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Abstract

Strong gravitational lensing of gravitational wave sources offers a novel probe of both the lens galaxy and the
binary source population. In particular, the strong lensing event rate and the time-delay distribution of multiply
imaged gravitational-wave binary coalescence events can be used to constrain the mass distribution of the lenses as
well as the intrinsic properties of the source population. We calculate the strong lensing event rate for a range of
second- (2G) and third-generation (3G) detectors, including Advanced LIGO/Virgo, A+, Einstein Telescope (ET),
and Cosmic Explorer (CE). For 3G detectors, we find that ∼0.1% of observed events are expected to be strongly
lensed. We predict detections of ∼1 lensing pair per year with A+, and ∼50 pairs per year with ET/CE. These
rates are highly sensitive to the characteristic galaxy velocity dispersion, σ*, implying that observations of the rates
will be a sensitive probe of lens properties. We explore using the time-delay distribution between multiply imaged
gravitational-wave sources to constrain properties of the lenses. We find that 3G detectors would constrain σ* to
∼21% after 5 yr. Finally, we show that the presence or absence of strong lensing within the detected population
provides useful insights into the source redshift and mass distribution out to redshifts beyond the peak of the star
formation rate, which can be used to constrain formation channels and their relation to the star formation rate and
delay-time distributions for these systems.

Unified Astronomy Thesaurus concepts: Gravitational wave astronomy (675); Gravitational lensing (670)

1. Introduction

Strong gravitational lensing is a fundamental measurable
property of the universe. Lensing observables include the
fraction of sources that are multiply imaged, as well as
statistical distributions of lensing properties such as the image
separations and time delays. These are related to the values of
the cosmological parameters, as well as the distribution and
properties of the matter inhomogeneities that constitute the
lenses, ranging from massive compact halo objects and stars to
clusters of galaxies. By observing strong lensing, one is able to
probe the evolution of the universe and all matter within it, as
well as test the predictions of general relativity.

Observational samples of lensed systems also depend on
properties of the sources, and in particular, the number density
(for continuous sources such as quasars) or the rate density (for
transient sources such as Type Ia supernovae) of the sources as
a function of mass and redshift. These samples are also
sensitive to observational selection effects, which can cause
dramatic differences between the observed and intrinsic lensing
distributions.

In the electromagnetic (EM) band, strong gravitational lensing
is not only widely used in probing cosmological parameters
(Turner et al. 1984; Cao et al. 2012; Liu et al. 2020), but also in
understanding the nature of dark matter halos (Smail et al. 1994;
Schneider 1996; Keeton & Madau 2001; Oguri et al. 2002;
Chae 2003; Chae & Mao 2003; Davis et al. 2003; Hoekstra et al.

2004; Corless & King 2007; Massey et al. 2010; Collett 2015;
Sohn et al. 2017; Diego et al. 2018; Meneghetti et al. 2020). One
of the most basic properties that one can probe is the masses of
the lensing halos, as traced by their velocity dispersions, σ. For
example, Davis et al. (2003) studied 13 lenses provided by the
Cosmic Lens All-Sky Survey/Jodrell Very Large Array
Astrometric Survey data to constrain the characteristic velocity
dispersion distribution of elliptical galaxies, σ*, to 168�
σ*� 200 km s−1 at the 68% confidence level. Similarly, Chae
(2005) selected ∼15 multiply imaged systems from the same
surveys and studied the distribution of the angular separation of
these lensing images. By fixing the shape of the galaxy velocity
dispersion function either using the Sloan Digital Sky Survey
(SDSS) or the Second Southern Sky Redshift Survey (SSRS2),
Chae (2005) constrained σ* to ∼80 km s−1 for the case of
SDSS, and ∼190 km s−1 for the case of SSRS2. In addition, the
time delay between lensed images can be used to investigate the
density profile of the lens halos as well as the Hubble parameter,
H0 (Oguri et al. 2002; Li et al. 2012). Weak lensing surveys
(e.g., To et al. 2021) provide a complementary probe of the
matter distribution at larger scales. We note that the distribution
of the strong lensing of supernovae offers an additional powerful
probe (Holz 2001), but complete and uniformly selected samples
of lensed supernovae continue to pose a challenge. This may
change with upcoming surveys, such as those from the Vera
Rubin Observatory and Euclid.
Like electromagnetic waves, gravitational waves (GWs) can

also be strongly lensed and form multiple images. These
images appear as separate GW sources with consistent sky
positions and binary parameters such as total mass and mass
ratio, but with different magnifications and arrival times. The
waveforms of multiply imaged GW sources may also show
different phase shifts depending on whether the image is at the

The Astrophysical Journal, 929:9 (19pp), 2022 April 10 https://doi.org/10.3847/1538-4357/ac58f8
© 2022. The Author(s). Published by the American Astronomical Society.

4 NASA Einstein fellow.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
mailto:feixu@uchicago.edu
http://astrothesaurus.org/uat/675
http://astrothesaurus.org/uat/670
https://doi.org/10.3847/1538-4357/ac58f8
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac58f8&domain=pdf&date_stamp=2022-04-08
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac58f8&domain=pdf&date_stamp=2022-04-08
http://creativecommons.org/licenses/by/4.0/


minimum, saddle point, or maximum of the Fermat potential
(Schneider et al. 1992; Dai et al. 2020). The magnification
changes the overall amplitude of the signal, biasing the
inference of the luminosity distance and, as a consequence,
the source-frame masses. The time delay affects the arrival time
of the lensed signal. Lastly, the phase shift associated with
saddle-point images could introduce waveform distortions for
signals with higher modes, precession, or eccentricity (Dai &
Venumadhav 2017; Ezquiaga et al. 2021), leading to wave-
forms that appear to violate general relativity (Ezquiaga et al.
2021). All of these properties can be used to identify multiple
GW events as strongly lensed images of the same source.

Strong lensing of GWs will provide a novel and independent
way to study the matter distribution in the universe. One
advantage over EM studies is that GWs do not suffer from dust
extinction or anything else that might compromise the signal;
GWs propagate directly from source to observer without any
intervening impact (except for the curvature of spacetime). The
correction of dust attenuation in EM observation is a
challenging and nontrivial task due to the uncertainty in dust
physics (Calzetti 1997; Calzetti et al. 2000). Comparing to EM
surveys, where it is difficult to guarantee both uniform depth
and breadth even for surveys in the radio band (Adams & van
Leeuwen 2019), GW detections “hear” lensing events happen-
ing on the entire sky simultaneously, allowing us to study a
clean lensing sample with well-understood and characterized
selection effects. Furthermore, unlike EM sources, which can
be obscured or time variable, the noise power spectrum of GW
detectors can be measured, and the source properties are well
characterized, further reducing selection effects on the lensing
sample. Strong lensing of GW events are sensitive to a wide
range of lensing masses, ranging from stellar-mass black holes
(BHs) to galaxy clusters (Takahashi & Nakamura 2003; Li
et al. 2012; Smith et al. 2018b), and will provide important
constraints on the underlying dark matter halo distribution in
the universe. In this paper, we focus on lenses at the scale of
massive elliptical galaxies, since these are expected to be the
dominant strong lenses. For these systems, the Schwarzschild
radius is significantly larger than the wavelength of the GWs
emitted by stellar-mass binary black holes (BBHs), and we can
therefore adopt the geometric optics limit.

As mentioned above, EM surveys can use the angular
separation between images to constrain the lens population
(Davis et al. 2003; Chae 2005). However, this method does not
work for GW detectors due to the large localization errors
(Abbott et al. 2018). On the contrary, GW facilities have
exquisite time resolution (to fractions of a second), which is
difficult to achieve in EM surveys even with time variable
sources such as quasars or supernovae. We note that the
angular separation is proportional to σ2 where σ is the velocity
dispersion of the lens galaxies, while the time delay is
proportional to σ4. Therefore, time-delay distributions are
potentially more sensitive to the lens population than angular
separation distributions. In what follows, we use the time-delay
distribution between strongly lensed GW events as one of the
primary lensing observables.

A fundamental aspect of statistical lensing is the rate of
strong lensing, which depends both on the properties of the
lenses and sources. Several studies have provided theoretical
predictions for this rate. For present second-generation (2G)
advanced LIGO (aLIGO), the strong lensing event rate
was found to be up to 0.5–1 yr−1 (Li et al. 2018; Oguri 2018;

Yang et al. 2022). These results are consistent with the current
nondetection of lensing events during the first two observing
runs (Hannuksela et al. 2019; Kim et al. 2020; McIsaac et al.
2020) and the first half of the third one (Abbott et al. 2021b).5

The chances of strong lensing will increase with future
sensitivity upgrades, as a higher redshift implies a larger
probability of lensing. 2G detectors are expected to be
upgraded beyond design sensitivity (A+), which will allow
for the detection of GW sources out to a redshift of z∼ 3 (see
Figure 3 of The LIGO Scientific collaboration 2019). Future
third-generation (3G) instruments, such as the Einstein
Telescope (ET) and Cosmic Explorer (CE), will be able to
detect BBH sources with masses up to 104Me and at redshifts
as high as z∼ 100 (see Figure 2, left panel, in Maggiore et al.
2020). The enhancement in the detectable cosmological
volume will greatly increase the lensing event rate, to as high as
40–103 yr−1 for ET (Piórkowska et al. 2013; Biesiada et al.
2014; Ding et al. 2015; Li et al. 2018; Oguri 2018).
In this work, we explore the capabilities of current and future

GW detectors to constrain both the properties of the lens
galaxies and the source population. We first compute the
lensing optical depth, and calculate the lensing event rates for
aLIGO, A+, ET, and CE. We further perform Monte Carlo
(MC) sampling to simulate the gravitational lensing of BBHs
and calculate the lensing properties including the time delay
and magnification distributions. We then estimate our ability to
constrain the typical lens velocity dispersion assuming different
observation duration times and detector sensitivities. Further-
more, since the strong lensing event rate of GWs is also
affected by the number of sources in the universe, we show that
this information can be used as a complementary probe of the
population of BBH mergers. Both detection and nondetection
of GW lensing events will provide insights on the formation
channels of these binaries as well as the star formation rate
(SFR) and delay-time distributions.6

The paper is organized as follows. In Section 2 we present
the methods to calculate the lensing optical depth, lensing event
rate, and lensing simulation, describing in detail our assump-
tions for both the lens and source population. In Section 3 we
show the results for the time-delay distributions and lensing
rates, discussing their implications to constrain the properties of
the lenses and BBH merger sources. We conclude the main
results and future prospects in Section 4. We adopt the Planck
values for the cosmological parameters (Planck Collaboration
et al. 2020).

2. Methods

The gravitational lensing of GWs depends both on the
population of sources and lenses. In this section we describe the
methodology to compute the rate of lensed signals and their
properties. We begin in Section 2.1 with computing the

5 Dai et al. (2020) and Liu et al. (2021) found an intriguing pair, GW170104–
GW170814, with masses, sky positions, and phases a priori consistent with the
strong lensing hypothesis. However, other properties of the pair such as the
large time delay and image type configuration make this association unlikely
(Dai et al. 2020; Liu et al. 2021). The analysis of Abbott et al. (2021b) confirms
that the inclusion of selection effect and source and lens population priors
drastically reduce the likelihood that this is a lensing event.
6 It is important to note the distinction between the time-delay distribution
and the delay-time distribution. The former refers to the amount of time
between multiple images of a given strongly lensed source, designated by δt.
The latter refers to the amount of time that elapses between the formation of a
BBH and the merger of the system, designated by Δt.
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probability of strong lensing as determined by the optical depth
τ(z). In Section 2.2 we provide a prescription for the rate of the
BBH merger, which acts as GW sources. Fixing the lens model
and the source population, we describe the simulation of lensed
signals in Section 2.3. Finally, in Section 2.4 we compute the
expected strong lensing event rates taking into account the
effect of lensing magnification.

2.1. Lensing Optical Depth

The probability of a given source at zs being strongly lensed
and generating multiple images is determined by the optical
depth τ(zs) (see, e.g., Schneider et al. 1992).

7 For a given lens
model described by a set of parameters X, τ(zs) depends on the
multiple-image cross section z z X, ,Lmultiple sˆ ( )s and the density
of lenses n(zL, X) with properties X at the lens redshift zL. The
lens density at redshift zL is simply ∫n(zL, X)dX. The optical
depth is computed directly by adding up the cross sections
weighted by the density at different redshifts, i.e.,

z
dV

dz
n z X z z X dXdz, , , 1

z
c

L
L L Ls

0
multiple s

s

( ) ( ) ˆ ( ) ( )ò òt
d

s=
W

where dV dz c z D H z1c L L
2 2( ) ( ) ( )dW = + , in which DL is the

angular diameter distance to the lens and H(z) is the Hubble
parameter.

In this paper, we choose the singular isothermal ellipsoids
(SIE; Kormann et al. 1994; Narayan & Bartelmann 1996;
Schneider et al. 2006) as our lens model whose lensing cross
section is determined by their velocity dispersion σ and axis
ratio qg of the galaxy. The singular isothermal sphere (SIS)
model corresponds to the limit qg→ 1. We neglect the shear
field since we are less interested in the anisotropic distortion of
the signal. Qualitatively speaking, the SIE model defines three
distinct regions in terms of the number of lensing images in
order of increasing area (Kormann et al. 1994): (1) within the
caustic area causticŝ four images form, (2) within the cut region
cutŝ two images form, and (3) in any other region only one
image forms. Therefore, we set multiple cutˆ ˆs s= .

The number density of the lens galaxies at redshift z having
σ and qg can be described by:

n z X q z p q, , 2L g L g( ( )) ( ∣ ) ( ∣ ) ( )s f s s= =

where f(σ|zL) is the number density of the galaxies at a given
interval of σ at zL, and p(qg|σ) is the distribution of the lens axis
ratio for a given σ. We model f(σ|zL), with a Schechter
function (Press & Schechter 1974):
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where f*(zL) is the number density of galaxies at redshift zL. In
this work, we will consider the case in which the density of
galaxies is constant, f* = 8× 10−3h3 Mpc−3 as measured by
Choi et al. (2007), but our methodology could be extended to
include redshift dependence. The power-law index αg and βg
describe the shape of the distribution (Faber & Jackson 1976;
Tully & Fisher 1977). We set αg= 2.32 and βg= 2.67 also
according to the measurement of Choi et al. (2007).

For a given σ, the distribution of the lens axis ratio p(qg|σ),
which tells the ellipticity of the lens galaxies, can be described
by a Rayleigh distribution (Collett 2015; Haris et al. 2018):
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where A= 0.38, B 5.7 10 km s4 1 1( )= - ´ - - - (Collett 2015),
implying that more massive galaxies are more spherical. We set
the minimum q 0.2g,min = .
The angular scale of the lensing cross section is determined

by the angular Einstein radius:

⎛
⎝

⎞
⎠c
D

D
4 , 5E

2
LS

S
( )q p

s
=

where DLS is the angular diameter distance between the lens and
the source, and DS is the angular diameter distance between the
observer and the source. Apart from the geometrical configuration
of the source-lens system, the Einstein radius is fully determined
by the galaxy velocity dispersion, σ. This scale is the same for
both SIS and SIE. The multiply lensed cross section for SIE is
then given by:

z z q z z q, , , , , , 6L g E L gmultiple s
2

s cutˆ ( ) ( ) ˜ ( ) ( )s s q s s=

where qgcut˜ ( )s is the dimensionless cut cross section given by
Kormann et al. (1994) in units of θE:
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This quantity depends only on qg. Note that in the limit of a
spherical lens, qg→ 1, we find that cuts̃ p , and we recover
the usual SIS cross section. The SIS model has two regions
delimited by the Einstein radius, where two images form inside
and one outside; its cross section does not depend on qg.
Combining all of the ingredients above, we now define the

optical depth for multiple images:
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which integrates all of the cross sections of the lens galaxies
between the observer and the source.
Note that in the SIS limit, the dependence on qg disappears and

one can get a closed form result by integrating in terms of Gamma
functions. This result is subject to maxs and mins , the upper and
lower bounds of the velocity dispersion of the lens galaxies. For
simplicity, we fix maxs = ¥ and 0mins = . However, other
values are possible. For example, 70 km smin

1s ~ - might be
more consistent with observations (Choi et al. 2007; McConnell
& Ma 2013). We discuss the effect of changing maxs and mins on
τ(zs) in Appendix A.
Adding all of the pieces together, Figure 1 shows the optical

depth τ(zs) assuming three different values of σ*. In general,
τ(zs) increases with zs because there are more intervening
galaxies between the source and the observer at higher zs. At a
given zs, τ(zs) increases with increasing σ* since the lensing
cross section of the galaxy population increases with σ*. We
also find that τ(zs) can be well approximated by the optical

7 It is to be noted that in the limit where the cross sections significantly
overlap with each other multipleŝ , when τ > 1, the probability of lensing is given
by P z z1 exps s( ) ( ( ))t= - - (Cusin et al. 2019).
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depth of the SIS model (τSIS) multiplied by a constant factor
∼0.96. We elaborate more on these differences in the optical
depth between SIS and SIE lens model in Appendix A.

2.2. Source Population: Binary Black Holes

Once we know how to compute the probability of strong
lensing, the next ingredient is to model the population of
sources. This information will be later used to simulate lensed
events and to compute the lensing rates and distributions. We
begin with the differential merger rate as a function of
observing time t (in detectors frame), which is given by

 dN z

dz

d N

dzdt
z

z

z

dV z

dz1
9

2( ) ( ) ( ) ( ) ( )º =
+

where  z( ) describes the source-frame merger rate density,

c4dV

dz

r z

H z
c
2( )
( )

p= is the differential co-moving volume, and the

(1+ z) factor converts from source frame to detector frame.
In this work, we fix the local merger rate density  z( =

0 64.9 Gpc yr0 33.6
75.5 3 1) º = -

+ - - (Abbott et al. 2019).
In order to model the redshift evolution of the merger rate,

we will follow two complementary approaches. First, we will
consider a model in which the BBHs are assumed to follow the
SFR with an additional delay time. The delay time Δt is the
time between the binary formation and the final merger. This is
motivated by the assumption that BBHs are formed from stars
in the field and has been studied thoroughly using population
synthesis codes (Belczynski et al. 2002; Postnov & Yungelson
2014). Observations of strongly lensed events will provide
constraints on both the SFR and the delay time. If one believes
we already know the SFR, then our results probe the delay-time
distribution directly. These constraints would be complemen-
tary to the ones obtained with unlensed, low-redshift binaries
(Fishbach & Kalogera 2021). Alternatively, prior knowledge of
the delay-time distribution would allow for direct constraints
on the SFR of the sources. In our analysis we consider three
different scenarios for the SFR and delay-time distribution, to
explore the impact that these have on our results. In the main
text of the paper, we adopt the SFR model from Madau &
Dickinson (2014, hereafter MD14) with minimal delay time

tminD = 50Myr. We discuss two additional scenarios in the
Appendix B: the MD14 SFR model with a different delay time
of tminD = 1 Gyr, and a different SFR density, which is
constant throughout the redshift evolution

*
 M0.004r =

Mpc yr3 1- - with tminD = 50Myr. The detailed calculation of
the rate from the SFR to detector-frame merger rate is described
in Appendix B.
Our second approach will be to extend this fixed model by

varying its elements in a convenient parameterization from
Callister et al. (2020):

 


z z z
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where  z z, , 1 1p p( ) ( )a b = + + a b- - . Equation (10) is
proportional to z1( )+ a at low redshift and z1( )+ b at high
redshift. zp is the redshift at the peak of the distribution, and the
local merger rate  z 0 64.9 Gpc yr0 33.6

75.5 3 1( )= = = -
+ - - is

fixed (Abbott et al. 2019). The second approach will be
relevant when quantifying how the source population affects
the lensing rate, as discussed in Section 3.4. We note that
alternate formation channels might be described with differing
values of α, β, zp, and 0, or with entirely different functional
forms. These could be combined to generalize our approach;
for this paper we describe the aggregate population with a
single distribution shown in Equation (10).
In order to calculate how many of these BBH mergers are

detected, we need to consider the detection probability,
p q z, ,det ( ), which takes into account the detector sensitivity

and selection bias for binaries with different masses and
redshifts. We parameterize the source masses in terms of the
chirp mass,  m m m m1 2

3 5
1 2

1 5( ) ( )= + , and mass ratio,
q=m2/m1, where m1 is the mass of the heavier BH, m1>m2.
The detected merger event rate within redshift z is given by:

 

  



N z

dN z

dz
p q p q z dq d dz, , , , 11

z

BBH
0 0

1

det

min

max

( ) ( )

( ) ( ) ( )

ò ò ò=

´

where p q,( ) is the two-dimensional distribution of 
and q. We assume m1 follows a power-law distribution
p m m1 1

0.4( ) µ - and m2 is uniformly distributed in range
m m mmin 2 1< < . We fix m M5min = and m M41.6max =
following the results of the first and the second observing run
of Advanced LIGO and Advanced Virgo (Abbott et al. 2019).
We derive the distribution of and q by randomly drawing
m1 and m2 and then linearly interpolate the two-dimensional
probability density function (PDF) to get p q,( ), and also
the corresponding minimum and maximum , min, and
max. We note that the latest LIGO–Virgo catalog, GWTC-2,
provides a more complex description of the mass distribution
(Abbott et al. 2021a), and in fact, this simple power-law model
is disfavored by observations. However, for the purposes of our
analysis, this simplified description is sufficient.
We determine the probability of detecting a given source by

the fraction of events across all possible sky-locations,
orientations, and inclinations that are above a given signal-to-
noise threshold ρthr. For a particular detector/detector network,

Figure 1. Optical depth τ as a function of source redshift zs with different σ*
represented by different colors. Increasing σ* will increase the velocity
dispersion of the whole galaxy population, hence increase the lensing cross
sections.
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this is a known function (Dominik et al. 2015):

 p q z P w q z, , , , , 12det thr opt( ) ( ( )) ( )r r= =

where  q z, ,opt ( )r is the signal-to-noise ratio for an optimally
located and oriented binary. The function P(w) is a cumulative
distribution function (CDF) that gives the fraction of the
sources with a given q, and at a given redshift z that can be
detected, assuming the sky location and the orientation angles
are uniformly distributed. We take the interpolated function in
Dominik et al. (2015) fitted from the numerically generated
MC sample of 109 binaries. We focus on a single detector with
a threshold of ρthr= 8 and consider four sensitivities: aLIGO
(LIGO Scientific Collaboration et al. 2015), aLIGO at upgraded
sensitivity (A+; The LIGO Scientific collaboration 2019), and
the third-generation detector ET (Maggiore et al. 2020) and CE
(Reitze et al. 2019).8 We do not take into account the duty
cycle and assume that the detectors are always online.

2.3. Simulating Strongly Lensed GW Events

Having fixed the lens model (SIE model) and the source
population (BBHs consistent with LIGO/Virgo O2), we now
describe our method for generating the sample of strong lensing
events. We adopt a semi-analytical approach similar to that in
Haris et al. (2018), which randomly generates lens systems and
solves the corresponding lens equations. The detailed proce-
dure of the MC simulation can be found in Section 2 of
Appendix A in Haris et al. (2018). We highlight the differences
in our simulation below:

1. We sample the BBH mass m1 and m2 using the
distribution described in Section 2.2.

2. We pick the source redshift (zs) based on the PDF
normalized from the BBH merger rate as a function of
redshift N zBBH ( ) calculated in Section 2.2.

3. Since we want to constrain the lens parameter σ*, we
directly pick velocity dispersions of the galaxy lenses
based on the PDF normalized from the Schechter
function in Equation (3) with varying σ* values instead
of setting σ* = 161 km s−1 as in Haris et al. (2018).

4. Our lensing simulation assumes that multiple images of
the same source have independent detector selection
effects. Since lensed images of the same source arrive at
different times, the relative angles between the detector
and the source will have changed, and thus the detector
response will be different for the two images. We note,
however, that since the images come from the same
binary source, the intrinsic angles of the binary source
will be the same. It is computationally expensive to
incorporate this, and since we do not expect these
correlations to qualitatively impact any of our results, we
neglect them. To determine whether a lensing image can
be detected or not, we generate one random number for
each image, respectively. If the random number is smaller
than P w thr opt( )r mr= , we consider the image to have
been detected. Yang et al. (2019) showed that incorpor-
ating the Earth’s rotation decreases the lensing event rate
by ∼10% for the case of BBHs.

After picking the parameters for the sources and the lens
galaxies, we follow the procedure in Haris et al. (2018) and
randomly draw zL and pick the source-plane location where we
can find multiple images. We obtain the image positions x1,i
and x2,i for the ith image (i= 1, 2 for the case with two images,
or i= 1, 2, 3, 4 for case with four images) by solving the lens
equations (see Equations ((11)–(14) in Haris et al. 2018) and
calculate the magnification for each image:
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and the time delay for ith image relative to a reference time (see
more details in Kormann et al. 1994):
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where Dc(zs) is the co-moving distance of the source, Dc(zL) is
the co-moving distance of the lens, and Φi is the Fermat
potential (Blandford & Narayan 1986).
One of the goals of this work is to explore the ability of GW

detectors to constrain the characteristic galaxy velocity σ* by
observing the time delay (δt) distribution of multiply lensed
events. In particular, we focus on the time delay between two
detected lensing images from the same source:

t t t . 151 2
4∣ ∣ ( )d d d s= - µ

In most of the cases, these two images correspond to the
primary (the brightest image, or the one with the highest
magnification) and the secondary image (the second-brightest
image) except for some very rare cases. This time delay δt
should not be confused with the delay time Δt between the
formation and merger of BBHs introduced in Section 2.2.
Since δti is proportional to σ

4 according to Equation (14), the
time-delay distribution is very sensitive to the value of σ*. By
comparing the observed δt distribution with the theoretical
prediction for different σ*, we can then constrain the value of
σ*. We present the PDF distribution of δt for three different σ*
in Figure 2. When σ* is high, the δt distribution extends to
higher values. For the case of σ* = 600 km s−1, the tail of the δt
distribution extends to even 15 yr. To facilitate the visualiza-
tion, we zoom in to the range <1 yr in the inset of the same
figure. In general, higher σ* has a higher probability of high δt
values. The CDF also has noticeable differences. The δt at
which 90% of the events are included for σ* = 161, 300, and
600 km s−1 are 0.16, 1.77, and 25.72 yr.
To constrain σ* using GW lensing events, we perform a

Kolmogorov–Smirnov (K-S) test, which is a widely used
statistical technique to quantify the difference between the
model and the data. The K-S test computes the distance
between the CDF of the model and the empirical probability
distribution (EDF) of the data (Kolmogorov 1933; Smirnov
1948). The maximum distance is defined as the K-S statistic
value. A bigger K-S statistic indicates that the two input
distributions may have different origins. If a continuous
expression for the model CDF is not available, we can apply
the two-sample K-S test, which uses the EDF of the theoretical
data set instead of the CDF. Since we do not have an analytical
expression for the lensing δt distribution, and we do not want to
add additional uncertainties by fitting the theoretical δt

8 The sensitivity curve (Sh(Hz
−1/2)) for different detectors are from: https://

dcc.ligo.org/LIGO-T1500293-v11/public.

5

The Astrophysical Journal, 929:9 (19pp), 2022 April 10 Xu, Ezquiaga, & Holz

https://dcc.ligo.org/LIGO-T1500293-v11/public
https://dcc.ligo.org/LIGO-T1500293-v11/public


distribution from the simulations, we adopt a two-sample K-S
test in the following analysis.

Operationally, we generate mock observation samples and
compare them with the theoretical δt distribution to get a
distribution of K-S test statistics. We denote the σ* used for
generating the theoretical δt distribution as σ*,A, and for the
mock observation distribution as σ*,B. The K-S statistic
distribution from comparing the theoretical distribution with
σ*,A and the mock observation distribution with σ*,B is
expressed as K-S(σ*,A, σ*,B). We use the K-S statistics when
σ*,A= σ*,B (i.e., K-S(σ*,B, σ*,B)) as a reference. If the majority
of the K-S(σ*,A, σ*,B) derived from observation samples are
greater than the majority of K-S(σ*,B, σ*,B), then it indicates
that σ*,B is actually quite different from σ*,A, implying the
observed σ* is inconsistent with the theoretical prediction.

The size of each lensing δt distribution sample is determined
by the BBH merger rate, the optical depth, the observation

duration time, and the detector sensitivity. Due to the low
lensing event rate of aLIGO and A+, we only discuss the
possibility of using a δt distribution to constrain the galaxy
population using 3G detectors. In particular we concentrate on
ET as an example, although similar results are expected for CE.
The lensing time delay can sometimes be larger than the
observation duration time. In order to make the sample
realistic, we exclude the sources that have time delay greater
than the observation duration time.
We generate the theoretical δt distributions by simulating a

large (107) number of sources. For the mock observation
samples, we set the number of sources going into our
simulation using the product of the BBH merger rate per year
as calculated in Section 2.2 and the observation duration time
ranging from 1, 5, and 10 yr.
As a summary, we follow the procedure below to test the

consistency of the model and the mock sample:

1. For a given observation duration time, we generate 500
mock δt distribution samples for a given lens galaxy
population with σ*,B. We exclude the sources that have
time delay greater than the observation duration time.

2. We compare these mock samples with the theoretical δt
distribution using the K-S test. For a given observation
time, σ*,A, and σ*,B, we can get 500 K-S statistic values
and derive their corresponding PDF.

3. We use the PDF of the K-S test values for the case where
σ*,A= σ*,B as the reference distribution. The distribution
of K-S test statistics shifts to larger values when
σ*,A≠ σ*,B. We can also compute the distribution of
the ratio of the K-S statistics K-S(σ*,A= σ*,B, σ*,B)/
K-S(σ*,A, σ*,B). Most of the time, the ratio should be
smaller than 1 because the mock samples are usually
closer to the theoretical models with the same value of
σ*. However, sometimes due to the limitation of the
observation time, the observation sample may appear
closer to the wrong model. We define the area where the
PDF of this ratio is smaller than 1 as the probability of
correct inference. We show how the probability of correct
inference evolves with the observation duration time in
Section 3.3.

In addition to the δt distribution, another interesting
observable is the relative magnification distribution: the ratio
of the magnification of the secondary image μ2 and the primary
image μ1, μ2/μ1. Since it is not directly related with σ* but
more sensitive to the ellipticity of the lenses, we discuss them
in Appendix D. It would be interesting to combine both
observables in future analyses to constrain the lens population
more comprehensively.

2.4. Computing Strong Lensing Event Rates

In this section, we focus on the calculation of the observed
GW strong lensing event rate Nlensing. To achieve this, we need
to take into account how many merging sources are multiply
imaged, as well as which of these sources are detectable. We
thus include both the optical depth τ(z) and the magnification
distribution P(μ) into the integration in Equation (11):
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N z z

dN z

dz

p q p q z P d dqd dz, , , , 16
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Figure 2. Lensing time-delay δt distribution for strong lensing pairs observed
by ET for σ* = 161, 300, and 600 km s−1 assuming 107 BBH sources. The top
panel displays the PDF, while the bottom one plots the CDF. Time delay
extends to higher values when we increase σ*. The proportionality between
time delay and σ is described in Equation (14). The green CDF
(σ* = 161 km s−1) truncates at the maximum δt. We generate the BBH
population using the MD14 SFR model (Madau & Dickinson 2014) assuming
merger delay-time distribution P(Δt) ∝ 1/Δt ranging from 50 Myr to 13.5 Gyr
(see more details in Section 2.2).
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where p q z, , ,det ( )m is modified due to the magnification
factor μ as follows:
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where we have changed ρopt to optmr . This is because
magnifying a source with factor μ is equivalent to decreasing
the source luminosity distance by a factor of 1 m , and the
luminosity distance enters in the signal-to-noise via ρ∝ 1/dL.

The values and meaning of the strong lensing event rate
depend critically on the choice of the magnification distribution
P(μ). For example, Oguri (2018) used two differing magnifica-
tion distribution when calculating Nlensing. The first way is
treating all of the images from the same BBH source as a single
group and using the sum of the magnification values as the total
magnification. Another way is treating individual images
differently, which means defining P(μ) using the magnification
value of each image regardless of the source. Dai et al. (2017)
proposed a fitting to the magnification PDF at different
redshifts based on the simulations in Hilbert et al. (2008) and
Takahashi et al. (2011). Li et al. (2018) adopted the
magnification of the fainter image in the case of double images
and that of the third brightest image in the case of four lensing
images. Many other works (e.g., Ng et al. 2018; Diego 2019,
etc.) prefer using a simple analytical form of P(μ)∝ μ−3 to
describe the tail of the magnification distribution at high values,
typically applied for μ> 2.

In real observations, the identification of strongly lensed GW
events is not an easy task. One needs to statistically asses if the
parameters of each possible image favor the lensing hypothesis
over the nonlensed hypothesis (Hannuksela et al. 2019). This is
typically achieved by searching for overlaps in the sky maps,
masses, and spins. However, this overlap in binary parameter
space can also happen in nonlensed events due to selection
effects and observational errors. In addition, one could also
identify a lensed GW event alone without associating it with
other events by measuring the phase distortion with respect to
the unlensed predictions in general relativity. However, this is
only applicable for type II images, which are created at the
saddle points of the time-delay surface. They have a phase shift
of π/2, which modifies the phase evolution when higher
modes, precession, or eccentricity are present (Dai &
Venumadhav 2017; Ezquiaga et al. 2021). 3G detectors could
be sensitive to these distortions, identifying type II images
directly (Wang et al. 2021). Although identifying type II
images individually could help constrain the optical depth, in
order to measure the time-delay distribution, we need to
identify at least two images of the same source. It is important
to remember that the first image, typically the brightest one, is
always at the minimum of the time-delay surface (type I)
(Blandford & Narayan 1986) and thus cannot be identified
individually.

Considering above, we calculate two kinds of lensing event
rates. The first one is the number of lensed systems whose
primary images are detected per year, denoted as Nlensing,1st.
The second one is the lensing event rate when at least two
images are detected for each lensing system, Nlensing,2nd. The
first quantity Nlensing,1st is useful to understand how the
observed BBH population is “polluted” by magnified events,
since the primary images with the largest magnification are the
most likely ones that can be detected but may not be identified

as lensing events if we miss the other images associated with
the same source. To calculate Nlensing,1st, we use the
magnification distribution of the primary image P(μ)1st when
doing the integration in Equation (16). The second quantity
Nlensing,2nd is useful to know how many multiply lensed events
we can detect for studying the δt distribution. To estimate this
one, we use the magnification distribution of the secondary
image P(μ)2nd. The idea is that if the secondary image can be
detected, then the primary image is very likely to be detected as
well since by definition the primary image should have a higher

optmr . Nevertheless, we notice that due to the difference in
arrival times, the orientation angle of the detector will change
before the second image arrives. There is a possibility that we
detect the secondary image, but the first one arrives when the
orientation of the detector network is less favorable. It is also
likely that the first one is missed because the detector is not
online, but in this paper, we assume the detector observes
whole year. However, we show in Appendix C that this
procedure still gives a very good estimation of Nlensing,2nd when
comparing to our lensing simulations.
In practice, we obtain P(μ)1st and P(μ)2nd from our lensing

simulation by recording the magnification of the brightest
image and the second-brightest image of each lensing system.
We compute the histograms of μ1 and μ2 and linearly
interpolate them for μ< 3. We smoothly connect them with a
power law μ−3 for μ> 3, as it is universally expected for large
magnifications. Figure 3 shows the results. It is to be noted that
the distribution of secondary images extends to μ2< 1. This is
because the secondary images of the SIE model are very close
to the lens center and thus are highly de-magnified (Kormann
et al. 1994). On the other hand, the primary image magnifica-
tion distribution peaks at μ∼ 2. We summarize our results in
Section 3.1.

3. Results

In the previous section, we introduced our procedure for
calculating lensing event rates and lensing distributions given a

Figure 3. Magnification distribution, P(μ), obtained from our MC simulations
of GWs lensed by SIE lenses. Purple and pink histograms correspond to the
primary (P(μ)1st) and secondary (P(μ)2nd) images, which correspond to the
brightest and second-brightest images, respectively. We compute P(μ) by
linearly interpolating the histogram for μ < 3 and smoothly connect it with a
power-law function P ∝ μ−3 for μ > 3. The final P(μ) we use in Equation (16)
are marked by black solid lines. We set minm and maxm based on the P(μ)
derived from the lensing simulation.
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lens and source population and a detector sensitivity. In this
section we present our results and discuss how the lens and
source populations affect the lensing observables, particularly
the lensing event rate as a function of redshift and the lensing
time-delay distribution. We also examine the capacity of
present and future detectors to probe these lens and source
parameters.

We show the calculation of the lensing rates and its
dependence on lens velocity dispersion parameterized by σ* in
Section 3.1. In Section 3.2 we show how the detectable
cosmological volume is expanded by the detection of lensing
events. Section 3.3 demonstrates the potential constraints on σ*
from the time-delay distribution. Lastly, we discuss how the
lensing event rate is affected by variations in the source
population in Section 3.4.

3.1. Lensing Event Rate

As we can see from the calculation in Sections 2.1, 2.2, and
2.4, when fixing the SFR, the local merger rate density0, and
the lens galaxy density f*, the lensing event rate will be
primarily determined by σ*. We show the dependence of
Nlensing,1st and Nlensing,2nd on σ* for both 2G and 3G detectors in
Figure 4 and summarize the lensing event rate for the case of
σ* = 161 km s−1 in Table 1.

Figure 4 shows that both Nlensing,1st and Nlensing,2nd increase
with σ*, and are almost linearly dependent in log-space,

*
Nlog 4 loglensing sµ . This is mainly because *z 4( )t sµ . By

increasing the value of σ*, the σ of the whole lens galaxy
population increases. Therefore, the overall cross sections of
lensing increase, which results in higher Nlensing. Moreover,
Nlensing grows with the detector sensitivity since more sensitive
detectors can observe a larger cosmological volume. We
discuss the redshift distribution of lensed and unlensed events
in more detail in Section 3.2.

Table 1 summarizes the expected Nlensing using velocity
dispersion σ* = 161 km s−1 constrained from SDSS in the EM
band (Choi et al. 2007). We assume the MD14 SFR model and
a minimum delay time of tminD = 50Myr. Our calculation
shows that the contribution of the lensing events to the overall
merger events is small, with a fraction of 0.1%. The majority
of the events that we detect should be unlensed events. Since
we want to measure the time-delay distribution, we are
interested in events that have at least two images detected.
The second column shows the estimation of Nlensing,2nd.
According to these results, a statistical study of GW lensed
events will happen with 3G detectors. Moreover, Appendix B
shows results for two alternate SFR scenarios: the MD14 SFR
model with a different delay time of tminD = 1 Gyr, and a
different SFR density, which is constant throughout the redshift
evolution

*
 M yr0.004 Mpc 3 1r = - - with the same

tminD = 50Myr. As an additional check, in Appendix C we
compare the results in Table 1 with the lensing event rates
directly obtained from a lensing simulation. We find consistent
results.

3.2. Detectable Cosmological Volume Increased by Lensing
Magnification

Since some of the BBH merger events at high redshift, which
were previously too faint to be detected, can be magnified
above the detection threshold, the detection volume of the GW
detectors will increase due to lensing. Figure 5 shows the
redshift distribution of the unlensed events, the primary images
( Nlensing,1st) that trace events with only one image detected, and
the secondary images ( Nlensing,2nd) that trace the events with
multiple images. Table 2 summarizes the characteristic redshift
within which 90% of the events are included. The characteristic
redshifts for aLIGO and A+ increase from ∼1 to ∼3,
indicating that the detectable cosmological volume is drasti-
cally increased by lensing events; although as shown before,
lensed events will only represent a very small fraction of the
catalog. The same effect, however, is less significant for 3G
detectors. The characteristic redshift for ET and CE increases
from ∼4 to ∼5. This is mainly because: (1) GW sources at high
redshift need higher magnification to be brought within the
horizon than their low-redshift counterparts; and (2) since star
formation generally peaks at z∼ 2 and drops at higher redshift,
there are fewer BBH sources at z> 5 as seen in Figure 12, and
therefore the increase in detectable volume due to lensing is

Figure 4. Predictions for the observed rate of the primary images Nlensing,1st

(dashed lines) and events with multiple images Nlensing,2nd (solid lines).
Different colors represent different detectors. We set the SFR model to MD14
(Madau & Dickinson 2014) with a minimum merger delay time
tminD = 50 Myr, the galaxy number density to f* = 8 × 10−3h3 Mpc−3 (Choi

et al. 2007), and use local BBH merger rate constrained by LIGO O2
 64.9 Gpc yr0 33.6

75.5 3 1= -
+ - - (The LIGO Scientific collaboration 2019). Nlensing

is linearly dependent on f* and0, and is proportional to *
4s . We also plot the

gray line to mark the *
4s trend.

Table 1
Lensing Event Rate ( Nlensing, yr

−1) Assuming σ* = 161 km s−1 (Choi et al.
2007)

Primary
Image ( Nlensing,1st)

Multiply Imaged
Events ( Nlensing,2nd)

Unlensed BBH
Merger

Events ( NBBH)

aLIGO 0.45 0.1 6.3 × 102

A+ 3.4 0.7 3.7 × 103

ET 93 51 1.2 × 105

CE 110 92 1.5 × 105

Note.We use the SIE lens model for the calculation. We use MD14 as the SFR
model and set t 50 MyrminD = . The three columns correspond to the lensing
event rate of the primary image detected ( Nlensing,1st), the lensing event rate with
at least two images detected ( Nlensing,2nd), and the expected observed BBH
merger event per year NBBH without considering magnification.
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slight. Moreover, the redshift distributions are insensitive to the
change in σ*, since we assume the lens galaxy population does
not evolve with redshift in this paper. Therefore σ* mainly
affects the normalization of the lensing rate rather than the
shape of the lensing optical depth with redshift. We leave the
incorporation of the redshift evolution of the lens galaxy
population to future work.

3.3. Constraining Galaxy Populations Using Time-delay
Distributions

As mentioned in Section 2.3, the lensing time delay δt is
directly related to the galaxy velocity dispersion σ according to

Equation (14), and thus can be used as a probe of the lensing
population. The δt distribution has a stronger dependence on σ*
than the lensing rate, Nlensing, because Nlensing is also affected by
the number density of the lens galaxy (f*) and the BBH source
population. Since different galaxy populations give different δt
distributions, we can use this fact to inversely constrain σ*
from measuring the δt distribution. As described in Section 2.3,
we simulate the lensing process assuming a range of values for
σ*, and record the output time delay for each lensing system.
Our simulations show that for aLIGO and A+, only a few
lensing events will be detectable per year. Therefore, we only
consider the measurements of the time-delay distribution for
3G detectors, using ET as an example.
Figure 6 provides an example of constraining galaxy

properties using the time-delay distribution. We generate 500
mock observation samples with σ*,B= 161 km s−1 for three
different observational durations (1, 5, and 10 yr), and compare
them with two theoretical models (σ*,A= 161 km s−1 and
σ*,A= 171 km s−1). The corresponding K-S test statistics are
denoted as K-S(σ*,A= 161 km s−1, σ*,B= 161 km s−1) and
K-S(σ*,A= 171 km s−1, σ*,B= 161 km s−1), whose distribu-
tions are shown in the green and cyan histograms, respectively,
in the upper panels of Figure 6. Since the green histogram

Figure 5. The redshift distribution of the unlensed images (dashed–dotted line, distribution of NBBH), primary images (dashed line, distribution of Nlensing,1st), and
multiple lensed images (solid line, distribution of Nlensing,2nd). We set σ* = 161 km s−1, but the redshift distribution is not sensitive to σ*. The characteristic redshifts
within which 90% of the events are included for different scenarios are summarized in Table 2.

Table 2
Redshift within Which 90% of the Unlensed Events, Nlensing,1st and Nlensing,2nd

Are Included

Unlensed Events Primary Images Multiple Images

aLIGO 0.9 2.8 2.7
A+ 1.4 3.1 3.0
ET 3.8 5.1 4.8
CE 4.1 5.2 5.1
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shows the case where σ*,A= σ*,B, we use it as a reference. We
can see that when ET only observes for 1 yr, the green and cyan
histograms almost overlap, and hence it is hard to distinguish
σ*,A= 161 from 171 km s−1. However, as we gradually
increase the observation time to 10 yr, the green and the cyan
histograms separate, indicating that a K-S test is able to
distinguish 161 and 171 km s−1 using the observed time-delay
distributions.

The lower panel of Figure 6 shows the ratio of K-S(σ*,A=
161 km s−1, σ*,B= 161 km s−1) over K-S(σ*,A= 171 km s−1,
σ*,B= 161 km s−1). As mentioned before, this ratio should
always be smaller than 1 because the δt distribution with
σ*,B= 161 km s−1 should be closer to theoretical model with
σ*,A= 161 than σ*,A= 171 km s−1. Nevertheless, due to the
randomness of the sampling, and the limitation of the
observation duration, the ratio may be bigger than 1 in some
cases. This expectation is consistent with the lower panel of
Figure 6 where we can see that the majority of the area of the
histogram is smaller than 1. We can consider the area smaller
than 1 as the probability of having correct inference for the true
underlying σ*. As expected, Figure 6 shows that when we
increase the observation time, the area of the histogram at
values <1 gets larger while the area >1 gets smaller, indicating
that increasing observing time enhances the probability of
having a correct inference for the underlying lens model.

We demonstrate how this procedure can be applied to other
values of σ* in Figure 7, which shows σ*,A versus the
probability of having a correct inference assuming three
different observation times: 1, 5, and 10 yr. Similar to
Figure 6, we use mock observational samples with σ*,B=
161 km s−1 but now compare them with theoretical models in
the range of σ*,A= 161± 20 km s−1 with an increment of
2 km s−1, instead of just σ*,A= 171 km s−1. We repeat this
procedure 30 times and compute the average K-S statistics and
the maximum and minimum values as the bounds of the error
bars. As expected, the probability of a correct inference
improves when σ*,A is farther away from the σ*,B. It is easier to
distinguish models that are farther apart. As shown in Figure 7,
for the case of σ*,B= 161 km s−1, we can exclude σ* <
161–12 km s−1 and σ* > 161+ 16 km s−1 after 1 yr of
observation at 68% confidence. Similarly, we are able to
exclude σ* < 161–16 km s−1 and σ* > 161+ 18 km s−1 after
5 yr of observation, and exclude σ* < 161–10 km s−1 and
σ* > 161+ 14 km s−1 after 10 yr of observation at 90%
confidence.

3.4. The Effect of Source Population on the Lensing Rate

As described in Section 2.4, Nlensing depends not only on the
lens population, but also the source population. The distribu-
tion of sources is determined by the particular BBH formation

Figure 6. K-S statistics for 1, 5, and 10 yr. We use ET as the detector in this plot. Upper panels: the PDFs of K-S values from comparing samples generated from a
model with σ*,B = 161 km s−1 and a model with σ*,A = 161 km s−1 (i.e., K-S(σ*,A = 161 km s−1, σ*,B = 161 km s−1), green histogram) and from comparing
samples generated from a model with σ*,A = 171 km s−1 and a model with σ*,B = 161 km s−1 (i.e., K-S(σ*,A = 171 km s−1, σ*,B = 161 km s−1), cyan histogram).
The two distributions diverge away from each other as the detection duration time increases, meaning we can better distinguish between models with σ* = 171 km s−1

and with σ* = 161 km s−1. Lower panels: the ratio of K-S(σ*,A = 161 km s−1, σ*,B = 161 km s−1) over K-S(σ*,A = 171 km s−1, σ*,B = 161 km s−1). The PDF area
where the ratio is smaller than 1 is the probability of having a correct inference, which increases as we observe for a longer time.

10

The Astrophysical Journal, 929:9 (19pp), 2022 April 10 Xu, Ezquiaga, & Holz



channel. In this section, we focus on how the assumptions
related to binary formation evolution affect Nlensing.

We calculate the rate of multiple images, Nlensing,2nd, for
different values of the BBH merger rate parameterization
described in Equation (10), assuming a wide range of α, β, and
zp. The results for 2G and 3G detectors are presented in
Figures 8 and 9, respectively. We can see the following features
from the contour plot for aLIGO and A+. First, at constant zp,
Nlensing,2nd increases as α increases. This is because when
increasing α, the slope at low redshift gets steeper and the
maximum value of NBBH becomes higher since the local merger
rate is fixed. Nlensing,2nd increases as there are more BBH
sources for larger α. Second, at constant α, Nlensing,2nd increases
as zp increases. This is because the original BBH merger rate
increases when we increase zp when fixing the local merger rate
and the slope α. Third, it is difficult for aLIGO to probe the
region where N 1 yrlensing,2nd

1< - because it requires a long
observation time to achieve a precise constraint on the lensing
event rate. Finally, when zp> 5, Nlensing,2nd stays roughly
constant since aLIGO and A+ are mostly sensitive to BBHs at
low redshift; thus, any variations of zp at high redshift z 6
have a minimal impact on the observed Nlensing,2nd for aLIGO.
For ET and CE, as shown in Figure 9, their detection ability is
significantly deeper, and the expected Nlensing,2nd is higher than
for aLIGO and A+. Most of the region has
N 1 yrlensing,2nd

1> - , and thus 3G detectors are sensitive to a
wider parameter space than 2G detectors.

Similarly, we can also draw contour plots for Nlensing,2nd as a
function of zp and β, as shown in the right column of Figures 8
and 9. We can see that at low zp, Nlensing,2nd decreases with
increasing β and then stays constant. This is because when β
becomes large, the slope at higher redshift gets steeper but the
general shape of the NBBH does not change significantly; hence,
Nlensing,2nd stays relatively constant. The contours for Nlensing,2nd

become sparse when zp is high, due to similar reasons to those
mentioned above regarding the sensitive cosmological volumes
for different detectors. However, since we are considering
BBHs formed following star formation, zp is unlikely to be
greater than z∼ 6, so we only show results for cosmological
distances within this.
These results show the potential for constraining the BBH

source population with GW strong lensing observations. Even the
nondetection of strong lensing, and accompanying upper limits
on the lensing event rate (e.g., N 1 yrlensing,2nd

1< - ) provide
constraints on parameters of the phenomenological model
(Equation (10)) as shown in the contour plots in Figures 8 and
9. We mark the contour where N 1 yrlensing,2nd

1= - . Alterna-
tively, when fixing the formation scenario, strong lensing
observations (or lack thereof) can be used to constrain the SFR
and delay-time distribution, as we show in Appendix B. As
mentioned before, the lensing event rate in the region where
N 1 yrlensing,2nd

1< - is difficult to constrain unless the observa-
tional duration is long. Therefore, 3G detectors provide better
constraints on the source population than 2G detectors, not only
because they are sensitive to higher redshift, but also because they
have higher lensing event rates and the regions where
N 1 yrlensing,2nd

1> - are wider. A realistic analysis of actual data
would require a Bayesian population study so that all possible
variables are varied at the same time. These analyses of individual
events could be complemented with constraints from the
stochastic background (Buscicchio et al. 2020; Mukherjee et al.
2021).

4. Discussion and Conclusions

We have explored the use of strong lensing of GW sources
to study the distribution of galaxies and the population of
BBHs in the universe. Unlike the case of strong lensing
samples in the electromagnetic (EM) spectrum, GW astronomy

Figure 7. Probability of correct inference as a function of σ*,A for the case of ET. We set the characteristic lens galaxy velocity dispersion of the mock observation
sample to σ*,B = 161 km s−1. The solid line with different colors represents the average probability of correct inference for observation time from 1, 5, and 10 yr. The
bars show the minimum and the maximum probability of correct inference at the given σ*,A. The black dashed lines mark the place where the probability of having a
correct inference equals 68% and 90%. We assume ET is always online within the observation duration time.
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offers the possibility of all-sky searches for lenses over a wide
range of time delays, δt, with well characterized selection
functions. Furthermore, GW sources do not suffer from dust
extinction, and are completely unaffected by any sources of
obscuration along the line-of-sight (except for gravitational
effects, which are the whole point of this paper). We argue that
future samples of multiply imaged GW events will provide a
powerful probe with which to study properties of both the
lenses and the sources.

We calculate the lensing event rate Nlensing assuming
different lens galaxy and source populations. We consider the
number of detected lensing pairs per year, Nlensing,2nd, where at
least two images of a lensing system are detected. We adopt a
magnification distribution for the second-brightest image,
P(μ)2nd, for the calculation of Nlensing,2nd and discuss alternate
definitions of the magnification distribution in Section 2.4. We
summarize the results in Table 1 and Figure 4. In general, our
prediction for the lensing event rate is consistent with the
current nondetection of lensing events (Hannuksela et al. 2019;
Abbott et al. 2021b; Dai et al. 2020; McIsaac et al. 2020). Our
results also generally agree with previous predictions on the

lensing event rate: Li et al. (2018) predicted 0.84 events per
year for aLIGO and 38.6 events per year for ET, both
assuming MD14 SFR as in this work. Wierda et al. (2021) also
predicted the lensing event rate for a detector network
composed of LIGO, Virgo, and KAGRA of 1.3 0.4

0.6
-
+ yr−1. Note

that the observed lensing event rate depends on many factors
including the specific SFRs that are used, the delay-time
distribution for the binary coalescence, and detection sensitiv-
ities, which may be different in different studies. Yet in general,
the results do not significantly disagree with each other.
We find that for typical lens parameters, the expected

number of lensing pairs per year is about 0.1 yr−1 for aLIGO
and ∼1 yr−1 for A+. We expect hundreds of events will be
detected with 3G GW detectors such as ET and CE. The overall
fraction of the lensing events relative to unlensed BBH merger
events is 0.3%; thus, the majority of the events are unlensed
ones. Yet detecting even just a few strongly lensed GW
systems will provide useful information. The predicted overall
fraction in this work is also consistent with previous work such
as Wierda et al. (2021), which is about ∼0.1%, and Li et al.
(2018) and Oguri (2018).

Figure 8. Lensing event rate Nlensing,2nd distributions (number of the lensing pairs per year) for 2G detectors aLIGO and A+ still assuming σ* = 161 km s−1. Contours
are in log10 scale. Left column: Nlensing,2nd contour plot in zp–α parameter space. We fix β = 1. The black solid line represents the parameter regime that will likely
have 1 event per year. Right column: Nlensing contour plot in zp–β parameter space. We fix α = 1, which is roughly at the peak of the constraint in O2 (see Figure 15 in
The LIGO Scientific Collaboration et al. 2021).
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We stress that our results are subject to our assumptions
about the lens and source populations. We demonstrate the
dependence of the lensing event rate on the galaxy population,
characterized by σ*, in Figure 4. We also test the dependence
of the strong lensing rate on the source population in Figures 8
and 9, using a parameterization in terms of α, β, and zp in
Equation (10). We mark the region with a black solid line
where we expect the detection of one lensing pair per year.
These plots demonstrate that both detection and nondetection
of lensing events will provide valuable information on the lens
and source population.

In addition, by performing lensing simulations, we show that
the distribution of time delays between multiply imaged events
provides helpful information to constrain the population of
lenses, and is especially sensitive to the characteristic galaxy
velocity dispersion, σ*, defined in the Schechter function in
Equation (3). We show that 3G detectors such as ET could
constrain σ* using the shape of the time-delay δt distribution to
a precision of 17% at 68% probability after 1 yr of observation,
and ∼15%–21% at >90% probability after ∼5–10 yr of
observation. The time duration to achieve this precision may
differ from this prediction, since it depends on the actual

lensing event rate, Nlensing, which depends on σ*, the galaxy
density f*, and the source population 0. Our main focus in
this paper is to show the potential of using the δt distribution to
constrain the lens population; the precise constraints will
depend on the lensing rate.
We emphasize that this paper adopts a highly simplified model.

Our aim is to provide a demonstration of the tremendous potential
of GW lensing, rather than the definitive analysis of lensing
constraints. Our analysis could be extended in several ways. First,
we have assumed that the lens galaxy population does not evolve
with redshift. However, we know that galaxy populations do
evolve over cosmological time in the real universe. For example,
the Schechter function describing the velocity dispersion distribu-
tion in Equation (3) will also be a function of redshift. The redshift
evolution of the lens population is something that would be
accessible with GW lensing. For example, Oguri (2018) took into
account the redshift evolution of the galaxy density f*(z) based
on the result from hydrodynamic simulation. The number density
of the galaxies with σ> 150 km s−1 at z= 6 is about an order-of-
magnitude lower than their low-redshift counterparts. Changing
the density evolution of galaxies will change the rate of strong
lensing Nlensing as a function of redshift, and this is another

Figure 9. Lensing event rate Nlensing,2nd (number of the lensing pairs per year) distributions for 3G detectors ET and CE assuming σ* = 161 km s−1. Contours are in
log10 scale. Left column: Nlensing,2nd contour plot in zp–α parameter space. We fix β = 1. Right column: Nlensing,2nd contour plot in zp–β parameter space. We fix α = 1,
which is roughly at the peak of the constraint in O2 (see Figure 15 in The LIGO Scientific Collaboration et al. 2021).
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interesting quantity that lensing populations will be able to probe.
We note that this evolution will nonetheless preserve the shape of
the magnification distribution (see Figure 11 in Wang et al. 2021).
Including these effects will yield a more realistic estimation of the
strong lensing event rate. The inclusion of lensing analyses from
detailed cosmological simulations may also offer significant
improvements in estimates of lensing rates and statistics. None-
theless, aLIGO and A+ are more sensitive to events in the local
universe, and hence, the calculations are not significantly affected
for these cases. Moreover, there is a large uncertainty in our
understanding of the distribution of lenses at high redshift. GW
astronomy may shed light on these measurements and provide
unique insights on the dark matter distribution at those redshifts.

This work could also be extended by considering different
sources. Here, we have focused on stellar-mass BBHs from
canonical astrophysical origin, characterized by the SFR and
delay-time distributions. However, there are alternative models
that may also be probed. For example, BBHs forming directly
from Population III stars could lead to high-redshift GW
events, with a merger rate history peaking around z∼ 10
(Kinugawa et al. 2014; Hartwig et al. 2016; Belczynski et al.
2017). These events are likely to be strongly lensed due to their
high redshifts and would be perfect targets for 3G detectors (Ng
et al. 2021). Similarly, primordial BBHs could be another
source of GWs at high redshift. Such primordial BHs can be
formed due to the gravitational collapse of primordial density
fluctuations in the early universe (Sasaki et al. 2018). They
could form binaries soon after their formation and merge at
high redshift, and hence are also likely to be lensed. One could
potentially use the observation/nonobservation of strongly
lensed GW events to constrain primordial black hole (PBH)
models and star formation models of the early cosmic epoch in
general. Although in this work we have focused on the lensing
rates and their redshift evolution, future GW detectors will also
provide information about the mass distribution of the strongly
lensed events. This would be a key factor to disentangle the
origin of the lensed events and whether they constitute the
same population as the unlensed binaries.

More massive binaries, such as supermassive black hole
binaries (SMBBHs), could also be strongly lensed, although
these mergers occur below the frequency band of ground-based
GW detectors. The population of SMBBHs may extend to
redshifts larger than 10 (Hughes 2002; Sesana et al.
2005, 2007; Klein et al. 2009), and would therefore present
an excellent sample for strong lensing. There are, however, lots
of uncertainties about the population of SMBBHs, which will
consequently affect the strong lensing event rate. Typical
scenarios expect tens of event per year, although only a few of
them might end up being multiply imaged within a 5 yr LISA
mission (Sereno et al. 2010). In addition, if present in nature,
intermediate-mass BBHs would constitute a perfect target for
lensing studies, since LISA will hear them across the history of
the universe. Our analysis could be naturally extended to these
LISA populations.

Our simplified lens model could be enriched in a few ways.
Higher-mass lenses such as galaxy clusters (Smith et al. 2018a), or
more compact lenses like BHs (Virbhadra & Ellis 2000; Gralla
et al. 2019; Gralla & Lupsasca 2020), may also play a role in
strong lensing. GW lensing is sensitive to an enormous range of
scales, from time delays of fractions of a second up to many years,
spanning over 10 orders of magnitude. When compared to GW
surveys, EM lensing surveys are often significantly more restricted

due to selection effects of the sample. GW lensing can also
potentially discover low-surface brightness subhalos (Oguri &
Takahashi 2020).
There are a number of important simplifications we have

implemented in our lensing framework, and these should be
generalized in future work. We emphasize that all of these
extensions, such as incorporating a general halo mass function,
baryonic effects, and galaxy types, may be constrained by
observations of the strong lensing of GW sources. For example,
we could adopt a more realistic lens model, such as a Navarro–
Frenk–White profile (Navarro et al. 1996) instead of a simple
SIE model. We generalize this further to incorporate a range of
galaxy types, such as spiral and irregular galaxies, which have
their own Schechter function and axis ratio distribution
function. We emphasize that the distributions of the lensing
events presented above, such as the magnification distribution,
will be able to constrain these properties of the lenses.
When considering smaller scales, another important extension

of this work would be to take into account baryonic physics,
which will alter the substructure of dark matter halos. These
effects, such as stellar or AGN feedback, may have an impact on
the subhalo population, which would in turn modify the lensing
optical depth and the distributions of lensing properties (Hoeft
et al. 2004; Duffy et al. 2010; Chan et al. 2015; Nadler et al.
2021). For instance, hydrodynamical simulations have demon-
strated the impact of baryonic effects on the probability of lensing
(Hilbert et al. 2008; Despali & Vegetti 2017; Robertson et al.
2020). In this work, we have focused on lensing by dark matter
halos of mass ∼1011Me. This corresponds to the mass scale
where hydrodynamical simulations predict the greatest probability
for lensing, with results being consistent with simple singular
isothermal models (Robertson et al. 2020). As expected, there
arise more significant differences at smaller scales (Despali &
Vegetti 2017; Robertson et al. 2020). The detailed substructure of
dark matter halos may affect not only the lensing optical depth but
also magnification distributions and time-delay distribution. We
leave a comprehensive analysis of the full distribution of lenses
for future work. We note that probing substructure could also be a
target for LISA (Takahashi & Nakamura 2003).
A fully detailed calculation of the BBH rate at high redshift

should take into account weak lensing, which could potentially
modify the magnification distribution and bias standard siren
measurements (Holz & Wald 1998; Holz & Linder 2005;
Hirata et al. 2010). Weak lensing of GWs is also discussed in
Mukherjee et al. (2020a, 2020b). Microlensing of GWs is
another important topic (Cheung et al. 2021) that could be
incorporated in future work.
It is to be noted that the magnification distribution can be

measured for standard candles such as Type Ia supernovae, and
that this also provides a unique lensing constraint (Seljak &
Holz 1999; Zumalacárregui & Seljak 2018). In addition, the
magnification maps of such sources can be used to probe
cosmology (Cooray et al. 2006). GW sources offer a direct
measurement of distance, since their intrinsic luminosities are
calibrated by general relativity to make them standard
sirens (Schutz 1986; Holz & Hughes 2005). However, without
an independent estimate of the redshift, lensing magnification is
completely degenerate with distance. This degeneracy might be
broken by finding an optical counterpart (Dalal et al. 2006;
Abbott et al. 2017), or by using known properties of the mass
distribution (Farr et al. 2019; Ezquiaga & Holz 2021). In
addition to being another powerful constraint of the lens
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population, a combined analysis of both the time-delay
distribution and the magnification distribution may provide
simultaneous constraints on σ* and qg. The magnification ratio,
μ2/μ1, will be measurable from a population of lensed GW
sources. This could provide a potentially interesting probe of the
axis ratio, or the ellipticity distribution of lens galaxies, as
discussed in Appendix D. Gamma-ray bursts and fast radio
bursts also provide interesting source populations for lensing
studies (Holz et al. 1999; Muñoz et al. 2016; Cordes et al. 2017),
in a similar fashion to the GW sources discussed in this paper.

In addition to astrophysics, statistical studies of the
population of strongly lensed GWs will provide valuable
information about fundamental physics. In particular, the
optical depth and time-delay distribution computed in this
work assumes the validity of general relativity. Modified
theories of gravity could, for example, produce additional
echoes to each lensed image (Ezquiaga & Zumalacárregui
2020) and alter the net time-delay distribution. Alternate
models of gravity might also change the growth of structure in
the universe and hence the matter distribution of the
lenses (Ferreira 2019), which would leave discernible imprints
on the lensing populations. Thus, our methodology could be
extended to directly test general relativity.

As the sensitivity of GW detectors improves, the detection of
strong lensing of GW sources is inevitable. Statistical studies of
this lensed population will provide important probes of the
properties of the lenses as well as novel constraints on the
properties of GW sources. These strong lensing events will
open a new door to exploration of the inhomogeneous universe.
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Appendix A
Optical Depth for Different Lens Models

In this appendix, we compare the optical depth τ derived
using a singular isothermal ellipsoid (SIE) model as in the main
text (τ) with the singular isothermal sphere (SIS) model (τSIS).
The cross section of the SIS lens model is simply given by the
Einstein radius θE of the lensing system in Equation (5). Apart
from the geometrical configuration of the source-lens system,
the Einstein radius is fully determined by the galaxy velocity
dispersion σ.

Similarly as in Section 2.1, the differential optical depth is
given by:
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where mins and maxs are the lower and upper bound of σ. We
substitute the differential co-moving volume per solid angle in
the second line. When setting 0mins = and maxs = ¥ and
fixing the Schecter function for the number density of the
lenses f(σ|zL), the expression of τSIS can be integrated
analytically (Haris et al. 2018):
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We can generalize the above expression to arbitrary integration
bounds mins and maxs . Again, this can be integrated analytically.
We obtain:
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When comparing this calculation with the one in the main
text, we find that the ratio of optical depths is τ/τSIS≈ 0.96 and
almost stays constant throughout the redshift range
z= 1∼ 100. This can be seen in Figure 10 where we plot
both optical depths for different values of σ*. The product
τSIS× 0.96 gives a good approximation to the SIE optical
depth τ with a difference of only ∼0.5%, when 0mins = ,
maxs = ¥. The factor of 0.96, however, does not apply to other
scenarios.
The optical depth of the SIE model is subject to the choice of

the multiple-image cross section. Across this work, we fixed it
to be determined by the “cut region” in Kormann et al. (1994).
This region determines the area in which at least two images
are formed, and it typically encloses the “caustic region” where
four images are formed. Nonetheless, as displayed in Figure 2
of Kormann et al. (1994), when the lens axis ratio qg is small,
for example qg= 0.2, the caustic region sticks out the cut,
which increases the overall cross section by a bit. Given the
fact that most lenses have larger axis ratios, we believe this
effect is negligible.
In addition, we also explore the impact of integration limits

on the optical depth for the case of SIE lens. Figure 11 shows
the comparison using different mins and maxs . In the main text,
we set 0 km smin

1s = - and maxs = ¥ (in practice we set it to a
large number, 105 km s−1, around which the number density of
the galaxies is approximately equals to 0), which is shown in
the sky-blue solid line. In reality, the upper and lower velocity
dispersion might be different (Choi et al. 2007; McConnell &
Ma 2013), which would have an effect on τ(z). We tried
different choices and, as shown in Figure 11 with dashed lines,
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the difference is not very significant when changing the upper
and the lower bounds.

Appendix B
BBH Merger Rate History

In this appendix we provide further details about our choices
for the merger rate history of BBHs. We parameterize the
merger rate in the detector frame as:


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where  z 0 64.9 Gpc yr0 33.6
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+ - - is the local
merger rate density (Abbott et al. 2019), and e(z) encapsulates
all of the redshift information (Zhu et al. 2011). The definition
of e(z) is then:
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which describes the evolution of the BBH merger relative to the
local value. The factor (1+ z) converts the source-frame
merger rate to the observer-frame merger rate. The numerator
 z( ) is given by:
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where zf is the redshift at the binary formation. In this
expression,

*
 zf( )r is the SFR, Φ(zf, ξ) is the metallicity cut, and

P(Δt) is the delay-time distribution. The delay time Δt is the
look back time between binary formation and final merger:
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as the
probability distribution of Δt. This distribution is integrated
from a minimum delay time tminD to a maximum one, which is
equal to the age of the universe at a given redshift tH(z).

The SFR density
*
r determines the number of stars that form

per unit time and volume. Its units are MeMpc−3 yr−1. We

follow the parameterization of Madau & Dickinson (2014,
hereafter MD14):
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Note that we do not convert
*
 zf( )r from the source frame to the

detector frame
*
 z z1f f( ) ( )r + when integrating Equation (B3)

(Vitale et al. 2019; Callister et al. 2020). The binary evolves in
its own local frame with its own clock and thus does not have
time dilation. However, we do need to convert  z( ) from the
source frame to the detector frame, e z z z1 1( ) ( ) ( )= ´ + ,
as in Equation (B2).
Since BBH formation favors low metallicity, we include a

metallicity dependence factor Φ(zf, ξ), which is the fraction of
the SFR density with metallicity less than ξ, where we set
ξ= Z/Ze= 0.3 (Langer & Norman 2006). The final SFR
density is thus

*
z z, 0.3f( ) ( )x rF = .

We assume three kinds of SFR models and test how these
SFR parameters affect the lensing event rate: (1) MD14 SFR
with minimal delay time t 50 MyrminD = (the one used in the
main text); (2) MD14 SFR with t 1 Gyr;minD = and (3) a
constant SFR model

*
 M0.004 Mpc yr3 1r = - - with

t 50 MyrminD = . The tminD is set based on the result in
population synthesis studies (Belczynski et al. 2002; Postnov &
Yungelson 2006; Dominik et al. 2013), and the maximal delay
time to tH(z) introduced by the finite age of the universe.
The comparison of the observed BBH merger rate dN dzBBH

assuming the above three SFR scenarios is shown in Figure 12,
where we use ET as an example for the sensitivity. We can see
that when tminD is small or the star formation is more uniform
in the cosmic time, the BBH merger events are more extended
to higher redshift.
Next we use these different prescriptions for the BBH

merger rate to compute the expected rate of lensing. As in the
main text, we calculate the rate of detecting one strongly lensed
image Nlensing,1st and two multiply lensed images Nlensing,2nd,
comparing it with the overall (unlensed) BBH rate NBBH. We
summarize our lensing event rate results for the other two SFR
scenarios in Table 3.

Figure 10. The optical depth as a function of source redshift zS. The solid and
dashed lines represent τ assuming SIE model and SIS model, respectively.
Different colors represent different σ*.

Figure 11. SIE optical depth assuming different upper and lower bounds for
the velocity dispersion σ. The sky-blue solid line is the one we use in the main
text of the paper. We fix σ* = 161 km s−1 in this plot.
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Appendix C
Strong Lensing Event Rate from Simulations

We present an alternative approach for calculating Nlensing,1st

and Nlensing,2nd. Instead of solving the integral (Equation (16)),
we now obtain the lensing rate directly from the lensing
simulations. Basically we generate 100 mock observation
samples as described in Section 2.3 and present the average
lensing event rate and the standard deviation of these 100
samples in Table 4. To compute Nlensing,1st, we draw one
random number and compare it with P(w) of the primary
image. If the random number is smaller than P(w), we consider
the image as detected. We use two ways to compute Nlensing,2nd:
(1) We generate only one random number for each source, and
compare it with the P(w) of both images. If the random number
is smaller than both P(w), we consider the lensing pair to be
detected, as shown in the second column of Table 4. (2) We
generate one random number for each image and do the
comparison with their own P(w) as shown in the third column
of Table 4. Only if both random numbers are smaller than their
own P(w) do we consider the lensing pair to be detected.
By comparing the result with Table 1 in Section 3.1, we can

see that the lensing event rate derived from the integration in
Equation (16) can actually give a very good estimation. The
estimation of Nlensing,1st from the integration in Table 1 is very
close to the average value from the simulation as shown in the
first column of Table 4. The estimation of Nlensing,2nd from the
integration is a bit higher than the Nlensing,2nd in the third
column of Table 4 but is consistent with the second column.
This is because when doing the integration, we are using the
magnification distribution of the secondary image P(μ)2nd, and
thus we only take into account the P(w) of the secondary
image. The integral essentially gives the number of the lensing
events whose secondary images are detected. Yet in some
cases, due to the change in the orientation angle, we might miss
the primary image but only detect the secondary one, which is
less loud. Therefore, we think the actual lensing event rate
might be lower than the prediction from Equation (16). The
second method, however, has taken into account these
scenarios, and therefore we believe the third column is more

realistic. Nevertheless, the second column still gives a reason-
able prediction, is less computationally expensive, and can
show the dependence of lensing event rate on σ*.

Appendix D
Magnification Ratio Distribution

In addition to the time-delay distribution studied in the main
text, the magnification ratio of the secondary over the primary
image μ2/μ1 distribution is another potential observable
property for GW lensing. According to Equation (13), the
magnification could potentially probe the axis ratio of the lens
galaxies. We show the intrinsic and the observed μ2/μ1 ratio
for aLIGO and ET as a demonstration in Figure 13. Due to the
sensitivity, aLIGO may miss some of the secondary image with
small μ2, and therefore, the observed μ2/μ1 distribution peaks
near 1. Yet for higher sensitivity like ET, we are able to
observe the full distribution. A combined analysis of both time-
delay distribution and magnification distribution may allow us
to simultaneously constrain σ* and qg.
We can compare these results with the SIS model in which

case the magnifications of each of the two images are known
analytically: |μ±|= 1± 1/β, where β indicates the angular

Figure 12. Expected BBH merger rate ( dN dzBBH ) as a function of
redshift observed by ET under different assumptions of the SFR model in
Madau & Dickinson (2014) with minimal binary merger delay time
t 50 MyrminD = (blue line), t 1 GyrminD = (orange line), and constant SFR

*
 M0.004 Mpc yr3 1r = - - (green line).

Table 3
Lensing Event Rate ( Nlensing, yr

−1) Assuming σ* = 161 km s−1 for Different
SFR Scenarios

Constant SFR, tminD = 50 Myr Nlensing,1st Nlensing,2nd NBBH

aLIGO 0.09 0.02 3.4 × 102

A+ 0.58 0.13 1.4 × 103

ET 32 14 2.6 × 104

CE 42 31 3.5 × 104

MD 14 SFR, tminD = 1 Gyr Nlensing,1st Nlensing,2nd NBBH

aLIGO 0.19 0.04 5.4 × 102

A+ 1.02 0.3 2.7 × 103

ET 12 8 3.7 × 104

CE 14 13 4.1 × 104

Note. We assume an SIE lens model. The first table assumes constant SFR

*
 M0.004 Mpc yr3 1r = - - and t 50 Myr;minD = the second table
assumes MD14 (Madau & Dickinson 2014) and t 1 GyrminD = . Similarly,
the three columns correspond to Nlensing,1st and Nlensing,2nd derived from using
P(μ)1st, P(μ)2nd in Equation (16), and the expected observed BBH merger event
per year NBBH.

Table 4
Lensing Event Rate of the Primary Image ( Nlensing,1st), and the Lensing Event
Rate with at least Two Images Detected ( Nlensing,2nd), Derived from Taking the
Average and the Standard Deviation of 100 1 yr Mock Observation Samples

Primary
Image ( Nlensing,1st)

Nlensing,2nd Single

Random Number

Nlensing,2nd 2 Ran-

dom Numbers

aLIGO 0.36 ± 0.61 0.04 ± 0.19 0.03 ± 0.17
A+ 2.87 ± 1.62 0.67 ± 0.79 0.22 ± 0.46
ET 94 ± 10 50 ± 6 45 ± 7
CE 111 ± 11 91 ± 10.0 89 ± 10

Note. The first column is the number of events whose primary images are
detected. The second and the third columns show the number of the lensing
events with at least two images detected but with different criteria. The second
column compares one random number with the P(w) for both images while the
third column compares one random number for each image. These results are
consistent with the analytical calculation presented in Table 1.
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position of the source (Schneider et al. 1992). On the left panel
of Figure 14, we present the magnification distribution of each
of the images. This plot can be compared to the results in the
main text for the SIE model in Figure 3. Two main differences
are noticeable. In the SIS model, the brightest image always has
a magnification larger than two for angular positions within the
Einstein radius. Second, the magnification distribution of the

parity-odd image, which is always less bright, does not have
any peak, as in the SIE model. This is because in the SIE
model, the second-brightest image behaves differently when
there are four images. With this information in hand, we plot
the relative magnification distribution in the right panel of
Figure 14. This can be compared to the upper-left panel of
Figure 13.

Figure 13. Intrinsic and the observed μ2/μ1 ratio. The left, middle, and right panels present the intrinsic μ2/μ1, μ2/μ1 observed by aLIGO, and μ2/μ1 observed by
ET. The upper panels are PDFs, and the lower panels are CDFs. We demonstrate two cases, σ* = 185 km s−1 and σ* = 200 km s−1. The magnification ratio is not
sensitive to the change in σ*.

Figure 14. Magnification distribution for the SIS model. Left panel: we present the P(|μ|) of the individual images. The blue histogram represents the absolute
magnification of the primary images, and orange represents that of the secondary images. Right panel: we present the magnification ratio.

18

The Astrophysical Journal, 929:9 (19pp), 2022 April 10 Xu, Ezquiaga, & Holz



ORCID iDs

Daniel E. Holz https://orcid.org/0000-0002-0175-5064

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, Natur, 551, 85
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019, ApJL, 882, L24
Abbott, B. P., Abbott, R., bbott, T. D., et al. 2018, LRR, 21, 3
Abbott, R., Abbott, T. D., Abraham, S., et al. 2021a, ApJ, 913, L7
Abbott, R., Abbott, T. D., Abraham, S., et al. 2021b, arXiv:2105.06384
Adams, E. A. K., & van Leeuwen, J. 2019, NatAs, 3, 188
Belczynski, K., Kalogera, V., & Bulik, T. 2002, ApJ, 572, 407
Belczynski, K., Ryu, T., Perna, R., et al. 2017, MNRAS, 471, 4702
Biesiada, M., Ding, X., Piórkowska, A., & Zhu, Z.-H. 2014, JCAP, 2014, 080
Blandford, R., & Narayan, R. 1986, ApJ, 310, 568
Buscicchio, R., Moore, C. J., Pratten, G., et al. 2020, PhRvL, 125, 141102
Callister, T., Fishbach, M., Holz, D. E., & Farr, W. M. 2020, ApJL, 896, L32
Calzetti, D. 1997, AJ, 113, 162
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Cao, S., Pan, Y., Biesiada, M., Godlowski, W., & Zhu, Z.-H. 2012, JCAP,

2012, 016
Chae, K.-H. 2003, MNRAS, 346, 746
Chae, K.-H. 2005, ApJ, 630, 764
Chae, K.-H., & Mao, S. 2003, ApJL, 599, L61
Chan, T. K., Kereš, D., Oñorbe, J., et al. 2015, MNRAS, 454, 2981
Cheung, M. H. Y., Gais, J., Hannuksela, O. A., & Li, T. G. F. 2021, MNRAS,

503, 3326
Choi, Y.-Y., Park, C., & Vogeley, M. S. 2007, ApJ, 658, 884
Collett, T. E. 2015, ApJ, 811, 20
Cooray, A., Holz, D. E., & Huterer, D. 2006, ApJL, 637, L77
Cordes, J. M., Wasserman, I., Hessels, J. W. T., et al. 2017, ApJ, 842, 35
Corless, V. L., & King, L. J. 2007, MNRAS, 380, 149
Cusin, G., Durrer, R., & Dvorkin, I. 2019, arXiv:1912.11916
Dai, L., & Venumadhav, T. 2017, arXiv:1702.04724
Dai, L., Venumadhav, T., & Sigurdson, K. 2017, PhRvD, 95, 044011
Dai, L., Zackay, B., Venumadhav, T., Roulet, J., & Zaldarriaga, M. 2020,

arXiv:2007.12709
Dalal, N., Holz, D. E., Hughes, S. A., & Jain, B. 2006, PhRvD, 74, 063006
Davis, A. N., Huterer, D., & Krauss, L. M. 2003, MNRAS, 344, 1029
Despali, G., & Vegetti, S. 2017, MNRAS, 469, 1997
Diego, J. M. 2019, A&A, 625, A84
Diego, J. M., Kaiser, N., Broadhurst, T., et al. 2018, ApJ, 857, 25
Ding, X., Biesiada, M., & Zhu, Z.-H. 2015, JCAP, 2015, 006
Dominik, M., Belczynski, K., Fryer, C., et al. 2013, ApJ, 779, 72
Dominik, M., Berti, E., O’Shaughnessy, R., et al. 2015, ApJ, 806, 263
Duffy, A. R., Schaye, J., Kay, S. T., et al. 2010, MNRAS, 405, 2161
Ezquiaga, J. M., & Holz, D. E. 2021, ApJL, 909, L23
Ezquiaga, J. M., Holz, D. E., Hu, W., Lagos, M., & Wald, R. M. 2021, PhRvD,

103, 064047
Ezquiaga, J. M., & Zumalacárregui, M. 2020, PhRvD, 102, 124048
Faber, S. M., & Jackson, R. E. 1976, ApJ, 204, 668
Farr, W. M., Fishbach, M., Ye, J., & Holz, D. E. 2019, ApJL, 883, L42
Ferreira, P. G. 2019, ARA&A, 57, 335
Fishbach, M., & Kalogera, V. 2021, ApJL, 914, L30
Gralla, S. E., Holz, D. E., & Wald, R. M. 2019, PhRvD, 100, 024018
Gralla, S. E., & Lupsasca, A. 2020, PhRvD, 101, 044031
Hannuksela, O. A., Haris, K., Ng, K. K. Y., et al. 2019, ApJL, 874, L2
Haris, K., Mehta, A. K., Kumar, S., Venumadhav, T., & Ajith, P. 2018,

arXiv:1807.07062
Hartwig, T., Volonteri, M., Bromm, V., et al. 2016, MNRAS, 460, L74
Hilbert, S., White, S. D. M., Hartlap, J., & Schneider, P. 2008, MNRAS, 386, 1845
Hirata, C. M., Holz, D. E., & Cutler, C. 2010, PhRvD, 81, 124046
Hoeft, M., Mücket, J. P., & Gottlöber, S. 2004, ApJ, 602, 162
Hoekstra, H., Yee, H. K. C., & Gladders, M. D. 2004, ApJ, 606, 67
Holz, D. E. 2001, ApJL, 556, L71
Holz, D. E., & Hughes, S. A. 2005, ApJ, 629, 15
Holz, D. E., & Linder, E. V. 2005, ApJ, 631, 678
Holz, D. E., Miller, M. C., & Quashnock, J. M. 1999, ApJ, 510, 54
Holz, D. E., & Wald, R. M. 1998, PhRvD, 58, 063501
Hughes, S. A. 2002, MNRAS, 331, 805
Keeton, C. R., & Madau, P. 2001, ApJL, 549, L25
Kim, K., Lee, J., Yuen, R. S. H., Akseli Hannuksela, O., & Li, T. G. F. 2020,

arXiv:2010.12093
Kinugawa, T., Inayoshi, K., Hotokezaka, K., Nakauchi, D., & Nakamura, T.

2014, MNRAS, 442, 2963

Klein, A., Jetzer, P., & Sereno, M. 2009, PhRvD, 80, 064027
Kolmogorov, A. 1933, Giornale dellâIstituto Italiano degli Attuari, 4, 83
Kormann, R., Schneider, P., & Bartelmann, M. 1994, A&A, 284, 285
Langer, N., & Norman, C. A. 2006, ApJL, 638, L63
Li, S.-S., Mao, S., Zhao, Y., & Lu, Y. 2018, MNRAS, 476, 2220
Li, X., Hjorth, J., & Richard, J. 2012, JCAP, 2012, 015
LIGO Scientific Collaboration, Aasi, J., Abbott, B. P., et al. 2015, CQGra, 32,

074001
Liu, X., Magana Hernandez, I., & Creighton, J. 2021, ApJ, 908, 97
Liu, Y., Cao, S., Liu, T., et al. 2020, ApJ, 901, 129
Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415
Maggiore, M., Van Den Broeck, C., Bartolo, N., et al. 2020, JCAP, 2020, 050
Massey, R., Kitching, T., & Richard, J. 2010, RPPh, 73, 086901
McConnell, N. J., & Ma, C.-P. 2013, ApJ, 764, 184
McIsaac, C., Keitel, D., Collett, T., et al. 2020, PhRvD, 102, 084031
Meneghetti, M., Davoli, G., Bergamini, P., et al. 2020, Sci, 369, 1347
Mukherjee, S., Broadhurst, T., Diego, J. M., Silk, J., & Smoot, G. F. 2021,

MNRAS, 501, 2451
Mukherjee, S., Wandelt, B. D., & Silk, J. 2020a, PhRvD, 101, 103509
Mukherjee, S., Wandelt, B. D., & Silk, J. 2020b, MNRAS, 494, 1956
Muñoz, J. B., Kovetz, E. D., Dai, L., & Kamionkowski, M. 2016, PhRvL, 117,

091301
Nadler, E. O., Banerjee, A., Adhikari, S., Mao, Y.-Y., & Wechsler, R. H. 2021,

ApJL, 920, L11
Narayan, R., & Bartelmann, M. 1996, arXiv:astro-ph/9606001
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563
Ng, K. K. Y., Vitale, S., Farr, W. M., & Rodriguez, C. L. 2021, ApJL, 913, L5
Ng, K. K. Y., Wong, K. W. K., Broadhurst, T., & Li, T. G. F. 2018, PhRvD,

97, 023012
Oguri, M. 2018, MNRAS, 480, 3842
Oguri, M., & Takahashi, R. 2020, ApJ, 901, 58
Oguri, M., Taruya, A., Suto, Y., & Turner, E. L. 2002, ApJ, 568, 488
Piórkowska, A., Biesiada, M., & Zhu, Z.-H. 2013, JCAP, 2013, 022
Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2020, A&A, 641, A6
Postnov, K. A., & Yungelson, L. R. 2006, LRR, 9, 6
Postnov, K. A., & Yungelson, L. R. 2014, LRR, 17, 3
Press, W. H., & Schechter, P. 1974, ApJ, 187, 425
Reitze, D., Adhikari, R. X., Ballmer, S., et al. 2019, BAAS, 51, 35
Robertson, A., Smith, G. P., Massey, R., et al. 2020, MNRAS, 495, 3727
Sasaki, M., Suyama, T., Tanaka, T., & Yokoyama, S. 2018, CQGra, 35, 063001
Schneider, P. 1996, MNRAS, 283, 837
Schneider, P., Ehlers, J., & Falco, E. 1992, Gravitational Lenses (Berlin:

Springer)
Schneider, P, Kochanek, C. S., & Wambsganss, J. 2006, Gravitational Lensing:

Strong, Weak and Micro: Saas-Fee Advanced Course 33 (1st ed.; Berlin:
Springer)

Schutz, B. F. 1986, Natur, 323, 310
Seljak, U., & Holz, D. E. 1999, A&A, 351, L10
Sereno, M., Sesana, A., Bleuler, A., et al. 2010, PhRvL, 105, 251101
Sesana, A., Haardt, F., Madau, P., & Volonteri, M. 2005, ApJ, 623, 23
Sesana, A., Volonteri, M., & Haardt, F. 2007, MNRAS, 377, 1711
Smail, I., Ellis, R. S., & Fitchett, M. J. 1994, MNRAS, 270, 245
Smirnov, N. 1948, Ann. Math. Statist, 19, 279
Smith, G. P., Berry, C., Bianconi, M., et al. 2018a, in Gravitational Wave

Astrophysics: Early Results from Gravitational Wave Searches and
Electromagnetic Counterparts, Proc. of the IAU 338 (Cambridge:
Cambridge Univ. Press), 98

Smith, G. P., Jauzac, M., Veitch, J., et al. 2018b, MNRAS, 475, 3823
Sohn, J., Geller, M. J., Zahid, H. J., et al. 2017, ApJS, 229, 20
Takahashi, R., & Nakamura, T. 2003, ApJ, 595, 1039
Takahashi, R., Oguri, M., Sato, M., & Hamana, T. 2011, ApJ, 742, 15
The LIGO Scientific Collaboration 2019, arXiv:1904.03187
The LIGO Scientific Collaborationthe Virgo Collaboration, Abbott, R., et al.

2021, ApJL, 913, L7
To, C., et al. 2021, PhRvL, 126, 141301
Tully, R. B., & Fisher, J. R. 1977, A&A, 500, 105
Turner, E. L., Ostriker, J. P., & Gott, J. R. I. 1984, ApJ, 284, 1
Virbhadra, K. S., & Ellis, G. F. R. 2000, PhRvD, 62, 084003
Vitale, S., Farr, W. M., Ng, K. K. Y., & Rodriguez, C. L. 2019, ApJL, 886, L1
Wang, Y., Lo, R. K. L., Li, A. K. Y., & Chen, Y. 2021, PhRvD, 103, 104055
Wierda, A. R. A. C., Wempe, E., Hannuksela, O. A., Koopmans, L. V. E., &

Van Den Broeck, C. 2021, ApJ, 921, 154
Yang, L., Ding, X., Biesiada, M., Liao, K., & Zhu, Z.-H. 2019, ApJ, 874, 139
Yang, L., Wu, S., Liao, K., et al. 2022, MNRAS, 509, 3772
Zhu, X.-J., Howell, E., Regimbau, T., Blair, D., & Zhu, Z.-H. 2011, ApJ, 739, 86
Zumalacárregui, M., & Seljak, U. 2018, PhRvL, 121, 141101

19

The Astrophysical Journal, 929:9 (19pp), 2022 April 10 Xu, Ezquiaga, & Holz

https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://orcid.org/0000-0002-0175-5064
https://doi.org/10.1038/551425a
https://ui.adsabs.harvard.edu/abs/2017Natur.551...85A/abstract
https://doi.org/10.3847/2041-8213/ab3800
https://ui.adsabs.harvard.edu/abs/2019ApJ...882L..24A/abstract
https://doi.org/10.1007/s41114-018-0012-9
https://ui.adsabs.harvard.edu/abs/2018LRR....21....3A/abstract
https://doi.org/10.3847/2041-8213/abe949
https://ui.adsabs.harvard.edu/abs/2021ApJ...913L...7A/abstract
http://arxiv.org/abs/2105.06384
https://doi.org/10.1038/s41550-019-0692-4
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..188A/abstract
https://doi.org/10.1086/340304
https://ui.adsabs.harvard.edu/abs/2002ApJ...572..407B/abstract
https://doi.org/10.1093/mnras/stx1759
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471.4702B/abstract
https://doi.org/10.1088/1475-7516/2014/10/080
https://ui.adsabs.harvard.edu/abs/2014JCAP...10..080B/abstract
https://doi.org/10.1086/164709
https://ui.adsabs.harvard.edu/abs/1986ApJ...310..568B/abstract
https://doi.org/10.1103/PhysRevLett.125.141102
https://ui.adsabs.harvard.edu/abs/2020PhRvL.125n1102B/abstract
https://doi.org/10.3847/2041-8213/ab9743
https://ui.adsabs.harvard.edu/abs/2020ApJ...896L..32C/abstract
https://doi.org/10.1086/118242
https://ui.adsabs.harvard.edu/abs/1997AJ....113..162C/abstract
https://doi.org/10.1086/308692
https://ui.adsabs.harvard.edu/abs/2000ApJ...533..682C/abstract
https://doi.org/10.1088/1475-7516/2012/03/016
https://ui.adsabs.harvard.edu/abs/2012JCAP...03..016C/abstract
https://ui.adsabs.harvard.edu/abs/2012JCAP...03..016C/abstract
https://doi.org/10.1111/j.1365-2966.2003.07092.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.346..746C/abstract
https://doi.org/10.1086/432435
https://ui.adsabs.harvard.edu/abs/2005ApJ...630..764C/abstract
https://doi.org/10.1086/381247
https://ui.adsabs.harvard.edu/abs/2003ApJ...599L..61C/abstract
https://doi.org/10.1093/mnras/stv2165
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454.2981C/abstract
https://doi.org/10.1093/mnras/stab579
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503.3326C/abstract
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503.3326C/abstract
https://doi.org/10.1086/511060
https://ui.adsabs.harvard.edu/abs/2007ApJ...658..884C/abstract
https://doi.org/10.1088/0004-637X/811/1/20
https://ui.adsabs.harvard.edu/abs/2015ApJ...811...20C/abstract
https://doi.org/10.1086/500586
https://ui.adsabs.harvard.edu/abs/2006ApJ...637L..77C/abstract
https://doi.org/10.3847/1538-4357/aa74da
https://ui.adsabs.harvard.edu/abs/2017ApJ...842...35C/abstract
https://doi.org/10.1111/j.1365-2966.2007.12018.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.380..149C/abstract
http://arxiv.org/abs/1912.11916
http://arxiv.org/abs/1702.04724
https://doi.org/10.1103/PhysRevD.95.044011
https://ui.adsabs.harvard.edu/abs/2017PhRvD..95d4011D/abstract
http://arxiv.org/abs/2007.12709
https://doi.org/10.1103/PhysRevD.74.063006
https://ui.adsabs.harvard.edu/abs/2006PhRvD..74f3006D/abstract
https://doi.org/10.1046/j.1365-8711.2003.06789.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.344.1029D/abstract
https://doi.org/10.1093/mnras/stx966
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.1997D/abstract
https://doi.org/10.1051/0004-6361/201833670
https://ui.adsabs.harvard.edu/abs/2019A&A...625A..84D/abstract
https://doi.org/10.3847/1538-4357/aab617
https://ui.adsabs.harvard.edu/abs/2018ApJ...857...25D/abstract
https://doi.org/10.1088/1475-7516/2015/12/006
https://ui.adsabs.harvard.edu/abs/2015JCAP...12..006D/abstract
https://doi.org/10.1088/0004-637X/779/1/72
https://ui.adsabs.harvard.edu/abs/2013ApJ...779...72D/abstract
https://doi.org/10.1088/0004-637X/806/2/263
https://ui.adsabs.harvard.edu/abs/2015ApJ...806..263D/abstract
https://doi.org/10.1111/j.1365-2966.2010.16613.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.405.2161D/abstract
https://doi.org/10.3847/2041-8213/abe638
https://ui.adsabs.harvard.edu/abs/2021ApJ...909L..23E/abstract
https://doi.org/10.1103/PhysRevD.103.064047
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103f4047E/abstract
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103f4047E/abstract
https://doi.org/10.1103/PhysRevD.102.124048
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102l4048E/abstract
https://doi.org/10.1086/154215
https://ui.adsabs.harvard.edu/abs/1976ApJ...204..668F/abstract
https://doi.org/10.3847/2041-8213/ab4284
https://ui.adsabs.harvard.edu/abs/2019ApJ...883L..42F/abstract
https://doi.org/10.1146/annurev-astro-091918-104423
https://ui.adsabs.harvard.edu/abs/2019ARA&A..57..335F/abstract
https://doi.org/10.3847/2041-8213/ac05c4
https://ui.adsabs.harvard.edu/abs/2021ApJ...914L..30F/abstract
https://doi.org/10.1103/PhysRevD.100.024018
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100b4018G/abstract
https://doi.org/10.1103/PhysRevD.101.044031
https://ui.adsabs.harvard.edu/abs/2020PhRvD.101d4031G/abstract
https://doi.org/10.3847/2041-8213/ab0c0f
https://ui.adsabs.harvard.edu/abs/2019ApJ...874L...2H/abstract
http://arxiv.org/abs/1807.07062
https://doi.org/10.1093/mnrasl/slw074
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460L..74H/abstract
https://doi.org/10.1111/j.1365-2966.2008.13190.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.386.1845H/abstract
https://doi.org/10.1103/PhysRevD.81.124046
https://ui.adsabs.harvard.edu/abs/2010PhRvD..81l4046H/abstract
https://doi.org/10.1086/380990
https://ui.adsabs.harvard.edu/abs/2004ApJ...602..162H/abstract
https://doi.org/10.1086/382726
https://ui.adsabs.harvard.edu/abs/2004ApJ...606...67H/abstract
https://doi.org/10.1086/322947
https://ui.adsabs.harvard.edu/abs/2001ApJ...556L..71H/abstract
https://doi.org/10.1086/431341
https://ui.adsabs.harvard.edu/abs/2005ApJ...629...15H/abstract
https://doi.org/10.1086/432085
https://ui.adsabs.harvard.edu/abs/2005ApJ...631..678H/abstract
https://doi.org/10.1086/306568
https://ui.adsabs.harvard.edu/abs/1999ApJ...510...54H/abstract
https://doi.org/10.1103/PhysRevD.58.063501
https://ui.adsabs.harvard.edu/abs/1998PhRvD..58f3501H/abstract
https://doi.org/10.1046/j.1365-8711.2002.05247.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.331..805H/abstract
https://doi.org/10.1086/319136
https://ui.adsabs.harvard.edu/abs/2001ApJ...549L..25K/abstract
http://arxiv.org/abs/2010.12093
https://doi.org/10.1093/mnras/stu1022
https://ui.adsabs.harvard.edu/abs/2014MNRAS.442.2963K/abstract
https://doi.org/10.1103/PhysRevD.80.064027
https://ui.adsabs.harvard.edu/abs/2009PhRvD..80f4027K/abstract
https://ui.adsabs.harvard.edu/abs/1994A&A...284..285K/abstract
https://doi.org/10.1086/500363
https://ui.adsabs.harvard.edu/abs/2006ApJ...638L..63L/abstract
https://doi.org/10.1093/mnras/sty411
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476.2220L/abstract
https://doi.org/10.1088/1475-7516/2012/11/015
https://ui.adsabs.harvard.edu/abs/2012JCAP...11..015L/abstract
https://doi.org/10.1088/0264-9381/32/11/115012
https://ui.adsabs.harvard.edu/abs/2015CQGra..32g4001L/abstract
https://ui.adsabs.harvard.edu/abs/2015CQGra..32g4001L/abstract
https://doi.org/10.3847/1538-4357/abd7eb
https://ui.adsabs.harvard.edu/abs/2021ApJ...908...97L/abstract
https://doi.org/10.3847/1538-4357/abb0e4
https://ui.adsabs.harvard.edu/abs/2020ApJ...901..129L/abstract
https://doi.org/10.1146/annurev-astro-081811-125615
https://ui.adsabs.harvard.edu/abs/2014ARA&A..52..415M/abstract
https://doi.org/10.1088/1475-7516/2020/03/050
https://ui.adsabs.harvard.edu/abs/2020JCAP...03..050M/abstract
https://doi.org/10.1088/0034-4885/73/8/086901
https://ui.adsabs.harvard.edu/abs/2010RPPh...73h6901M/abstract
https://doi.org/10.1088/0004-637X/764/2/184
https://ui.adsabs.harvard.edu/abs/2013ApJ...764..184M/abstract
https://doi.org/10.1103/PhysRevD.102.084031
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102h4031M/abstract
https://doi.org/10.1126/science.aax5164
https://ui.adsabs.harvard.edu/abs/2020Sci...369.1347M/abstract
https://doi.org/10.1093/mnras/staa3813
https://ui.adsabs.harvard.edu/abs/2021MNRAS.501.2451M/abstract
https://doi.org/10.1103/PhysRevD.101.103509
https://ui.adsabs.harvard.edu/abs/2020PhRvD.101j3509M/abstract
https://doi.org/10.1093/mnras/staa827
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.1956M/abstract
https://doi.org/10.1103/PhysRevLett.117.091301
https://ui.adsabs.harvard.edu/abs/2016PhRvL.117i1301M/abstract
https://ui.adsabs.harvard.edu/abs/2016PhRvL.117i1301M/abstract
https://doi.org/10.3847/2041-8213/ac29c1
https://ui.adsabs.harvard.edu/abs/2021ApJ...920L..11N/abstract
http://arxiv.org/abs/astro-ph/9606001
https://doi.org/10.1086/177173
https://ui.adsabs.harvard.edu/abs/1996ApJ...462..563N/abstract
https://doi.org/10.3847/2041-8213/abf8be
https://ui.adsabs.harvard.edu/abs/2021ApJ...913L...5N/abstract
https://doi.org/10.1103/PhysRevD.97.023012
https://ui.adsabs.harvard.edu/abs/2018PhRvD..97b3012N/abstract
https://ui.adsabs.harvard.edu/abs/2018PhRvD..97b3012N/abstract
https://doi.org/10.1093/mnras/sty2145
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.3842O/abstract
https://doi.org/10.3847/1538-4357/abafab
https://ui.adsabs.harvard.edu/abs/2020ApJ...901...58O/abstract
https://doi.org/10.1086/339064
https://ui.adsabs.harvard.edu/abs/2002ApJ...568..488O/abstract
https://doi.org/10.1088/1475-7516/2013/10/022
https://ui.adsabs.harvard.edu/abs/2013JCAP...10..022P/abstract
https://doi.org/10.1051/0004-6361/201833910
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P/abstract
https://doi.org/10.12942/lrr-2006-6
https://ui.adsabs.harvard.edu/abs/2006LRR.....9....6P/abstract
https://doi.org/10.12942/lrr-2014-3
https://ui.adsabs.harvard.edu/abs/2014LRR....17....3P/abstract
https://doi.org/10.1086/152650
https://ui.adsabs.harvard.edu/abs/1974ApJ...187..425P/abstract
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g..35R/abstract
https://doi.org/10.1093/mnras/staa1429
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.3727R/abstract
https://doi.org/10.1088/1361-6382/aaa7b4
https://ui.adsabs.harvard.edu/abs/2018CQGra..35f3001S/abstract
https://doi.org/10.1093/mnras/283.3.837
https://ui.adsabs.harvard.edu/abs/1996MNRAS.283..837S/abstract
https://doi.org/10.1038/323310a0
https://ui.adsabs.harvard.edu/abs/1986Natur.323..310S/abstract
https://ui.adsabs.harvard.edu/abs/1999A&A...351L..10S/abstract
https://doi.org/10.1103/PhysRevLett.105.251101
https://ui.adsabs.harvard.edu/abs/2010PhRvL.105y1101S/abstract
https://doi.org/10.1086/428492
https://ui.adsabs.harvard.edu/abs/2005ApJ...623...23S/abstract
https://doi.org/10.1111/j.1365-2966.2007.11734.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.377.1711S/abstract
https://doi.org/10.1093/mnras/270.2.245
https://ui.adsabs.harvard.edu/abs/1994MNRAS.270..245S/abstract
https://doi.org/10.1214/aoms/1177730256
https://ui.adsabs.harvard.edu/abs/2018IAUS..338...98S/abstract
https://doi.org/10.1093/mnras/sty031
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.3823S/abstract
https://doi.org/10.3847/1538-4365/aa653e
https://ui.adsabs.harvard.edu/abs/2017ApJS..229...20S/abstract
https://doi.org/10.1086/377430
https://ui.adsabs.harvard.edu/abs/2003ApJ...595.1039T/abstract
https://doi.org/10.1088/0004-637X/742/1/15
https://ui.adsabs.harvard.edu/abs/2011ApJ...742...15T/abstract
http://arxiv.org/abs/1904.03187
https://doi.org/10.3847/2041-8213/abe949
https://ui.adsabs.harvard.edu/abs/2020arXiv201014533T/abstract
https://doi.org/10.1103/PhysRevLett.126.141301
https://ui.adsabs.harvard.edu/abs/2021PhRvL.126n1301T/abstract
https://ui.adsabs.harvard.edu/abs/2009A&A...500..105T/abstract
https://doi.org/10.1086/162379
https://ui.adsabs.harvard.edu/abs/1984ApJ...284....1T/abstract
https://doi.org/10.1103/PhysRevD.62.084003
https://ui.adsabs.harvard.edu/abs/2000PhRvD..62h4003V/abstract
https://doi.org/10.3847/2041-8213/ab50c0
https://ui.adsabs.harvard.edu/abs/2019ApJ...886L...1V/abstract
https://doi.org/10.1103/PhysRevD.103.104055
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103j4055W/abstract
https://doi.org/10.3847/1538-4357/ac1bb4
https://ui.adsabs.harvard.edu/abs/2021ApJ...921..154W/abstract
https://doi.org/10.3847/1538-4357/ab095c
https://ui.adsabs.harvard.edu/abs/2019ApJ...874..139Y/abstract
https://doi.org/10.1093/mnras/stab3298
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.3772Y/abstract
https://doi.org/10.1088/0004-637X/739/2/86
https://ui.adsabs.harvard.edu/abs/2011ApJ...739...86Z/abstract
https://doi.org/10.1103/PhysRevLett.121.141101
https://ui.adsabs.harvard.edu/abs/2018PhRvL.121n1101Z/abstract

	1. Introduction
	2. Methods
	2.1. Lensing Optical Depth
	2.2. Source Population: Binary Black Holes
	2.3. Simulating Strongly Lensed GW Events
	2.4. Computing Strong Lensing Event Rates

	3. Results
	3.1. Lensing Event Rate
	3.2. Detectable Cosmological Volume Increased by Lensing Magnification
	3.3. Constraining Galaxy Populations Using Time-delay Distributions
	3.4. The Effect of Source Population on the Lensing Rate

	4. Discussion and Conclusions
	Appendix AOptical Depth for Different Lens Models
	Appendix BBBH Merger Rate History
	Appendix CStrong Lensing Event Rate from Simulations
	Appendix DMagnification Ratio Distribution
	References



