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Abstract—State of health (SOH) estimation for Li-ion bat-
teries enables high-fidelity monitoring and high-performance in
advanced battery management systems for applications such as
mobile devices, electrified transportation, and energy storage. In
order to achieve accurate SOH information, this paper improves
the output voltage prediction by considering state-dependent
parameters for a reduced-order electrochemical model. In ad-
dition, the SOH information is defined as the total moles of
lithium in both solid-phase and electrolyte-phase, which directly
affects the initial conditions of the electrochemical states in the
model. We validate that the change of these parameters leads to
capacity fade and power fade in terms of battery life cycling.
The sensitivity equations are derived for these SOH parameters,
and used to track the parameter changes via gradient-based
parameter fitting algorithm. Simulation results demonstrate the
proposed SOH estimation scheme using voltage and current
measurements.

I. INTRODUCTION

This paper examines estimation of lithium in the solid-phase
and electrolyte-phase of electrochemical battery models, for
state-of-health estimation.

With the evolution of electrified transportation and smart
grid, lithium-ion (Li-ion) batteries have emerged as one of
the leading energy storage sources, due to their high energy
density [1]. An advanced battery management system (BMS)
executes real-time estimation and control algorithms to ensure
battery safety and efficient operations. One of the crucial
functionalities of BMS is to estimate the state of charge (SOC)
and state of health (SOH), and ultimately construct optimal
energy management strategies.

Model-based estimation for Li-ion batteries has been widely
studied in the literature [2]. There are two mainstream battery
modeling frameworks, one is the equivalent circuit models
(ECMs), and the other one is electrochemical models. ECMs
have simple structures to represent the input-output behavior
of batteries by using circuit elements such as resistors and ca-
pacitors [3]. However, ECMs do not directly represent certain
physical phenomena of batteries, namely capacity fade, lithium
plating, and other degradation mechanisms, which are specific
electrochemical, mechanical, and/or thermal processes. The
second category is electrochemical models which account
for diffusion, intercalation, and electrochemical kinetics [4].
The mathematical structure is formulated as nonlinear partial
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differential equations (PDEs) – ordinary differential equations
(ODEs) coupled with algebraic equations. Although these
models can precisely explain the internal behavior of the bat-
tery, this creates system observability [5], [6] and identifiability
issues [7], [8] for battery management system.

Electrochemical models are often reduced in complexity to
balance prediction accuracy with a control-oriented structure
that enables online algorithm design. The simplest electro-
chemical model is single particle model (SPM) where a single
particle replaces the spatial distribution of active particles in
each electrode, and the electrolyte concentration is treated as
constant in space and time. State estimation based on SPM is
conducted by using a Kalman filter in [9], [10]. Furthermore,
nonlinear and backstepping state estimation techniques based
on the SPM can be found in [11], [12]. The limitation of
SPM is that it neglects the electrolyte dynamics, which play
an important role during high charge and discharge events.
For this reason, researchers consider SPM with electrolyte
dynamics (SPMe) to understand the internal behavior more
accurately than SPM. The authors in [13] derived SPMe by
using asymptotic methods to reduce the full-order model to
simpler forms. A state-of-the-art backstepping state estimation
approach based on SPMe can be found in [14]. Tanim et
al. [15] augments the SPMe with Arrhenius relations for the
model parameters to account for temperature variation, abbre-
viated as SPMeT. In addition, the author uses Luenberger state
estimator based on this model [16]. While SOC estimation
can be considered as a state estimation design problem, the
SOH estimation problem is not clearly defined. There are many
aging mechanisms to describe degradation [17], and they can
be difficult to integrate with the electrochemical models and
validate experimentally.

SOH estimation for electrochemical models is still a nascent
research topic in the literature. One of the most dominant
sources for the loss of cell capacity is the loss of cyclable
lithium induced by anodic solid-electrolyte interphase (SEI)
layer growth [18], [19]. SEI layer growth was found to be the
dominant cause of capacity fade during the first 200 cycles
(also known as the acceleration stage) [20]. Side reactions,
such as SEI layer growth and lithium plating/striping, can alter
the amount of lithium/lithium-ions in either the solid-phase
(nLi,s) or electrolyte-phase (nLi,e). Many previous works have
addressed capacity estimation by tracking model parameters
[21], [22], [23], but very few have focused on battery SOH
estimation by estimating the moles of cyclable lithium. Previ-
ously, an adaptive PDE observer coupled with a least-squares
algorithm was proposed to identify solid-phase lithium as well
as internal resistance [24]. The extended Kalman filter (EKF)
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was also employed to estimate the amount of cyclable Li-
ions as an unknown model parameter using a single particle
model [25]. In [26], the total number of lithium in solid-
phase in a reduced SPM was estimated though estimation of
the states. Although these works illuminate the importance
of cyclable lithium, none of the aforementioned literature
(i) simultaneously estimates solid-phase and electrolyte-phase
lithium, and (ii) mathematically analyzes the sensitivities of
these two parameters to the output voltage.

In light of the previously highlighted works, this paper
addresses these challenges by proposing a parameter esti-
mation framework driven by parameter sensitivity analysis
for a reduced-order electrochemical model. In particular, this
work is motivated by the authors’ previous work [24], [14],
[7]. First, we improve the output voltage prediction accuracy
by considering state-dependent parameters, i.e. conductivity
and the activity coefficient in the electrolyte dynamics. The
performance of the proposed reduced-order model is demon-
strated by comparing it against a full-order model and the
previous reduced-order model in [14]. Secondly, we formulate
the SOH estimation problem as a parameter estimation of
cyclable lithium in both the solid-phase and electrolyte-phase
of an electrochemical model. Drifting SOH parameters leads
to voltage deviations compared to a fresh cell, which imply
capacity and power fade. Lastly, we construct a parameter
estimation scheme using sensitivity analysis that exploits the
choice of cyclable lithium as the unknown parameters. We
verify the proposed parameter estimation technique in the
simulation.

The remainder of the paper is organized as follows. Section
II derives the single particle model with electrolyte coupled
with state-dependent model parameters, and performs model
comparison with DFN and conventional SPMe. Section III an-
alyzes parameters’ local sensitivities and proposes a nonlinear
optimization problem for parameter identification. Section IV
demonstrates numerical performance of the proposed estima-
tion scheme. Conclusions are discussed in Section V.

II. ELECTROCHEMICAL MODELS

In this section, we introduce a single particle model with
electrolyte dynamics (SPMe) from the full-order model, also
known as the Doyle-Fuller-Newman (DFN) model. The full-
order model is briefly introduced to derive the SPMe model,
and the model reduction procedure is presented along with a
graphical comparison.

A. The Full-Order Electrochemical Model

The DFN model consists of two electrically separated
porous electrodes and a separator, as shown in Fig. 1. The
lithium ions are transported by a diffusion process inside the
active particles along the r-axis in the solid phase. They
traverse the particle-electrolyte interface via Butler-Volmer
kinetics. The ions dissolved in the electrolyte pass through
the separator to the opposite electrode along the x-axis. The
diffusion, intercalation, and electrochemical kinetics account
for the internal battery dynamics expressed by a combina-
tion of partial differential equations (PDEs) and ordinary

Figure 1: Schematic of the Doyle-Fuller-Newman model [27].

differential equations (ODEs). The state variables are lithium
concentration in the solid c±s (x, r, t), lithium concentration
in the electrolyte ce(x, t), solid electric potential φ±s (x, t),
electrolyte electric potential φe(x, t), ionic current in the elec-
trolyte i±e (x, t), and molar ion fluxes between electrodes and
electrolyte j±n (x, t). We summarize the governing equations
for j ∈ {−, sep,+},

∂c±s
∂t

(x, r, t) =
1

r2
∂

∂r

[
D±s r

2 ∂c
±
s

∂r
(x, r, t)

]
, (1)

εje
∂cje
∂t

(x, t) =
∂

∂x

[
Deff
e (cje)

∂cje
∂x

(x, t) +
1− t0c
F

ije(x, t)

]
,

(2)

σeff,± · ∂φ
±
s

∂x
(x, t) = i±e (x, t)− I(t), (3)

κeff(ce) ·
∂φe
∂x

(x, t) = −i±e (x, t) + κeff(ce)
2RT

F
(1− t0c)

×
(

1 +
d ln fc/a

d ln ce
(x, t)

)
∂ ln ce
∂x

(x, t),

(4)
∂i±e
∂x

(x, t) = a±s Fj
±
n (x, t), (5)

j±n (x, t) =
1

F
i±0 (x, t)

[
e
αaF
RT η±(x,t) − e−

αcF
RT η±(x,t)

]
, (6)

where t ∈ R+ represents time. Note that electrolyte-phase
parameters, such as De, κ, fc/a are functions of the electrolyte
concentration. Deff

e = De(ce) · (εje)
brug and κeff = κ(ce) ·

(εje)
brug are the effective electrolyte diffusivity and effective

electrolyte conductivity given by the Bruggeman relationship
as well as fc/a = fc/a (ce(x, t)) is the activity coefficient. In
(6), the exchange current density i±0 (x, t) and over-potential
η±(x, t) are expressed:

i±0 (x, t) = k±
[
c±ss(x, t)

]αc [
ce(x, t)

(
c±s,max − c±ss(x, t)

)]αa
,

(7)
η±(x, t) = φ±s (x, t)− φe(x, t)− U±(c±ss(x, t))
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− FR±f j
±
n (x, t), (8)

where css is the solid phase surface concentration c±ss(x, t) =
c±s (x,R±s , t), U± is the open-circuit potential, and c±s,max is
the maximum possible concentration in the solid phase. A
complete exposition of the model equations and boundary
conditions can be found in [1], [28]. The input to the model
is the applied current density I(t) [A/m2], and the output is
the voltage measured across the current collectors:

V (t) = φ+s (0+, t)− φ−s (0−, t). (9)

Symbols are defined in Table II of the Appendix. Note
the mathematical structure, which contains linear PDEs (1),
quasilinear PDEs (2), ODEs in space (3)-(5), and nonlinear
algebraic constraints (6)-(8). This presents a formidable task
for model-based state of health estimation. Consequently, we
seek an appropriately reduced model that maintains prediction
fidelity.

B. The Reduced-Order Electrochemical Model

From the previous work [14], the reduced-order model
and associated state estimators are derived with the following
assumptions:
• [A1]: The solid phase Li concentration in each electrode

is constant in the spatial coordinate x, uniformly in time.
Mathematically, c±s (x, r, t) and j±n (x, t) are constant in
the x direction.

• [A2]: The exchange current density term i±0 (x, t) can
be approximated by its averaged value ī±0 (t), which is
independent of x.

• [A3]: The constants αa = αc (hereafter denoted simply
by α). This assumption is almost always true in practice.

• [A4]: The term kf (x, t)
.
=
(

1 +
d ln fc/a
d ln ce

(x, t)
)

is ap-
proximately constant in x, i.e. k̄f (t) ≈ kf (x, t).

• [A5]: The term κ(ce) is approximately constant in ce, i.e.
κ ≈ κ(ce).

• [A6]: The total moles of lithium in the electrolyte nLi,e
and in the solid phase nLi,s are both conserved.

• [A7]: The total moles of lithium in the solid phase, nLi,s
in (23), is known beforehand for state observer design.

• [A8]: The total moles of lithium in the electrolyte, nLi,e
in (24), is known beforehand for state observer design.

These assumptions ultimately render a model consisting
of: (i) two linear spherical diffusion PDEs modeling each
electrode’s solid concentration dynamics, (ii) a quasilinear
diffusion equation (across three domains) modeling the elec-
trolyte concentration dynamics, and (iii) a nonlinear output
function mapping boundary values of solid concentration,
electrolyte concentration, and current to voltage.

In this work, we aim to relax some of these assumptions in
order to improve the model fidelity and state observer perfor-
mance. The state-dependent parameters are preserved in the
model output equation, which removes [A4] – [A5]. Next, the
total moles of lithium in the solid-phase and electrolyte-phase
are estimated by using sensitivity analysis, which eliminates
assumptions [A6] – [A8]. The state-dependent parameters in
the electrolyte-phase, i.e. diffusivity, conductivity, and activity

coefficients are strongly dependent on the electrolyte concen-
tration. Specifically, they vary by an order of magnitude [29]
with ce. Hence, it is of great importance to incorporate state-
dependent electrochemical parameters, which is shown to have
a greater impact on voltage prediction under high current.

To begin, applying assumptions [A1]-[A3] removes the
spatial dependence of a variable, and thus an overline is added
to the variable name to avoid confusion. The first step is
to combine [A1] and ODE (5) to express molar ion flux as
proportional to current,

j̄+n (t) = − I(t)

Fa+L+
, j̄−n (t) =

I(t)

Fa−L−
. (10)

Note that the ionic current ie(x, t) has the trapezoidal shape
[14]. Apply j

±
n in (10) to the solid-phase diffusion equations

and boundary conditions:

∂c±s
∂t

(r, t) =
1

r2
∂

∂r

[
D±s r

2 ∂c
±
s

∂r
(r, t)

]
, (11)

∂c±s
∂r

(0, t) = 0,
∂c±s
∂r

(R±s , t) = ± 1

D±s Fa±L±
I(t).

Next, we derive the electrolyte diffusion equations by com-
bining PDE (2) with (5), (10), and [A1]:

∂c−e
∂t

(x, t) =
∂

∂x

[
De(c

−
e )
∂c−e
∂x

(x, t)

]
+

(1− t0c)
ε−e FL−

I(t), (12)

∂csepe
∂t

(x, t) =
∂

∂x

[
De(c

sep
e )

∂csepe
∂x

(x, t)

]
, (13)

∂c+e
∂t

(x, t) =
∂

∂x

[
De(c

+
e )
∂c+e
∂x

(x, t)

]
− (1− t0c)
ε+e FL+

I(t).

(14)

Note that the boundary conditions are the same as the full-
order model. Next, we derive the nonlinear output function for
terminal voltage, which is distinguished from previous work.
From (9), we notice the voltage V (t) depends on the solid
potential at the current collectors φ±s (x, t). Therefore, we solve
(8) in terms of φs and spatially averaged quantities,

φ±s (x, t) = η̄±(t)+φ±e (x, t)+U±(c̄±ss(t))+FR±f j̄
±
n (t). (15)

Next we derive each term on the right hand side of (15).
Overpotential η̄±(t) is found by solving the Butler-Volmer
equation (6) in terms of η̄±(t), applying [A1], [A2], [A4],
and substituting (10),

(16)η̄±(t) =
RT

αF
sinh−1

(
∓I(t)

2a±L±ī±0 (t)

)
.

The electrolyte potential φ±e (x, t) is found by integrating ODE
(4) w.r.t. x across the entire cell width,∫ 0+

0−

∂φe
∂x

(x, t)dx =

∫ 0+

0−

−i±e (x, t)

κ(ce(x, t))
dx+

∫ 0+

0−

2RT

F
(1− t0c)

×
(

1 +
d ln fc/a

d ln ce
(x, t)

)
∂ ln ce
∂x

(x, t)dx.

(17)

Note that previous work [14] assumed ce-dependent pa-
rameters such as conductivity, κ(ce)

1 and activity coefficient,

1The superscript {eff} is dropped in the notation for readability
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d ln fc/a
d ln ce

(x, t) in [A4], [A5] are constant in ce. With the
trapezoidal shape of ionic current, the first term in (17) can
be expressed as:

φ+e (0+, t)− φ−e (0−, t) =
−I(t)

L−

∫ L−

0−

x

κ(ce(x, t))
dx

−I(t)

∫ Lsep

L−

1

κ(ce(x, t))
dx+

I(t)

L+

∫ 0+

Lsep

x− 0+

κ(ce(x, t))
dx

+

∫ 0+

0−

2RT

F
(1− t0c)×

(
1 +

d ln fc/a

d ln ce
(x, t)

)
∂ ln ce
∂x

(x, t)dx.

(18)

Note that the activity coefficient is present in the anode, sep-
arator, and cathode respectively. We introduce κA(ce(x, t)) =

1 +
d ln fc/a
d ln ce

(x, t) for simplicity,

φ+e (0+, t)− φ−e (0−, t) =
−I(t)

L−

∫ L−

0−

x

κ(ce(x, t))
dx

−I(t)

∫ Lsep

L−

1

κ(ce(x, t))
dx+

I(t)

L+

∫ 0+

Lsep

x− 0+

κ(ce(x, t))
dx

+
2RT

F
(1− t0c)

[∫ L−

0−
κA(ce(x, t))

∂ ln ce
∂x

(x, t)dx

+

∫ Lsep

L−
κA(ce(x, t))

∂ ln ce
∂x

(x, t)dx

+

∫ L+

Lsep
κA(ce(x, t))

∂ ln ce
∂x

(x, t)dx

]
.

(19)

Using integration by parts,
∫
f(x)g′(x)dx = f(x)g(x) −∫

f ′(x)g(x)dx and chain rule provides the following algebra,

φ+e (0+, t)− φ−e (0−, t) =
−I(t)

L−

∫ L−

0−

x

κ(ce(x, t))
dx

−I(t)

∫ Lsep

L−

1

κ(ce(x, t))
dx+

I(t)

L+

∫ 0+

Lsep

x− 0+

κ(ce(x, t))
dx

+
2RT

F
(1− t0c)

[
κA(ce(x, t)) ln ce(x, t)

∣∣∣x=L−

x=0−

−
∫ ce(L

−,t)

ce(0−,t)

κ′A(ce(x, t)) ln ce(x, t)dce(x, t)

+κA(ce(x, t) ln ce(x, t)
∣∣∣x=Lsep
x=L−

−
∫ ce(L

sep,t)

ce(L−,t)

κ′A(ce(x, t)) ln ce(x, t)dce(x, t)

+κA(ce(x, t)) ln ce(x, t)
∣∣∣x=L+

x=Lsep

−
∫ ce(L

+,t)

ce(Lsep,t)

κ′A(ce(x, t)) ln ce(x, t)dce(x, t)

]
.

(20)

We simply denote the electrolyte potential difference (20)
by ∆Φe(ce(x, t), κ(ce(x, t)), κA(ce(x, t)), I(t)). We write the
voltage output for the SPMe model as:

0 10 20 30 40

2.8

3

3.2

3.4

3.6

3.8

4

4.2
0.5C
1C
2C

Figure 2: The comparison of proposed SPMe(-.) with DFN(–)
and previous SPMe(- -) model [14] for NCA electrochemical
parameters identified in [7].

0.5C 1C 2C
Proposed SPMe 16.1 mV 29.6 mV 46.5 mV

SPMe [14] 19.4 mV 40.3 mV 87.6 mV

Table I: The output voltage error with respect to DFN model.

V (t) =
RT

αF
sinh−1

(
−I(t)

2a+L+ī+0 (t)

)
− RT

αF
sinh−1

(
I(t)

2a−L−ī−0 (t)

)
+ U+(c̄+ss(t))− U−(c̄−ss(t))−

(
R+
f

a+L+
+

R−f
a−L−

)
I(t)

+ ∆Φe (ce(x, t), κ(ce(x, t)), κA(ce(x, t)), I(t)) .
(21)

The terminal voltage output equation can be described as
a combination of electrochemical differences between two
electrodes and the electrolyte,

V (t) = ∆U(c̄±ss) + ∆φe(ce, I) + ∆η̄(c̄±ss, I)

−

(
R+
f

a+L+
+

R−f
a−L−

)
I(t). (22)

We validate the proposed SPMe model with the full-order
model identified in previous work [14] by comparing the
voltage prediction accuracy. A 18650 Lithium nickel-cobalt-
aluminum oxide (NCA) battery parameters identified previous
work [7] are adopted to simulate the electrochemcial models.
Suppose the DFN model represents a truth battery model. We
visualize the voltage predictions with different C-rates in Fig 2.
The proposed model (-.) outperforms the previous work (- -
) compared to the truth model (–) in terms of voltage. The
quantitative analysis for the voltage comparison is summarized
in Table I. The voltage root mean square error (RMSE) is
computed up to 80 % of discharge capacity. We emphasize
the inclusion of the state-dependent electrolyte parameters are
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critical to the model-order-reduction, as they are shown in the
output voltage equation (21) directly. Furthermore, the voltage
output is strongly affected by the electrolyte characteristics of
the cell. For instance, the conventional SPMe model has lower
voltage prediction error for the Lithium cobalt oxide (LiCoO2)
chemistry in [14]. However, the prediction gets worse for the
NCA chemistry in [7].

C. The State of Health (SOH) for Electrochemical Model

In this paper, we focus on the moles of lithium in the solid
phase and electrolyte phase, which impact Li-ion battery state
of health (SOH). They are defined as:

nLi,s(t) =
∑

j∈{+,−}

εjsL
jA

4
3π(Rjs)3

∫ Rjs

0

4πr2cjs(r, t)dr. (23)

nLi,e(t) =
∑

j∈{−,sep,+}

εjeA

∫ Lj

0j
cje(x, t)dx. (24)

These quantities are initially determined during the manu-
facturing process by the Li metal in the active materials and
lithium ions dissolved in the electrolyte. In realistic scenarios,
the moles of lithium are not conserved due to aging mecha-
nisms, e.g. SEI layer growth, Li-plating, and solvent oxidation.
The loss of total lithium contained in the solid phase is known
to cause capacity fade, and the loss of total lithium in the elec-
trolyte phase contributes to power fade. Figure 3 illustrates this
phenomenon, where we have reduced the amount of cyclable
lithium for each phase. The moles of lithium is decreased
by 10% to represent an aged cell, and compared with the
fresh cell in simulation. Mathematically, these changes only
affect the initial conditions of the electrochemical states. The
battery is fully discharged to the minimum voltage threshold
using constant current in order to analyze the capacity fade in
Fig. 3a, while high C-rate pulse current is applied to the battery
for power fade demonstration in Fig. 3b. We observe that the
moles of lithium contribute to degrading state of health in Li-
ion batteries. Note that the change of nLi,s affects the initial
conditions of solid-phase concentration, cs(r, 0) while the the
perturbation of nLi,e directly impacts the initial conditions of
electrolyte concentration, ce(x, 0).

In order to estimate these SOH parameters, we first combine
the system dynamics (11) – (14) with the algebraic equations
(23) – (24), which results in the differential algebraic equations
(DAEs),

ẋ = f(x, z, u), x(t0) = x0, (25)
0 = g(x, z, u), z(t0) = z0, (26)
y = h(x, z, u), (27)

after discretizing (11) – (14) and (23) – (24) in space via a
suitable methods, e.g. finite differences, Padé approximation,
spectral methods, etc. [30], [31]. Denote x = [c−s , c

+
s , ce]

T ∈
Rnx as state vectors, z = [nLi,s, nLi,e]

T ∈ Rnz as algebraic
variables, y = V (t) as output variable defined in (21). The
system is a semi-explicit DAE of index 1 as [∂g/∂z]

−1

exists and the SOH parameters, z, only appear in the initial
conditions of time-derivative states x0.

0 10 20 30 40

2.8

3

3.2

3.4

3.6

3.8

4

4.2
Fresh Cell
90% n

Li,s

90% n
Li,e

(a) 1C Constant Current Discharge.

0 100 200 300 400
3.9

3.95

4

4.05

4.1

4.15

4.2
Fresh Cell
90% n

Li,s

90% n
Li,e

(b) 2C Pulse Current Discharge.
Figure 3: The impact of SOH parameters nLi,s, nLi,e on
voltage output. Top: A decrease of nLi,s decreases capacity,
i.e., capacity fade. Bottom: a decrease of nLi,e affects the
instantaneous voltage, which contributes to power fade.

III. SOH PARAMETER ESTIMATION

This section derives estimators for SOH parameters
nLi,s, nLi,e by leveraging the proposed SPMe model in Sec-
tion II and (25)-(27).

A. Sensitivity Analysis

Sensitivity analysis is used to understand how a model’s
output depends on variations in parameter values, or initial
conditions [7]. For time-continuous dynamic systems, the local
sensitivities are defined as the first-order partial derivatives
of the system output with respect to the parameters around
nominal parameter values. In this section, we briefly introduce
how to derive local sensitivity of SOH parameters in dynamical
system described in (25)-(27), and develop this approach
toward an SOH parameter estimation framework.

Let’s define sensitivity variables as follows:

Sx =
∂x

∂z
, Sy =

∂y

∂z
, (28)
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where Sx and Sy are sensitivity matrices of the local sensi-
tivity vector where si,j is defined as the partial derivative of
the i-th state to the j-th algebraic variable such as:

si,j(t) =
∂xi(t)

∂zj
. (29)

Then, we can formulate the sensitivity differential equations
(SDEs) for the system (25) – (27) via multivariate calculus as
follows:

Ṡx =
∂f

∂x
· Sx +

∂f

∂z
, Sx(0) = Sx0, (30)

Sy =
∂h

∂x
· Sx +

∂h

∂z
, Sy(0) = Sy0, (31)

where

0 =
∂g

∂x
· Sx(0) +

∂g

∂z
. (32)

Note that the sensitivity dynamic equations are formulated
as ordinary differential equations (ODEs), not differential
algebraic equations (DAEs) because the sensitivity vectors are
obtained by differentiating the states and outputs with respect
to the algebraic variables. It is important to notice that the
algebraic equations (32) are only used for sensitivity initial
conditions, Sx(0) as the algebraic variables only appear in
the initial conditions of the states in (26). The advantage
of SDEs lies in fundamental mathematical derivation and
computational efficiency compared to a perturbation method
whose sensitivity is obtained by perturbing each parameter
slightly, finding the corresponding initial conditions, and then
calculating the output difference with nominal parameters.
Notice that SDEs are time-varying ODEs where Jacobians of
state transition functions, algebraic equations with respect to
the states, and algebraic variables should be computed at each
time step. Such intricate ODEs encourage researchers to utilize
automatic differentiation tools, such as CasADi [32], which
efficiently computes the first and second-order derivatives of
this intricate model. In this work, the battery model DAEs and
its SDEs are simulated by using the IDAS/CVODES integrator
provided by SUNDIALS via CasADi interfaces [33].

B. Nonlinear Least Squares

In this subsection, we will use the sensitivity results from
the preceding section to estimate the SOH parameters. This
estimation problem can be formulated as a nonlinear opti-
mization problem, i.e., nonlinear least squares. The objective
is to minimize the output voltage difference between measured
output, y, and predicted output, ŷ:

min
ẑ
.

tf∑
t=0

[y(t)− ŷ(t; ẑ)]
2
. (33)

The Levenberg-Marquardt algorithm is used to update the
parameters ẑ iteratively by solving the nonlinear optimization
problem (33) above. This algorithm adaptively chooses pa-
rameter updates between the gradient descent update and the
Gauss-Newton update [34] via equation:[

JTJ + γdiag(JTJ)
]
hẑ = JT (y − ŷ), (34)

where J = ∂ŷ/∂ẑ is the local sensitivity of the output ŷ,
which is equivalent to the sensitivity vector, Sy from (30) –
(32). The value of γ trades off between gradient descent update
and Gauss-Newton update. Then the parameters are updated
iteratively by

ẑk+1 = ẑk + hẑ. (35)

Once the parameters are fit to the data, the least squares
estimator provides the parameter estimation statistics evaluated
at the final estimates denoted by z. Namely,

ẑ ∼ N
(
z, ρ̂2(z)

)
, (36)

the confidence intervals are obtained via t-distribution because
the standard deviation is unknown [35]. The estimated covari-
ance is computed as:

ρ̂2(z) = σ̂2
[
J(z)TJ(z)

]−1
, (37)

where J(z) is the local sensitivity at the final estimates. The
error variance σ2 is introduced to make the estimator unbiased
such as:

σ̂2 =
1

N − p

tf∑
t=0

[y(t)− ŷ(t; z)]
2
, (38)

where N is the number of observations and p is the number
of parameters. The 95 % confidence intervals are derived by
using t-distributions:

z − t(1−0.025)
ρ̂√
N
≤ z∗ ≤ z + t(1−0.025)

ρ̂√
N
, (39)

where t is the upper critical value for the t-distribution with
N − 1 freedom [35], [36].

IV. SIMULATION RESULTS

In this section, we present SOH parameter estimation results
to validate the proposed approach via simulation. Suppose
the aging mechanisms consume moles of lithium in solid and
electrolyte phase after a number of cycles. Then the voltage
starts to deviate compared to a fresh cell. Even though the
exact underlying ageing mechanisms are not considered in
this study, many of them ultimately lead to a decrease of
these quantities. Our goal is to track these SOH parameters
by nonlinear least squares using input/output measurements.

Figure 4a exhibits the impact of parameter changes to the
output voltage. The Urban Dynamometer Driving Schedule
(UDDS) input profile is considered as an input current profile
applied to the enhanced SPMe. We compare the voltage
deviations of the proposed SPMe with different SoH param-
eter values. One can notice that the perturbation of nLi,s
affects the voltage variation in the whole period even after
cycling, i.e. the relaxation period. This is because nLi,s is
related to the equilibrium structure of the electrochemical
model determining the window of the open-circuit voltage
(OCV) curve [7]. Consequently, a change of nLi,s shifts
the equilibrium states during the relaxation period. On the
other hand, the nLi,e parameter is linked to the electrolyte
concentrations by definition. This fact implies that a change
of nLi,e influences on the level of electrolyte concentration,
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Figure 4: The simulation results on the voltage deviations as well as SOH estimation using Urban Dynamometer Driving
Schedule (UDDS) input profile. The voltage RMSE reduces below 1 mV after 4 iterations using Levenberg-Marquardt algorithm.

which alters the instantaneous voltage output during operation.
Interestingly, nLi,s and nLi,e are linearly independent with
each other, with respect to the output voltage variation since
they shown up in separate terms of (22). We confirm that
the voltage errors are linearly independent at the bottom in
Fig. 4a. For instance, the voltage error (Verr) is linearly
independent on each other, Verr (90%nLi,s & 90%nLi,e) =
Verr (90%nLi,s)+Verr (90%nLi,e). This fact makes the SOH
parameter estimation problem simpler and straightforward.

In these simulations, we adopt the electrochemical pa-
rameters for a fresh cell identified in the authors’ previous
work [7]. Specifically, the “true” SOH parameters are set as
nLi,s = 0.1406 [mol], nLi,e = 0.0062 [mol]. To represent
the aged cell behavior, we assume that the aged cell retains
90 % moles from the fresh cell, i.e., nLi,s = 0.1265 [mol],
nLi,e = 0.0056 [mol]. The parameter updates at each iteration
compared to the true parameters (aged) are shown at the top in
Fig. 4b. Note that the parameter estimation is a batch process
where the voltage RMSE decreases every iteration by updating
the SOH parameters. After 4 iterations the parameter estimates
approach the correct aged cell values. Moreover, the voltage
RMSE reaches less than 1 mV. The final parameter estimates
with 95% confidence interval are obtained as n̂Li,s = 0.1267±
2.09× 10−5 [mol], and n̂Li,e = 0.0055± 7.80× 10−6 [mol].

V. CONCLUSIONS

This paper addresses state-of-health (SOH) parameter iden-
tification for an electrochemical battery model. The fidelity of
the single particle model with electrolyte (SPMe) is improved
by taking the state-dependent parameters into account in the

output voltage equation. We consider the SOH estimation
problem for general electrochemical models, and propose a
parameter estimation framework via sensitivity analysis. Once
the output voltage measurement starts to diverge from the
fresh cell behavior due to ageing mechanisms, the Levenberg-
Marquardt algorithm is used to solve a nonlinear least squares
problem for SOH parameter fitting. In order to validate our
proposed framework, we simulate the overall process using
a model-to-model comparison. These results demonstrate how
the SOH parameters are monitored by proposed approach. On-
going work involves validation of the proposed SOH parameter
estimation framework with experimental data.
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differential equation observer for battery state-of-charge/state-of-health
estimation via an electrochemical model,” Journal of Dynamic Systems,
Measurement, and Control, vol. 136, no. 1, p. 011015, 2014.

[25] X. Zhou, J. L. Stein, and T. Ersal, “Battery state of health monitoring
by estimation of the number of cyclable li-ions,” Control Engineering
Practice, vol. 66, pp. 51–63, 2017.

[26] M. Huang, M. Kumar, C. Yang, and A. Soderlund, “Aging estimation of
lithium-ion battery cell using an electrochemical model-based extended
kalman filter,” in AIAA Scitech 2019 Forum, 2019, p. 0785.

[27] W. Van Schalkwijk and B. Scrosati, “Advances in lithium ion batteries
[28] K. E. Thomas, J. Newman, and R. M. Darling, “Mathematical modeling

of lithium batteries,” in Advances in lithium-ion batteries. Springer,
2002, pp. 345–392.

introduction,” in Advances in Lithium-Ion Batteries. Springer, 2002,
pp. 1–5.

[29] L. O. Valøen and J. N. Reimers, “Transport properties of lipf6-based
li-ion battery electrolytes,” Journal of The Electrochemical Society, vol.
152, no. 5, p. A882, 2005.

[30] J. C. Forman, S. Bashash, J. L. Stein, and H. K. Fathy, “Reduction of an
electrochemistry-based li-ion battery model via quasi-linearization and
pade approximation,” Journal of the Electrochemical Society, vol. 158,
no. 2, pp. A93–A101, 2011.

[31] G. Fan, K. Pan, and M. Canova, “A comparison of model order reduction
techniques for electrochemical characterization of lithium-ion batteries,”
in Decision and Control (CDC), 2015 IEEE 54th Annual Conference on.
IEEE, 2015, pp. 3922–3931.

[32] J. Andersson, “A General-Purpose Software Framework for Dynamic
Optimization,” PhD thesis, Arenberg Doctoral School, KU Leuven,
Department of Electrical Engineering (ESAT/SCD) and Optimization in
Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee, Belgium,
October 2013.

[33] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward, “Sundials: Suite of nonlinear and differ-
ential/algebraic equation solvers,” ACM Transactions on Mathematical
Software (TOMS), vol. 31, no. 3, pp. 363–396, 2005.

[34] K. Levenberg, “A method for the solution of certain non-linear problems
in least squares,” Quarterly of applied mathematics, vol. 2, no. 2, pp.
164–168, 1944.

[35] D. S. Moore, G. McCabe, and O. Akman, Introduction to the practice
of statistics: Continuous random variables. Macmillan, 2005.

[36] J. A. Rice, Mathematical statistics and data analysis. Cengage
Learning, 2006.

Table II: Appendix: Nomenclature

Symbols in order of appearance

Electrochemical model states, inputs, outputs
c±s Lithium concentration in solid phase [mol/m3]
ce Lithium concentration in electrolyte phase [mol/m3]
φ±s Solid electric potential [V]
φe Electrolyte electric potential [V]
i±e Ionic current [A/m2]
j±n Molar ion flux [mol/m2-s]
i±0 Exchange current density [A/m2]
η± Overpotential [V]
c±ss Lithium concentration at solid particle surface [mol/m3]

nLi,s, nLi,e Total moles of lithium in solid, electrolyte phase [mol]
A Electrode area [m2]
I Applied current [A/m2]
V Terminal voltage [V]

Electrochemical model parameters
D±
s , De Diffusivity of solid, electrolyte phase [m2/s]
t0c Transference number [-]

ε±s , εe Volume fraction of solid, electrolyte phase [-]
F Faraday’s constant [C/mol]
σ± Conductivity of solid [1/Ω-m]
κ Conductivity of electrolyte [1/Ω-m]
R Universal gas constant [J/mol-K]
T Temperature [K]
fc/a Mean molar activity coefficient in electrolyte [-]
a± Specific interfacial surface area [m2/m3]

αa, αc Anodic, cathodic charge transfer coefficient [-]
k± Kinetic reaction rate [(A/m2)(mol3/mol)(1+α)]

c±s,max Maximum concentration of solid material [mol/m3]
U± Open circuit potential of solid material [V]
R±
f Solid-electrolyte interphase filme resistance [Ω-m2]

R±
s Particle radius in solid phase [m]
Lj Length of region j ∈ {−, sep,+}
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