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Optical Thouless pumping transport and nonlinear switching in a topological low-dimensional
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We theoretically investigate a Thouless pumping scheme in the one-dimensional topological Su-Schrieffer-
Heeger (SSH) model for single and multiple band-gap systems when implemented in a discrete nematic liquid
crystal arrangement. For an electrically controlled SSH waveguide array, we numerically demonstrate edge-to-
edge light transport at low power levels. On the other hand, at higher powers, the transport is frustrated by
light-induced nonlinear defect states, giving rise to robust all-optical switching.
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Topologically protected transport is among the principal
hallmarks of topological insulators (TIs) [1-6], which are
materials that exhibit an insulating behavior in their bulk,
while allowing electron conduction via midgap topologically
protected edge states on the surface. This protection is nat-
urally manifested in photonic two-dimensional TIs in the
presence of structural imperfections or disorder where the
chiral edge modes are immune to backscattering [7—12], thus
ensuring a one-way light transport. On the other hand, in
one-dimensional topological settings, like that associated with
the Su-Schrieffer-Heeger (SSH) model [13], the edge states
are zero dimensional and therefore exhibit no transport prop-
erties. However, by using topological pumping schemes (in
either space or time) one may be able to artificially increase
the dimensionality of a given topological configuration. For
example, Thouless pumping protocols [14] can provide a
route for edge to edge light transport even in one-dimensional
systems [15,16], which happens to be robust against ran-
dom defects. Within the context of photonics, such Thouless
schemes have been recently demonstrated in one-dimensional
(1D) waveguide arrays [17—19]. Furthermore, the concept of
non-Abelian Thouless pumping in a photonic lattice has also
been lately proposed [20].

The functionality of topological systems can be greatly
enhanced by utilizing nonlinear interactions. Liquid crystals
(LCs), are known for their strong nonlinearities and thus can
be of use in topological photonics [21]. In nematic liquid
crystals (NLCs), the nonlinearity results from molecular re-
orientation and can be externally tuned via electric [22] or
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magnetic fields [23]. These attributes, combined with topolog-
ical configurations can open new vistas for novel low-power
all-optical steering elements that are robust to perturbations
[24,25].

In this work, we theoretically investigate the response of
an optical liquid-crystal-based topological SSH model in the
presence of adiabatic Thouless pumping. In this respect, we
provide a design involving a periodic electrode pattern in
the NLC planar cell in order to emulate the SSH array that
is known to support topologically protected states. In addi-
tion, we introduce a z-dependent electrode design in order
to implement the Thouless pumping scheme. Finally, by us-
ing nonlinearity as another degree of freedom, we break the
chiral symmetry of the system, thus allowing light switching
between topological and trivial defect states.

We start with a brief discussion of the simple 1D non-
trivial SSH polyacetylene model, as schematically shown in
Figs. 1(a) and 1(b). This model is known to describe particle
hopping on a one-dimensional chain, with staggered hopping
amplitudes (74 and tg). This finite chain possesses two species
A and B, spanning in total M sites. Within the tight-binding
formalism, the dynamics in this SSH configuration can be
described by the following Hamiltonian [26]:

M M
A= 30y 0
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where ¢, ¢8+ and ¢, ¢8 denote creation and annihilation op-
erators at site n in the sublattices A and B, respectively, while
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FIG. 1. The schematic of the Su-Schrieffer-Heeger model for
trans-polyacetylene host and its potential implementation in a dis-
crete liquid-crystal platform. (a) Chemical form showing the two-site
unit-cell structure (A and B) with the carbon defect marked with
a dashed circle. The tight-binding model representation of hopping
electrons with strength 7, and 73 is shown at the bottom. (b) The bar
plot on the right represents the wave function v for the edge state
with the inset depicting the full band structure. The planar liquid-
crystal cell with ITO electrodes as a platform for the SSH model
where d represents the cell thickness, w and w, are the electrode
thicknesses, and d,, d, are the distances between electrodes is shown
in panels (c) and (d).

M, and Mp represent on-site energy offsets. This model can
be readily implemented in photonics using a 1D waveguide
lattice with two different nearest neighbor coupling coeffi-
cients k| and k,. From coupled-mode theory, one finds that
the corresponding evolution dynamics in this array is given
by

d
id_zw" + B + k1Yt + koY =0, (2

where v, represents the modal field amplitude and g, is the
propagation constant for waveguide site n. Here, for conve-
nience, we assume that all sites involved are characterized by
the same propagation constant. The same SSH model can be
directly realized by using a nematic liquid crystal platform.
For this case, we consider the NLC cell depicted in Fig. 1(c),
where an AC electric field is imposed externally through the
patterned electrodes in order to induce molecular orientation,
which will, in turn, create a periodic waveguide system. The
cell consists of a thin film of nematic liquid crystal of thick-
ness d placed between two glass plates, which provide planar
anchoring for molecules in the direction of light propagation.
The electrodes in the lower and upper plates are made of
indium tin oxide (ITO). In contrast to previous works where
discrete light propagation in LCs was studied [27,28], here
the upper electrode pattern features a double spacing with two
separation distances d; and d,. Furthermore, these separations
can also vary in the z direction. Consequently, the electric-

field-induced waveguides will follow the same pattern. In our
configuration, all but one electrodes have the same widths w,
as shown in Fig. 1(c). The width of the left edge electrode
chosen such that w; > w, ensures that all local modes of
each waveguide share approximately the same propagation
constant.

The orientation of the molecules in the LC cell is deter-
mined by the externally applied AC field and by the electric
field of the optical beam itself. For an extraordinary polar-
ized optical beam, the molecular orientation angle 6 can be
obtained from the following equation [29]:

sin (260)
2K

MG + <A81f|Ex|2 + %|E|z> =0, (3
where K is the effective elastic constant [30], while Ae¢;f
and A€ stand for the low- and high-frequency dielectric
anisotropy, respectively. On the other hand, E represents the x
component of the electric field associated with extraordinary
polarized beam propagating in the LC cell while E, is the
low-frequency field from the biased electrodes. The E, field
can be determined from the corresponding potential V' after
solving Laplace’s equation in this anisotropic medium:

d 0
E — (Sii—..V> =0, 4
“ aii 01l

where ¢;; denotes diagonal components of the electric permit-
tivity tensor [31]. In the absence of linear absorption effects,
the evolution of the optical beam (propagating predominantly
along the z axis), is described by the following wave equation
[32-34]:
2ik,n(6,) oF +t 8(9)8E +D O°F + (9)82E
ik,n(6,)| — + tan — —— —
0z ox ox2 0y?
+ko[n*(6) — n*(6,)IE = 0, %)

where k, = 27 /A, §(0) is the walk-off angle along the beam
axis, 6y is the initial molecular orientation (in the absence
of light), Dy = cos?6 + y?sin’@ is the diffraction coeffi-
cient across z, and n(0) = (cos’ 6 /n2 + sin? 8/n2)~1/2 is an
effective index of refraction for the x-polarized (i.e., extraor-
dinary) light beam. Here, ny and n, represent ordinary and
extraordinary refractive indexes, respectively and y > = n?/n?.
Assumption of the single elastic constant in Eq. (3) and re-
striction of the director movement to the single plane greatly
simplifies the formal description of the response of the liquid
crystal. We checked that it nevertheless gives results that agree
very well with the full vectorial model involving all elastic
constants (K, Ky, K33) provided K = % [31].

For demonstration purposes, let us now consider two ex-
amples where the SSH model is implemented in a discrete
NLC platform, as depicted in Figs. 2(a) and 2(b). In both
configurations, the LC cell parameters such as the separation
between glass plates d = 2 um, the electrodes’ width w =
2 pum and wy; = 2.35 um, and the interspace d; = 6.8 um
and d, =4 pum are invariant along the propagation direc-
tion. At this point, the nonlinear effects are negligible since
the arrays operate in the low power regime at a wavelength
A =155 um. After applying external voltage, the electric
field from the electrodes reorients the molecules such that the
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FIG. 2. The SSH model in a discrete NLC platform based on thirteen waveguides operating at A = 1.55 um induced through the biasing
with the voltage of (a) 0.94 V and (b) 1.15 V applied to the electrodes. The left panels show the refractive index distribution in the xy plane.
In the middle panel the numerically extracted band structures for two configurations are presented. The right panels in (a) and (b) depict the
optical field distribution of the topological states in the xy plane and the cross sections at x = 0 of the edge modes together with the refractive
index distributions. The parameters used in this design are w =2 um, wy = 2.35 um, d =2 pum, dy = 6.8 um, d, = 4 pm, ng = 1.45,
NLC n, = 1.5158, n, = 1.6814, K = 8.15 pN.
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FIG. 3. The topological Thouless pumping scheme in a discrete NLS platform. (a) The schematic shape of the ITO electrodes are shown for
w = 2 umand wy = 2.35 um. Every second electrode counting from the upper side changes linearly its position along the z direction between
+1.4 um from the central point where the distance between electrodes is equal (d; = d, = 5.4 um). The middle panel shows schematically
the two varying couplings coefficients «; and «, in a coupling paths. The bottom panel depicts the slowly varying refractive index distribution
in z after applying a finite voltage, forming 13 waveguide arrays. For lower biasing voltage (0.94 V) these waveguides are single-moded while
they support two modes for higher bias (1.15 V). (b) The left panel depicts the numerically extracted evolution of the linear spectrum of the
system as a function of distance z (a full cycle of the Thouless pump with the topologically protected state is marked in red). The right panels
show that the input topological edge mode adiabatically switches between states, during linear evolution, before returning to its initial state
at the output when the structure is induced at 0.94 V. (c) The analogical full cycle of the Thouless pump scheme but this time apply for a
topological edge mode consisting of the second-order states (1.15 V).
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extraordinary refractive index locally increases. As a result,
a spatially periodic refractive index distribution is formed
as shown in Figs. 2(a) and 2(b). The discrete optical lattice
consists of 13 waveguides, as shown in Fig. 1(a). The separa-
tion distance between the waveguides directly translates into
two different coupling strengths «; and «,. Here, we consider
two cases. In the first scenario, after applying the external
voltage (0.94 V) to the electrodes each of the waveguides
is single-moded. Such structure supports 13 supermodes and
a topological edge mode whose eigenvalue is located in the
middle of the band gap [see Fig. 2(a)]. In the second case, after
applying the external voltage (1.15 V) each of the waveguides
is double-moded. The corresponding spatial refractive index
distribution is shown in Fig. 2(b). In contrast to the former
case, the system has two separate sub-bands and supports in
total 26 supermodes and two topological edge modes. The first
13 supermodes including a topological edge mode with the
highest eigenvalues are built from the first-order modes of the
single waveguide. The successive 13 supermodes with another
topological edge mode are constructed from the second-order-
type states. Again the eigenvalue of these topological states is
still located in the middle of each sub-band gap [Fig. 2(b)].

As we indicated earlier, the topologically protected modes
of the 1D SSH array exhibit no transport properties. The situa-
tion radically changes under a topological Thouless pumping
protocol. In our discrete platform, the shape and orientation
of the electrodes are periodically altered along the z direction,
as shown in Fig. 3(a). After applying the external voltage,
the LC molecular orientation establishes again a lattice of 13
waveguides [Fig. 3(b)]. However, now the refractive index dis-
tribution is varying in both the z and y direction in order to in-
troduce the required Thouless pumping. In particular, only the
position of every second waveguide slowly and periodically
varies along the z direction. The separation between waveg-
uides varies adiabatically, from d; to d in the first half of the
period and from d5 to d; in the second. In addition, the width
of the two outer electrodes vary with distance z to ensure that
all local modes of each waveguide share approximately the
same propagation constant at a given z. At low optical beam
powers (linear regime) such a waveguide lattice exhibits in z
periodically dependent coupling strengths «;(z) and k,(z) as
shown schematically in the left panel of Fig. 3(a). The Hamil-
tonian operator describing the system is now z-dependent
leading to a z evolution of its spectrum, as shown in the left
panels in Figs. 3(b) and 3(c) for a complete cycle of the Thou-
less pump. It is worth noticing that the Hamiltonian operator
at the input (z = 0) is the same as that depicted in Figs. 2(a)
and 2(b). The corresponding edge modes [Figs. 3(b) and 3(c)]
launched into the system now displays transport properties.
The light is adiabatically switched from the edge state ati = 1
at z = 0 to the edge state that occupies the waveguide number
i =13 at z = L,/2 and subsequently returns to the initial site
i =1 at z = L,. Notice that the transport process does not
depend on whether the lattice operates at the lowest-order
mode [Fig. 3(c)] or a higher-order mode [Fig. 3(d)].

Next, we utilize the topological Thouless pumping scheme
under strong nonlinear conditions. To this end, we use the
same parameters as in Fig. 3(c), but restrict the propagation
to the distance z = L,/2 = 5 mm. In such a configuration, at
low powers (0.1 mW), the topologically protected edge state
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FIG. 4. The field evolution in a two-level all-optical switching
arrangement that utilizes a topological Thouless pumping scheme
with broken chiral symmetry. (a) Evolution of an excited topological
edge mode with optical power of 0.1 mW. (b) Nonlinear propagation
with the same excitation conditions and input power 16 mW. (c) A
threshold all-optical switching based on the ratio between the output
power confined in the first two waveguides (Pj,) to the total input
power (P).

launched at i = 1 displays transport properties, as depicted in
Fig. 4(a). Again at the output, a nontrivial edge state forms,
with the energy irreversibly remaining in the waveguide i =
13. On the other hand, at higher power level (16 mW) and
with the same input conditions, the light breaks the chiral sym-
metry and propagates in a self-induced nonlinear waveguide
(as a discrete soliton). As a result, at the output, we observe
most of the energy confined in the first channel (i = 1). In
this respect, all-optical switching occurs between the nontriv-
ial edge state and its trivial nonlinear defect counterpart. In
such configuration, the two level all-optical switching can be
observed at approximately P = 9 mW of the initial power P
as shown in Fig. 4(c). For P > 9 mW, the system switches to
its upper state with more than 60% of the power confined in
the first two waveguides, while below threshold P < 9 mW,
the system occupies the lowest state.

In conclusion, we investigated a nematic liquid crystal SSH
topological model operating under the action of a Thouless
pumping scheme. In doing so, we judiciously designed elec-
trode structures to observe a topological edge mode consisting
of the superposition of the first- and second-order states of
the single waveguide. By utilizing a Thouless protocol we
observed edge to edge light transport at low power levels. On
the other hand, at higher powers, the transport is frustrated by
light-induced nonlinear defect states, thus giving rise to robust
all-optical switching.
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