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Abstract

As catalogs of gravitational-wave transients grow, new records are set for the most extreme systems observed to
date. The most massive observed black holes probe the physics of pair-instability supernovae while providing clues
about the environments in which binary black hole systems are assembled. The least massive black holes,
meanwhile, allow us to investigate the purported neutron star–black hole mass gap, and binaries with unusually
asymmetric mass ratios or large spins inform our understanding of binary and stellar evolution. Existing outlier
tests generally implement leave-one-out analyses, but these do not account for the fact that the event being left out
was by definition an extreme member of the population. This results in a bias in the evaluation of outliers. We
correct for this bias by introducing a coarse-graining framework to investigate whether these extremal events are
true outliers or whether they are consistent with the rest of the observed population. Our method enables us to study
extremal events while testing for population model misspecification. We show that this ameliorates biases present
in the leave-one-out analyses commonly used within the gravitational-wave community. Applying our method to
results from the second LIGO–Virgo transient catalog, we find qualitative agreement with the conclusions of
Abbott et al. GW190814 is an outlier because of its small secondary mass. We find that neither GW190412 nor
GW190521 is an outlier.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Bayesian statistics (1900); Hierarchical models
(1925); Catalogs (205); Gravitational wave astronomy (675)

1. Introduction

As catalogs of gravitational-wave (GW) sources observed with
the Advanced LIGO (Aasi et al. 2015) and Virgo (Acernese et al.
2014) interferometers continue to grow, our knowledge of the
population of compact objects is continually refined. The most
recent update from the LIGO–Virgo–KAGRA (LVK)
collaborations (GWTC-2; Abbott et al. 2021b) brings to light
several interesting features within the distributions of masses and
spins of compact objects in coalescing binary systems (Abbott
et al. 2021a). In particular, GWTC-2 set new records for the
largest black hole mass (GW190521; Abbott et al. 2020d),
smallest black hole mass (GW190814; Abbott et al. 2020a),11

and most asymmetric mass ratios (GW190814 and GW190412;
Abbott et al. 2020a, 2020c). Of immediate interest is whether
these objects are merely the most extreme events observed
from a single population: the most extreme examples in a
catalog become more extreme as the size of the catalog

grows (Fishbach et al. 2020). Alternatively, these events may
be inconsistent with the population inferred from the rest of the
detected events and thus are true outliers. The observation of
such outliers could suggest the first example from an as-of-yet-
unmodeled or entirely new (sub)population. However, it may
simply indicate that the current phenomenological population
models are a poor description of nature.
The interpretation of the most extreme GW events has

significant astrophysical implications. The most massive binary
black hole (BBH) events probe the pair-instability supernova
(PISN)mass gap (Fishbach & Holz 2017; Talbot & Thrane 2018),
a theoretically proposed dearth of black holes between ∼50 and
120Me (Heger & Woosley 2002). Observing BBH systems near
the pair-instability gap can inform our knowledge of nuclear
reaction rates (Farmer et al. 2020), beyond standard model
physics (Croon et al. 2020; Baxter et al. 2021), or the boundaries
of mass gaps in general (Fishbach & Holz 2020b; Edelman et al.
2021; Ezquiaga & Holz 2021; Nitz & Capano 2021) and
applications thereof (e.g., Farr et al. 2019). At the other extreme,
BBHs with small component masses can inform our knowledge
of supernova physics (e.g., Fryer & Kalogera 2001; Belczynski
et al. 2012; Zevin et al. 2020).
Several authors have posited that the most massive black holes

of GWTC-2, which appear to sit in the PISN mass gap, form a
separate population from the “main population” observed to date,
invoking formation scenarios such as hierarchical mergers (e.g.,
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11 It is possible that the secondary object in GW190814 is actually an
unusually massive neutron star (Essick & Landry 2020).
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Abbott et al. 2020b; Kimball et al. 2021; Gerosa & Fishbach 2021;
Tagawa et al. 2021) or primordial black holes (e.g., De Luca et al.
2021; Franciolini et al. 2021). Indeed, in order to explain the wide
range of observed BBH properties, many authors have argued that
multiple formation channels are active and that the BBH
population consists of multiple subpopulations (Ng et al. 2021;
Abbott et al. 2021a; Zevin et al. 2021). More than anything else,
the variety of interpretations of the GWTC-2 events highlight the
excitement within the GW community as new discoveries are
routinely made whenever more data are recorded. However, they
also emphasize the need for thoughtful consideration of the
methods employed to assess whether individual events are
consistent with existing population models.

Motivated by the “leave-one-out” consistency checks in Abbott
et al. (2019a, 2021a), Fishbach et al. (2020), and elsewhere, we
introduce a general procedure to investigate the effect of
individual events on inferred populations. Specifically, we derive
a “coarse-grained” analysis that retains, in a controlled way, only a
subset of the total information available about some detected
events. We are then able to determine whether the population
inferred from these “coarse-grained” data is consistent with the
population inferred from the original data.

In particular, previous approaches compared populations
inferred with all N events in a catalog to populations inferred
with only N− 1 events, arguing that if these were similar then
the event that was “left out” is consistent with the rest of the
population, as its inclusion does not significantly change the
inferred population. If the contrary were true, the event would
be considered a true outlier. However, such tests do not account
for the way in which the excluded event was selected. It was
left out specifically because it was extremal in some dimension,
and this selection may artificially inflate the apparent
significance of differences in inferred populations, particularly
in the presence of sharp boundaries within the population
model. Our approach improves on this by self-consistently
accounting for how the selected events are chosen in a
controlled way while clearly defining the subset of the available
information that is retained. We show that our approach
naturally reproduces previous techniques when a random event
is excluded from the analysis. It is precisely because the
excluded events are typically not chosen at random that
previous techniques can introduce biases.

There is already a healthy literature proposing leave-one-out
analyses as tests for model misspecification within Bayesian
inference. For example, Vehtari et al. (2017) construct a cross-
validation likelihood from analyses that leave out each event in
a catalog one at a time. This approach attempts to limit the
possible biases associated with leaving out only extremal
events, similar to the motivation for our coarse-grained
approach. Other authors have considered tempering the like-
lihood in order to combat model misspecification, which is at
times referred to as coarsening (Miller & Dunson 2019). In this
approach, the likelihood is raised to the power of an inverse
temperature β= 1/T ä (0, 1], thereby artificially inflating
statistical uncertainties. Several procedures exist to select
β (e.g., Miller & Dunson 2019; Thomas & Corander 2019,
and references therein), all of which attempt to optimize the
balance between systematic error from model misspecification
and additional statistical error from tempered likelihoods. Our
coarse-grained likelihoods are similar in spirit but differ in that
we eschew the use of ad hoc tempering in favor of margin-
alizing over the data and parameters from an individual event

subject to a precisely specified (but looser) constraint on the
event’s parameters. That is, we specify the size and placement
of the “coarse grain” used to approximate the event’s
likelihood.
Using this coarse-grained likelihood, we revisit several

astrophysically interesting events from GWTC-2 that were
discussed in detail in Abbott et al. (2021a). To wit, we
demonstrate the following:

1. GW190814, with a secondary mass of m2∼ 2.6Me and
mass ratio q=m2/m1∼ 0.1, is an outlier in m2 (too small
to be consistent with the main BBH population) but is not
an outlier in mass ratio.

2. GW190412 is not an outlier, and its mass
ratio (q∼ 0.28; Abbott et al. 2020c) is in the tail of the
main BBH population.

3. GW190521 is not an outlier with respect to the main
BBH population under the preferred phenomenological
mass models considered in Abbott et al. (2021a). It is
only marginally inconsistent under the simplest mass
model considered, which is disfavored for other reasons
as well.

While we believe that the quantitative details of our analysis
improve on previous methods, all of our resulting astrophysical
conclusions are in agreement with Abbott et al. (2021a).
The remainder of this paper is organized as follows. We

derive our coarse-grained leave-one-out formalism from first
principles in Section 2 and explore a toy model in Section 3 to
gain intuition. Readers only interested in our astrophysical
conclusions can skip directly to Section 4, where we apply the
method to public LVK data. We conclude in Section 5.

2. Coarse-grained Leave-one-out Likelihoods

We derive a procedure for coarse-graining our inference of
the population in Section 2.1, while in Section 2.2 we discuss
the implications of different possible procedures to choose the
amount of information retained in the coarse-grained inference.
We describe how to quantify these consistency tests with a
single statistic in Section 2.3.

2.1. Derivation of Coarse-grained Inference

To begin, let us assume we have N events that are each
described by a set of m parameters q Î m. We further assume
that these events belong to the same astrophysical population
described by the hyperparameters Λ0:

q q~ L "( ∣ ) ( )p i. 1i 0

If we write our model for the differential Poisson number
density of signals in the universe as q q= L( ∣ )d d Rp , our
joint distribution over the data {Di}, single-event parameters
{θi}, hyperparameters, and the rate R is then



q

q q r r

L = L

L Q

- L

=

({ } { } ) ( ) ( )

( ∣ ) ( ∣ ) ( ( ) ) ( )

( )



p D R p p R R e

p D p D

; ; ,

, 2

i i
N R

i

N

i i i i
1

thr

where Θ is the Heaviside function, ρ(D) is the detection
statistic used to select events for the catalog with threshold ρthr,
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and

ò ò
ò
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q q q
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is the expected fraction of events that are detectable within a
population. Note that Equation (2) is neither a likelihood
function nor a posterior distribution, but instead is a joint
distribution for both the data and the parameters. Furthermore,
if we assume a uniform-in-log prior for the rate (p(R)∼ 1/R)
and marginalize, we obtain



q

q q r r

L =

L
L Q

L=

({ } { } )
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( ∣ ) ( ∣ ) ( ( ) )

( )
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
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i i i i

1

thr

We note that the Θ in each factor within the product does not
impact the inference, as it is guaranteed to be 1; the data are
axiomatically detectable for detected events. However, these
factors are important in what follows.

If we wish to construct a posterior for only Λ, we marginalize
over {θi} and condition on the observed data to obtain

 ò q q q
L µ L

L

L=

( ∣{ }) ( )
( ∣ ) ( ∣ )

( )
( )



⎡

⎣
⎢

⎤

⎦
⎥p D p

d p D p
. 5i

i

N
i i i i

1

All these expressions have become commonplace within the
GW community, and we refer the reader to the many reviews in
the literature for more details (e.g., Mandel et al. 2016; Thrane
& Talbot 2019; Vitale et al. 2020).
We are particularly interested in the effect that subsets of

events have on the inferred population and whether those
effects can be used to determine if particular events are
outliers. However, if we simply remove potential outliers,
we may bias the inferred population by preferentially
removing the most extreme events. This, in turn, may
artificially inflate the significance of any changes in the
inferred population. As such, we introduce a coarse-graining
procedure to replace traditional “leave-one-out” analyses.
This procedure retains only a limited amount of information
about a particular event. In this way, the analysis can
naturally account for how the event of interest was selected
(e.g., as the most extreme event in some dimension) while
still discarding as much information about that event as
possible.

To wit, let us assume that the jth event is almost certainly
within some region of parameter space  so that

ò q q qL Q Î - " L L ¹( ∣ ) ( ) { ( ) }

( )

 d p D p, 1 : 0 .

6

j j j j

In other words, for any population described by Λ with
nonvanishing support in the hyperprior p(Λ), the inferred
posterior on the event parameters θj is contained within the
region  with high (1− ò) credibility. We are typically
interested in the case ò= 1, which is to say we are confident
that event j is contained within  . There is a uniquely
defined smallest  that satisfies this requirement, which in

general depends on the choice of ò (smaller ò require larger  ).
Additionally, we only assert that  is at least as large as
the minimal region; it may be larger. Choosing a larger
region corresponds to retaining less information about the jth
event.
At times, it is possible to identify individual events that are

clearly separated from the rest of the population, in which case
it may be straightforward to identify an appropriate choice for
 . An example could be defining  as the region with masses
smaller than the minimum mass observed in a set. However,
more complicated boundaries are possible, as hypersurfaces in
multidimensional spaces could divide events along a nontrivial
slice that depends on multiple parameters simultaneously. For
example, we may define  to be a region with a secondary
mass or mass ratio smaller than the corresponding minima
observed in a set (see Section 4.1). We discuss several
procedures to choose  in Section 2.2.
Of course, an extremal event is not necessarily incon-

sistent with the population determined by the other N− 1
events; some event is always the most extreme of any set.
Indeed, the jth event may still be drawn from the same
p(θ|Λ0) and simply be the most extreme example in the
catalog. We therefore test the null hypothesis that all N
events are drawn from the same distribution by comparing
the inferred population when we include all N events in the
population inferred from N− 1 events while accounting for
the knowledge that q Î j . If the population inferred from
the coarse-grained analysis is inconsistent with the full data
set, we reject the null hypothesis that the jth event is drawn
from the same distribution as the other N− 1 events. With
this method, we can be assured that we do not overestimate
the significance of differences in the inferred populations
because we include knowledge that the jth event was
selected in a particular way.
We now consider how to self-consistently limit the

information about the jth event within our inference. Because
q Î j almost surely (ò= 1), we can add a term to Equation (4)
without affecting the overall inference for Λ:



q
q q r r q

q q r r

L L

´
L Q Q Î

L
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
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


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p D p D
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, 7

i i

j j j j j

i j

N
i i i i

thr

1
thr

where we have included an additional factor of qQ Î( )j

since this is 1 almost everywhere there is posterior support
for θj (to within the precision specified in Equation (6)). This
is completely analogous to the way in which terms
representing the detectability of data, i.e., Θ(ρ(D)� ρthr),
are always 1 for the detected events. We have also replaced
“=” with “;” to denote that strict equality only holds in the
limit ò→ 0. However, in what follows we assume that ò is
small enough to be negligible, and we retain the “=” for
simplicity.
Furthermore, the only information we wish to retain about

the jth event is that it almost certainly is within  , and therefore
we marginalize over both Dj and θj to effectively forget
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everything else about the event. This yields

ò

ò
ò
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which is just the probability that the event was detected and had
parameters within  given the underlying population model. We
additionally note that this term only appears in Equation (7) within
a ratio, and the divisor of that ratio is L = L( ) ( ∣ ) P det . Therefore,
the coarse-graining procedure yields an overall factor of

q
q

Î L

L
= Î L

( ∣ )
( ∣ )

( ∣ ) ( )



P

P
P

det,

det
det, . 9

j
j

This has the appealing interpretation that the only information
retained about the jth event is the probability that it belongs to a
particular part of parameter space (our “coarse grain”) given
that it was detected and came from a particular population.12

We discuss implications and implicit assumptions made by the
choice of  in more detail in Section 2.2. Briefly, we note that
most “agnostic” procedures for defining  will not depend on
Dj or θj, and so we explicitly write q= ¹({ })  i j below.

Putting everything together, we marginalize the coarse-
grained likelihood over {θi≠j} and condition on {Di≠j} to
obtain a coarse-grained posterior for Λ,

ò  

r r q q
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q q

q q
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i j
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i
k j

N
k k k

j i j

thr

1 1

We note that the marginalization over {θi≠j} does not factor as
nicely as it does in Equation (5) because q ¹({ }) i j may depend
on all the events (except the jth event) and is included within
the integral. Methods to calculate Equation (10) efficiently
when one already has access to samples from p(Λ|{Di≠j}) or
p(Λ|{Di}) are discussed in Appendix A.

2.2. Implications from the Choice of 

Section 2.1 presents the coarse-grained inference for Λ based
on knowledge that q Î j . This holds for arbitrary  as long as
Equation (6) is satisfied; the choice of  is up to the analyst.
We now consider the implications of different choices for 
and what assumptions they represent.

To begin, if θj is well determined by Dj and the minimum
allowable  is small (particularly in comparison to the extent

of the prior p(θ|Λ)), the coarse-graining procedure can still
retain most, if not all, of the relevant information about the
jth event. In this way, defining  in relation to the minimum
allowable  implicitly assumes some knowledge of Dj,
which is undesirable for a leave-one-out analysis. To avoid
this, we instead recommend choosing  based on only
a priori theoretical predictions of astrophysical interest or the
data from the N− 1 other events. In general, this implies that
one should write q= ¹({ })  i j to explicitly show that it does
not depend on either the data or parameters from the jth
event, as we do within Equation (10).
One possible data-driven procedure for choosing  is

particularly appealing in the special case where the parameters
of the jth event are cleanly separated from the rest of the events.
If the jth event is the most extreme event in some dimension x,
we can simply define ¹ ¹({ }) { } x x x: maxi j i j i as the region
where x is larger than the second-largest detected event.13 This
choice is natural in the sense that it only depends on {Di≠j} and
is as generous as possible subject to the knowledge that the jth
event is extremal; it does not retain any information about how
much larger xj is than ¹ { }xmaxi j i .
Such a choice allows an analyst to pose questions such as,

“how big should the largest individual event in a catalog of N
events be given the observation of N− 1 events and the
knowledge that one was larger?” Comparing the predicted largest
event to what was actually observed naturally defines a metric that
can be used as a quantitative consistency check (see Section 2.3).
Indeed, the choice of  precisely specifies the information used
when computing p-values for the null hypothesis that all N events
in a catalog were drawn from the same population. Nonetheless, it
is important to remember that this procedure is not unique, just as
the definition of a null hypothesis is not unique, and other choices
of  may be able to more naturally answer other questions.
In this vein, one might also consider choosing  based on prior

theoretical motivations, so long as the selected region is compatible
with Equation (6). This can provide a perfectly natural way to
define alternative tests of the null hypothesis and is particularly
relevant when the events are not cleanly separated. For example,
even before observing any data, we may identify the region
m1> 50Me as interesting from the standpoint of PISN theory and
scrutinize any events that fall in this region as potential outliers.
We note that the inability to define  based on the next most

extreme event only arises when the jth event is not cleanly
separated from the other events, and therefore it is not
unambiguously the most extreme event. One may take that
ambiguity itself as evidence that the event cannot be an outlier
and therefore argue that our machinery may not be needed in
such situations. Nonetheless, we can still construct a perfectly
self-consistent coarse-grained inference even when the minimal
 surrounding the jth event’s parameters overlaps significantly
with the inferred parameters of the other N− 1 events. The
coarse-grained event need not actually be extremal.
As a limiting case, we note that choosing  that spans the entire

parameter space (  m) implies that q Î L ( ∣ )P S det,j

" L1 . That is, if we know nothing about the parameters of the
jth event, then the coarse-grained inference is equivalent to
neglecting that event altogether and performing the “standard”
inference for Λ with the other N− 1 events.14 This is intuitive in

12 Note that Equation (9) refers to the probability that a detected event from a
population came from  , whereas Equation (6) refers to the probability that a
specific event (the jth observed event, which produced data Dj) came from  .

13 One could equivalently consider the smallest event.
14 The corresponding inference of the rate would still correctly account for the
fact that we detected N events in total, which is not necessarily true of other
leave-one-out analyses.
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that, if we picked an event to coarse-grain at random without first
considering its parameters, then the smallest allowable  that was
certain to contain the event would be the entire (detectable)
parameter space. At the same time, excluding an event at random
should not introduce any biaseswithin the inference forΛ, and one
expects to perform the standard inference with only N− 1 events.
We see, then, that performing a standard inference with N− 1
events after excluding an extremal event, without incorporating
the knowledge that the excluded event was extremal, is not a self-
consistent procedure because it does not correctly reflect the data
selection procedure. This inconsistency leads to biases, which we
demonstrate with a toy model in Section 3.

2.3. Quantifying Inconsistencies with Inferred Populations

In order to test the null hypothesis that the event in question
is consistent with the N− 1 other events, we follow a similar
procedure to Fishbach et al. (2020) and construct a p-value
statistic. We marginalize over both the uncertainty in the
population hyperparameters, inferred from the coarse-grained
inference, and the measurement uncertainty in the parameters
of the N observations. For each hyperposterior sample Λ from
the coarse-grained inference, we do the following:

1. Draw N synthetic detected events from the corresponding
population described by those hyperparameters.

2. Reweigh the N observed events’ posteriors for {θi} to
what would be obtained under the population prior
described by that Λ. For the N− 1 events that were not
excluded, this recovers their marginal posterior for {θi≠j}
under the joint distribution of Equation (7), while for the
excluded event we obtain the population-informed
posterior for θj.

3. Draw one θobs sample for each observed event.
4. Compare the most extreme θsyn out of the N synthetic

events to the most extreme θobs.

Repeating this procedure for many hyperposterior samples Λ, the p-
value is obtained as the fraction of synthetic catalogs that produce

an event that is at least as extreme as the most extreme observed
event. Although such statistics are not necessarily uniformly
distributed even under the null hypothesis (see, e.g., Seth et al.
2019), if the resulting marginalized p-value is small, we reject the
null hypothesis and conclude that the excluded event is inconsistent
with the main population.
Fishbach et al. (2020) estimated p-values by scattering the

maximum likelihood estimates by synthetic noise realizations
and then comparing the maximum likelihood from the
observed event to the synthetic distribution under the null
hypothesis. Our approach differs in that we do not scatter the
maximum likelihood estimate of our synthetic detections, but
instead use the true values of the detected events. However, we
still marginalize over the actual uncertainty in the observed
events’ true parameters stemming from detector noise. Both
procedures, then, account for measurement uncertainty but
answer slightly different questions.

3. Toy Model

We first investigate a simple toy model to gain an intuition
for how our coarse-graining formalism impacts population
inferences. Specifically, we investigate the impact of defining 
based on multiple single-event parameters in the presence of
sharp edges within a population model (e.g., mass gaps or spin
cutoffs). Of particular interest is the impact on our uncertainty
in the inferred location of the sharp edges (see Farr et al. 2019;
Ezquiaga & Holz 2021).
Figure 1 shows our population model. We assume that

individual events are described by two real parameters

~
= Q

( ∣ )
( ∣ ) ( ∣ ) ( ) ( ) 

x y p x y a m

p x a m p y a m m x y

, , ,

, , , 11
i i

where

= Q- -( ∣ ) ( ) ( )( ) p x a m ae m x, . 12a x m

In this model, objects are independently drawn from the same
distribution, which has a sharp cutoff at x=m, and are then

Figure 1. Toy population model with a sharp lower limit. We show the distribution of single parameters (Equation (12)), annotated to show how the hyperparameters
affect the shape of the distribution (left), and the joint distribution (Equation (13)) from which individual events are drawn to form our synthetic catalogs (right).
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randomly paired subject to an arbitrary labeling scheme (x� y).
This implies

= Q- + -( ∣ ) ( ) ( )( )  p x y a m a e m x y, , 2 . 13a x y m2 2

In this model, m controls the smallest allowed value within the
population and a controls the spread in values; larger a imply
faster exponential decay and more tightly clustered values.
Furthermore, we assume that all events are observable
( = "( ) a m a m, 1 , ) and have vanishingly small observational
uncertainties (p(x, y|Di)∼ δ(x− xi)δ(y− yi)) for simplicity. This
also implies that there is no ambiguity in which event is the most
extreme in any dimension. The full hyperposterior is then
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with hyperprior p(a, m). For concreteness, we assume
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which render the hyperposterior analytically tractable.
Figures 2 and 3 consider the limits α, μ→ 0 and A,
M→∞ to obtain uninformative hyperpriors.

We also consider the coarse-grained hyperposterior, which
takes the form

Î

µ
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Because there is no ambiguity in which event is the most extreme,
we choose based on the parameters of the other N− 1 events. We
consider two special cases: excluding the event with the smallest x
(Section 3.1) and excluding the event with the smallest q≡ x/y
(Section 3.2). In what follows, we consider catalogs of 10 events in
total, characteristic of GWTC-1 (Abbott et al. 2019b). Appendix B
explores how our toy models scale with larger catalogs.

3.1. Excluding the Smallest x

If we exclude the event with the smallest x, we obtain
º¹ { } x x: mini j i and

ò ò
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From this, we can immediately write down the full hyperpos-
terior with Equation (17).

In our simple model, excluding the event with the smallest x
primarily impacts our knowledge of m, the minimum allowed
value within the population. Figure 2 shows two examples with
synthetic data, one in which all simulated events are drawn from
the same population (our null hypothesis) and one in which a
single event is drawn from a different population centered at
x=m (a true outlier) while the other N− 1 events are drawn
from the original population. For each example, we show the
inferred hyperposterior using all N events (Equation (14)), the
coarse-grained hyperposterior (Equations (17) and (19)), and the
inferred posterior from Equation (14) when we use only N− 1
events and do not account for the fact that we excluded the event
with the smallest x.
If the null hypothesis is true, we see that the coarse-grained

hyperposterior agrees well with the hyperposterior that uses all
N= 10 events. The coarse-graining procedure correctly accounts
for the additional probability associated with detecting an event
with small x. Conversely, the hyperposterior using N− 1 events
without the coarse-graining correction is biased toward higher m.
Indeed, this bias could lead to the erroneous identification of the
smallest event as inconsistent with the main population.
In addition to individual realizations of synthetic catalogs,

Figure 2 also shows the cumulative distributions of the total
probability from the region assigned a posterior probability
p(Λ|{D})� p(Λ0|{D}), the posterior at the true hyperparameters.
Correct coverage corresponds to diagonal lines, and the shaded
gray regions demonstrate the size of expected 1σ, 2σ, and 3σ
fluctuations from the finite number of trials performed. When the
null hypothesis is true, we see that the coarse-grained inference is
unbiased; it agrees well with the full N-event hyperposterior and
has correct coverage. Conversely, the (N− 1)-event hyperposter-
ior that does not include the coarse-graining correction does not
have correct coverage; the true population parameters are
systematically assigned posterior probabilities that are too low.
When the null hypothesis is false and the smallest event was

not drawn from the same population as the other N− 1 events,
we see markedly different behavior. Here, the full N-event
hyperposterior is biased to significantly lower m while both of
the (N− 1)-event inferences are much less affected. The
(N− 1)-event inference that does not include the coarse-
graining correction is unbiased and has correct coverage in this
case. It correctly excludes the extremal event from the
inference of the main population. The coarse-grained (N− 1)-
event hyperposterior is biased when the null hypothesis is
incorrect, as it incorrectly assumes that the jth event is drawn
from the same population as the other N− 1 events, but it is
much less biased than the full N-event result. Indeed, it appears
to have nearly correct coverage.
This suggests the following rule of thumb: If the null

hypothesis is correct, the full N-event hyperposterior should be
very similar to the (N− 1)-event coarse-grained hyperposterior.
However, if the null hypothesis is incorrect, the coarse-grained
hyperposterior is likely to be more similar to the (N− 1)-event
hyperposterior that does not contain the coarse-graining correc-
tion. However, this may be violated in practice (see Section 4.3),
and we suggest that decisions be based on quantitative
assessments like those proposed in Section 2.3. Furthermore, in
both cases we note that one should not use the coarse-grained
hyperposterior as the “final inferred population.” Even though it
consistently provides a reasonable estimate of the uncertainty in
the population, it is only a useful diagnostic tool to determine
which of the other hyperposteriors we believe. We also suggest
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that estimates of p-values be performed with the coarse-grained
hyperposterior (see Section 3.3).

3.2. Excluding the Smallest q≡ x/y

We additionally investigate the impact of discarding the
event with the smallest q, defining º¹ { } q q: mini j i .
With the coordinate change q= x/y and r= x+ y, we obtain
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because r= y(1+ q)= x(1+ q)/q�m(1+ q)/q.
Figure 3 summarizes our conclusions. In general, our

inference of a is more affected than m when excluding the
event with the smallest q. This is because a more closely
controls the range of values supported in the population (larger
a imply faster exponential decay and more concentrated
samples). If the events are restricted to a narrow range, then
they are more likely to have q∼ 1. For this reason, the (N− 1)-
event hyperposterior that does not include the coarse-graining
correction is biased to larger a (larger q) when the null
hypothesis is true. Generally, the coverage is better in all cases,
which we attribute to the lack of sharp features for q in the
population model. As in Section 3.1, we find that the coarse-
grained hyperposterior is generally more robust against the
presence (or absence) of true outliers than either of the other
options.

3.3. Testing the Null Hypothesis with Coarse-grained p-values

Beyond the intuition developed in Sections 3.1 and 3.2, we
wish to quantify the probability that the full set of N events are
drawn from the same distribution (our null hypothesis).
Because the coarse-grained hyperposterior provides a reason-
able estimate of the true underlying population regardless of
whether the null hypothesis is correct, we compute p-values
that assume that individual extremal events are consistent with
the population inferred within the coarse-grained inference
following the procedure detailed in Section 2.3. Indeed, a
primary motivation for our coarse-grained inference is to avoid
accidentally biasing such p-values to higher significance by
excluding extremal events, or to artificially lower their
significance by computing p-values with the full N-event
population analysis.

We investigate several astrophysical events from GWTC-2
in Section 4, but first we consider the toy models in
Sections 3.1 and 3.2 in more detail. In particular, we are
concerned with changes in the probability of making type 1
errors when the null hypothesis is true (incorrectly rejecting the
null hypothesis, or a false positive). At the same time, we are
also interested in changes in the probability of making type 2
errors when the null hypothesis is false (incorrectly failing to
reject the null hypothesis, or a false negative).

Figure 4 shows the distribution of such p-values for different
realizations of synthetic catalogs when we exclude events with
the smallest x (Section 3.1). We immediately note that the
(N− 1)-event inference, which neglects the coarse-graining
correction, always predicts smaller p-values than the coarse-
grained inference in both cases. In this way, analysts could be

tricked into claiming more significant tension than actually
exists between the inferred model and the excluded event if
they do not account for how the event was selected. Similarly,
they may be more likely to accept the null hypothesis when it is
false based on coarse-grained inferences. In either case, though,
the p-values differ by only a factor of a few. This may be why
we reach the same astrophysical conclusions as Abbott et al.
(2021a) even though they did not include coarse-graining
corrections; the size of the effect on p-values is nontrivial but
still relatively modest.

4. Astrophysical Results

Using the coarse-grained inference described in Section 2 and
our intuition from the toy models investigated in Section 3, we
revisit several astrophysical events from GWTC-2. We are
specifically interested in evidence that individual events are
incompatible with the main BBH population (the phenomen-
ological distribution that describes the majority of detected BBH
systems) inferred in Abbott et al. (2021a). We consider
GW190814 (Section 4.1), GW190412 (Section 4.2), and
GW190521 (Section 4.3) in turn. Our analysis reweighs
publicly available population hyperposterior samples (The LIGO
Scientific Collaboration & The Virgo Collaboration 2020a); see
Appendix A for more details.
In what follows, we focus on results with the POWERLAW

+PEAK mass model from Talbot & Thrane (2018) and Abbott
et al. (2021a). Unless otherwise noted (i.e., GW190521 in
Section 4.3), astrophysical conclusions are unchanged when we
assume different mass models. Furthermore, we also consider
fixed  in each case. Specific choices for  are listed in each
section and are motivated by either the other N− 1 events or
theoretical expectations for astrophysical systems.

4.1. GW190814 Is an Outlier in Secondary Mass

We begin by considering GW190814 (Abbott et al. 2020a;
The LIGO Scientific Collaboration & The Virgo Collaboration
2020b), the BBH system with the smallest secondary mass
and the most extreme mass ratio observed to date. Indeed,
GW190814ʼs secondary is so small (m2∼ 2.6Me) that there
has been significant discussion about whether it could have
been a neutron star (see, e.g., Essick & Landry 2020), with the
common consensus that the system is likely incompatible with
a slowly rotating neutron star. For simplicity, we eschew the
question of whether both components of GW190814 were
actually black holes and instead focus on whether their masses
are compatible with the distribution inferred from the rest of the
BBH events in GWTC-2.
We adopt the mass models explored in Abbott et al. (2021a),

all of which include a cutoff at low masses (albeit with variable
degrees of sharpness) in much the same way as our toy model
(Section 3). In some sense, then, the results in Figure 5 are
directly comparable to Figure 2.
We define  for our analysis of GW190814 as follows:

( ) ( ) ( )  m M q: 5.0 OR 0.28 . 21GW190814 2

The m2� 5.0Me boundary is chosen to match the median
posterior estimate of GW190924, the event with the second-
smallest secondary mass after GW190814. The q� 0.28
boundary is chosen to match the median posterior estimate of
GW190412, the event with the second-smallest mass ratio after
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GW190814. Both GW190924 and GW190814 are highlighted
in blue in Figure 5. This defines an “L-shaped” region in the
(m2, q) plane spanning the lowest values for both dimensions
(see Figure 5). We again note that this choice of  is not
unique, and one could instead choose to define  with bounds
on only m2 or only q. Defining GW190814 in terms of only m2 or

only q does not affect our conclusions, and defining GW190814

in this way allows us to be as agnostic as possible about
GW190814 in some sense. Importantly, we note that, with this
definition of GW190814, population models that do not have
support for masses below m2� 5.0Me are still allowed as long
as they support q� 0.28, and vice versa.

Figure 2. Toy model in which we exclude the event with the smallest x from catalogs of 10 events when all events are drawn from the same distribution (left) and
N − 1 events are drawn from the same distribution and there is an additional true outlier at (x, y) = (9.9, 30) (right). Top row: example realizations of synthetic
catalogs. Dashed lines correspond to the true hyperparameters. We see that the (N − 1)-event coarse-grained inference ameliorates systematic biases in both the N-
event and (N − 1)-event inferences when their underlying assumptions are incorrect. Note that the marginal (N − 1)-event hyperposteriors for a are almost identical.
Bottom row: cumulative histograms of the posterior probability integrated over the region with p(Λ|{D}) � p(Λ0|{D}). Diagonal lines indicate proper coverage, and
shaded regions approximate expected 1σ, 2σ, and 3σ deviations from the counting uncertainty with the finite number of trials performed. We note that the (N − 1)-
event inference introduces large systematic biases (true hyperparameters are preferentially found in the tails of the hyperposterior) when the null hypothesis is true,
while the N-event inference may not ever contain the true hyperparameters when the null hypothesis is false (the N-event curve is absent from the bottom right panel
because the contained probability is always 1). However, in both cases, the (N − 1)-event inference with coarse graining provides reliable posteriors, although we do
expect them to be biased to some extent when the null hypothesis is false.
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Figure 5 summarizes our conclusions. Specifically, we see that
the (N− 1)-event coarse-grained hyperposterior resembles the full
N-event hyperposterior for βq, the hyperparameter that controls
the extent of the population model for q, while it more closely
resembles the (N− 1)-event hyperposterior that neglects the
coarse-grained correction for both mmin and δm, which control the
minimum mass allowed in the population. We note that mmin sets
an absolute lower bound for the allowed masses within a
population, and therefore we would expect a reasonable amount
of probability that m M3min in the (N− 1)-event analyses if
GW190814 was consistent with the population inferred from the
other events. While m M3min is not excluded by the (N− 1)-
event analysis, it is not particularly favored either. Our intuition

from Section 3, then, suggests that GW190814’s small q is
consistent with the rest of the events (population models already
contain plenty of support for small q), but GW190814 is
inconsistent with the rest of the events because of its small m2.
We further quantify this by estimating a p-value that the smallest

event out of an N-event catalog would have m2 less than or equal
to any event in GWTC-2, given the (N− 1)-event coarse-grained
hyperposterior. We find P � 0.056% at 90% confidence.15 As

Figure 3. Analogous to Figure 2, except simulations exclude the event with the smallest q ≡ x/y. We note that biases from incorrect assumptions appear to be smaller
when we exclude events with the smallest q compared to when we exclude events with the smallest x, which we attribute to the lack of a sharp feature in the population
distribution over q. Nonetheless, we consistently observe incorrect coverage for the (N − 1)-event hyperposterior when the null hypothesis is true at 3σ.

15 We can only bound the p-value from above, as we did not find a single
instance where synthetic catalogs generated { }mmin 2 smaller than
GW190814ʼs secondary after ∼5000 trials. Similarly, we find P � 0.024%
with the (N − 1)-event analysis that neglects coarse graining.
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such, we reject the null hypothesis that GW190814 was drawn
from the same population as the other N− 1 events. Abbott
et al. (2021a) reach the same conclusion, and, following their

example, we exclude GW190814 from the catalog as we
explore whether other individual events are inconsistent with
the remaining detections.

Figure 5. Top left: depiction of GW190814 (shaded region, Equation (21)), chosen to be the region (m2 � 5.0 Me) or (q � 0.28) based on the approximate median m2

and q of GW190924 and GW190412, respectively. Colored shaded regions show 50% and 90% highest probability density credible regions from each event assuming
flat priors in component masses and uniform priors in comoving volume for GW190814 (black ellipse, circled in lower left corner), GW190924 and GW190412
(blue), and all other BBH systems considered in Abbott et al. (2021a; red). Bottom left: distribution of GW190814ʼs m2 (black) and the smallest expected m2 (blue) in
catalogs of 45 events based on the (N − 1)-event coarse-grained hyperposterior for the POWERLAW+PEAK mass model. Right: hyperposteriors inferred with different
amounts of information about GW190814. Contours in the joint distributions denote 50% and 90% credible regions.

Figure 4. Left: distributions of probabilities that the smallest event in a catalog of 10 events would have x � xj (p-values), marginalized over hyperposteriors inferred
with the other N − 1 events when all events are drawn from the same distribution (shaded) and in the presence of a true outlier (unshaded). Colors match Figures 2 and
3. Right: distributions of ratios of p-values from the different (N − 1)-event hyperposteriors when the null hypothesis is (shaded) true or (unshaded) false. These
differences are typically no larger than a factor of a few, although they are more pronounced when the null hypothesis is false. We also note that our p-values are only
expected to be uniformly distributed when Λ = Λ0 (see, e.g., Seth et al. 2019). Because we marginalize over our uncertainty in Λ, the resulting statistic need not be
uniformly distributed even when the null hypothesis is true.
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4.2. GW190412 Is Not an Outlier

We next investigate GW190412 (Abbott et al. 2020c; The
LIGO Scientific Collaboration & The Virgo Collaboration
2020c), which, with q∼ 0.28, is the only event in GWTC-2
besides GW190814 that is inconsistent with q= 1. As a
reminder, we have already removed GW190814 from the set of
events against which we compare GW190412. In this case, we
define

( ) q: 0.8 22GW190412

as a conservative boundary for systems that have asymmetric
masses. Fishbach & Holz (2020a) estimate that 90% (99%) of
detected BBHs will have q� 0.73 (0.51) based on population
models of the 10 BBH events in GWTC-1 (Abbott et al.
2019b). Our choice for GW190412 is even more conservative:
we give the coarse-grained inference very little information
about GW190412 itself and will therefore most easily identify
it as an outlier. Figure 6 demonstrates the results.

Again, we are primarily interested in the low-mass (and low
mass ratio) behavior of the model and focus on the inferred values
of βq, mmin, and δm. In this case, we find that all inferences agree
remarkably well for mmin and δm, which is unsurprising since
GW190412ʼs masses are not particularly extreme when con-
sidered individually. However, we observe better agreement
between the N-event and (N− 1)-event coarse-grained hyperpos-
teriors for βq than between either of those hyperposteriors and the
(N− 1)-event inference that neglects coarse graining. This is
analogous to Figure 3 when the null hypothesis is true; excluding
the event with smallest q shifts the inferred hyperposterior toward
values that favor equal-mass systems (larger βq).

The coarse-grained inference produces a p-value of
P= 22%16 for the smallest observed q to be as small as or
smaller than that of any BBH event in GWTC-2 (excluding
GW190814). We therefore conclude that GW190412 is
consistent with the population inferred from rest of the BBH
events within GWTC-2 (except GW190814). It is simply the
event with the most extreme q from that population, in
agreement with Abbott et al. (2020c, 2021a).

4.3. GW190521 Is Not an Outlier

Finally, we consider GW190521 (Abbott et al.
2020b, 2020d; The LIGO Scientific Collaboration & The
Virgo Collaboration 2020d). This event is remarkable for its
large component masses, although we note that it does not
unambiguously have the largest component masses of any
system in GWTC-2; see Figure 7. In this case, we cannot easily
define GW190521 in terms of the other events in the catalog
while guaranteeing that Equation (6) is satisfied. However, we
note that GW190521 is of particular interest because its
component masses nominally fall within the PISN mass gap.17

In this case, it is natural to define GW190521 in terms of an
approximate boundary defining the PISN mass gap. We take

( ) m M: 50 23GW190521 1

as a reasonable approximation, although others have consid-
ered values as large as 65Me (Abbott et al. 2020b, 2020d;
O’Brien et al. 2021). Again, there is nontrivial overlap between

this choice for GW190521 and the parameters inferred for several
other events in GWTC-2, but this does not affect our inference.
Contrary to GW190814 and GW190412, in which higher-order

modes were observed and their asymmetric mass ratios were
relatively well measured, GW190521ʼs component mass posterior
is quite broad. As such, simultaneous population inference can
have a significant impact on the system’s inferred properties. For
this reason, Figure 7 shows the posteriors of primary masses under
the POWERLAW+PEAK mass model as inferred with our coarse-
grained analysis. Nonetheless, several analyses have shown that it
is likely that at least one component of GW190521 had a mass
�65Me (Abbott et al. 2020b, 2020d; O’Brien et al. 2021).
Some authors have taken this to mean that GW190521 is

incompatible with the population of stellar-mass black holes, but,
to be clear they often mean the inferred phenomenological fit from
other events with an additional cutoff (not included in the fit). We
are concerned with the simpler question of whether GW190521 is
inconsistent with the phenomenological population model inferred
from the other BBH events without imposing additional sharp
cutoffs. We are not concerned with whether the current
phenomenological models are compatible with PISN predictions,
but instead ask whether the models are sufficient to describe the
overall mass distribution and whether GW190521 is consistent
with models inferred from the other events.
While our coarse-grained hyperposterior at times more closely

resembles the (N− 1)-event hyperposterior than the N-event
hyperposterior (bottom panel of Figure 7), we nonetheless obtain

Figure 6. Top: depiction of GW190412 (shaded gray; Equation (22)) with
GW190412 (shaded black) and all other events considered in Abbott et al.
(2021a; except GW190814) with flat priors on component masses (red), as well
as the prediction for the smallest q out of 44 events based on the (N − 1)-event
coarse-grained hyperposterior with the POWERLAW+PEAK mass model (blue).
Bottom: hyperposteriors inferred with different amounts of information about
GW190412.

16 The (N − 1)-event analysis without coarse graining yields P = 19%.
17 See, e.g., Fishbach & Holz (2020b) for alternative interpretations with
component masses that straddle the mass gap.
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a p-value of P= 20% that synthetic catalogs would contain a
more massive event than has been observed so far. In fact, if we
neglect the coarse-graining correction, we still obtain P= 15%
under the POWERLAW+PEAK model. As such, and in agreement
with Abbott et al. (2021a), we conclude that GW190521 is
consistent with the overall mass distribution inferred from the rest
of the BBH population.

One might expect other mass models, like the Abbott et al.
(2021a) TRUNCATED model with a sharp cutoff at high masses, to
be less consistent with GW190521. To investigate this, we repeat
our coarse-grained analysis and find P= 11% under the TRUN-
CATED model. Indeed, even the (N− 1)-event TRUNCATED
hyperposterior that neglects coarse graining only yields P= 6%.
As such, we may conclude that, while GW190521 is certainly not
expected to be common, it also is not unambiguously inconsistent
with any of the phenomenological models considered in Abbott
et al. (2021a), even the simplest TRUNCATED distribution.18

That being said, the number of BBH systems detected in
GWTC-2 more than quadrupled compared to GWTC-1, and both
Abbott et al. (2021a) and Fishbach & Holz (2020b) point out that
GW190521 does seem to be inconsistent with the truncated mass
distributions inferred based on only the 10 events in GWTC-
1 (Abbott et al. 2019a). While additional GW detections have
continued to surprise, we are reminded that it is important to
consider new events in the context of the full catalog before
drawing conclusions based on individual (apparently) exceptional
events and a subset of previously observed systems.

5. Discussion

Within any set of observed events drawn from an unknown
population, one is often interested in determining whether new
events are consistent with the population inferred from the
existing set. This often involves careful examination of particular
events because they are extremal in some way. It is remarkable
that GW astronomy has already advanced to the point where such
matters are of practical importance in only a half-dozen years
since the first detection (Abbott et al. 2016). Nonetheless, we
show that current approaches to answer exactly this question,
which have become commonplace within the GW community,
can introduce biases, as they do not account for the manner in
which extremal events were identified for further study.
Our method allows analysts to explicitly account for how they

selected extremal events within leave-one-out analyses, represent-
ing excluded events with coarse-grained likelihoods, and clearly
identifying the need to select the size and placement of the coarse
grains. While we note that the exact choice of how big to make
those grains is to some degree arbitrary, just as the definition of a
null hypothesis is to some degree arbitrary, we propose algorithmic
ways to choose the most generous grains possible. We further
observe that the resulting coarse-grained analysis almost always
has nearly correct coverage within several toy models.
Finally, we note that the biases introduced by excluding

extremal events without accounting for how they were selected
can be particularly severe when there are sharp features in the
underlying population model (e.g., mass gaps). Therefore, one
must take care when analyzing population models with sharp
cutoffs and attempting to assess the significance of outliers after
excluding extremal events. However, even in these severe cases,
we find that p-values estimated from (N− 1)-event hyperposter-
iors are typically biased by at most a factor of a few.
Our conclusions based on our coarse-grained analysis agree

with those presented in Abbott et al. (2021a), even though they
did not account for the coarse-grained correction and their
leave-one-out analyses may have been biased. We find that
GW190814 is an outlier because its secondary mass is too
small to be consistent with the other events. GW190412 is not
an outlier, and its small mass ratio is simply the most extreme
example from the tail of the main population. We find that
GW190521 is not an outlier under the preferred mass models
explored in Abbott et al. (2021a) and is in only moderate
tension with even the simplest truncated mass models.
We again note that any population analysis will eventually face

the challenge of determining whether particular events are
consistent with the population inferred from the rest of the
events. This problem is not unique to GW astronomy. However,
as catalogs continue to rapidly grow in size, this question has
become increasingly relevant. We note that another large set of
events is expected with the release of the second half of the LVK
collaborations’ third observing run (O3b). Indeed, given the

Figure 7. Top: depiction of GW190521 (shaded gray; Equation (23)) with
GW190521 (black shaded) and all other events considered in Abbott et al.
(2021a; red) informed by the POWERLAW+PEAK mass model as inferred under
the (N − 1)-event coarse-grained hyperposterior, as well as the distribution of
the largest predicted m1 out of 44 events based on the (N − 1)-event coarse-
grained hyperposterior. The hard boundary in GW190521ʼs distribution at
m1 ∼ 60 Me is due to our labeling convention (m1 � m2) and approximately
corresponds to equal-mass systems. Bottom: hyperposteriors inferred with
different amounts of information about GW190521. Note that mmax extends
below 50 Me because it only limits the power-law part of POWERLAW+PEAK;
the peak still has support at higher masses.

18 While GW190521 may not be inconsistent with the mass models considered
in Abbott et al. (2021a), they point out that the simple TRUNCATED model is
more broadly a bad fit to the data. It overpredicts the number of massive
systems that should have been observed (see also Fishbach et al. 2021).
However, even minor modifications like the POWERLAW+PEAK and BROKEN
POWERLAW distributions appear to remove such tensions.
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breadth of physical phenomena that GW observations can probe,
it is of the utmost importance to fully characterize outlier tests. We
emphasize that many of the most interesting questions in GW
astronomy are specifically focused on outliers, including extreme
mass, mass ratio, and spin events, and the presence of events
within the putative NS–BH and PISN mass gaps. Our analysis
provides a controlled way to account for event selection when
examining outliers with nearly trivial additional computational
cost. This will enable the robust identification of novel
subpopulations without fear of biasing analyses toward artificially
inflated significance estimates for potential outliers.
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Appendix A
Reweighing Existing Hyperposteriors

We note that Equation (10) could be computationally
expensive if we allow  to depend on the parameters of the
other events. However, if  does not depend on the parameters
of the other events, the marginalization becomes trivial. There
are also significant redundancies between Equations (5) and
(10), which reduce the computational cost of reweighing
existing samples and make implementing the coarse-grained
likelihood a simple extension of existing likelihoods.

Figure 8. Comparison between reweighed samples and direct sampling for GW190814ʼs (N − 1)+coarse-grained hyperposterior (Section 4.1). Contours in the joint
distributions denote 50% and 90% credible regions. Reweighed samples were obtained by applying Equation (A2) to public hyperposterior samples from an (N − 1)-
event analysis that excluded GW190814 (The LIGO Scientific Collaboration & The Virgo Collaboration 2020a).
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There are two corrections to the likelihood that may be of
interest. When we have already analyzed the full set of N
events and want to conduct a coarse-grained analysis post hoc,
we note that
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When we instead have hyperposterior samples from an (N− 1)-
event analysis that omitted the potential outlier, we can write
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Weighing existing hyperposterior samples by either
Equation (A1) or Equation (A2), as appropriate, allows us to
estimate the coarse-grained hyperposterior and quickly perform
consistency tests of our null hypothesis. Such reweighing
procedures are equivalent to directly sampling from
Equation (10) as long as enough effective samples remain to
provide reliable estimates of the hyperposterior. As a
demonstration, we repeat the analysis of Section 4.1 by
directly sampling from Equation (10), obtaining equivalent
results to the reweighed hyperposterior samples (see Figure 8).

Appendix B
Toy Models with Larger Catalogs

Section 3 examines the effect of coarse graining on catalogs
with 10 events in the context of a simple toy model. Here we
investigate how our conclusions might change for catalogs of
different sizes. Specifically, we consider three cases:

1. Null hypothesis is true, we only have “regular” events,
but we have more of them (Appendix B.1).

2. Null hypothesis is false, we have a single “true outlier,”
but we have more regular events (Appendix B.2).

3. Null hypothesis is false, we have more events, but we
retain an equal ratio of true outliers and regular events
(Appendix B.3).

In each case, we compare how our conclusions behave when
we exclude events based on x or based on q≡ x/y.

B.1. Null Hypothesis Is True

We begin by analyzing the relative importance of coarse
graining when the null hypothesis is true (all events are drawn
from the same distribution). Figure 9 demonstrates our results
by analyzing how the (N− 1)-event hyperposterior’s coverage
changes as we increase the number of events in our catalog (N).
Because we believe that the N-event and (N− 1)-event +
coarse-grain hyperposteriors have correct coverage, we focus
only on the (N− 1)-event hyperposterior that neglects the
coarse-graining correction.

When we exclude the event with the smallest x, we see very
similar coverage regardless of the number of events in the

catalog. That is, while the (N− 1) hyperposteriors become
more precise and the smallest observed x approaches m, this
occurs in such a way that the coverage is almost unchanged. If
anything, the coverage appears to become slightly worse as N
increases. The (N− 1)-event hyperposterior is consistently
shifted relative to the N-event hyperposterior. This is due to the
fact that the sharp edge within the population model asserts that
we know the exact shape of the distribution very precisely.
Therefore, in the presence of a sharp feature in the

population model, we might expect to get a hyperposterior
that is closer to the truth (more accurate and precise), but it will
still consistently assign the true hyperparameters posterior
probabilities that are too low (ratio of accuracy to precision is
approximately the same).
We see different behavior when we exclude the event with

the smallest q. In this case, the (N− 1)-event analysis that
neglects the coarse-grain correction sees less of a bias as N
increases. That is, the coverage approaches a diagonal line to
within the resolution of the finite number of trials performed
and the (N− 1)-event hyperposterior collapses to the same
result we obtain for the N-event hyperposterior. We attribute
this to the fact that there is not a sharp feature in our population
model for q. Therefore, the fact that we incorrectly exclude a
single event does not add an undue amount of information to
the analysis, and the larger number of overall events tends to
overwhelm the impact of the single excluded event.
We therefore conclude that coarse graining could be

important regardless of the catalog’s size, but only if one
assumes a model with a sharp feature in the dimension used to
define  .

B.2. Null Hypothesis Is False with a Single True Outlier

Next, we consider the case where the null hypothesis is false,
but there is always only a single true outlier. As in Figures 2
and 3, we find good agreement between both (N− 1)-event
hyperposteriors, and both show good coverage for almost all
catalog sizes. Nevertheless, the (N− 1)-event analysis that
neglects coarse graining always predicts smaller p-values for
the smallest observed event than the (N− 1)-event analysis that
includes coarse graining.
For both (N− 1)-event analyses, the p-values decrease as the

catalog size increases. This means we are able to more
confidently identify true outliers (when only a single outlier
exists) within larger catalogs, as expected. We therefore focus
on the ratio of p-values as a way to evaluate the relative
sensitivity of each analysis.
Figure 10 shows that this ratio tends to 1 when we exclude

the event with the smallest q, suggesting that both analyses are
equally sensitive to true outliers within large catalogs when
there are no sharp features in the population model.
Conversely, we observe an approximately stationary distribu-
tion when we exclude the smallest observed x, regardless of
catalog size. We can again understand this from the fact that the
hyperposteriors tend toward one another (relative to their
widths) as N increases when we exclude the smallest q, but
they remain consistently shifted when we exclude the smallest
x. Therefore, as is the case when the null hypothesis is true,
coarse graining may always be important regardless of the
catalog’s size when there is a sharp feature in the population
model.
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B.3. Null Hypothesis Is False with an Equal Ratio of Outliers
and Regular Events

Finally, we consider the case where the number of “true
outliers” scales with the size of the catalog. This situation is
mostly likely to occur for real astrophysical sources. As we
observe for longer periods, we expect to see the same
proportion of events from each subpopulation. From this
perspective, a single outlier (Appendix B.2) that is not repeated
as the catalog grows may suggest that it is not of astrophysical
origin.

We expect that the relative importance of coarse graining
will increase when we observe more events from all
subpopulations. That is, if the population model describing
regular events does not support a subpopulation, we expect to
need to coarse-grain all events in the subpopulation to obtain a
robust inference of the main population. In this case, we might
expect comparable shifts in the hyperposteriors as are seen in
Section 3. At the same time, the statistical uncertainty on that
inference should improve, meaning that the shifts observed in

the hyperposteriors will be more statistically significant. Based
on our previous examples, this may be more important for
population models with sharp features. However, it may be of
more practical use to modify the population model to include
the apparent subpopulation rather than coarse-graining the
entire subpopulation.
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