, transverse profiles, each from a dif-

ferent facet. Apart from its counterintuitive
behavior, this laser constitutes an adiabatic
non-Hermitian cavity that supports a fully
topological resonant mode. The implemen-
tation of EP encircling with gain additionally
avoids the considerable absorption losses that
plagued previous reports of chiral state transfer
with dissipative elements (9, 20–22, 24, 26).
Furthermore, because the topological energy
transfer relies solely on the adiabatic en-
circling of an EP degeneracy and not on the
exact shape of the loop, the resulting lasing
mode is robust against defects and fabrica-
tion imperfections, as well as fluctuations
in gain [see the materials and methods (30),
sections 5 and 6].
Our laser cavity consists of two trans-

versely coupled waveguides in a parity-time
(PT) symmetric configuration, in which one
of the elements is subject to gain whereas
the other one experiences loss (or a lower
level of gain). A schematic of the device is
shown in Fig. 2B, and SEM images are shown
in the insets of Fig. 2C. The dynamical en-
circling of the induced EP in time is imple-
mented by modulating certain parameters
of the structure along the propagation di-
rection, z. Specifically, by varying the coupling
and the detuning between the two single-
mode waveguides in a continuous fashion,
the system’s transverse modes are steered
around the EP as light circulates in the cav-
ity. Each waveguide is accompanied by a
neighboring strip that induces a change in
its effective refractive index, providing the
required detuning. These loading strips are
intentionally designed not to be phasematched
to the waveguide elements. The detuning be-
tween the two waveguides is thus determined
by the distance between each waveguide
and its adjacent strip and varies according
to s(z) = s0 + (smin – s0)sin(2pz/L) [see the
materials and methods (30), section 1]. Con-
versely, the dynamic coupling is attained
by modulating the separation between the
two primary waveguides, i.e., d(z) = d0 +
(dmax – d0)sin(pz/L). Using the aforemen-
tioned modulation patterns, an EP-encircling
loop is realized in parameter space when
the light travels through the cavity once
(half a cavity roundtrip), as shown in Fig. 2,
A and B. The propagation direction of the
wave through the cavity then determines
the directionality of the EP encircling. During
a full cavity roundtrip, the EP is therefore
encircled twice, once in each direction. The
two loops of opposing directions in param-
eter space are chosen in such a way that
non-adiabatic jumps are avoided (orange/
purple line in left/right panel of Fig. 1F). It is
this back and forth in the cavity that allows
a single topological mode to be formed that
is independent of the path taken in param-
eter space.

RESEARCH

Schumer et al., Science 375, 884–888 (2022) 25 February 2022 1 of 5

1Ming Hsieh Department of Electrical and Computer
Engineering, University of Southern California, Los Angeles,
CA 90089, USA. 2Institute for Theoretical Physics, Vienna
University of Technology (TU Wien), A-1040 Vienna, Austria.
3CREOL, The College of Optics and Photonics, University
of Central Florida, Orlando, FL 32816, USA. 4Center of
Excellence for Telecomm Applications, Joint Centers of
Excellence Program, King Abdul Aziz City for Science and
Technology, Riyadh 11442, Saudi Arabia.
*Corresponding author. Email: khajavik@usc.edu

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of Southern C

alifornia on June 23, 2022



When a PT-symmetric pump profile is ap-
plied, in the absence of nonlinearities and
saturation, the transverse mode evolution
in the above active system is governed by a
Schrödinger-type equation i@zY(z) = H(z)Y(z)
withY(z)= [E1(z),E2(z)]

T,where the z-dependent
Hamiltonian is given by

H zð Þ ¼ �d zð Þ � igþ ig k zð Þ
k zð Þ d zð Þ � ig

� �
ð1Þ

where d(z) is the detuning, k(z) is the cou-
pling, g is the linear absorption loss, and g
is the gain provided through pumping. The
instantaneous eigenvalues and eigenvec-
tors of the Hamiltonian can be expressed as
l±(z) = i(g/2 – g) ± k(z)cos[q(z)] and F±(z) =

{2cos[q(z)]}–1/2 (e±iq(z)/2, ±e∓iq(z)/2)T, respective-

ly, where q zð Þ ¼ arcsin g=2þid zð Þ
k zð Þ

h i
∈ ℂ. The PT-

symmetry line is situated along d = 0, with
the EP located at kEP = g/2 separating the
PT-broken (g/2 > k) from the PT-symmetric
(g/2 < k) phase. The start/end point of the EP-
encircling section is at d = 0 and k » g/2, and is

chosen such that q(0) = q0 ≈ g/2k « 1. Conse-
quently, the eigenvector components are ap-
proximately equal inmagnitude, which implies
that the two supermodes emit with equal inten-
sity in both waveguides at either facet. At z = 0,
the relative phaseϕ between thewaveguide am-
plitudes of the supermodes is approximately
ϕ–(0) ≈ –p (p-out-of-phase) and ϕ+(0) ≈ 0
(in-phase) forF– andF+, respectively. This is
exactly reversed at the end of the encircling
section (z = L), i.e., ϕ–(L) ≈ 0 and ϕ+(L) ≈ –p,
such that the adiabatic following along the
topological mode F–(z) continuously morphs
the transverse mode profile from being p-out-
of-phase at one end to being in-phase at
the opposite end of the cavity [for details,
see the materials and methods (30), sec-
tions 5 and 6].
To intuitively understand the topological

nature of this process, one may consider a
random superposition of the transverse eigen-
vectors that are excited at one end of the en-
circling section of the device after establishing
the desired PT-symmetric pump profile. Irre-
spective of the initial excitation, by the end
of a roundtrip in the cavity, the state vector
has undergone (at most) a single non-adiabatic

transition toward the eigenvector subject to
gain (purple/orange line in left/right panel
of Fig. 1F) and is then caught in the adia-
batic (fully topological) cycle, traveling back
and forth between the facets. In fact, addi-
tional non-adiabatic transitions are forbid-
den because F– is the amplified supermode
throughout the entire length of the cavity.
This transient behavior is simulated using
the following nonlinear coupled stochastic
differential equations, when excited through
white noise ~h1j j» ~h2j j

dE1 ~zð Þ
d~z

¼ ~g1E1 ~zð Þ
1þ E1 ~zð Þ=Esj j2 � ~gE1 ~zð Þ þ

i~d ~zð ÞE1 ~zð Þ � i~k ~zð ÞE2 ~zð Þ þ ~h1 ~zð Þ
(2a)

dE2 ~zð Þ
d~z

¼ �~gE2 ~zð Þ � i~d ~zð ÞE2 ~zð Þ �

i~k ~zð ÞE1 ~zð Þ þ ~h2 ~zð Þ (2b)

whereE1 ~zð ÞandE2 ~zð Þare the field amplitude
in the waveguide subject to gain and loss,
respectively, and Es is the saturation field.
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Fig. 1. Encircling a Hermitian or a non-Hermitian degeneracy. Occurrence of the
interchange of the instantaneous eigenvectors when cycling around a degeneracy
along a closed loop C is independent of its shape and only depends on the
type of the enclosed degeneracy. (A and B) Energy surfaces of a Hermitian (top) and
of a non-Hermitian degeneracy (bottom). The colors in (B), (D), and (F) are
connected to the imaginary part of the eigenvalues indicating the gain [ℑ lð Þ > 0;
red] and loss [ℑ lð Þ < 0; blue] behavior of the respective eigenvectors. (C to
F) Topological equivalent of winding around a degeneracy. A cycle around a
Hermitian degeneracy is represented by an untwisted closed sheet, and a loop
enclosing a non-Hermitian degeneracy corresponds to a Möbius strip. The

eigenvector population p zð Þ ¼ cþ zð Þj j2 � c� zð Þj j2
� �

= cþ zð Þj j2 þ c� zð Þj j2
� �

;

where Y zð Þ ¼ cþ zð ÞFþ zð Þ þ c� zð ÞF� zð Þ, is displayed on the vertical axis, such
that the two instantaneous eigenstates F±(z) lie on the edges of the sheets. (C)
Quasistatically winding around a Hermitian degeneracy along C returns each
eigenvector to itself. (E) Adiabatic cycling a Hermitian degeneracy starting from an
eigenstate, e.g., Y(0) = F– (0) (orange arrow), yields the same eigenvector after
traversing C, i.e., Y(L) ≈ F– (0). (D) Quasistatic evolution around an EP corresponds
to the topology of a Möbius strip as the eigenvectors interchange [F±(0) º F∓(L)].
(F) Upon dynamic EP encircling in the CW direction, any initial excitation [orange
sphere: Y(0) = F–(0); purple sphere: Y(0) = F+(0)] is transferred toward F–, such
that after one cycle the state vector yields Y(L) ≈ F–(L) º F+(0) (left panel).
When looping in CCW direction, every initial state is again drawn to F–, but the state
vector then gives Y(L) ≈ F–(0) (right panel), leading to a chiral state transfer.
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All of the parameters are normalized with
respect to the maximum coupling k0 = k(0) =
k(L), i.e., ~g ¼ g=k0 , ~d ¼ d=k0 , ~g1 ¼ g1=k0 ,
~k ¼ k=k0 , and ~z ¼ k0z . After each passage
through the cavity, the field amplitudes are

reflected by the facets and travel through the
system in the opposite direction. The back-
and-forth propagation of 100 individual so-
lutions to Equations 2a and 2b for a total of
six cycles is shown in Fig. 3, A and B. We

observed that any initial excitationwas trans-
ferred toward the instantaneous eigenstate
F– within one cycle, and the ensuing prop-
agation follows this eigenvector adiabati-
cally as the EP is repeatedly encircled in
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Fig. 2. Operation principle and laser structure.
(A) Parameter path encircling the EP in the plane
spanned by the normalized coupling ~k and
detuning ~d. (B) Illustration of the EP-encircling
laser (not to scale). In addition to the losses
caused by absorption in both waveguides, the red
waveguide experiences gain by optically pumping
the encircling section of the cavity. The separation
between the detuners and their respective main
waveguides introduces detuning d(z), whereas
the separation between the two main waveguides
generates coupling k(z). The grating reflector
on the left end of each main waveguide acts
as a wavelength filter. The steady-state topological
mode is characterized by the simultaneous
emission of the in-phase (right end) and
p-out-of-phase (left end) mode, each from
one facet. (C) SEM images (small panels)
of the laser structure demonstrating the
variation of the separations between detuners
as well as the main waveguides.

Fig. 3. Numerically simulated
transient and steady-state
behavior of the encircling
part of the cavity. (A and
B) Numerical simulations of the
transient field evolution for
six passes in alternating
directions through the cavity in
the presence of gain saturation.
In total, 100 individual solutions
of Equations 2a and 2b based
on purely stochastic excitations
are shown as thin green
(A) and red (B) lines. The thick
gray lines show the instanta-
neous eigenstate F–(z)
without noise. (A) The relative
phase between the two
waveguides evolves continu-
ously from –p to 0 and back
within one round trip. (B) After
an initial population transfer
toward F–, the normalized
eigenvector population p shows
that the ensuing adiabatic
following of said eigenstate leads to the emission of different supermodes from
each facet. (C and D) Evolution of the relative phase between the two cavities and
the normalized intensity difference, respectively, of the left-to-right (purple) and
right-to-left (cyan) traveling waves according to a Rigrod-type self-consistent

simulation using Equations 3a and 3b. Emissions of different supermodes from
each facet are shown. The two spatial supermodes are characterized by equal
intensity in both waveguides at the output ports and a phase difference that
evolves from –p to 0 and back.
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opposite direction. The relative phase be-
tween the waveguide amplitudes changes
continuously from –p to 0 and back during a
full roundtrip.
Finally, to obtain a self-consistent steady

state lasing solution, a Rigrod-type model
was used that considers the waves in both
cavities traveling left to right and right to
left simultaneously (31)

dET
1 ~zð Þ
d~z

¼ T
~g1E

T
1 ~zð Þ

1þ Eþ
1 ~zð Þ=Esj j2 þ E�

1 ~zð Þ=Esj j2
� ��

2
4

~gET
1 ~zð Þ þ i~d ~zð ÞET

1 ~zð Þ � i~k ~zð ÞET
2 ~zð Þ

#
(3a)

dET
2 ~zð Þ
d~z

¼ T½�~gET
2 ~zð Þ � i~d ~zð ÞET

2 ~zð Þ �
i~k ~zð ÞET

1 ~zð Þ� (3b)

Here, the subscripts 1 and 2 refer to the first
and second waveguide, respectively, and the
superscripts correspond to the wave propagat-
ing from left to right (+) and right to left (–).
The lasingmodes have to replicate after each
roundtrip within the resonator and obey the
boundary conditions Eþ

i 0ð Þ ¼ RLE�
i 0ð Þ and

E�
i k0Lð Þ ¼ RRE

þ
i k0Lð Þ, where RL and RR are

the reflectances at the left and right facet,
respectively. After the transient behavior has

settled in the instantaneous eigenvector F–,
the dynamical encircling process is character-
ized solely by the topological adiabatic energy
transfer between the two mode profiles at the
output ports. The ratios of the field intensities
in the two waveguides are equal at each facet
(Fig. 3D), whereas the relative phase of the
state vector changes fromϕ ≈ –p at z = 0 to
ϕ ≈ 0 at z = L (Fig. 3C), corroborating that the
system is lasing in the topological mode F–

[also see the materials and methods (30),
section 9].
The laser structures are fabricated on an

InP substrate wafer containing a 300-nm
InGaAsP multiple quantum well active region
that is covered with 500 nm of an epitaxially
grown InP layer. The fabrication procedure
for realizing the devices is described in the
materials and methods (30), section 2. The
structure comprises a 2-mm-long encircling
path, after which the two loaded-strip wave-
guides are separated further to prevent addi-
tional coupling. In the main part, the width
of each waveguide is 900 nm, and the sepa-
ration between the two waveguides varies
between 600 and 1500 nm. The width of the
detuning strips is 400 nm, and their distance
to the waveguides changes between 300
and 900 nm. The electromagnetic simula-

tions of the modes, coupling strengths, and
detunings can be found in the materials and
methods (30), section 1. Because of the short
free spectral range of the cavities, 2-mm-long
grating mirrors based on sidewall modula-
tion are incorporated at one end of the two
waveguides to limit the number of longi-
tudinal modes (Fig. 2, B and C). The gratings
are identical (ridge widths: 1200 nm; pe-
riod: 246 nm; duty cycle: 50%) and designed
to promote spectrally narrow emission at
~1596 nm [see the materials and methods
(30), section 3].
The fabricated laser structure is pumped

with a 1064-nmpulsed beam, focused by a high-
magnification near-infrared (NIR) objective
and cylindrical lenses positioned before the
sample. This produces a pump beam with a
width of 8 mm and a length of 2 mm. By ad-
justing the position of the beam with respect
to the pattern, one waveguide can be pumped
with almost constant intensity over the entire
length of the device, whereas the other is left
with little to no pump energy. A PT-symmetric
configuration is thus established, exhibit-
ing an EP at the gain contrast value g1/2 = k.
The level of gain contrast can be selected by
changing the position of the pump beam.
The in-plane emission from the edge facet of
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Fig. 4. Near- and far-field intensity profiles, light-light curves, and spectra.
(A to C) Experimental and simulation results, respectively, of the CW
encircling scheme resulting in the in-phase supermode with a single bright
central lobe. (D to F) Encircling the EP in the CCW direction results in the
emission of the p-out-of-phase supermode, which has a central dark spot
between two bright lobes. (A) and (D) show the respective near-field intensity
profiles. Experimental far-field intensity distributions in (B) and (E) are colorized
for a clearer visual characterization. (C) and (F) show the simulated far-field
intensity pattern. (G) Normalized Light-light curves of the CW and CCW
encirclement state showing a characteristic lasing threshold. (H) Spectra of
the CW and CCW encirclement setting.
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the laser is collected and imaged on a NIR
camera and a spectrometer for further anal-
ysis. By changing the location of the wave-
guide facets with respect to the objective lens,
one can maneuver between observing the
near- and far-field intensity patterns in the
camera. The details of the measurement sta-
tion are described in the materials and meth-
ods (30), section 4.
To factor out the effect of the dissimilarities

between the two ends of the structure, we al-
ternately pump either the first or the second
waveguide and collect the emission from the
same facet. Changing the pump profile switches
the order of clockwise (CW) and counter-
clockwise (CCW) encirclements in a roundtrip,
thus enabling us to observe the cavity output
from the two ends without requiring us to
switch the probed facet. After the encircling
section, the two waveguides are gradually sep-
arated to a distance of 5 mm at the emitting
end, thus allowing the observation of both
near-field and far-field through our configu-
ration. Here, when the upper waveguide is
pumped, the left-to-right propagating wave
corresponds to dynamically encircling the EP
in CW direction, leading to an in-phase emis-
sion profile at the designated facet, followed
by a CCWwinding that promotes the p-out-of-
phase-mode on the other facet. This difference
is particularly evident in the far-field intensity
distribution, which shows a bright lobe in the
center of the interference pattern for the in-
phase mode (Fig. 4, A to C) when the first
waveguide is pumped. By shifting the position
of the pump light to the secondwaveguide, the
EP-encircling direction is reversed, resulting
in a situation equivalent to viewing the op-
posite facet. In this case, the p-out-of-phase
supermode leads to a far-field pattern with
a node at the center and two bright lobes
around it (Fig. 4, D to F). In both cases, the
near-field intensity patterns are similar (Fig. 4,
A and D), with the two waveguides emitting
with nearly equal intensity (the slight differ-
ence is caused by the unequally pumped sep-

arated regions). Together with the far-field
profile, this confirms that the observed pat-
terns belong to the desired in-phase and p-out-
of-phase emission profiles of the corresponding
topological mode [also see the materials and
methods (30), section 10]. Finally, to verify
that the structure is indeed lasing, the light-
light curves are collected for both pump sce-
narios (Fig. 4G). The lasing spectra for both
outputs are shown in Fig. 4H, with their peak
wavelength occurring near 1596 nm. Unlike
standard coupled waveguide lasers, which
tend to show frequency splitting, here, the
conversion from one state to the other along
the cavity results in the same phase accu-
mulation and resonance wavelength for both
output states.
Our device presents a demonstration of

lasing through topological mode transfer.
These lasing structures exhibit emission pro-
files that are robust to various parameter var-
iations that tend to cause instabilities and
temporal fluctuations in standard lasers. Ex-
tending this concept to larger arrays can result
in laser systems with fast switching between
various spatial supermodes by appropriately
modulating the pump profile. Our work also
provides a route to the study of topological
effects in non-Hermitian systems by linking
the elimination of non-adiabatic jumps to
the formation of spatially evolving topological
modes in laser cavities.
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Topological modes in a laser cavity through exceptional state transfer
A. SchumerY. G. N. LiuJ. LeshinL. DingY. AlahmadiA. U. HassanH. NasariS. RotterD. N. ChristodoulidesP. LiKamWaM.
Khajavikhan

Science, 375 (6583), • DOI: 10.1126/science.abl6571

An exceptional laser cavity
Laser cavities are typically simple structures in the sense that the pump light oscillates between the cavity walls
symmetrically, ideally with a single resonant output mode. More complex cavity designs exploiting materials exhibiting
gain and loss can be realized that result in an exceptional point at which the output mode can effectively be tuned.
Schumer et al. designed a cavity in which the pump light encircles the exceptional point as it propagates back and
forth within the cavity. The result is a laser capable of simultaneously emitting in two different, but topologically linked,
transverse profiles, each from a different facet of the cavity. The approach provides flexibility in designing topologically
robust laser cavities. —ISO
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