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Abstract: We demonstrate how the presence of gain-loss contrast between two coupled identical
resonators can be used as a new degree of freedom to enhance the modulation frequency response
of laser diodes. An electrically pumped microring laser system with a bending radius of 50 µm is
fabricated on an InAlGaAs/InP MQW p-i-n structure. The room temperature continuous wave
(CW) laser threshold current of the device is 27 mA. By adjusting the ratio between the injection
current levels in the two coupled microrings, our experimental results clearly show a bandwidth
improvement by up to 1.63 times the fundamental resonant frequency of the individual device.
This matches well with our rate equation simulation model.

© 2022 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Directly modulated semiconductor laser diodes have several attractive features such as low cost
and potential for high-density integration [1,2]. However, the intrinsic modulation bandwidth
of a laser diode tends to be capped by its relaxation resonance frequency, leading to limited
applications in optical communication systems [3]. Over the years, a number of technologies
have been developed for realizing high-speed directly modulated semiconductor laser diodes.
These include but are not limit to, nanolasers with strong Purcell effect [4–7], narrow linewidth
quantum dot lasers [8], optical injection locking [9,10], and photon-photon resonance in coupled
vertical-cavity surface-emitting lasers (VCSELs) and edge emitting lasers [11–14].

Microring resonators are one of the most attractive cavity structures in photonic integrated
circuits. Due to the absence of reflective facets, ring resonators can enable lasers with high
quality factors, that are compact for on-chip device integration. Several efforts have also been
devoted to improving the performance of semiconductor ring lasers in practical applications,
such as lowering their threshold [15], unidirectional emission [16], and compatibility with
silicon [17]. In recent years, non-Hermiticity has been widely used in photonic settings in
order to delicately mold light-matter interactions, realize sensitivity enhancements [18–21],
enforce unidirectional invisibility [22,23], and enable topological lasers [24,25]. One widely
used approach for establishing non-Hermiticity is to use two coupled cavities one subject to gain
and the other to loss (or a less amount of gain). For example, a laser consisting of a coupled ring
resonator systems with differential gain have been demonstrated to enhance the mode suppression
ratio and promote single mode lasing [26–28]. In this work, we investigate the use of gain and
loss in a dual ring laser system as a new mechanism to modify the maximum modulation speed
of the laser diode.

In this paper, we explore the interplay between unevenness of pumping and modulation
bandwidth in the coupled microring configuration. The paper is structured as follows: In Section
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2, we study the modulation characteristics of this coupled laser system using the rate equation
model. In Section 3, we provide the electromagnetic mode simulations for a laser designed
on a InAlGaAs/InP multiple quantum well (MQW) epitaxial wafer. In Section 4, we describe
the steps involved in the fabrication of the electrically pumped microring lasers. In Section 5,
we characterize the laser and measure the frequency responses under different pumping ratios.
Finally, Section 6 concludes the paper.

2. Rate equation model for the coupled ring laser system

Figure 1(a) shows a schematic of the coupled ring laser system. It consists of two identical
microring cavities that are evanescently coupled to each other due to proximity. Photon resonance
can be supported in this coupled cavity system by applying a sufficient amount of pump.
Consequently, the laser emission is extracted through a coupled bus waveguide positioned in the
side of one of the rings. Each cavity has its own electrodes that allows a diverse set of pumping
schemes. Considering only the fundamental mode TE10 is supported, the electric field of TE10 in
each cavity E1, E2 can be described using the following coupled mode equations in the temporal
domain:

Ė1 = (G − γ)(1 − jα)E1 + jκE2, (1a)
Ė2 = −(F + γ)(1 − jα)E2 + jκE1, (1b)

where γ signifies the linear loss of a passive resonator mainly due to scattering, bending and
output coupling losses, G and F stand for carrier induced gain and loss in the respective rings.
One thing to be noticed, F can be the loss or a lower level of gain depending on the carrier density.
α represents the linewidth enhancement factor, and κ is the temporal coupling coefficient [26].

Fig. 1. (a) The schematic diagram of an electrically pumped coupled microring laser system;
(b) simulated frequency response of coupled microring lasers with ρ = 0.27.

Equation (1) depicts the dynamics of photons in two rings. Considering an electrical pumping
scheme, the laser rate equations of this coupled structure can be described by:

Ṅ1 = ηII1/(qV) − N1/τN −
∑︂

vggmS1,m, (2a)

̇S1,m = ΓvggmS1,m − S1,m/τp − 2κsinϕm
√︁

S1S2, (2b)
ϕ̇m = αΓvg(gm + fm)/2 + κcosϕm(1/ρ − ρ), (2c)

̇S2,m = −ΓvgfmS2,m − S2,m/τp + 2κsinϕm
√︁

S1,mS2,m, (2d)

Ṅ2 = ηII2/(qV) − N2/τN +
∑︂

vgfmS2,m. (2e)
where Ii is the injected current of ring i (i = 1, 2), q is the elementary charge, V is the volume of
the active region, ηI stands for the current injection efficiency, and and Ni are the carrier density
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and photon density of the mth mode in ring i. In these equations, mutually coupled modes are
placed in the same order. The cavities are designed to support single transverse mode TE10.
Therefore, a pair of counter-propagating modes in adjacent rings share the same m. In these
equations, ρ and ϕ stand for the ratio of modal field amplitudes and phase difference, respectively,
τN is the carrier lifetime, g and f represent gain and loss related to the temporal counterpart G
and F via 2G = Γvgg and 2F = Γvgf , respectively, τp is the photon lifetime, vg is the group
velocity, and Γ is the confinement factor. In the following discussion, τp, vg and Γ are assumed
to be the same for the two rings due to their identitical structures.

At steady state, phase difference and modal field ratio can be determined by gain-loss contrast
δ = G + F via ϕ = π + arctan[α−1(ρ2 − 1)/(ρ2 + 1)] and δ = κ(ρ + 1/ρ).The modulation
frequency response of the mth order mode outcoupling from the gain cavity (ring 1), i.e.
|H1,m | = |∆S1,m/∆I1 |, can be obtained by applying small sinusoidal signal to its steady state
solution:

(jωI − J)∆X = ηI(qV)−1∆Y (3)

where X = (N1, S1, ϕ, S2, N2), and Y = (I1, 0, 0, 0, 0) can be expressed as X = X0 + ∆Xejωt,
Y = Y0 + ∆Yejωt under the modulation. Here, J is the Jacobian of Eq. (2). From Eq. (2) and
Eq. (3), |H1,m | not only depends on S1,m and τp, but is also subject to δ.

To verify how the gain-loss contrast can modify the features of H(jω), we numerically simulate
the modulation response by employing the rate equation model to a InAlGaAs MQW laser, with
the parameters given in Table 1. Figure 1(b) contrasts the modulation response of a single ring
laser to that of a coupled configuration with κ = 5 GHz and ρ = 0.27. The single cavity laser
exhibits a bandwidth of 2.3 GHz at an excess pumping of I − Ith = 8 mA. By increasing the
interaction between the two cavities (ρ = 0.27), the modulation bandwidth boosts to 3.7 GHz. This
response can be attributed to the shortening of effective photon lifetime 1/τ′p = 1/τp + 2κρsinϕ.
A comperehansive analysis of this behavior can be found in our previous work [29].

Table 1. Parameters of InAlGaAs MQW microring laser

Symbol Unit Value

V cm3 4.14 × 10−1

Γ 1 0.01

ηI 1 0.4

τp ps 26

Ith mA 25

α cm2 1.16 × 10−15

λ nm 1550

νg cm/s 9.4 × 109

3. Design and mode analysis

In this study, we implemted our lasers on an InAlGaAs MQW gain medium. These quantum
well structures tend to have a more favorable thermal performanc due to their larger conduction
band offset (∆Ec = 0.72∆Eg) [30]. The structure of InAlGaAs MQW epitaxial wafer is shown
in Table 2. The epitaxial layers were grown on a n-doped InP substrate using metal organic
chemical vapor deposition (MOCVD). The intrinsic layers consist of five-period of MQW with
λPL = 1508 nm, sandwiched between two 100 nm thick separate confinement heterostructure
(SCH) layers. The p-type layers consist of a heavily doped InGaAs cap for metallization, followed
by a 1.615 µm Zn-doped InP cladding and a 100 nm InAlAs etch-stop layer. The lower n-doped
layers are comprised of a 140 nm thick InAlAs, a 500 nm thick InP buffer layer, and the substrate.
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Table 2. InAlGaAs MQW wafer structure

P-InGaAs Layer 150 nm

P-1.5Q Layer 25 nm

P-1.3Q Layer 25 nm

P-InP 1500 nm

P-(1.1Q∼1.15Q) Layer 15 nm

P-InP 50 nm

U-In0.52Al0.48As 50 nm

U-GRIN-In0.53AlxGa0.47−xAs 100 nm

QW/Barrier (λPL) 5-6/9 (1508) nm

U-GRIN-In0.53AlxGa0.47−xAs 100 nm

N-In0.52Al0.48As Layer 140 nm

N-InP Buffer Layer 500 nm

InP Substrate

In designing a microring cavity with a low bending loss and a single transverse mode, the
finite element method (FEM) simulation module FemSIM of a commercial photonic simulation
software Rsoft is used. The cross-section of the fundamental mode profile |Et | is shown in
Fig. 2(b), exhibiting a shift towards the outer sidewall due to bending. The waveguide is 1.65
µm wide with a bending radius of 50 µm. It is deeply etched through quantum wells for a high
quality factor Q that is determined by Q = nr/2ni = 2.8 × 105, where nr and ni are the real and
imaginary parts of mode’s effective index, respectively.

Fig. 2. (a) The top view layout of designed microring lasers; (b) the cross-section mode
profile of microring cavity.

In our design, the coupling between the two ring resonators is achieved based on directional
coupling, which comprises two straight waveguides with a gap of g. Coupling in the bending
region can be ignore due to the strong confinement and rapid deviation of two modes. The
temporal coupling coefficient is related to that in the spatial domain through κ = vgκ

′lc/(2πR),
where lc represents the coupling length. The mode profiles of the odd and even supermodes in
the cross-section are shown in Fig. 3. The spatial coupling coefficient determined by the effective
index of two supermodes, is 2.7×103 m−1. The temporal coupling coefficient is 4.9 GHz if lc
is chosen as 6 µm. In practice, the imprefcetions in fabrication such as sidewall roughness or
etching ripples tend to increase the coupling [28].

Light is extracted from straight bus waveguides which are pumped as semiconductor optical
amplifiers (SOA) to boost the output signal, as shown in the Fig. 2(a). Due to the spiral symmetry
of the ring cavity, two counter-propagating modes’ encounters are same. Therefore, one can
collect mutually coupled modes from either side of the chip.
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Fig. 3. Cross-section mode profiles of even (a) and odd (b) modes of a directional coupler.

4. Fabrication procedures

Figure 4 shows the processing steps involved in the fabrication of the electrically pumped
microring lasers. A cleaned sample was first immersed into a 3:1 mixture of HCl:H3PO4
to remove the 150 nm thick InP protective layer. E-beam lithography is then followed by an
inductively coupled plasma – reactive ion etching ptocess (ICP-RIE) with CH4/H2/Cl2 (3/7/8
SCCM) in order to transfer the device layout to the epi-wafer. Since an extended dry etching
process needed to etch through the MQW region, it will inevitably increase the surface defect
density on the walls of the gain medium leading to a high threshold current as a result of strong
non-radiative recombination. Consequently, a passivation treatment of the etched wall is required
[31]. This is accomplished by first immersing the sample into a solution of H3PO4/H2O2/H2O
(1/1/38) for 6 s, followed by soaking in a solution of 20% (NH4)2S that is further diluted in H2O
in the ratio of 1:10 for 5 minutes to remove the surface defects and form protective monolayers.
Then the sample was immediately dried with N2 gas without any rinsing, and coated with a
100 nm thick layer of SiO2. Next, the top n-contact was first created by depositing Ni/Ge/Au
(7/20/200 nm). After benzocyclobutene (BCB) planarization, the p-type metal contact metals
Ti/Zn/Au (7/4/500 nm) were evaporated on the sample, followed by a rapid thermal annealing
(RTA) at 400◦C for 1 min.

Fig. 4. Fabrication processes involved in realizing the electrically pumped microring lasers.
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5. Laser characterization and modulation response

The schematic of the test setup for measuring the frequency response is shown in Fig. 5. The
probed laser placed on a heat sink is assembled in a micro-positioner. By cleaving the sample,
light emission is collected from the facet by a 20X objective lens. A removable mirror is used to
direct the laser emission to either an infrared camera or a high-speed photodetector (Newport
818-BB-35). For the alignment, the cleaved facet is illuminated by a 1310 nm laser diode. DC
bias current from a laser diode driver (LDX-3500) and RF signal current from Port 1 of the vector
network analyzer (Aglient 8720E) are combined by a bias tee, then injected into the laser through
a picoprobe. Direct current (DC) and radio frequency (RF) signal from the photodetector can be
simultaneously monitored with the voltmeter and the network analyzer, respectively.

Fig. 5. The schematic of modulation response measurement station.

In our measurements, we first apply a DC current to the straight bus waveguide to prevent the
laser output from further attenuation. Since the device is symmetrically cleaved and one mode
couples out from each arm, by leaving the other arm unpumped, optical feedback is prevented.
With increasing injection current on the ring resonator, a laser emission is observed on the
camera, as shown in Fig. 6(a). The evolution of spectrum is displayed in Fig. 7(a), showing a laser
threshold current of around 27mA. When the laser is operated slightly above threshold, multiple
longitudinal modes are observed, while single mode emission is obtained under higher pumping
levels. The L-I and I-V curves of the two-ring system are shown in Fig. 6(b), indicating that the
laser threshold current is consistent with that obtained from the spectral evolution. The electrical
resistance of the probed laser RLD is determined from the I-V curve as RLD=Rtotal − Rload= 5Ω,
displaying a good ohmic contact at the metal-semiconductor boundary. The saturated output
power is limited by confinement factor, heat, etc. In our design, the waveguides are etched below
the MQW region in order to achieve a low bending loss, thus the surrounding dielectric layer
(BCB) has a lower thermal conductivity than InP (0.3 W/mK for BCB [32] and 68 W/mK for InP
[33]), leading to less effective thermal dissipation.

The S21 of picoprobe-laser-detector system is directly measured by the network analyzer then
normalized to the free running response in order to compensate the stopband of the network
analyzer at low frequency. The frequency bandwidth of the picoprobe and the photodetector are
40 GHz and 15 GHz, respectively. As a result, any roll-off below 15 GHz can be attributed to the
ring laser. For verifying the gain-loss contrast can tune the frequency response, ring 1 is biased
beyond the threshold and ring 2 is pumped below the threshold. Therefore, δ is actually adjusted
by the biased current of ring 2 I2 (δ decreases with the increasing I2). The frequency response
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of the ring laser with an injection current of I1=35mA (I2=0mA) is shown in Fig. 7(b), and it
exhibits a 3-dB bandwidth of 2.2 GHz (black curve). With an increase in the injection current of
ring 2 while keeping I1=35mA, the modulation bandwidth broadens to 3 GHz at I2=22 mA (red
curve) and to 3.6 GHz at I2=23 mA (blue curve). The lasing spectrum for I2=23 mA is shown in
Fig. 7(a), exhibiting no obvious change with respect to that of a single ring. Further increasing
I2 will not broaden the bandwidth but drop it down (orange curve). System RF response is
shown in the Fig. 7(b) as a reference. During the measurement, the DC compment of photon
current is monitored in order to make sure that the average photon density of ring 1 remains
constant. Therefore, By tuning the injection current of the lossy ring, a modulation bandwidth
enhancement of 1.63 times was observed without increasing the photon density of ring 1.

Fig. 6. (a) Output beam imaged from the facet of the bus wasveguide; (b) LIV curves of
microring lasers.

Fig. 7. (a) Spectrum evolution; (b) modulation responses with different pumping ratios
between two rings.

6. Conclusion

In conclusion, we have demonstrated gain-loss contrast (differential gain) as a new knob that
can be used to increase the modulation bandwidth of semiconductor microring lasers. An
electrically pumped III-V semiconductor laser system, comprised of two coupled deeply-etched
ring resonators, was fabricated. It achieved a continuous wave lasing operation at room
temperature with a threshold current of 27 mA. By increasing the injection current of the lossy
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ring while keeping the photon density of the gain ring invariant, an enhancement of modulation
bandwidth by up to 1.63 times over that of the single ring has been observed. We believe this
new paradigm could help pave the way for a new generation of directly modulated on-chip light
sources. Future work will focus on improving the design and fabrication process for lowering the
threshold, increasing the output power, and enhancing the modulation speed.
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