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Abstract— A constrained feedback control strategy designed
on the basis of a simplified electrochemical–thermal model is
considered for the fast and healthy charging of a lithium-ion bat-
tery cell. The constraints ensure avoidance of side reactions and
operating modes that yield premature aging (healthier charging).
They are enforced through a reference governor approach, hence
requiring a low computational burden. A systematic approach is
presented for model identification and control law design. The
method is first validated on a detailed battery simulator based
on the Doyle–Fuller–Newman model combined with a thermal
model. Next, it is validated experimentally through battery-in-
the-loop long-term aging campaigns, and the results show that the
charging time is reduced by 22% while simultaneously ensuring a
longer lifetime (26% less capacity degradation) compared to a 2C
constant-current/constant-voltage (CCCV) approach. Compared
to recommended C/2 CCCV, our method charges the battery
70% faster and degrades it similarly despite more demanding
operating conditions.

Index Terms— Constrained feedback control, electrochemi-
cal model, fast healthy charging, lithium-ion (Li-ion) battery,
long-term battery aging, reference governor (RG).

NOMENCLATURE

Electrochemical Parameters:

ce Electrolyte concentration (mol·m−3).
cs,max Maximum solid concentration (mol·m−3).
CSC Critical surface concentration.
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Cp/ps Volumetric heat capacity for core (Cp)
and surface (Cps) (J·m−3·K−1).

Ds Solid-phase diffusion coefficient (m2·s−1).
E� Activation energy of variable � (J·mol−1).
F Faraday’s constant (=96487C·mol−1).
g Lithium exchange rate parameter (s−1).
h Heat transfer coefficient (W·m−2·K−1).
kn Reaction rate constant (A·m2.5·mol−1.5).
kT Thermal conductivity (W·m−1·K−1).
L Electrode/separator thickness (m).
nLi
s Moles of lithium (mol).
Rg Universal gas constant (=8.31 J·mol−1·K−1).
R f Film resistance �·m2.
Rs Particle radius (m).
SoC State of charge.
Tc/s Core/surface temperature (K).
Tref/∞ Reference/ambient temperature (K).

Greek Symbols:

α0 Apparent transfer coefficient.
β Particle volume ratio.
γ Input coefficient (m2·C−1).
εs Active material volume fraction.
�ref Variable � at the reference temperature.
ρ Material balance (slope) coefficient.
σ Material balance (intercept) coefficient.

Superscripts:

/ Separator domain.
− Negative electrode domain.
+ Positive electrode domain.

I. INTRODUCTION

L ITHIUM-ION (Li-ion) batteries are one of the most com-
mon energy storage technologies. They are used all across

the spectrum of battery applications, ranging from portable
electronics to grid-scale storage systems. Two important fac-
tors limit even wider adoption of this technology presently.
They are short life expectancy and long charging times,
as identified by the U.S. Department of Energy (DOE) [1].
In the last decade, the improvement of Li-ion battery

performance through advanced management algorithms has
gained traction within the scientific community [2], [3]. One
of its most important aspects is the charging process. The
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most widely used protocol for battery charging is the constant
current/constant voltage (CCCV) [4]. Although very simple
and widely used, the CCCV is an empirical approach [5],
which can be quite conservative [2]. Indeed, the CCCV
is unable to charge a battery while satisfying “by design”
the electrochemical safety constraints associated with lithium
plating notably. Constraint satisfaction is achieved only “in
practice,” by tuning the protocol in a conservative way. How-
ever, a tradeoff between constraint fulfillment and fast charging
has to be found by an appropriate setting of the charging
current.
In recent years, other fast charging schemes have been

proposed in the scientific literature [6], [7]. Several approaches
extend the CCCV protocol through multistage CC [8], boost-
charging [9], and pulse charging [10], among others [11], [12].
Although these methods are improvements over CCCV, they
suffer from the same limitations—they are heuristic methods
that do not ensure constraint satisfaction “by design.” Observe
that, to handle electrochemical constraints “by design,” one
cannot use empirical models characterizing only the “exter-
nal” electrical behavior of a battery but should base the
design on an electrochemical model [2] (popular methods
based on equivalent circuit models [13], [14] or data-driven
approaches [15], [16] cannot be used here). Therefore, several
approaches have been developed, which computes the optimal
charging profile to ensure the satisfaction of electrochemical
constraints. The optimality criteria often include the mini-
mization of charging time [17], [18] and capacity fade [19],
[20] or the maximization of charge stored at a given time
instant [21] while accounting for constraints on solid- and
electrolyte-phase concentrations [18], [22], temperature [18],
[22], [23], intercalation-induced stresses [21], and lithium
plating [17], [20], [23]. Although important from a theoretical
viewpoint, the main limitation of these strategies is that they
are open loop, i.e., no information on the current state of
the battery (e.g., voltage, temperature, or SoC) is exploited
to dynamically adjust the applied input current, which makes
them susceptible to modeling uncertainties and varying initial
SoC.
More recently, some closed-loop control schemes for fast

and healthy charging have been proposed in the literature.
By healthy, we mean that constraints are introduced in order
to limit side reactions that induce accelerated aging. Healthy
charging protocols thus aim at slowing down battery aging
with respect to a given standard charging. The most common
approaches in this regard are based on model predictive control
(MPC). The first MPC scheme proposed for battery charging
is [23], which makes use of the Doyle–Fuller–Newman (DFN)
electrochemical model [24]. The main limit of this method
is that the DFN model is a very complex nonlinear model
based on partial differential equations (PDEs) [25] and subject
to nonconvex constraints, which makes the resulting online
optimization computationally challenging. A way to decrease
this computational cost is to use reduced order [19], [26], [27]
or reformulated [28] electrochemical models. MPC strategies
based on such models have been proposed, for instance, in [22]
and [28]–[32]. It must be noted that, even with a reduced
linear model, MPC can still be computationally demanding

for embedded controllers typically associated with battery
chargers. An alternative approach to MPC, which is com-
putationally less demanding, is the reference governor (RG)
approach. The first exploration of RGs for battery charging
was carried out in [33]. In [34], a computationally low-cost RG
was introduced, which, using a reduced-order electrochemical
model, achieves fast charging while satisfying prescribed elec-
trochemical constraints.
The present work builds upon the latter approach and it

departs from previous works in the following ways: 1) a
thermoelectrochemical model of the battery with time-varying
film resistance (to account for electrolyte and aging dynamics)
is identified and used for closed-loop controller design; 2) a
closed-loop controller for fast healthy charging that is robust
to temperature changes is designed; and 3) battery-in-the-
loop experiments and battery aging campaigns are used for
validation. Notice that this is in stark contrast with other
constraint-aware charging policies mentioned above where
no such validation has been performed, leaving the claimed
benefits of electrochemical model-based constrained control
in Li-ion battery charging as a conjecture. Experimental aging
campaigns are conducted in [16], [18], and [19], but a single
optimal charging profile is computed offline at the beginning
of battery life and fed to a battery throughout its entire lifetime,
which falls in the open-loop charging methods.
This article is organized as follows. Section II deals with

the modeling methodology for the Li-ion battery. The con-
troller design is described in Section III, and the experi-
mental procedure and results are presented and discussed in
Sections IV and V, respectively.

II. MODELING METHODOLOGY

We introduce here the different aspects involved in the
modeling and identification from experimental data of the
electrochemical models considered in this work.

A. Li-Ion Battery Modeling

Li-ion batteries transform electrical energy into chemical
energy during the charging process and vice versa when con-
nected to a load. A battery is composed of three domains and
two phases. The three domains are: 1) the positive electrode
(+); 2) separator; and 3) negative electrode (−). The two
phases are: 1) the electrolyte solution phase and 2) the porous
solid phase. While the electrolyte phase covers both electrodes
and separator domains, the solid phase is only present in the
electrode domains. During battery charge, lithium is deinter-
calated (oxidation reaction) from the positive electrode solid
phase. This lithium is then immersed in the electrolyte phase
of the positive electrode in the form of Li-ions. These ions
migrate from the positive electrode, through the separator,
and to the negative electrode. Once there, lithium is inter-
calated (reduction reaction) into the negative electrode solid
phase. Meanwhile, an electric current is generated and goes
from the positive to the negative electrode. This completes
the electrochemical charging process. These electrochemical
phenomena are captured by the DFN model, which is based
on the porous electrode and concentrated solution theories.
It describes the porous solid phase of the electrode as a set of
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spherical particles of uniform size and considers that transport
of Li-ions occurs in one dimension only. This model results in
a set of PDEs that are algebraically coupled, as reported in [2]
and [24], and extensions with thermal dynamics can be found
in [26] and [35]. Such a DFN model with thermal dynamics
(a simple two-state thermal model) is used in this article for
control validation purposes.
The DFN model complexity makes its use more chal-

lenging when designing the charging feedback control law,
which motivates the use of reduced-order electrochemical
models, such as the equivalent hydraulic model (EHM). The
EHM strikes a good balance between simplicity, accuracy,
and interpretability. This model belongs to the single-particle
model (SPM) class in which each electrode solid phase is
represented by a single, suitably scaled, spherical particle. The
model reduction from the DFN model to the EHM is based
on the following assumptions. [36]:

A1: The electrolyte dynamics are constant in space and time.
A2: A single particle is used to represent each electrode.
A3: The solid-phase diffusion coefficient is spatially

independent.

Under Assumptions A1–A3, a transcendental transfer func-
tion for each solid-phase diffusion PDE is obtained [37]. These
transfer functions can then be truncated through the Padé
approximations of a given order [38]. A tank system can be
shown to have a transfer function with similar structure as
this Padé approximation, and the state-space model describing
its physical behavior presents an analogy with the lithium
diffusion process. This allows matching the coefficients of the
EHM with electrochemical parameters and retaining a physical
meaning for the state vector. More details can be found in [39].
Prior work has shown that a second-order approximation

of the solid-phase electrode dynamics is adequate to represent
battery dynamics [39]. Hence, the model consists of an inte-
grator to determine the SoC combined with the dynamics of
the electrode surface concentration. The resulting EHM takes
the form

x(k + 1) = Aµx(k) + Bµu(k) (1)

where x = [SoC, CSC]T is the state vector consisting of the
SoC of the battery and the critical surface concentration and u
is the applied current, which is negative during charging. The
state and input matrices are

Aµ =
[

1 0
g

β(1 − β)
1 − g

β(1 − β)

]
, Bµ = γ

⎡
⎣ 1

1

1 − β

⎤
⎦
(2)

where index µ stands for the model parameters µ = [g, γ ]T.
The hydraulic parameters g, a valve coefficient, and γ, the
input coefficient of the two-tank system, are respectively
equivalent to the inverse of the diffusion time constant and
the inverse of the electrode capacity (see Table I). Parameter
β = 7/10 follows from the Padé truncation [39] and a sam-
pling time of 1 s has been considered. This EHM represents the
diffusion of lithium inside an electrode as diffusion of fluid in a
two-tank system, and it is electrochemical coherent with other

TABLE I

FUNCTIONS ASSOCIATEDWITH THE BATTERY MODELS†

SPMs [36]. The dynamics of each electrode can be modeled
by an EHM. However, the battery system consisting of two
electrodes is well known to be unobservable [40]. This issue is
alleviated by making some standard assumptions when consid-
ering the graphite/nickel–cobalt–aluminum (NCA) chemistry
used in this article. We assume instantaneous dynamics in the
NCA electrode (CSC+(k) ≈ SoC+(k)) since its diffusion time
constant is much smaller than the graphite one (τ+ ≈ 500 s,
τ− ≈ 7000 s) and we exploit material balance to write the
positive electrode dynamics as SoC+(k) = ρSoC(k) + σ with
ρ and σ grouping electrochemical parameters [39], as shown
in Table I. Hence, an EHM (1) is required for the negative
electrode only. The interested reader is referred to [39] for
more details.
The associated output equation has the form

yV (k) = hθ (x(k), u(k)) (3)

where the output yV = V is the voltage across the battery
characterized by the nonlinear function hθ : R

2 × R → R,
which is reported in Table I. The first two terms of this
function are Butler–Volmer surface overpotentials for positive
and negative electrodes, respectively, the third term is the
difference between open circuit potentials of positive and
negative electrodes, and the last term is a film resistance
ohmic drop. The index θ refers to the parameter vector
containing all the electrochemical parameters that characterize
the considered function, such as material balance coefficients
ρ and σ , maximum solid concentration of lithium cs,max, and
electrode thickness L, to name a few [39].
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This EHM in Eqs. (1), (3) is coupled with the same
second-order thermal model and associated thermal parameters
used in the DFN model. The thermal effects on the diffusion
time constant 1/g are modeled by the Arrhenius law [35] as
reported in Table I. This reduced-order coupled electrochemi-
cal/thermal model is denoted as temperature-dependent EHM
(TEHM) and it takes the following form:

xec(k + 1) = fµ(xec(k), xT (k), u(k)) (4)

xT (k + 1) = fµT (xec(k), xT (k), u(k)) (5)

where xec denotes the electrochemical state and xT denotes
the thermal state. They are defined as xec = [SoC, CSC]T
and xT = [Tc, Ts]T, where Tc, Ts are respectively the core
and surface cell temperatures. The nonlinear functions fµ :
R

2×R
2×R → R

2 and fµT : R2×R
2×R → R

2 are defined in
Table I. While fµ is the temperature-dependent version of the
electrochemical subsystem (1), the temperature subsystem is
specified by fµT and it follows from thermal balance. The first
equation in fµT involves core-surface thermal conductivity and
heat generation from Joule and entropic effects, and the second
equation includes heat convection with the environment. The
associated output equation is given by

y(V,T )(k) = h(ec,T ),θ (xec(k), xT (k), u(k)) (6)

where the output is y(V,T ) = [V , Ts]T, which is characterized
by the nonlinear function h(ec,T ),θ = [hθ , Ts]T : R2 × R

2 ×
R → R

2 with hθ reported in Table I.

B. Model Identification

Both models used in this study, namely, the DFN model
with thermal dynamics and the TEHM, needed to be identified
from data coming from a graphite-anode/NCA-cathode cell.
The parameters of the DFN model were fit using the proce-
dure described in [41]. The currents used for identification
consisted in a library of input profiles covering a wide range
of frequency content and current magnitudes. The identified
parameters were taken from [41]. Fig. 1(a) and (b) illustrate
the good fit between the experimentally measured voltage and
surface temperature with the DFN simulation model for a
2C constant current charging profile, resulting in root-mean-
square errors (RMSEs) of 28 mV and 0.65 ◦C, respectively.
This fit quality is comparable to others reported in the litera-
ture [41], [42].
To determine the unknown parameters in the TEHM (4)–(6),

the two-step procedure described next is used.
Step 1 (Determination of Equilibrium and Diffusion-Related

Dynamic Parameters): An estimate µ̂ of the parameter vector
µ in (1) was deduced from the DFN model parameters
estimated in [41] using the relations in Table I [39]: g = 10−3

s−1 and γ = 6.50 × 10−6 m2 · C−1. Similarly, an estimation
θ̂ for the parameter vector θ in (3) was obtained from the
identified DFN model, where ρ = −0.76 and σ = 0.90. The
obtained values for the remaining parameters in θ can be found
in [41].
Step 2 (Estimation of Temperature-Related Dynamic Para-

meters): The parameter vector µT = [Cp, Cps, h, kT ]T of
the thermal dynamics in (5) was estimated from a dataset

Fig. 1. Model comparisons between experimental measurements and the
DFN model in terms of (a) voltage and (b) temperature and between the
DFN model and the TEHM in terms of (c) solid-phase diffusion states (i.e.,
SoC and CSC) and (d) thermal states (i.e., core and surface temperatures).

recorded at high current (larger than 1C)1 of NT samples.
In the following problem:

min
µT

NT∑
i=1

(
Ts,T (i) − Ts(i)

)2
(7)

s.t. equations (4)−(6) (8)

Ts is the model output and Ts,T is the measured signal. This
problem was solved using the particle swarm optimization
algorithm [43] in order to obtain the required parameter
estimates. This algorithm benefits from handling nonlinear
optimization problems with possibly multiple minima, effi-
ciency, and simplicity in implementation [43]. The estimated
parameters are µ̂T = [4.70 × 102, 4.50, 2.17, 4.70]T with
units as J · m−3 · K−1 for the first two vector components,
W ·m−2 ·K−1 for the third one, and W ·m−1 ·K−1 for the last
one.
Fig. 1 also compares the TEHM with the more complex

DFN model, in the case of 2C charging. Fig. 1(c) shows the
bulk SoC, which represents available energy, and the CSC,
which represents available power. Fig. 1(d) shows core and
surface temperature. Regarding the SoC, the indicator used
here is the electrode stoichiometry defined as SoC = cs/cs,max,
where cs is the current lithium concentration and cs,max is
the maximum lithium concentration of a given electrode. For
reference, NCA cells have SoC = 0.93 at 4.2 V. Another
popular SoC notion is based on the Coulomb counting (SoCcc)
defined as SoCcc = Q/Qnom, where Q and Qnom are the
current battery capacity and the one determined under nominal
conditions, respectively. As comparison, SoCcc = 0% yields
SoC = 0, while SoCcc = 100% corresponds to SoC = 0.93
for a voltage range of [3.3, 4.2] V. Regarding CSC, there is a
slight mismatch between the CSC of the EHM and the DFN
at low SoCs, resulting in 1.2 × 10−2 RMSE (since the con-
centration is normalized, the RMSE is dimensionless) between
the two models, which is due to the low-order approximation.
However, this modeling gap is reduced at high SoCs, which is

1C-rate: normalization of the battery current in A with respect to the battery
nominal capacity in Ah.
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Fig. 2. Constraint-aware control scheme for Li-ion battery charging, where
(a) feasible and infeasible operating regime in the CSC plane and (b) proposed
feedback control scheme.

the most stringent operating region for constraint fulfillment
and notably overcharge avoidance, as seen next. Overall, the
curves for the TEHM model exhibit a good agreement with
the curves obtained with the DFN simulator with RMSEs of
2.8× 10−4 for SoC and 2.6× 10−2 ◦C and 2.9× 10−2 ◦C for
core and surface temperature, respectively.

C. Degradation Constraints

The battery electrochemical state should be kept within spe-
cific operational constraints to avoid undesired electrochemical
phenomena caused by side reactions. Some of the most
relevant side reactions are electrode structural changes and
lithium plating. The operational constraints considered here are
shown in Fig. 2(a). The dashed blue line (constraint 1) delimits
the upper bounds for SoC and critical surface concentration,
which limits the maximum allowable concentration of lithium
in the electrode. The red area delimited by the dashed red
lines (constraint 2) is the region where lithium plating occurs.
The complement region of the red zone corresponds to the
operating conditions within which the battery charging is
performed in a healthy fashion, and therefore, it denotes the
safe operating area [44] of the battery in the electrochemical
space. Lithium plating degrades the battery in two ways:
1) it consumes available lithium and 2) the lithium tends
to form dendrites. Extreme conditions that promote lithium
plating are charging at low temperature [45], [46] or high
current rate [47], [48] which is especially aggravated for high
SoC [47]. However, it has also been reported to occur at
milder conditions, such as charge rates as low as about C/6 at
20 ◦C [47].
In the EHM, the threshold potential that induces lithium

plating results in a static nonlinear inequality that is a function
of the CSC and the charging current [see Fig. 2(a), constraint
2]. This threshold is obtained from the literature for the studied
graphite/NCA cell [49], and the DFN simulator is used to draw
the associated nonlinear function. The limits on both lithium
plating and lithium concentration can be represented as model
constraints that take the following mathematical form:{

x(k) ≤ x̄ (9a)

gc(x(k), u(k)) ≤ 0 (9b)

where x̄ is an upper bound on electrode lithium concentration
preventing an excess of lithium to be deposited at the surface

of the electrode and gc : R2 ×R → R is a nonlinear function
that mitigates the effect of lithium plating. Function gc is
obtained by fitting a curve to the lithium plating boundary
(negative electrode potential equal to zero) obtained from the
simulation of the DFN model under different constant current
charging conditions [34]. The expression for function gc can
be found in Table I, whereas the parameter values are given
by alp = 1.74, blp = 9.32, and clp = −4.46.

III. CONTROLLER DESIGN METHODOLOGY

We now introduce the different aspects involved in the
controller design and its validation in simulation.

A. Feedback Charging Control

In contrast to standard CCCV charging strategies or a priori
computation of input profiles, closed-loop control provides the
means to charge a battery to a given set point (e.g., 100% SoC)
while ensuring that the internal states remain in the safe region.
The latter feature is achieved by using a cascaded control
structure [see the purple block in Fig. 2(b)] relying on the
RG method in order to generate the charging current u. The
inner and outer loops of the controller are as follows:
1) a linear state feedback regulator [red block in Fig. 2(b)]

that produces a current profile to aggressively charge the
battery toward a SoC set point v;

2) an RG [green block in Fig. 2(b)] that generates the SoC
set point v from a desired set point r and the battery
state information x , where v serves as a virtual input to
ensure constraint satisfaction.

A linear-quadratic regulator (LQR) is designed for the inner
loop. It guarantees the asymptotic stability of the battery
system (which is a marginally stable system). In order to
keep a linear framework, and given that there are no stringent
performance requirements on this inner loop, we will consider
that the battery behavior is described by a polytopic uncertain
system (1) and (2), in which g is seen as a time-varying
parameter. This uncertainty accounts for possible deviations
from isothermal conditions due to the fast charging control
of the battery. For a temperature range between 0 ◦C and
45 ◦C and the considered chemistry, the range of values for
g is [2 × 10−4, 3 × 10−3]. The controller design is performed
in two stages. First, an LQR controller is designed for the
nominal linear time-invariant model (1) corresponding to a
temperature of 25 ◦C. This corresponds to the conditions in
which parameter µ was estimated. Next, stability robustness is
checked for the considered range of values for g via a common
Lyapunov function.
The LQR is designed from the EHM (1) with µ = µ̂.

Besides, in order to ensure zero steady-state error with respect
to the SoC set point v (and hence with respect to the desired
set point r when constraints are fulfilled), an integrating action
is added in the control law due to the following controller state
equation:

xi (k + 1) = xi(k) + (v(k)−Cx(k)) (10)

where xi ∈ R is the state of the integrator, v ∈ R is the SoC
reference, and C = [1 0] selects the SoC component of x .
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The state feedback control law takes the form

u(k) = −[K Ki ]
[
x(k)
xi(k)

]
�= −Kcxa(k). (11)

The dynamics for the augmented state vector, xa, are
obtained by grouping (1) and (10), namely

xa(k + 1) =
[
Aµ 0
−C 1

]
xa(k) +

[
Bµ

0

]
u(k) +

[
0
1

]
v(k)

(12)

and the gain Kc in (11) is obtained by solving the following
LQR problem:

min
u

1

2

∞∑
k=0

xTa (k)Qcxa(k) + uT(k)Rcu(k) (13)

s.t. equations (11), (12). (14)

In the above expression, Qc 	 0 and Rc 
 02 are design
parameters.
Substituting (11) into (12) yields the closed-loop system

xa(k + 1) = Aclxa(k) + Bclv(k) (15)

with

Acl =
[
Aµ − BµK −BµKi

−C 1

]
and Bcl =

[
0
1

]
. (16)

In order to give a guaranteed stability with respect to the
variations of g, we proved the robustness of the provided
control law. To do so, we denoted as Amin

cl and Amax
cl the

closed-loop matrices for the minimum and maximum values of
g, respectively. The resulting system can be seen as a polytopic
uncertain system for which asymptotic stability can be proved
by finding a common Lyapunov matrix P > 0 that ensures the
satisfaction of the following linear matrix inequalities (LMIs):(

Acl
min

)T
PAcl

min−P ≺ 0 (17)(
Acl
max

)T
PAcl

max−P ≺ 0. (18)

B. Constraint Management

Although the LQR controller ensures closed-loop asymp-
totic stability, it is not able to satisfy the electrochemical
constraints. To provide constraint-handling capabilities to the
control scheme, we use an RG. An RG is a predictive control
law that enforces constraint satisfaction by suitably manipulat-
ing the reference of a prestabilized system. The basic idea of
any RG is to provide, at each sampling time t , a set point v that
is as close as possible to the desired set point r [see Fig. 2(b)]
and that, if kept constant from t onward, would not induce con-
straint violation. RGs are very computationally efficient when
applied to linear systems subject to the intersection of linear
convex constraints [50] such as inequality (9a). Unfortunately,
in our case, one of the electrochemical constraints—lithium

2X 	 0 (X 
 0) indicates that matrix X is positive semidefinite (positive
definite).

plating inequality (9b)—is a nonlinear concave constraint [see
Fig. 2(a)] that is not amenable to such efficient methods.
Besides, it must be pointed out that the set boundary is subject
to model uncertainty due to parameter uncertainties and the
fact that we are approximating an infinite-dimensional model
with a finite one.
To overcome these problems, we pursued the following

approach: 1) we suitably restricted the constraints to ensure
robustness against uncertainties and 2) we embedded the
nonconvex constraint as the union of two linear constraints
[see Fig. 2(a)]. The dashed orange lines denoted by 3 and
4 demark the safety margin, which accounts for model uncer-
tainty and disturbances. The safe operating area is in green.
With these considerations, we mathematically reformulated the
constraints as the intersection of the union of regions given by

cc∧
j=1

nc, j∨
i=1

(
STj,i xa(k) ≤ s j,i

)
(19)

where cc = 2, nc,1 = 1, and nc,2 = 2. Vectors STj,i and
scalars s j,i are reported in Table II. In this way, the admissible
area is obtained from the union of the region constrained by
3 and 4, intersected with the region constrained by 1, resulting
ultimately in a nonconvex set.
Since no RG scheme is reported in the literature [50],

[51] that is able to deal with OR constraints (i.e., union of
constraints), a new scheme has been developed. As any RG,
in line of principle, an OR-RG should solve the following
optimization problem representing the problem of finding the
closest applied reference v(t) to the desired reference r(t) (in
our case, r(t) = 1) such that the constraints are satisfied over
an infinite horizon, i.e.,

κ(k) = max
κ∈[0,1] κ

s.t. v(k) = v(k − 1) + κ(r(k) − v(k − 1))
cc∧
j=1

nc, j∨
i=1

STj,i x̂a(
|xa(k), v(k)) ≤ s j,i

l = 0, . . . ,∞
where x̂a(
|xa, v) = A


clxa + (I − Acl)
−1(I − A


cl)Bclv
is the 
 step-ahead prediction given the initial state xa
and applying the constant reference v. The new reference
to be applied is v(k) = v(k − 1) + κ(k)(r(k) − v(k − 1)).
Interestingly enough, by performing an ε-restriction of the
steady-state references, it is possible to reformulate the above
infinite horizon problem with a finite number of constraints as
follows:

κ(k) = max
κ∈[0,1] κ

s.t.

∗+1∧

=0

cc∧
j=1

nc, j∨
i=1

(
α

j,i(v(k − 1), r(k))κ

≤ β

j,i(v(k − 1), r(k))

)
where 
∗ is a finite integer. The expression of the scalars
α

j,i(v(k − 1), r(k)) and β


j,i(v(k − 1), r(k)) is provided in
Table II. Surprisingly, this formulation of the RG problem
can be solved in an almost closed form using the algorithm
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TABLE II

MATHEMATICAL EXPRESSIONS ASSOCIATEDWITH THE RG

proposed in [34]. The resulting RG scheme ensures stability
and recursive feasibility. The complexity of the proposed
algorithm turns out to be linear in the number of states and
constraints, which contrasts with MPC-based approaches for
battery fast/healthy charging like [28] and [29] with cubic
complexity. Other MPC implementations use computationally
efficient algorithms such as the Hildreth algorithm [32], [52],
but they still require to solve the MPC problem for a sequence
of inputs, which is not the case for the RG that only looks for
a scalar parameter by checking a set of inequalities. All this is
reflected in a lower computational load for RG schemes than
MPCs as reported in [53] for fast charging.

C. State Estimation

Note that the state feedback controller (11) cannot be
implemented alone because the electrochemical states are not
directly measurable. Therefore, a state observer [blue block in
Fig. 2(a)] is introduced to determine a state estimate x̂ from
the available system input current u and measured outputs
(voltage and surface temperature) y on the basis of the model
TEHM in (4)–(6). Since the TEHM is nonlinear, an extended
Kalman filter (EKF) [54] is used. Indeed, the EKF has been
successfully applied to Li-ion batteries for a long time [55],
[56]. It strikes a good balance between algorithmic complexity
and estimation accuracy and its stochastic stability properties
have been analyzed elsewhere [57].
Let us rewrite (4) and (5) as

x(k + 1) = f (x(k), u(k)) + wx(k) (20)

where f = [ fµ, fµT ]T : R4 × R → R
4, the state vector is

x = [xTec, xTT ]T ∈ R
4, and wx is the process noise. The output

equation (6) can be rewritten as

y(k) = h(x(k), u(k)) + vy(k) (21)

where the nonlinear output function is given by h = h(ec,T ),θ .
The process noise wx(k) and measurement noise vy(k) are two
mutually uncorrelated zero-mean white noise sequences. Their

variance matrices Q and R will be used as design parameters
for the EKF. Model (20) is complemented with the following
state equation:

R f (k + 1) = R f (k) + wR(k)

modeling the time-varying film resistance. This extra state
improves the quality of the state estimate, and it has been
used in other research works [58], [59]. It captures unmodeled
dynamics, e.g., diffusion dynamics in the electrolyte or solid
electrolyte interphase. An EKF, as described in [60] for
instance, has been implemented on the basis of this model.
The numerical values for matrices Q and R are

Q = diag
(
10−13, 10−11, 10−9, 10−9, 10−5)

R = diag
(
10−6, 10−4

)
.

The initial state estimate x̂0 was set to

x̂0=[[3.89, 3.89] × 10−2, [2.98, 2.98] × 102, 1.84 × 10−3]T
and the associated variance P0 was set to

P0 = diag
(
10−9, 10−9, 10−5, 10−5, 10−1

)
.

The first two components of the state vector are unitless, while
the second two components have units of K and the last one
is � · m2. The units of Q and P0 appropriately follow from
x0, and the ones for R accordingly follow from the ones of
the output measurements, i.e., V and K.
The EKF’s performance is shown in Fig. 3(b)–(d) for data

generated with the thermo-DFN model simulator correspond-
ing to a 2C constant current charge profile. The estimated
SoC, CSC [Fig. 3(b)], core temperature [Fig. 3(c)], and esti-
mated outputs [surface temperature in Fig. 3(c) and voltage in
Fig. 3(d)] almost perfectly coincide with the simulator signals
after initial transients, and most of the errors occur at the
beginning of charge when the SoC is low. Therefore, critical
regions at higher SoCs where electrochemical constraints are
more stringent (less leeway for the input current) exhibit small
modeling errors.
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Fig. 3. Validation in simulation of the proposed EKF and closed-loop
charging scheme. (a) Current-critical surface concentration (CSC) plane with
linear lithium plating constraints (dashed orange lines), along with three
closed-loop current-CSC trajectories for three different initial conditions.
Performance of the TEHM-based EKF for (b) solid-phase diffusion states
(i.e., SoC and CSC), (c) thermal states (i.e., core and surface temperatures),
and (d) voltage.

D. Validation of the Control Scheme in Simulation

Before experimentally validating the performance of the
proposed control scheme for battery charging, we evaluate it
in simulation. The LQR design parameters Qc and Rc in (13)
are chosen so that the first term in (13) is weighted more than
the second one in order to achieve fast closed-loop dynamics
while guaranteeing stability robustness to changes in parameter
g in the above indicated range. Matrix Qc = 100I3, while
Rc = 10−3. The design parameters for the EKF are the same
as in Section III-C.
The simulation results of the closed-loop system are shown

in Fig. 3(a), using the thermo-DFN model as a virtual battery
cell. The figure portrays state trajectories in the current-CSC
plane for three arbitrary initial voltages, namely, 3.3, 3.5, and
3.7 V (SoCs from 5% to 50%). From the figure, it follows that
the closed-loop system reaches the constraints very quickly
whatever the initial state, in accordance with the control
scheme tuning highlighted above. Furthermore, the trajectory
of the state complies with the linear constraints ascribed to
lithium plating. Thus, the closed-loop control of the battery
allows for arbitrary initialization, which cannot be achieved
with open-loop charging methods.

IV. EXPERIMENTAL PROCEDURE

The experiments were carried out using Panasonic 2.7 Ah
18650 lithium NCA oxide battery cells.3 The experimen-
tal setup consists of a PEC Corporation SBT2050 series
battery tester, an Espec BTX-475 environmental chamber,
and a MicroAutoBox II 1401/1501 dSPACE card. Battery

3This type of cell has been used in the Tesla model S electric cars, for
instance. Other types include Samsung prismatic nickel–manganese–cobalt
(NMC) of BMW i3 [61], [62], LG Chem pouch NMC-lithium-manganese–
oxide (LMO) of Chevy Volt [62], and AESC pouch NMC of Nissan Leaf [61]
whose capacities exceed 50 Ah and can go up to 100+ Ah. The proposed RG
scheme can be adapted to such large-format batteries by properly modeling
them.

Fig. 4. Performance comparison between two CCCV strategies and the
proposed RG charging strategy. (a) Retained capacity and (b) zoomed-in view
of measured capacity for 1C and RG, (c) charge time, and (d) charge (chg)
speed, all as a function of the cycle number.

measurements (current, voltage, and surface temperature) were
collected each second. The temperature set point of the envi-
ronmental chamber was set to 25 ◦C.
Three charging strategies were tested, namely, 1C CCCV,

2C CCCV, and the proposed RG scheme. We used CCCV as
a benchmark due to its wide use in the battery and electric
vehicle industries [63], given its simplicity and low cost of
implementation. The battery aging campaigns consisted of
two tests, namely, a cycling test and a performance test.
The first test consists of 11 charge/discharge cycles with four
steps each. The first step is battery charging, which changes
according to the studied strategy (1C CCCV, 2C CCCV,
or RG with OR constraints). The second and fourth steps are
30-min resting periods. In the third step, the battery undergoes
discharge using the same 1C CC policy for all scenarios.
Next, a performance test is carried out to measure the charge
capacity of the battery. It consists of two cycles with four steps
each. As with the cycling tests, the second and fourth steps
are resting periods. For the performance tests, both charge
(first step) and discharge (third step) are executed with the
1C CCCV protocol. Both cycling and performance tests are
consecutively repeated nine times.

V. RESULTS AND DISCUSSION

The desired SoC set point is 100%, which contrasts with
other fast charging studies with 80% target SoC [16], [64].
By setting a lower reference, these fast charging studies avoid
possibly high SoC degradation at the expense of oversizing
the battery by 20%. The 100% battery charge is useful for
applications such as mobile phones, laptops, and drones that
provide the maximum possible autonomy to the user in a single
charge, while other applications that benefit from recharging
during operation (c.f., regenerative breaking in electric vehi-
cles) can also extend their usage range by adding effective
charge capacity on top of the one that can be gained during
operation. Even if we considered full charge and CC full
discharge cases, the proposed control scheme can be applied
to any battery condition.
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The performance of the three considered strategies is
reported in Fig. 4(a) and (c) for capacity fade and charging
time, respectively, where green and blue colors are ascribed to
1C CCCV and 2C CCCV, respectively, and the RG method is
in red. Both cycling tests (curves denoted with cyc) and perfor-
mance tests (symbols denoted with per) are shown in Fig. 4(a).
The cycling tests include charge and discharge cycles, while
only discharge cycles are considered for the performance tests.
The temporal occurrence of performance tests is marked with
black dashed vertical lines. Notice that the capacity measured
during performance tests is larger than the one during cycling,
which is expected due to the different current rates considered
for each test. Moreover, there is cycling capacity recovery [65]
after each performance test, which is also standard. Fig. 4(a)
shows that the RG ages the battery similar to 1C and much
less than 2C, respectively, 5% and 30% after 88 cycles.4 If
we now look closer at the performance test [Fig. 4(b)], up to
the seventh test, the RG degrades the battery consistently less
than 1C. Note, however, that around the eighth and ninth
performance tests, the RG exhibits some anomalous behavior,
which degrades the capacity beyond the 1C strategy. This is
arguably due to the fact that aging induces changes in the
model parameters and thus in closed-loop dynamics; yet, at the
present stage, the implemented control scheme does not adapt
to such parametric changes. We decided to end the tests at
this stage and further investigations are needed to validate this
hypothesis. On the other hand, in terms of charging time, the
RG systematically outperforms both 1C and 2C [see Fig. 4(c)
showing the results cycle by cycle]. The RG takes 80 min at
the beginning of life and 75 min on average over 88 cycles.
Compare this to 2C, which initially charges in 85 min and
96 min on average. The times for 1C are even longer (98 and
106 min). Thus, the RG charges faster than 2C yet ages the
cell similar to C/2 and 1C.
It is noteworthy that after 50 cycles, the RG stores more

charge in less time than 2C. This fact is highlighted by looking
at the charging speed, i.e., the amount of charge stored per unit
of time, in Fig. 4(d) depicted in a cycle basis.
To further investigate how the RG achieves improved per-

formance, we report the typical charging current profiles for
the three protocols, as well as the resulting voltage and surface
temperature. Fig. 5(a)–(c) shows the measured trajectories for
the second charge (i.e., after transient) during the first cycling
test of 1C CCCV, 2C CCCV, and RG charging strategies, with
green dashed, blue dotted, and red solid curves associated with
1C, 2C, and RG, respectively.5 In Fig. 5(a) one can see that
the RG imposes a high initial current spike of approximately
3C that lasts for a short time. In contrast, the CCCV current
profiles have a step-like character, followed by a long decay
during the CV charging phase. Recall that the RG generates
a current profile by following the electrochemical constraints,

4Cycle life of less than 100 cycles for 2C charging might seem extremely
low. Just to put it into context, the used NCA cell is a conventional electric
vehicle cell (energy optimized) with C/2 rated charging current, under which
approximately 6% of capacity is lost after 88 cycles and the end-of-life (i.e.,
80% capacity) is reached at 500 cycles [66].

5Given a problem with a thermocouple, the surface temperature for 1C could
not be recorded for this cycling test.

Fig. 5. Charge/discharge profiles of the two CCCV and the proposed
RG charging strategies, and their aging evolution and associated stress
factors influencing battery life. (a) Current, (b) voltage, and (c) surface
temperature profiles during the second charge cycle for each charging strategy.
(d)–(f) Aging evolution of each signal during the fifth cycle of each cycling
test, i.e., each curve is separated by 11 cycles. The figure insets portray
the common stress factors considered for Li-ion batteries per cycle number,
namely, maximum (solid curves) and average (dashed curves) applied current,
maximum terminal voltage, and maximum surface temperature.

and its fast charging capabilities can be related to the resulting
profile. The obtained profile is the maximum current that can
be given to the considered battery without violating lithium
plating constraints notably.
As the battery ages, the current, voltage, and tempera-

ture trajectories change, as shown in Fig. 5(d)–(f) for 1C
(green–olive dashed curves), 2C (pink–blue dotted curves),
and RG (red–yellow solid curves). The color gradient and
arrows indicate the first-to-last cycling tests. Note that the
CC phases for 1C and 2C are shortened by 13 and 18 min,
respectively, from the 5th to the 93th cycle, whereas the CV
phase is enlarged by approximately 33 min for both charging
strategies around the same cycle numbers [Fig. 5(d)and (e)].
This fact extends the charging time with battery usage. These
issues are less pronounced for the RG [Fig. 5(d)], which
explains the steady charging speed in Fig. 4(c). While the
voltage response shows that the RG reaches higher voltages
as the battery ages [Fig. 5(e)], the 2C strategy results in
the highest surface temperature [Fig. 5(f)]. It is known that
accelerated degradation is caused by a series of stress factors,
including high currents and temperatures as well as extreme
voltages [67]–[69]. In order to assess the impact of such factors
in battery aging, insets of Fig. 5(d)–(f) show the maximum
values of current, voltage, and temperature for 1C (green),
2C (blue), and RG (red). For CCCV charging strategies,
the maximum current is the CC stage current, the average
current includes the CV stage, and the maximum voltage
coincides with the CV stage voltage of 4.2 V within a 1 mV
of difference. The RG current averages to 0.7C over all the
aging tests with a peak of 3C. This contrasts with averages
of 0.4C and 0.3C for 1C and 2C CCCV, respectively [inset
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Fig. 6. State trajectories under the RG charging scheme (in red-to-yellow
curves) and the 2C CCCV commercial charging strategy (in blue-to-magenta
curves) in (a) CSC plane and (b) voltage–current plane (color gradient reflects
cycle number from cycle 1 to 11). Classical CCCV box constraints as dotted
purple rectangle versus novel safe operating area in green area.

of Fig. 5(d)]. These data explain how the RG consistently
achieves faster charge times. The RG also allows voltages
beyond the typical upper cutoff limit used by CCCV strategies,
as evidenced in the inset of Fig. 5(e). Although the RG goes
beyond the voltage limit of CCCV, it explicitly ensures that
the internal states remain within a safe operating area. This
can be seen in the CSC plane in Fig. 6(a), demonstrating
that relevant electrochemical constraints are not violated when
the RG is used. This fact contrasts with the CCCV design,
which constrains the measured outputs [see the voltage–current
plane in Fig. 6(b)] but violates electrochemical constraints
[such as in CSC plane in Fig. 6(a)]. This argument explains
how the RG achieves faster charge times without accelerating
degradation. Finally, the RG achieves a maximum temperature
of 35 ◦C compared to 40 ◦C for 2C and 30 ◦C for 1C [inset
of Fig. 5(f)]. Note that the RG allows higher currents and
voltages, yet the peak surface temperature is maintained below
the 2C protocol’s peak temperature—more than 2 ◦C—(except
after cycle 97). Higher temperatures yield faster intercalation
and reaction kinetics. Thus, high temperatures accelerate the
main reaction but also accelerate side reactions. Consequently,
temperature should be judiciously managed to enable faster
charging without unduly accelerating degradation. The exper-
iments demonstrate how the RG strikes a balance between the
two CCCV schemes.

VI. CONCLUSION

The experimental results presented in this article demon-
strate how a feedback control strategy outperforms traditional
logic-based CCCV charging strategies in terms of capacity
fade (26% less) and charging time (22% faster). Today, the de
facto fast charging approach is based on limiting measured
values, e.g., current, voltage, and temperature. Yet, these
limits are proxies for the internal electrochemical states that
directly govern charging and degradation. By using a (reduced)
electrochemical model, the RG achieves shorter charge times
with limited degradation by explicitly limiting the internal
states within the safe operating area. The RG is based on
electrochemical variables rather than just measured variables.
The observations in Fig. 6, coupled with the fact that 2C
CCCV rapidly degrades the battery after 88 cycles (70% of
initial capacity for 2C CCCV compared to the 95% of the
RG scheme), motivates switching the safe operating area from
the purple dashed box to the green area in Fig. 6(b) in the
traditional voltage-current plane.

It should be mentioned that the hypothesis of lithium plating
as the main degradation mechanism taking place here would
require validation through specific experiments (e.g., [48],
[70]–[72], to name a few). Moreover, other degradation mech-
anisms might be triggered through the use of RG charging,
which should also be determined. However, the results show
that constraining plating with the RG during fast charging does
increase the battery lifetime compared to the CCCV, which
happens to violate such constraints. Moreover, consecutive CC
and CV charging phases are, in general, not convenient for
fast charging as batteries age. CC charging causes excessively
high temperatures, while the CV phase becomes very long
as the battery degrades. The RG-based charging strategy
explicitly models degradation constraints and thus provides
more aggressive (higher currents and voltages) yet healthier
(lower temperatures and less aging) solutions for healthy fast
charging.
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