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With the continuing progress in large eddy simulations (LES), and ever increasing
computational resources, it is currently possible to numerically solve the time-dependent
and anisotropic large scales of turbulence in a wide variety of flows. For some applications
this large-scale resolution is satisfactory. However, a wide range of engineering problems
involve flows at very large Reynolds numbers where the subgrid-scale dynamics of a
practical LES are critically important to design and yet are out of reach given the com-
putational demands of solving the Navier Stokes equations; this difficulty is particularly
relevant in wall-bounded turbulence where even the large scales are often below the implied
filter width of modest cost wall modeled LES. In this paper we briefly introduce a scale
enrichment procedure which leverages spatially and spectrally localized Gabor modes.
The method provides a physically consistent description of the small-scale velocity field
without solving the full nonlinear equations. The enrichment procedure is appraised against
its ability to predict small-scale contributions to the pressure field. We find that the method
accurately extrapolates the pressure spectrum and recovers pressure variance of the full
field remarkably well when compared to a computationally expensive, highly resolved
LES. The analysis is conducted both in a priori and a posteriori settings for the case of
homogeneous isotropic turbulence.

DOI: 10.1103/PhysRevFluids.6.124607

I. INTRODUCTION

There are many examples of fluid flows in engineering applications where the Reynolds number
far exceeds the practical limit for numerically resolving all turbulence scales. One such example is
the atmospheric boundary layer through a wind farm. Such simulations are of obvious interest given
the global climate-energy problem and yet current understanding of atmospheric turbulence and its
effect on wind farm performance and wind turbine life-expectancy is not well understood. In high-
Reynolds-number cases such as this it is only practical to resolve scales much larger than the turbine
blade chord length [1] thus limiting our understanding of fluctuating loads on critical components
and preventing the ability to design accordingly. Similar constraints are faced in design analysis and
optimization of aerospace systems, which typically use Reynolds-Averaged Navier Stokes (RANS)-
based computational fluid dynamics (CFD) tools. As outlined in the NASA CFD Vision 2030 Study
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FIG. 1. Instantaneous snapshot of the y component of velocity at an arbitrary x-y plane.

[2], RANS-based turbulence models have limited predictive accuracy when dealing with separated
flows, complex flow interactions, etc., and there has been growing interest in methods which resolve
some range of turbulence scales such as large eddy simulations (LES) and hybrid RANS-LES [3,4].

Ghate and Lele [5] developed a method to enrich turbulence scales below the implied filter width
of LES in such a way that local information of subgrid-scale dynamics are accurately represented
through the use of spatially and spectrally localized Gabor modes. The method relies on a quasi-
homogeneous assumption and represents the subgrid velocity field as a stochastic Fourier-Stieltjes
integral according to Batchelor (1953) [6] in Eq. (1), where the stochastic dZ modes must attenuate
beyond some predetermined length-scale proportional to the size of the quasihomogeneous region.
These spatially localized stochastic modes are referred to as Gabor modes.

The spatial localization is provided by appeal to the Gabor transform [Eq. (2)] which amounts
to a windowed Fourier transform where fε is a smooth, compact support window function whose
width is controlled by the parameter ε,

us(x, x0,"w ) =
∫

k∈R3
eik·xdZ(k, x0,"w )

〈dZi(k)dZj (k′)〉 = δ(k − k′)$i j (k)dk, (1)

ũ(x0, km, t ) =
∫

x∈R3
u(x, t ) fε (x − x0)e−ikm·(x−x0 )dx. (2)

Here, and in all subsequent equations, x is the spatial coordinate in a three-dimensional Cartesian
grid whose components are x, y, and z or equivalently xi for i ∈ {1, 2, 3}; k is the corresponding
wave vector with components ki; $i j is the velocity spectrum tensor and is the Fourier transform of
the two-point correlation Ri j (r) = 〈ui(x)u j (x + r)〉; x0 is the physical location of the Gabor mode;
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FIG. 2. Kinetic energy spectrum for forced HIT simulations.
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FIG. 3. A priori study of the decorrelation of (a) the Gabor induced small scales and (b) the full enriched
field compared to a 2563 benchmark LES. A variety of cutoff wave numbers are considered.

and "w is the spatial extent, or region of influence, of the Gabor mode determined by its window
function.

The physical restrictions on the size of the enriched subdomains (formally referred to as quasi-
homogeneous regions [5]), and thereby the region of the domain influenced by Eq. (1), is bounded
by two requirements: (1) It must be significantly larger than the largest scale to be enriched and (2)
it must not be so large that the quasihomogeneity assumption breaks down. Further details regarding
the reconstruction of the small-scale velocity field can be found in Ghate (2018) [1].

Under this construct Ghate and Lele [5,7] have shown that scale enrichment is capable of predict-
ing a physically accurate small-scale velocity field when compared to higher fidelity simulations. A
summary of the method and key results are included in Sec. II so that the background required for the
present development is concisely available. Section III demonstrates the enrichment method’s ability
to represent the subgrid-scale contribution to the pressure field in the context of incompressible
homogeneous isotropic turbulence (HIT). Two test cases are considered in this section: statistically
steady (i.e., forced) HIT and decaying HIT. Both simulations mimic the Re → ∞ limit by setting
the molecular viscosity to zero. For comparison, results from a finite Re direct numerical simulation
(DNS) are included in the Appendix. We end with some broader comments on the results and its
extension.

II. SUMMARY OF PREVIOUS WORK

Ghate and Lele showed that a discrete approximation of Eq. (1) can accurately represent the
subgrid velocity field given that the size of the quasihomogeneous region is chosen to satisfy the
conditions specified in the previous section [10]. Thus the synthesized small-scale velocity field is
given by

us =
∑

j

fε (x − x j )a jeik j ·(x−x j ), (3)
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FIG. 4. Definition of a quasihomogeneous region for the simulations presented in this paper. The dashed
green lines mark the region of influence of a single Gabor mode located at (0,0) due to its window function fε .

where a j is a complex valued amplitude such that the synthesized velocity field is solenoidal and
yields the correct energy spectrum. This representation is reminiscent of the kinematic simulations
of Fung et al. [8] and is sufficient for predicting second-order statistics of isotropic turbulence. To
capture the effect of large-scale inhomogeneity prevalent in high-Reynolds-number wall-bounded
shear flows we appeal to rapid distortion theory (RDT) where the local large-scale velocity gradient
is used as the mean shear for the Gabor modes. An RDT linearization is not valid in general, how-
ever, due to the fact that turbulence timescales can be much smaller than the mean shear timescale
in the log-law region of wall-bounded flows. As a result we appeal to J. Mann’s eddy lifetime
hypothesis [9] where each mode is evolved according to the RDT equations for a k-dependent
time horizon. Further details of the straining procedure and enrichment of wall-bounded flows are
provided in Ref. [5] and Ref. [1].

Returning to the setting of HIT, the small-scale velocity field reconstruction given by Eq. (3) is
subject to the RDT straining procedure and then superposed with the LES field. A visualization of
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FIG. 5. Pressure spectra comparison (a priori analysis). Note the 5123 curve is for comparison only. The a
priori analysis is in reference to the 2563 simulation. The discrepancy in energy content at low wave numbers
in the 5123 case is a simple matter of choosing a random snapshot in time for comparison.
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TABLE I. Pressure statistics. “F” and “E” denote the filtered field and its enriched counterpart respectively.

Case Var(P) % Error Var(∂P/∂y) % Error

2563 LES (baseline) 0.0012 0 0.0710 0
F, kco = (2/3)8 0.0008 36.85 0.0032 95.55
E, kco = (2/3)8 0.0009 21.41 0.0407 42.66
F, kco = (2/3)16 0.0010 17.26 0.0099 86.10
E, kco = (2/3)16 0.011 7.23 0.0488 31.24
F, kco = (2/3)32 0.0011 5.57 0.0248 65.07
E, kco = (2/3)32 0.0012 2.12 0.0570 19.65

this superposition is provied in Fig. 1 where contours of the y component of velocity are shown for
a 323 LES, Gabor-induced small-scales and the resulting enriched field. The enrichment procedure
accurately captures two-point correlations as seen by the excellent agreement of the energy spectra
in Fig. 2. This spectral extrapolation is possible with traditional kinematic simulations (such as
Fung et al. [8]) where a Fourier representation is used given the triple periodicity of the problem in
question. However, such a reconstruction of the velocity field is unable to capture interscale energy
transfer, which is a fundamentally local (in physical space) process as demonstrated in Ref. [10].
The Gabor enrichment method, on the other hand, accurately predicts not only the mean value of
interscale energy transfer but also its distribution (see Ref. [10] for a detailed discussion).

Accurate temporal statistics are an additional necessary condition for a satisfactory enrichment
method and as such the temporal autocorrelation of velocity is evaluated where the initialized Gabor
modes are simply advected by the large-scale field. This simplistic dynamic model does not capture
the effects of large-scale straining of small scales and the nonlinear relaxation due to small scales
interacting with each other, both of which are accounted for in the full model, Eq. (4) (see Ref. [10]
for derivation). However, by reducing to the sweeping model we demonstrate the power of the
spatially localized Gabor modes to accurately capture second-order temporal statistics as seen in
Fig. 3,

dai

dt
=

(
2kikm

k2
− δim

)
a j

∂Um

∂x j
− [ν + νt (k)]k2ai

dki

dt
= −k j

∂Uj

∂xi

dxi

dt
= Ui. (4)
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FIG. 6. Relative error in pressure statistics as a function of cutoff wave number.
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FIG. 7. Probability density function of pressure. The top figure is plotted on a logarithmic vertical axis
to highlight the tails of the distribution whereas the bottom figure is displayed on a linear plot to show the
comparison near the peak. The solid and dashed black lines mark where the filtered [kco = (2/3)16] and
enriched PDF, respectively, diverge from the benchmark 2563 case.

It is worth noting that space-time correlations are difficult to model. The challenge is described
in detail by He et al. [11]. The authors state that the key difficulty in isotropic turbulence is
the undetermined link between Eulerian and Lagrangian time correlations. In the Eulerian frame
sweeping dominates small-scale decorrelation, while in the Lagrangian frame straining dominates;
when modeling these correlations it is a challenge to reconcile the two frames of reference in order
to generate a physically consistent flow field.

One model that has shown to be robust in a variety of flows is the elliptic approximation (EA)
model described in Ref. [11]. In this model, a convection and sweeping velocity must be specified
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FIG. 8. Probability density function of y derivative of pressure. The solid and dashed black lines correspond
to the same markings as Fig. 7.

in conjunction with a known one-time, two-point correlation function. The model captures both
Taylor’s frozen flow and Kraichnan-Tennekes’s random sweeping models to predict space-time
correlations of the velocity field. However, note that in the present enrichment method no such
parameter specification is required; the physical mechanisms associated with decorrelation are
directly captured, not modeled, due to the spatial and spectral locality of the Gabor modes which
evolve with the large-scale field. A further evaluation of space-time correlations in the context of
the pressure field is included below.

III. THE SMALL- AND LARGE-SCALE PRESSURE FIELDS

Accurate prediction of small-scale energetics, as shown in the previous section, is one necessary
condition for an effective scale enrichment method. A further validation is analyzing the energy
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FIG. 9. Space-time correlation of pressure. The x axis is normalized by energy dissipation rate, ε, and
domain-averaged kinetic energy, q. Note that all correlations plotted here are completely absent in the filtered
field since the cutoff wave number is smaller than 15.

content of the pressure field as a function of scale. In other words, we wish to evaluate the
enrichment method’s ability to extrapolate the pressure spectrum of a LES.

A. A priori analysis

A 2563 LES of forced HIT was run to a statistically stationary state. The simulation imposed
zero molecular viscosity so as to imitate the infinite Reynolds-number limit and relied exclusively
on the subgrid-scale (SGS) model to balance turbulent kinetic energy (TKE) production. We used
the Sigma SGS model of Nicoud et al. [12] with model constant, Cσ = 0.95. The flow is forced in
spectral space where a specified number N of Fourier modes with wave numbers 1 ! |k| ! 2 are
randomly chosen each time step. These modes are then subject to an external force,

f̂i = ε

N
ûi

|û|2
,

added to the right-hand side of the Navier Stokes equations thereby prescribing the overall energy
dissipation rate. This is the same forcing procedure discussed in Ref. [13]. Further details of the
simulation are provided in Ref. [1]. An instantaneous flow field was then filtered with a spectrally
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FIG. 10. Longitudinal and transverse space-time correlation of the pressure gradient (a priori).
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FIG. 11. Pressure decorrelation time as a function of wave number.

sharp filter with a cutoff wave number equal to (2/3)16, thereby giving spectral resolution equivalent
to a 323 LES. The filtered velocity field was then enriched with Gabor modes [512 modes per
quasihomogeneous (QH) region] and compared to the original field. Figure 4 shows the definition
of a QH region for the simulations considered in this paper. Details on the choice of QH region size
and window function support width are given in Ref. [1].

The pressure spectrum defined by Eq. (5) was computed for each case. P corresponds to
fluctuating pressure, P̂ is the Fourier transform of pressure, P̂∗ is the complex conjugate of P̂, and
the subscript k on the averaging operator denotes an average over wave-number shells. The enriched
field is a superposition of the filtered large-scale field and the Gabor-induced subfilter field. After
superposition, pressure is computed by solving the Poisson equation for pressure exactly in spectral
space.

Ep(k) = 〈P̂∗(k)P̂(k)〉k . (5)

Figure 5 shows that the enrichment method extends the bandwidth of scales present by nearly a
decade. The large-scale field is unable to capture the inertial subrange but the pressure field, enriched
with the Gabor modes, extends the bandwidth such that there is an inertial range comparable to
the 2563 LES in bandwidth but actually better predicts the k−7/3 behavior expected in the infinite
Reynolds-number limit (see for example Refs. [6,14–16]). This is demonstrated by including the
spectrum from a 5123 simulation which follows the k−7/3 behavior for a longer range than the 2563

LES is able to capture. A deeper investigation of the asymptotic scaling in the form of premultiplied
spectra are not reported due to the limited scale range for inertial range behavior. While the total
energy content is not exact in the enriched field, as shown by the vertical gap in the spectra,
the difference in total energy is minimal and the predicted behavior of the inertial range is quite
satisfactory.

The ability of the enriched field to predict pressure variance is evaluated as a function of cutoff
wave number as well. Table I quantifies these results showing the enrichment method consistently
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FIG. 12. Decorrelation times of the pressure gradient longitudinal and transverse correlations. Legend
nomenclature is the same as that in Fig. 13.
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FIG. 13. Pressure gradient longitudinal and transverse spectra. The nomenclature in the legend is inter-
preted as follows: “LES256” corresonds to the 2563 baseline LES. “Filtered” is the large-scale component of
the baseline 2563 LES. “Enriched” is the large-scale field enriched with Gabor modes. “L” and “T” correspond
to the longitudinal and transverse spectra, respectively.

improves the prediction of pressure variance as well as pressure gradient variance. Figure 6 plots the
relative error of the enriched field compared to the baseline 2563 LES. Error is defined by Eq. (6),
where Q represents a generic quantity of interest:

%Error = |Qfiltered field − Q2563 LES|
Q2563 LES

× 100. (6)

Variance has the typical definition:

Var(Q) = 〈Q2〉x.

The angle brackets with subscript x indicate a domainwide spatial average.
Figures 7 and 8 are included to show the qualitative agreement in PDF shape for the enriched

field. Both sets of PDFs are displayed on logarithmic and linear axes to highlight the comparison of
the tails and peaks of the distributions, respectively. The pressure PDF is determined predominantly
by the large scales, hence the filtered field PDFs match the benchmark case reasonably well. How-
ever, the enrichment method still improves things quantitatively. This can be seen by considering
the variance of pressure in Table I where the error is reduced by a factor of 1.7, 2.4, and 2.6 for
cutoff wave numbers (2/3)8, (2/3)16, and (2/3)32, respectively. The solid and dashed black lines
on the pressure PDF (Fig. 7) are to mark where the PDFs of the filtered field [kco = (2/3)16] and its
enriched counterpart respectively overlap with the baseline case. By integrating the region between
the two we find that events with 27% probability of occurring are represented accurately in the
enriched field but are under-represented in the filtered field.
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FIG. 14. Pressure spectra (a posteriori analysis)

124607-10



SUBGRID-SCALE PRESSURE FIELD OF …

FIG. 15. Probability density functions for pressure (a posteriori analysis). The top figure is plotted on a
logarithmic vertical axis to highlight the tails of the distribution, whereas the bottom figure is displayed on a
linear plot to show the comparison near the peak.

The comparison to the pressure gradient [17] PDF is particularly striking as the small-scale
contribution dominates the statistics of pressure derivatives. We see significant improvement for all
cutoff wave numbers considered. Lines marking the intersection of the filtered [kco = (2/3)16] and
enriched cases are included as in the pressure PDF. Here we find that events with 44% probability
of occurring are represented accurately in the enriched field as opposed to the filtered field where
they are significantly misrepresented or missing altogether. Figure 6 shows significant improvement
in pressure-derivative variance error for all cutoff wave numbers.

1. Space-time correlations

In addition to reliable extrapolation of the pressure spectrum we must also consider the temporal
behavior of the pressure field in order to validate the method’s ability to produce a physically
consistent representation, one that will have practical importance, and this necessitates investigation
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FIG. 16. Probability density functions for the y derivative of pressure (a posteriori analysis). The solid and
dashed black lines mark where the 323 LES and enriched PDF, respectively, diverge from the benchmark 2563

case.

of the space-time autocorrelation of pressure, RP(r, τ ), defined as:

RP(r, τ ) = 〈P(x, t )P(x + r, t + τ )〉x,t , (7)

where the subscripts x and t signify spatial and temporal averaging respectively (the spatial averag-
ing is over all three coordinate directions unless otherwise specified). RP(r, τ ) can be conveniently
expressed in terms of the time correlations of various scales or wave numbers by taking the spatial
Fourier transform of Eq. (7) and averaging over wave-number shells:

cP(k, τ ) = 〈R̂P(k, τ )〉k

〈R̂P(k, 0)〉k
;

R̂P(k, τ ) =
∫

r∈R3
RP(r, τ )e−ik·rdr.

124607-12
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TABLE II. Pressure statistics. The a priori values are included for comparison.

Case Var(P) Error(%) Var(∂P/∂y) Error(%)

2563 LES (baseline) 0.0012 0 0.0710 0
F, kco = (2/3)8 0.0008 36.85 0.0032 95.55
E, kco = (2/3)8 0.0009 21.41 0.0407 42.66
F, kco = (2/3)16 0.0010 17.26 0.0099 86.10
E, kco = (2/3)16 0.0011 7.23 0.0488 31.24
F, kco = (2/3)32 0.0011 5.57 0.0248 65.07
E, kco = (2/3)32 0.0012 2.12 0.0570 19.65
323 LES 0.0010 12.86 0.0084 88.22
Enriched 323 LES 0.0012 0.13 0.0411 42.04

Here the correlation is expressed in terms of the normalized autocorrelation coefficient which is
plotted in Fig. 9. Additionally, both the longitudinal and transverse space-time correlations of the
pressure gradient are computed; these are denoted as f and g, respectively, and are defined as

f (r, τ ) = 〈∇Pp(x, t )∇Pp(x + r, t + τ )〉x,t

〈(∇Pp)2〉x,t

g(r, τ ) = 〈∇Pn(x, t )∇Pn(x + r, t + τ )〉x,t

〈(∇Pn)2〉x,t
, (8)

where the subscripts p and n denote the pressure gradient components parallel and normal to the
separation vector r. If we denote each direction with the unit vectors p and n respectively, then these
are chosen such that

∇Pp ≡ ∇P · r and p · n = 0.

Clearly, the choice of n is not unique. In practice these correlations were computed as

〈(∇P1)2〉 f (r) = C11(r, 0, 0)

〈(∇P2)2〉g(r) = C22(r, 0, 0),
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FIG. 17. Pressure space-time correlations (a posteriori analysis). Solid lines are computed from an inde-
pendent 2563 LES and the dashed lines correspond to an enriched 323 LES.
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FIG. 18. Longitudinal and transverse space-time correlation of the pressure gradient (a posteriori analysis).

where Ci j (r) ≡ 〈∇Pi(x)∇Pj (x + r)〉. The spatial Fourier transform (in the r direction) of the corre-
lations, defined in Eq. (9), is shown in Fig. 10 for a variety of wave numbers,

f̂ (kr, τ ) =
∫

r∈R
f (r, τ )e−ikr rdr

ĝ(kr, τ ) =
∫

r∈R
g(r, τ )e−ikr rdr.

(9)

The pressure correlations are plotted in Fig. 9 and the pressure gradient in Fig. 10. In computing
these correlations the initialized Gabor modes were evolved according to the simple sweeping model
discussed in Sec. II. In the present case of a priori analysis the large scales are represented exactly
and so are not compared in the figure, but the information regarding autocorrelations of scales
below kco is completely absent and reliant on the enrichment procedure. The plots demonstrate
close agreement with the full field.

To quantify this agreement, the decorrelation time, defined as the time for the correlation function
to reach 20% of its initial value, is computed for each wave number and plotted in Fig. 11 for
pressure and Fig. 12 for pressure gradient. For both pressure and pressure gradient, we see that
the decorrelation time is closely predicted by the enriched field for all wave numbers with slight
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FIG. 19. Pressure decorrelation time as a function of wave number. Decorrelation here is defined as the
time when the correlation coefficient reaches 0.2.
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FIG. 20. Decorrelation times of the pressure gradient longitudinal and transverse correlations. The nomen-
clature in the legend is the same as Fig. 13 with the addition of “LES32” corresponding to the 323 LES.

under-prediction at small kr and overprediction for large kr . The maximum error in decorrelation
time is 2.90%, 4.88%, and 6.67% for pressure, pressure-gradient longitudinal, and pressure-gradient
transverse correlations, respectively.

In order to better assess the spatial correlations we also plot the one-time longitudinal and
transverse spectra for the pressure gradient in Fig. 13. We note that for the transverse spectra the
enriched field underpredicts the magnitude of the energy at almost all scales except where the curves
overlap near the Nyquist wave number of the high resolution LES. Additionally, the longitudinal
spectra agree reasonably well at the low and high ends of the wave-number range but underpredict
the energy of intertial-range scales. That said, the improvement of the enriched field over its filtered
counterpart is significant.

B. A posteriori analysis

In contrast to the preceding study here an independent 323 LES was run to a statistically
stationary state separate from the 2563 benchmark case. A snapshot of the flow field was enriched
with Gabor modes and compared against the 2563 LES simulation. Results from a separate 5123

LES are included with the pressure spectrum plot (Fig. 14) as before to better show the asymptotic
k−7/3 behavior in the inertial subrange. The pressure spectrum for the 2563 LES, 323 enriched LES
(enriched to 2563) and a 5123 LES are plotted in Fig. 14.

We have also included the analysis of pressure and pressure gradient variance. Table II summa-
rizes the results which demonstrates a similar improvement in the variance of both pressure and
pressure gradient as seen previously in the a priori case. For the present a posteriori analysis error
is reduced by a factor of 98.6 and 2.1 for pressure and pressure derivative variance, respectively
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FIG. 21. Pressure gradient longitudinal and transverse spectra. The nomenclature in the legend is the same
as Fig. 13 with the addition of “LES32” corresponding to the 323 LES.
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FIG. 22. Evolution of the energy spectrum in decaying HIT.

[18]. This is a remarkable improvement given there is no knowledge of the baseline large-scale
field. Furthermore, we see improvement in the PDFs of pressure (Fig. 15) and especially pressure
derivative (Fig. 16) where the black lines indicate that events with 43% probability of occurring
are missing or significantly under-represented in the 323 LES but are now captured by the enriched
field.

The space-time correlations are investigated in Figs. 17 and 18 where we see the enrichment
method is able to closely predict subgrid-scale temporal behavior despite the fact the large scales
are not “exact” (i.e., filtered high-resolution LES). We did not include the large scales in this plot
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FIG. 23. Decay of domain-averaged TKE. The top plot shows the kinetic energy for the full field whereas
the bottom figure isolates the contribution from the small scales. ε0 and q0 correspond to the kinetic energy
dissipation rate and kinetic energy of the large scales at τ = 0.
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FIG. 24. Evolution of the pressure spectrum in decaying HIT.
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FIG. 26. Pressure PDFs (linear scale)

FIG. 27. dP/dy PDFs (log scale)
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FIG. 28. dP/dy PDFs (linear scale).

simply because any discrepancy would be the result of the SGS model which has no knowledge
of the enriched scales. The decorrelation times are plotted in Figs. 19 and 20. The maximum error
in decorrelation time relative to the 2563 benchmark LES is 14.29%, 9.09%, and 13.33% for the
pressure, pressure-gradient longitudinal, and pressure-gradient transverse correlations, respectively.

Finally, the pressure gradient longitudinal and transverse spectra are plotted in Fig. 21 showing
similar results to the a priori case. Again we note the significant improvement over the original 323

LES.

IV. DECAYING HIT

The inviscid forced HIT case analyzed above is further integrated after turning the artificial forc-
ing off. The field is filtered using a spectrally sharp filter with cutoff wave number, kco = (2/3)16.
The filtered initial condition is enriched with Gabor modes which then evolve according to Eqs. (4).
Figure 22 shows the energy spectra at various snapshots during the integration. The enrichment
method accurately extrapolates the spectral content quite well. However, we note a slight dip of
energy near the cutoff wave number beginning around τ = 0.75495 and the high-wave-number
range appears to decay at a slightly faster rate for late times. These issues are currently being
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FIG. 29. Initial energy spectrum for 5123 DNS simulation and its enriched counterpart
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FIG. 30. Pressure spectra for finite Re DNS.

investigated with plans to use a dynamic procedure to predict the eddy viscosity coefficient; the
current implementation uses a constant value.

Figure 23 shows the decay of domain averaged TKE for the full field and for the small scales.
The decay trend for the small scales is matched by the enrichment procedure but there is noticeable
difference between pointwise values. A dynamic model for the spectral eddy viscosity is expected
to reduce these differences.

In terms of pressure statistics, Fig. 24 demonstrates the ability of the enriched pressure field to
match the decay of the benchmark LES rather well. In fact, compared to the energy spectrum, the
pressure content of the enriched field more closely matches the benchmark for all wave numbers.
This is similarly seen in the evolution of both the pressure and pressure derivative PDFs in
Figs. 25–28. Particularly striking is how the enriched field appears to relax toward the benchmark
(and quite quickly) as evidenced by the top-right plot in Fig. 27; the enriched field and bench-
mark PDFs are nearly on top of each other. There are discrepancies noticeable in the peaks on
the linear-scale plots (Fig. 28), but the performance of the enrichment method at later times is
impressive.

V. CONCLUSION

It has been shown that the method described in Ref. [1], Ref. [5], and Ref. [10] to enrich the
LES-resolved velocity field predicts not only the energetics of the subgrid scales but also their
contribution to the pressure field. The Gabor-induced field, when superposed with the LES data,
does a remarkable job in recovering the high-wave-number content of the pressure spectrum. This
was shown a priori where the large-scale field is supplied by a filtered high-fidelity LES as well as
a posteriori where an independent 323 LES is enriched and compared directly to a 2563 benchmark
LES. In addition to reconstruction of the pressure spectrum, the probability density functions of
pressure and pressure derivatives were seen to improve significantly for the enriched simulations.

We also demonstrated the ability of the enriched field to accurately predict space-time correla-
tions of pressure. The utility of the Gabor modes is that they are physically local and dynamically
coupled to the large-scale field and thereby the dominant physical mechanism responsible for decor-
relation, large scales sweeping small scales, is directly captured. This circumvents the requirement
to estimate a sweeping velocity/timescale to predict space-time correlations which is necessary
using the random sweeping model of Kraichnan or the EA model of He et al. [11].

Predicting second-order statistics of near-wall pressure fluctuations in wall-bounded flows is of
particular interest where pressure fluctuations are responsible for structural vibrations and noise
generation. The ability of wall-modeled LES (WMLES) to predict near-wall pressure fluctuations
has been investigated by Park and Moin [19] where they found WMLES capable of predicting
pressure variance relatively accurately so long as there is sufficient streamwise and spanwise grid
resolution. However, the pressure spectra reported in that paper illustrate that WMLES is incapable
of predicting high-wave number content of the near-wall pressure field. The results shown here from
the Gabor-mode enrichment model suggest it is a viable method to enrich the high-wave number
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FIG. 31. Probability density functions for pressure. See previous PDF plots for description of solid/dashed
black lines.

content of near-wall pressure fluctuations. Furthermore, WMLES is unable to capture near-wall
shear stress fluctuations (see Ref. [19] and Ref. [20]). This provides a further motivation for
enrichment of subgrid scales and another metric with which to evaluate the method in future work.
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APPENDIX: FINITE REYNOLDS NUMBER HIT

The simulations considered above impose zero molecular viscosity, relying exclusively on the
SGS model to dissipate energy thereby making the dissipative scales grid resolution dependent.

TABLE III. Pressure statistics and error associated with the filtered (“F”) and enriched (“E”) fields

Case Var(P) Error(%) Var(∂P/∂y) Error(%)

5123 DNS (baseline) 0.0015 0 0.0743 0
F, kco = (2/3)16 0.0012 20.11 0.0077 89.70
E, kco = (2/3)16 0.0014 6.89 0.0372 50.0
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FIG. 33. Pressure gradient spectra.

To eliminate this model dependence from the baseline comparison case we ran a DNS of a finite
Reynolds-number flow on a 5123 mesh using the same (2π )3 domain and forcing procedure as
the LES considered in the preceding sections. The simulation achieved Reλ = 221.8, where Reλ =
urmsλ/ν and λ is the transverse Taylor microscale (see Eq. (6.57) in Ref. [22]).

The simulation was run for 10 eddy-turnover times once a stationary state was achieved before
enriching. The initial condition was generated using the same number of modes as that used in the
inviscid scenario considered previously which results in the energy spectra seen in Fig. 29. The
subgrid pressure field represented by the Gabor modes generates statistics similar to the inviscid
simulation considered above and so our comments on the individual figures will be brief; no
significant differences are seen in enrichment performance between the inviscid LES and the viscous
DNS.

The pressure spectra in Fig. 30 shows that the DNS resolution is insufficient to capture an
inertial subrange but the Gabor induced-field still does a good job extrapolating to smaller scales.
Improvement to the pressure and pressure derivative PDFs (Figs. 31 and 32) is similar to the inviscid
results in that pressure events with 32.42% probability of occurring are now captured in the enriched
field which were absent in the large scales and recovery of events with 42.06% probability of
occurring for the pressure derivative. The reduction in variance error for pressure and pressure
gradient is quantified in Table III.

Additionally, similarly to that seen in the LES discussed above, the pressure gradient spectra
show moderate agreement with the benchmark in terms of high-wave number content, which is a
significant improvement over the filtered field by itself (Fig. 33).
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