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Abstract— This paper addresses the problem of modeling
and estimating state dynamics in coupled battery and thermal
cooling systems. We present a coupled diffusion-advection PDE
model for fluid-cooled battery packs. A novel numerical method
is proposed to simulate this PDE system. The technique is
a monolithic integration of the method of characteristics and
the Crank-Nicolson update scheme. The numerical scheme is
validated with thermal energy conservation and shown to be
conservative. We then leverage this numeric scheme to examine
the optimal sensor placement problem. We formulate and solve
the optimal sensor placement problem by designing the “C
matrix” such that the mean square error of the Kalman filter
state estimate is minimized.

NOMENCLATURE

∆T Time discretization size [s]
∆X Spatial discretization size [m]
σ(t) Cooling fluid velocity [ms ]
D(x, t) Thermal diffusion coefficient [m

2

s ]
ft(x, t) Partial derivative of f w.r.t. t
fx(x, t) Partial derivative of f w.r.t. x
h(x, t, u) Heat generation in the pack [K

◦

s ]
m(t) Process noise
n(t) Sensor noise
Nt Number of temporal discretization points
Nx Number of spatial discretization points
R(x, t) Lumped thermal resistance [ s1 ]
U(t) Inlet temperature of cooling fluid [Kdeg]
u(x, t) Temperature in the battery pack [K◦]
w(x, t) Temperature in the coolant [K◦]
s Characteristic parameter

I. INTRODUCTION

Understanding the temperature of battery cells is key to
understanding their safety and aging behavior. A great deal of
work has been put into understanding the health and safety
of battery cells such as [1] [2] [3] [4] [5]. In studies of
single cells, we often treat temperature as a measured output.
However, in practice, batteries are assembled into packs
which have design constraints on cost and space. This often
makes it infeasible to measure the temperature of every cell
in a battery pack. Instead, packs often have far fewer sensors
than battery cells. With limited temperature information we
still seek to model the temperature distribution throughout
the pack. This allows us to understand how temperature
heterogeneity impacts aging on cells that experience different
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conditions. Understanding heterogeneity in battery packs is
one key motivation for developing thermal models for battery
packs. Additionally, safety in battery packs is a big concern.
Rapid detection of thermal runaway leads to better options
for mitigation and higher levels of safety. Moreover, faster
models that can be implemented online enable detection of
thermal anomalies in battery packs with limited sensing.

A portion of the thermal modeling literature has focused
on modeling battery pack thermal management systems using
computational fluid dynamic models [6] [7]. These models
capture the intricate complexities of fluid flow and heat
transport. The models are also capable of explicitly capturing
the geometry of the cooling system. The main drawback
with computational fluid dynamic (CFD) models is that they
are complex. Lower complexity models present two main
advantages. First, simpler models decrease simulation run-
time, allowing for more iterations in iterative design pro-
cesses. Second, simpler models often allow for more rigorous
control-theoretic analysis. Smyshlyaev et al. presents a 2D
model of a thermal management system that homogenizes the
cell, cooling channel, and pack material temperature states
into coupled partial differential equations (PDE) – a simpler
structure than computational fluid dynamic models [8]. Wolf
et al. [9] considered sensor placement using eigen-mode
decomposition using the model from [8].

A number of other models exist in the literature. Models
like [10] and [11] model heat transfer in battery packs using
two spatial dimensions like in [8]. Shi et al. models bat-
tery thermal management systems with lumped temperatures
representing bulk estimates of thermal mass in regions of
the system [12] . Another model from [13] and [14] models
the temperature dynamics of several battery strings and the
cooling channel by modeling the dynamics of each battery
using a system of ODEs.

Given the state-of-art research described above, the con-
tributions of this paper are: (i) a two-state PDE model of a
battery pack and cooling channel thermal dynamics with one
spatial dimension; (ii) a novel method of numerically solving
the system; (iii) an optimal sensor placement framework
based on the discretized PDE model.

Particularly, our paper builds on the state of the art models
[8], [10], [11], [13] and [14] by presenting a PDE model
for battery pack cooling systems. Our model has distinct
advantages in that: (1) it has one spatial dimension, making
it less computationally complex than CFD models, (2) using
analysis of its PDE we can validate that the numerical
scheme is conservative, which is important physically, (3)
the model discretization is independent of the number of
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cells in the pack.
We discretize our PDE model and impose our numerical

solution scheme yielding a discrete time linear dynamical
system. We demonstrate that this model allows us to solve
complex engineering problems by performing optimal sensor
placement in the context of linear systems. Particularly, we
propose an optimization problem to design the state-to-output
matrix, C, to minimize the mean square state estimation
error. We solve this combinatorially to achieve the global
optimum. This approach is enabled by the low dimension of
our model since combinatorial approaches rapidly grow in
required effort with increasing dimension.

The organization of this paper is as follows. In section
II, we present the model, detailing the states, parameters,
and inputs. In section III, we present a numerical method
for simulating this model. In section IV, we derive and
present an “Energy Based” validation metric for evaluating
the numerical accuracy of the scheme. Finally, in section V,
we pose and solve a sensor placement problem using this
model.

II. PACK COOLING MODEL

Figure 1 provides a schematic overview of the model
presented in this paper. The model has two states: one for
the temperature distribution in the battery pack u(x, t) and
one for the tempearture distribution in the coolant w(x, t).
More complex models represent the cooling fluid as multi-
dimensional (2D or 3D) and governed by the Navier-Stokes
equations. This model reduces the complexity of the Navier-
Stokes equation to the case of one dimensional, constant
velocity flow. Likewise, the model of temperature across the
battery pack is reduced to one dimension. Though some of
the complexity is lost in this reduction, its structure allows
us to solve combinatorial sensor placement problems, as we
will show in Section V.
PDE Model equations
The following are the diffusion and advection equations that
govern the system.

ut(x, t) =D(x, t)uxx(x, t) + h(x, t, u(x, t))

+
1

R(x, t)
(w(x, t)− u(x, t)) (1)

wt(x, t) = −σ(t)wx(x, t) +
1

R(x, t)
(u(x, t)− w(x, t))

(2)

Boundary conditions
Below are the boundary conditions. We use a Dirichlet
boundary condition in the coolant PDE (4), which represents
the temperature of the coolant at the inlet. The boundary
condition in the pack (3) is Neumann, which physically
corresponds to an adiabatic heat transfer process between
the pack and its surrounding environment.

ux(0, t) = ux(1, t) = 0 (3)
w(0, t) = U(t) (4)

Fig. 1: this figure shows a schematic overview of the pack-coolant
model

States
The model is physics-based and has two states: u(x, t)
and w(x, t). State u(x, t) is the temperature distribution
across the pack. State w(x, t) is the temperature distribution
across the cooling fluid. The time-evolution of the spatial
temperature distribution in the battery pack is governed by
the Heat Equation, a second order PDE given by (1). The
time-evolution of the spatial temperature distribution in the
coolant is governed by the 1D advective transport equation,
a first order PDE. These distributions are also coupled by
a linear heat transfer term derived from Newton’s law of
heating (equivalently the Fourier law of heat transfer).
Parameters
The parameters of the model are D(x, t) and R(x, t).
D(x, t) is the thermal diffusion coefficient within the
battery pack. R(x, t) is the thermal resistance between the
battery pack and the cooling fluid. These parameters can be
tuned to simulate more complex battery pack shapes. The
dependence of these parameters on x and t will be omitted
from the notation henceforth for simplicity.
Inputs
The model has 3 inputs: h(x, t, u), U(t), and σ(t). Source
term h(x, t, u) is the internal heat generation in the battery
pack due to charging/discharge. The input h(x, t, u) enters
the system as an exogenous term in the battery pack
PDE (1). Generally, h(x, t, u) can be computed from
a battery model and it would be a function of current
imposed on the battery pack as well as temperature and
other electrochemical states. Boundary input U(t) is the
temperature of the cooling fluid, and enters the system as
a Dirichlet boundary condition at the inlet of the cooling
fluid. In most systems, it makes sense to treat U(t) as
constant as if it were the temperature of the fluid coming
from a reservoir with large thermal mass. Finally, σ(t)
is the transport speed of the cooling fluid. We restrict
ourselves to the case of an incompressible fluid, and
uniform cross-sectional area in the cooling fluid channel so
σ(t) is constant in x. For control problems using this model,
one might pick σ(t) as the chosen control. The dependence
of h(x, t, u) and σ(x, t) on x and t will be omitted from the
notation henceforth for notational simplicity.

III. NUMERICAL METHOD

To approximate solutions to these PDEs we use a nu-
merical approach. The approach we developed combines
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the Crank-Nicolson and method of characteristics numerical
schemes. Crank Nicolson is used to update the Diffusion
Equation while Method of characteristics is used to simulate
advection in the cooling fluid. We update u(x, t) and w(x, t)
in one monolithic step, rather than updating each PDE state
in alternation using the corresponding numerical method.
This ensures the discrete solution satisfies both difference
equations at each time step.

The Crank-Nicolson method is chosen for equation (1)
because this method is unconditionally stable in the linear,
uncoupled case. The method of characteristics is used for
(2) because we found empirically that this method, when
applied to the coupled system, was stable for larger Courant
number (σ∗∆t∆x ) than some other standard methods that ap-
proximate ∂w

∂x using Euler differences (ex. Upwind scheme,
Lax-Wendroff).
Notational note
We use the standard numerical methods notation to denote
the value of the states along the discretization lattice:

uij = u(j∆X, i∆T ) (5)

wij = w(j∆X, i∆T ) (6)

With this notation, i and j index a point on the discretized
lattice. They take on values from discrete sets: i ∈ [0, Nt]∩Z
and j ∈ [0, Nx] ∩ Z where Nt and Nx are the number of
lattice points in the t and x dimensions respectively.
Crank-Nicolson
Equation (1) is discretized according to the Crank-Nicolson
scheme. This scheme approximates the time derivative as
the Euler central difference about (j∆X, (i + 1

2 )∆T ) with
step size 1

2∆T . We approximate the spatial derivatives as
the average between the second order central difference
at (j∆X, i∆T ) and (j∆X, (i + 1)∆T ). The derivative
free terms are also averaged between (j∆X, i∆T ) and
(j∆X, (i+1)∆T ) resulting in the following implicit scheme
in the notation given by (5) and (6).

ui+1
j − uij

∆T
=

D

2∆X2
[((ui+1

j−1 − 2ui+1
j + ui+1

j+1))

+ ((uij−1 − 2uij + uij+1))]

+
1

2
(h(ui+1

j ) + h(uij))

+
1

2R
((wij − uij) + (wi+1

j − ui+1
j )) (7)

Method of Characteristics
The method of characteristics is a general method for solving
partial differential equations, particularly first-order PDEs.
In the case of the linear advection equation, this method is
analogous to taking a Lagrangian reference frame. That is,
we look at the function w(x, t) along lines parametrized as
(x(s), t(s))=(σs, s). We call these parametric lines “char-
acteristic curves.” Under this change of variables, when we
differentiate with respect to s we have that:

d

ds
w(x(s), t(s)) =

∂

∂x
w(x(s), t(s)) ∗ d

ds
x(s)

+
∂

∂t
w(x(s), t(s)) ∗ d

ds
t(s)

Substituting the PDE (2) and evaluating d
ds t(s) = 1 and

d
dsx(s) = σ gives:

d

ds
w(x(s), t(s)) =

∂

∂x
w(x(s), t(s)) ∗ σ

− σ ∂

∂x
w(x(s), t(s))

+
1

R
[u(x(s), t(s))

− w(x(s), t(s)))]

The first two terms cancel to yield an ODE in s:
d

ds
w(x(s), t(s)) =

1

R
[u(x(s), t(s))

− w(x(s), t(s)))]

Finally we can approximate the derivatives along s using
Euler backwards difference for the time derivative. Similar to
the Crank-Nicholson method, we obtain an implicit scheme
by taking the average of the right hand side terms. Setting
∆T = ∆S, this gives us the update along the characteristic:

wi+1
j − w(j∆X − σ∆T, i∆T )

∆T
=

1

2R
[(ui+1

j − wi+1
j )

+ (u(j∆X − σ∆T, i∆T )

− w(j∆X − σ∆T, i∆T ))]
(8)

This scheme works with our discretization ∆X,∆T provided
(j∆X − σ∆T, i∆T ) lies on the lattice of discretization
points. This is the case only when ∆X divides σ∆T .
However, because we do not want to be constrained to
discretizations where ∆X divides σ∆T we approximate the
values at the points (j∆X − σ∆T, i∆T ) via interpolation.
Interpolation
We interpolate the value of our state along the characteristic
using linear interpolation between the two nearest neighbors
of the point j∆X−σ∆T . Assuming that we chose ∆T and
∆X so that they satisfy ∆X ≥ σ∆T the interpolation can
be written as:

w(j∆X − σ∆T, i∆T ) = λwij + (1− λ)wij−1 (9)

where λ =
∆X − σ∆T

∆X

By coupling the method of characteristics update with this
interpolation we derive an implicit update relation between
function values on the discretization lattice.
Boundary Equations
Finally, we have the following equations for the boundary.
In the cooling fluid, w(x, t), we have a Dirichlet boundary
condition which we implement as.

wi0 = U(i∆T ) (10)

To handle the Neumann boundary conditions in the pack we
introduce “ghost nodes.” These are points one spatial step
outside of the domain (i.e. (0 − ∆X, t) and (1 + ∆X, t))
where we allow the function u(x, t) to have value. We then
assert at the left boundary that:

ui−1 = ui1 (11)
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This assures that the central difference at the left boundary,
given by ui

1−u
i
−1

∆X , is zero. We then do the same for the right
boundary to complete the boundary conditions. This ghost
node approach is convenient in that we can use the second
order central difference scheme to approximate diffusion
throughout the entire domain, rather than having to change
the numerical scheme for the points at the edge of the
domain.
Matrix form
Note that for each spatial discretization point (i∆X, t) we
have two state values u(i∆X, t) and w(i∆X, t). With the
addition of the 2 ghost nodes for the battery pack state, we
have a total of 2Nx + 2 discrete states for each time step.
Counting the equations, (7) gives Nx equations. Equations
(8) combined with (9) gives Nx − 1 more. The boundary
conditions (10) and (11) give 1 and 2 more equations
respectively. This gives us a total of 2Nx + 2 unknowns
constrained by 2Nx + 2 equations in total. This can be
compactly written into matrix form:

A+z(i+ ∆T )− 1

2
H(z(i+ ∆T )) = Az(i) +

1

2
H(z(i))

(12)

Here z(i) is a column vector that holds the values of the
states uij and wij for j ∈ [−1, Nx+1]∩Z at our current time
step i. Note z(i) holds the ghost nodes ui−1 and uiNx+1.
The function H(z) applies h(x) from (1) elementwise to the
elements of z corresponding to the battery pack temperature
states u(x, t)ij for j ∈ [0, Nx] ∩ Z and is zero for states
corresponding to the cooling fluid temperature and the “ghost
nodes”. Matrices A+ and A contain the coefficients of the
states from the Crank-Nicolson (7) and method of charac-
teristics (8) updates. The interpolation step (9) is included
in the method of characteristics rows of A. There are also 2
rows in these matrices that correspond to the “ghost node”
equations (11).

The resulting scheme is implicit. Further, all the terms
in the method of characteristics, interpolation, boundary
conditions, and Crank-Nicolson equations are linear in the
states with the exception of term H(x). Since (12) is implicit,
the states at the next time step are solutions to a system of
equations, rather than given in closed form by a formula.

In the nonlinear case, we can use the Newton-Raphson
method to find the points that solve this implicit equation at
each time step. In the linear case, these implicit equations
reduce to a system of linear equations as detailed in
Section V. This means that calculating the next time step
is just a matter of matrix multiplication rather than using
Newton-Raphson.

IV. ENERGY BASED VALIDATION

To validate our numerical scheme and simulations we use
an analysis of the total thermal energy flow to ensure that the
numerical method maintains certain properties of the original

PDE. We begin by defining the energy function:

E(t) =

∫ 1

0

u(x, t)dx

−
∫ t

0

∫ 1

0

1

R(x, τ)
(w(x, τ)− u(x, τ)) + h(x, τ, u)dxdτ

(13)

We label the terms of this equation according to physical
meaning
Heat absorbed from coolant:

−
∫ T

0

∫ 1

0

1

R(x, t)
(w(x, t)− u(x, t))dxdt

Heat in pack: ∫ 1

0

u(x, T )dx

Heat influx:

−
∫ T

0

∫ 1

0

h(x, t, u)dxdt

Theorem 1. Assume the states u(x, t) and w(x, t) obey the
PDEs (1), (2), (3), (4). Then E(t) is constant.

Proof First, we take the derivative of E(t) with respect to
t using Lebnitz integral rule:

d

dt
E(t) =

∫ 1

0

ut(x, t)dx

−
∫ 1

0

1

R(x, t)
(w(x, t)− u(x, t)) + h(x, t, u)dx

We can now combine the integrands and substitute our
governing equation (1) yielding:

d

dt
E(t) =

∫ 1

0

uxx(x, t)dx (14)

Evaluating the right hand side of (14) and applying the
Neumann boundary conditions (3) gives.

d

dt
E(t) = ux(x, t)|x=1

x=0 (15)

= ux(1, t)− ux(0, t)

= 0

Since d
dtE(t) = 0 we have shown that E(t) is constant. Thus

we can validate the simulation by approximating E(T ) via
numerical integration and verifying it is constant.

In Fig. 2 we plot E(t) as well as each term of (13). We
refer to E(t) as the Total System Heat and it is shown to be
constant. This illustrates that the proposed numerical scheme
is conservative, in the sense of conserving thermal energy.
This result improves our confidence that the numerical solu-
tion is consistent with the pde.
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Fig. 2: Energy conservation analysis. Note that the red line repre-
senting the total energy E(t) remains constant, demonstrating that
the proposed numerical scheme is conservative.

V. SENSOR PLACEMENT

A key advantage of the efficient and accurate numerical
scheme above is that it enables design, control, and estima-
tion tasks that involve iterative optimization. In this section,
we leverage the propose numerical scheme to optimally place
temperature sensors in the battery pack system.
Nonlinearity:
For the sensor placement problem we focus on a particular
form of H(u). Particularly one of the form h(t, x, u) =
α(x, t) ∗ u(x) where α(x, t) is a constant with respect to u.
Since this form is linear in u, we can write it as a constant
matrix acting on the state vector i.e. H(z) = Fz. Substituting
this into (12) gives

(A+ − 1

2
F )z(k + 1) = (A+

1

2
F )z(k) (16)

In the case that (A+ − 1
2F ) is invertible, we can write the

implicit update in an explicit form

z(k + 1) =

(
A+ − 1

2
F

)−1(
A+

1

2
F

)
z(k) (17)

This transforms the update equations into a discrete time
linear system. Note we have replaced the time index with k,
for notational consistency with the literature.

Now, consider that we have process and sensor noise
corrupting the state evolution and measurement respectively.
Then our system of equations becomes:

z(k + 1) = Az(k) +m(k) (18)
y(k) = Cz(k) + n(k) (19)

where A = (A+− 0.5F )−1(A+ 0.5F ). m(k) is the process
noise and n(k) is the measurement noise. Both noise terms
are assumed to be Gaussian with zero mean and respective
covariances M and N . Additionally, we are constrained to
choose C with a form where each row contains exactly one

entry equal to one, corresponding to placing a sensor at that
location in the battery pack or cooling fluid.

We are interested in investigating the case where the
internal heat generation overwhelms the heat removal by the
cooling fluid, resulting in thermal runaway [15]. In cases like
this, state monitoring is crucial for mitigation and safety. To
construct this case, we take F to destabilize the system by
choosing F large enough so that the spectral radius of the
system matrix A = (A+ − 0.5F )−1(A + 0.5F ) is greater
than one.

Next we use the discrete-time Kalman filter to estimate
the states of this system:

ẑk|k−1 = Aẑk−1|k−1 (20)

Σk|k−1 = AΣk−1|k−1A
T (21)

ŷk = Cẑk|k−1 (22)

Lk = Σk|k−1C
T [CΣk|k−1C

T +N ]−1 (23)
ẑk|k = ẑk|k−1 + Lk[yk − ŷk] (24)

Σk|k = Σk|k−1 − Lk[CΣk|k−1C
T +N ]LTk (25)

Note that the Kalman filter equations not only propagate the
state estimates x̂k|k but also the covariance Σk|k of the state
estimates according to equations (21),(23),(25).

Define the state estimation error to be: z̃k = zk − ẑk|k.
Then the mean square of the estimation error can be com-
puted from the trace of the covariance matrix Σk|k. Namely:

E[z̃Tk z̃k] = Tr
(
Σk|k

)
(26)

Taking the sum ΣNt

k=1Tr
(
Σk|k

)
gives a measurement of the

transient mean square state estimate error, a quantity we seek
to minimize. To accomplish this, we seek to design measure-
ment matrix C so that this quantity is minimized. This leads
to the following combinatorial optimization problem in the
decision variable C:

min
C

ΣNt

k=1Tr
(
Σk|k

)
(27)

s.to : Σk|k−1 = AΣk−1|k−1A
T +W (28)

Lk = Σk|k−1C
T [CΣk|k−1C

T +N ]−1 (29)

Σk|k = Σk|k−1 − Lk[CΣk|k−1C
T +N ]LTk (30)

Cij ∈ {1, 0} (31)
2Nx+2∑
j=1

Cij = 1; ∀i ∈ {1, 2, ...Nsensors} (32)

The constraints (28), (29), and (30) are the dynamics of the
Kalman filter. The constraints eq.(31) and eq.(32) restrict C
to the specified form.

We solved this problem by enumerating over all possible
C matrices for the case of 3 sensors. A projection of the
resulting objective function is shown in Fig. 3 when fixing
one sensor at the outlet of the cooling channel. As can
be seen, the resulting objective surface is non-convex and
nonlinear. Fig. 4 show the resulting state estimate error when
using optimal sensor placement. The state estimate error z̃
converges to 0 much more quickly when the sensors are
placed using the above optimization.
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Fig. 3: This shows the cumulative mse when we place one sensor
at the outlet of the cooling channel and allow the other two sensors
to vary position throughout the coolant and the battery pack
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Fig. 4: This figure compares the transient behavior of state estimate
for the case with 3 optimally places sensors, 3 randomly placed
sensors, and 0 sensors (open loop observer)

VI. CONCLUSIONS

In this paper, we propose a one-dimensional PDE model
for battery packs with fluid cooling. We provide numerical
methods for simulating this model and an energy based
validation of this model. Finally, we use the model to solve
a sensor placement problem.

Potential extensions of this work involve solving con-
trol problems with this model. Although we validated the
numerical scheme’s consistency with the PDEs, validation
to CFD models could give better insight into this model’s
accuracy. Better yet, experimental validation of the model
would help us further understand the extent of this model’s
consistency with real-world battery cooling systems. Addi-
tionally, model-to-model comparison to CFD or experimental
data would present interesting problems in estimating the

diffusion and resistance parameters of the model.
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