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Real-Time Capacity Estimation of Lithium-Ion
Batteries Utilizing Thermal Dynamics
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Abstract— Increasing longevity remains one of the open
challenges for Lithium-ion (Li-ion) battery technology. We envi-
sion a health-conscious advanced battery management sys-
tem, which implements monitoring and control algorithms that
increase battery lifetime while maintaining performance. For
such algorithms, real-time battery capacity estimates are crucial.
In this paper, we present an online capacity estimation scheme
for Li-ion batteries. The key novelty lies in: 1) leveraging thermal
dynamics to estimate battery capacity and 2) developing a hier-
archical estimation algorithm with provable convergence proper-
ties. The algorithm consists of two stages working in cascade. The
first stage estimates battery core temperature and heat generation
based on a two-state thermal model, and the second stage receives
the core temperature and heat generation estimation to estimate
state-of-charge and capacity. Results from numerical simulations
and experimental data illustrate the performance of the proposed
capacity estimation scheme.

Index Terms—Li-ion batteries, nonlinear estimation theory,
real-time capacity estimation.

I. INTRODUCTION

ITH the rapid evolution of smart grid technologies

and electrified vehicles, the Lithium-ion (Li-ion) bat-
tery has become a prominent device for energy storage.
An advanced battery management system (BMS) implements
real-time control/estimation algorithms that enhance battery
performance while improving safety. A crucial function of a
BMS is to estimate the state-of-charge (SOC) and the state-
of-health (SOH). Capacity fade is one of the most important
metrics among all of the principal effects of battery aging [1].
Accurate real-time capacity estimation with certified conver-
gence properties is still an unsolved problem. In this paper,
we propose and rigorously analyze a thermal model-based
online capacity estimation scheme.
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The existing literature contains several approaches to capac-
ity estimation. Broadly, they can be categorized into offline and
online approaches.

Offline approaches generally develop capacity estimation
scheme in specific laboratory settings with access to
large amounts of battery data under varying operating
conditions [2]-[4]. However, the applicability of the offline
approaches is limited due to the following reasons: 1) we have
access to very limited amount of data and 2) battery degrada-
tion depends significantly on users, operating conditions, and
so on. Therefore, a single offline capacity estimation scheme
may not be sufficient for these cases.

Online capacity estimation methods operate on embedded
BMS microcontrollers utilizing real-time measurements. Gen-
erally, online approaches are comparatively more challenging
than their offline counterparts, due to the lack of measured
information and limited computation power. Several studies
have investigated this. Seminal work exploring combined SOC
and model parameter estimation using Kalman filter (KF) were
introduced in [5]. In [6], a dual sliding mode observer consists
of a fast-paced and a slow-paced time-varying observer was
presented for estimating the SOC and SOH of Li-PB bat-
teries. Lin et al. [7] developed an adaptive observer based
on online parameterization method for battery core tem-
perature estimation and health monitoring. Electrochemical
model-based battery aging studies provide a sharp under-
standing of the underlying physical and chemical processes
occurring during battery utilizations. For instance, a reduced-
order electrochemical model for a composite electrode battery
combined with KF was utilized for a dual-observer design
to estimate SOC and capacity [8]. Moura et al. [9] per-
formed the combined SOC/SOH estimation based on single
particle model (SPM) and the concept of backstepping state
estimator for partial differential equations. Xing et al. [10]
and Orchard et al. [11] used the particle filter for battery
state of health estimation. Machine learning tools for SOH
estimation are attracting extensive attention in recent years.
For example, the support vector machine is commonly used
as a regression tool for SOH estimation [12]. However, none
of the aforementioned approaches explore battery capacity
estimation from a thermal perspective. Moreover, only a few of
these algorithms have proven convergence properties—a cru-
cial requirement for ensuring reliable operation in real-world
BMS. In this paper, we propose and rigorously analyze
a capacity estimation scheme that utilizes battery thermal
dynamics.
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The results presented in this paper is a significant extension
of our previous work [13]. The extensions include: 1) pro-
viding algorithm validation on experimental capacity fade
data from a commercial battery cell; 2) analyzing observer
convergence with modeling uncertainties; and 3) refining the
estimation algorithm by adding a real-time thermal model
parameter identification block.

The rest of this paper is organized as follows. Section II
presents the battery electrical and thermal models. Section IIT
examines the thermal model parameter identifiability, state
estimation with unknown input, and sliding mode observers
with convergence analysis. Section IV highlights the benefits
of thermal model-based capacity estimation against electrical
only estimation. Section V discusses the capacity estimation
algorithm validation on simulation and experimental data.
Conclusions are drawn in Section VI.

II. BATTERY MODEL

In this section, a coupled electro-thermal model is
detailed for a cylindrical lithium-iron-phosphate battery cell
(A123 ANR26650M1). The mode] utilizes a coulomb counting
method to capture the dynamics of SOC and a two-state ther-
mal model that predicts battery surface and core temperature.

A. Electrical Model

The SOC is computed via the coulomb counting method by
integrating the applied current normalized by battery capacity
over time. The dynamical equation is given by

dSoC()  1(»)
dt n Cbat
where I(¢) is the input current, and we specify positive I (¥)

for discharge and negative I(t) for charge. Parameter Cpy is
the battery charge capacity in ampere-second.

¢y

B. Thermal Model

We consider a two-state lumped thermal model for a
cylindrical battery, adopted from [14]. This model assumes
homogeniety along the cell’s longitudinal axis. The model
states are core temperature (7,) and surface temperature (75)

dT.()  T,(0) = T.(0)

Ce dr R, + 0(t) + ve(t) 2)
C*‘ﬂ;f) N Tf(t)R_u 0 mr);f"m +u@) 3
Q@) = 1(0) [OCV(SOC(t)) —Vr(t) — T(;)Z_;{]

C))
T(0) = 5,0 + T.0) .
y(t) = Ts(t) + n(r) 6)

where R:, Ry, C., and C; represent the heat conduction resis-
tance, convection resistance, core heat capacity, and surface
heat capacity, respectively. Symbol Q(r) is the internal heat
generation. Heat generation from resistive dissipation and
entropic heat are considered, where dU/dT is the entropic
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Fig. 1. Cascaded online capacity estimation structure.

coefficient and 7(r) is the average of surface and core
temperature [15]. Vr denotes the measureable terminal volt-
age, whereas OCV is the open-circuit voltage as a function
of state of charge. We assume the coolant flow rate is con-
stant and the ambient temperature Ty is nearly constant [16].
We also introduce bounded terms v,.(¢) and vy (#) to model the
uncertainties in the thermal dynamics, where v.(¢) < V. and
vs(#) < ;. Estimates of U, and 7 can be found by comparing
the open-loop thermal model output with the experimental
data. Moreover, a time-varying but bounded measurement
noise n(¢) < n is considered, with 7 > 0.
Rearranging (2)—(6) into state-space form

x() = Ax(t) + Bu(t) + GO() +v() (7
y() = Cx(t) +n() (8)

where the input, states, and uncertainties are

®
and the corresponding system matrices are
1 1
" R.C R.C 0
A= e et , B=| 1
| R.C, (RL,CS + RCCS) RuCs
1
G=|c.|. c=[0 1] (10)
| 0
Remark 1: The local observability of the thermal

model (2)—(6) has been verified by computing the rank
of the linearized system at the equilibrium points.

III. ONLINE CAPACITY ESTIMATION SCHEME

We present a hierarchical structure depicted in Fig. 1.
In Stage 1, heat generation Q in the T;-dynamics (2) is treated
as a bounded unknown input. An output error injection-based
state and unknown input estimation technique, along with the
two-state thermal model are employed to estimate the unmea-
sured state (7,.) and unmeasured input (Q), using the online
measurements of input current (/) and surface temperature
(Ty). Based on the thermal model parameter sensitivity analy-
sis, R, is updated in real time to improve model and estimation
accuracy. Next, the estimated core temperature T, and heat
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generation Q, as well as the measured terminal voltage (V7),
are utilized to algebraically compute a pseudomeasurement of
OCV within Stage 2, where a sliding mode observer based
on the SOC model is applied to simultaneously estimate
the unmeasured state (SOC) and unknown parameter (Cpy).
In Sections III-A and III-B, we detail the design of each stage.

A. Stage 1: Core Temperature and Heat
Generation Estimation

The Stage 1 aims to estimate the core temperature (unmea-
sured state) and heat generation (unmeasured input).

1) Thermal Model Parameter Identification: We first eval-
uate the thermal parameter identifiability [17]. Consider the
thermal model parameters

-
6=[Cc. C R. R, . (11)
The sensitivity vector
gy ~dy 9y oy Nx4
S = — e RY* 12
[GCC 0Cs  OR. 6Ru] (12)

represents each parameter’s sensitivity in the output,
where N is the number of measurements. The Gram—Schmidt
orthonormalization of S'S reveals information about linear
dependence between parameters. Let ST S = D'CD with D €
R4 and C € R¥4, where D(i,i) = ||S;|| and D(i, j) = 0
fori # j,and C(i,i) = 1 and C@, j) = ((Si, $;)/IIS:IlIIS;1D-
Herein, || - || denotes the Euclidian norm and {-,-) is the
inner product. Diagonal matrix D provides a quantification of
parameter sensitivity. Strong linear dependence exists between
O:,; and 6, ; if the value of ((S;, S;)/IIS:[lIIS;]) is near £1.
This indicates that if the off-diagonal element of matrix C is
near +1, then the corresponding pair of parameters are difficult
to identify separately. An example of the thermal parameter
sensitivity analysis based on the profile shown in Fig. 5 for a
LiFePO4/LiCg (LFP) cell is performed, and the result reveals
that the model output is most sensitive to R, (yet assumed to
be constant in this paper) and R, and strong linear dependence
exists between R, C., and R.. Consequently, R. is chosen
to be identified in real time, considering parameter sensitivity
and linear dependence.

Remark 2: According to [7], the heat capacities C, and Cs
are relatively constant over battery lifetime since they depend
on the material thermal properties and the mass of the rolled
electrode assembly and the casing. Meanwhile, R, is affected
by the coolant flow rate, which is assumed to be constant.
Coincidently, the implication of sensitivity analysis matches
the physical intuition, where the change of R, over lifetime is
the consequence of battery degradation.

An online parameter estimation algorithm, which aims to
minimize the instantaneous squared error between measured
surface temperature and model output by updating R, is run-
ning in real time to ensure estimation accuracy. A parametric
model for such identification can be derived by performing

TABLE I
INITIAL THERMAL PARAMETERS FOR LFP CELL

C. [J/K]
59.5

C. VK]
44

R, [K/W]
1.61

R, [K/W]
3.14

Laplace Transformation on thermal model (2)—(3) [7]

-1
2
T, — 5Ty 0 = ———((C. + Cy)sTy — Cs Ty 0 — C.T.
s sTs0 C.C.R ((Cc + Cy)s 0 .0)
1 -~ 1
Tr — T
teertecrr 1
1
‘l‘CJRuS(Tf —Ty) (13)

where T o and T are the initial conditions of surface and
core temperatures. Herein, note in (13) that we feedback the
heat generation estimation from the upper block in Stage 1
to improve the estimates of thermal parameter, which is
visualized by the red arrow in Fig. 1. It is assumed that
battery evolves from the steady state, and thus Ty o = T¢ 0.
Furthermore, the ambient temperature Ty is assumed to be
constant, namely, sTy =0

ssz — 5T+ C.R, sT
1 Cc~+Cs 1 = 1
= — |- T,—T, T,—1T1y)|.
R [ c.c, BB e et R ”]
(14)
For the parametric model in (14), let
1
0 =— 15
R (15)
1
Z(s) = s°T, —sTy 0+ T (16)
O(s) = — T, — Ty 17
(S) CcCs (S s .\,0) + CcCs + CcCsRu ( )
yielding
Z(s) = 0" D(s). (18)
The update law for 6 can be generated as follows:
="z —0"®)d, 60)=4d (19)

where I' = I'" > 0 is a symmetric positive-definite matrix
that controls the convergence rate.

For the initial offline parameter identification for a fresh cell,
particle swarm optimization (PSO) is employed to minimize
the root-mean-squared error between the measured surface
temperature and thermal model output. The initial thermal
parameters identified by PSO are summarized in Table I.

2) Core Temperature and Heat Generation Estimation: We
consider the following observer structure based on the thermal
plant model (7) and (8):

x(1) = AZ(t) + Bu(r) + LIy(t) — $(1)]
(@) = Cx(1)

(20)
@D
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where ¥ = [T‘c T}]T denotes the estimated state vector, and
L = [L; LQ]T, with Ly, Ly > 0, is the observer gain
vector to be designed. The following theorem provides the
convergence results of the observer (20) and (21).

Theorem 3: Consider the locally observable thermal sys-
tem (7) and (8) with bounded heat generation |Q(t)| < Mp,
¥ ¢t € RT, and bounded model uncertainties v < v, along with
the observer (20) and (21). If there exists a gain matrix L and
a positive definite matrix M such that

(A—LC)' +(A-LC) = -M
Amin(M)[|Z(0)]| > 2(D + Ln)

(22)
(23)

then the state estimation error X(¢) = x(t) — X(¢) remains
bounded in the following sense as t — oc:

7] < R, & 22D
Amin (M )
where @ = ||G||[M g +|7|| and Amin (M) denotes the minimum
eigenvalue of matrix M.
Theorem 3 leads to the notion of input-to-state stability
(ISS) [18]. The proof for Theorem 3 is provided as follows.
Proof: Subtracting (20) from (7), the state estimation error
dynamics can be written as

i) =fE=(A-LOZNO+GO0Wt) +v —Ln
=(A-LCO)Z(t)+® —Ln

(24)

(25)

where ® = GQ(t) + v, and let |®| < ® 2 |G| Mg + |7].
As in [18], if there exists a class KCL function £(-,-) and a
class K function y (-), which is called a gain function, such
that for any input Q(-) € LT, and any x(0)

IE@1 < BUAZO), 1) + 7 (12 ()l (26)
then the system (25) is said to be ISS.
Consider the Lyapunov function candidate
V=35 = |7 @7

The derivative of V is

T T

F+i'x
[(A=LCO)i+® — Ln] ' %+% "[(A—LC)i+® — Ln]
=% [(A—LC)" 4+ (A — LC))Z 425" (® — Ln)
—Amin (M) 111* + 211%[1(® + Ln)

= —Amin(M)V] +2(D + L)/ V).
Comparison principle [19] provides the solution to the differ-
ential inequality (28)

Vi=x

IA

(28)

- . @, 2(®@ 4 Ln) g M)
Il < 1x0)|e” " 2 "—1—7[—‘2 2 ’}
%] < Ix (0] T )

(29)

where M and ||%(0)| verify Amin(M)[|IX(0)]| > 2(® + L7). To
satisfy the ISS condition, let

BUZO], 1) = IE @)l 4" (30)
. )
710l = e [1-7" ] 6D

995

and it is straightforward to show that f is a class XC£ function
and y is class K. Hence, we conclude that the system (25)
is ISS. In addition, due to the exponentially decaying terms at
right-hand side of (29)

2(® + Ln)
j-rnin (M)

Therefore, with bounded unknown input Q and bounded
uncertainties v in thermal dynamics, ||X] will settle on or
within a norm ball of radius R in the error space. O

Remark 4: The size of Rp may be reduced by optimally
selecting gain L to balance convergence speed and robustness
to uncertainty. A large L enlarges the denominator of Rj, but
also amplifies the measurement noise in the numerator.

According to [20], we can compute heat generation 0]
by inverting plant model dynamics (7). Nonetheless, we do
not know the exact value of states x(¢). By using certainty
equivalence [21], the unknown input estimate can be obtained
by replacing the state x(¢) with its estimation x(r)

IZ]l < Rp = as t — 00. (32)

-~
.

0(r) = G (& () — AR(r) — Bu()) (33)

where GT = (GTG) 'GT is the left inverse of G. Heat
generation estimation calculated in (33) will be utilized to
design observers in Stage 2.

Remark 5: There exists a loop between the two blocks in
Stage 1. Specifically, the heat generation estimates are used
for thermal parameter identification, and meanwhile the iden-
tified thermal parameters alter the system matrix A. Herein,
we analyze each block separately, and only verify the stability
of the coupling in the simulation.

B. Stage 2: Battery SOC and Capacity Estimation

The Stage 2 simultaneously estimates battery SOC (unmea-
sured state) and capacity (unknown parameter) by receiving
the core temperature and heat generation estimates from
Stage 1 as input signals. We consider the following sliding
mode observer structure for the Stage 2

SOC = L3sgn(OCV,, — OCV) (34)
0 ~dU
oCV,, = = 4+ V. T 35
m Im + T,m + dT ( )
~ 1 _
T =3Tm+T0) (36)

where I,,, V7, and T, are the current, terminal voltage,
and surface temperature measurements. Gain L3 is the scalar
observer gain to be designed. OCV is the OCYV estimation
corresponds to SOC estimation SOC. Note that Q and T, are
the estimated heat generation from (33) and estimated core
temperature from (20). As analyzed in the previous section,
the Q and i estimation are biased due to thermal model
uncertainties and unknown heat generation. Consequently,
OCV,, obtained from (35) is biased. We model the uncertainty
between OCV,, and the actual OCV by an additive error
term &, with OCV,, = OCV +¢. Note that £ may also include
the measurement noise from /,,, and Vr ,,. Under this scenario,
we provide the convergence analysis of observer (34)—(36).
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Theorem 6: Consider the SOC dynamics (1), estimated heat
generation and core temperature from Stage 1. Furthermore,
assume OCV is a monotonically increasing function of SOC
over domain 0 < SOC < 1. Also, assume bounds M; > 0,
Mmc,, > 0 are known, where |I(r)] < M;, ¥Vt € RY, m¢,, <
Chat. If the scalar observer gain L3 verifies

M
mcbm
then the estimation error §66(t) = SOC() — §6E(t) from
observer (34)—(36) converges to an bounded error ball defined

by |OCV| < |¢|, where OCV = OCV — OCV. Furthermore,
estimated battery capacity is given by

L3 > (37

Coat = —— (38)

Liv
where v is the filtered version of sgn(OCV,, — CTCTI ), com-
puted by passing sgn(OCV,, — ﬁ) through a low-pass
filter with unity steady-state gain in real time, i.e., v(t) =
{w/(s + @)}sgn(OCV,, (t) — ﬁ(r)), where  is the cut-off
frequency.

Remark 7: We have assumed that OCV is a monotonically
increasing function of SOC over the 0%-100% SOC range.
This assumption is verified for most of the popular Li-ion
chemistry, e.g., LiCoO;-Graphite and,_I:iJlf'eP04—Graphite [22].

Proof: Under the condition of |OCV| > |£|
sgn(0OCV,, — OCV) = sgn(OCV + &) = sgn(OCV).  (39)
Strict monotonicity of the OCV-SOC relationship guarantees
sgn(OCV — OCV) = sgn(SOC — SOC). (40)
Consequently, we can rewrite observer (34) based on (40)
SOC = L3sgn(SOC — SOC). 1)

The dynamics of SOC = SOC — SOC can be written as

— . —— I —
SOC = SOC — SOC = ——— — L3sgn(SOC).

bat

(42)

We consider the following Lyapunov function candidate:
I~

Va(t) = ESOC (43)

and the derivative of V3 along the trajectories of SOC is

. S I
V3(t) = SOC - SOC = SOC (— c

bat

— L3sgn(§66))
1
Chat
I —— ——
|11 [SOC| — L3|SOC]|

bat

— I
|SOC|-( 1l —Lg).
G

bat

SOC — Lgsgn(g—aé) .S0C

IA

(44)

Choose the gain L3 high enough such that L3 > Mj/mc,,.
Furthermore, note from (43) and (44) that

My
m Chat

V3 < —ay/2V3, where a = L3 — (45)

Applying the comparison principle on (45) suggests the finite
time for SOC to converge to the error ball defined by |6Ef\7 | <
IS| to be 1y = (2V3(0))'/2 /a.. Hence, based on the selection
of some high gain L3, V3 will decrease until |6E\// | > |€] is
violated. At the sliding mode, we have SOC = g, where ¢
is less than or equal to the size of the SOC error space

corresponds to |6E\// | < |&], and SOC = 0. Substituting these
expressions in (42) yields

-~ I
=—— 46
Chat L (46)
where v(t) is the signal produced from low-pass filtering
sgn(OCV,,(#) — OCV(2)). O

Remark 8: The battery capacity estimation computed
from (46) is expected to be biased as a result of the Stage 1
estimation error £. Nevertheless, £ can be reduced by opti-
mally selecting observer gain L, based on Remark 4.

Remark 9: Given that the thermal parameters vary slowly,
the lower block in Stage 1 operates on the slow time
scale (cycles) while the upper block and the entire Stage 2
evolve on a fast time scale (second).

IV. BENEFITS OF THERMAL MODEL-BASED
CAPACITY ESTIMATION

The fundamental difference between the thermal-based and
the equivalent circuit-based approach is that the thermal-based
scheme estimates capacity, thermal resistance, heat generation,
temperature, and SOC without any need of output voltage
model and estimates of R; (internal resistance) and V. (voltage
of R-C pairs). In the equivalent circuit-based SOH estimation,
the SOH estimation error stems from the combined errors
of capacity and internal resistance estimation. We, hereby,
show conceptually how leveraging thermal dynamics enables
to isolate away the estimation error of internal resistance.
Essentially, we design an observer to estimate OCV using
available online measurements.

A. Thermal Model-Based Estimation

Consider the thermal model-based estimation scheme shown
in Fig. 1. In Stage 2, we use the estimated heat generation as
the feedback signal in the observer. For a given input current
profile and measured terminal voltage within a certain cycle,
the heat generation estimation is given according to (4)

Q1) = In(?) [OCV(I) — Vrm(@) — T(t)dT}- 47)
Subtract (47) from (4), the feedback error signal is given as

~ —~ ~ .d
00 =160 |66V - T 7 | 48)
Assume T(t) is negligible due to robust temperature estima-
tion in Stage 1, and the feedback error signal becomes

<

0(t) = 1(r) - OCV(r) (49)

which captures OCV estimation error only, which is, in turn,
dependent only on the capacity estimation error.
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B. Electrical Model-Based Estimation

In this case, we use terminal voltage as the feedback signal.
Consequently, the feedback error signal is given as

Vr(t) = 0CV (1) = Vo)) = I()R; (50)
where Vr, ‘7.;, and Es are the estimation errors for the terminal
voltage, voltage across R-C pairs, and the internal resistance.
Under this scenario, the estimation errors for capacity (66\// )
and internal resistance (Es) both emerge.

Methods that estimate capacity and internal resistance from
an equivalent circuit perspective, see [6], need crucial assump-
tions, e.g., linearly varying capacity and internal resistance
with respect to time, to distinguish the estimation errors of
capacity and internal resistance. However, the thermal-based
estimation completely decouples capacity estimation error
from the combined SOH estimation error without requiring
any such restrictive conditions.

Moreover, though the primary objective for this paper
is real-time battery charging capacity estimation, the algo-
rithm presented in this paper can be considered as a novel
methodology for combined SOC/SOH estimation. Specifically,
it provides estimates for SOC and charge capacity. Even more,
Stage 1 produces estimates for thermal model parameters,
core temperature, and internal heat generation. To the best of
the authors’ knowledge, this is the first estimation framework
in the literature to estimate all the aforementioned states
and parameters simultaneously, with provable convergence
properties, under suitable conditions.

V. RESULTS AND DISCUSSION

In this section, we present studies on simulation and exper-
iments to validate the performance of the proposed capacity
estimation scheme. The battery under test is a LFP A123
26650 cell with an initial capacity of 2.3 Ah.

A. Simulation Study

This section presents the simulation study. The parameter
values for thermal model (2) and (3) are taken from [16].
To illustrate the performance, we apply a driving cycle to
the battery model. Fig. 2 plots the evolution of current and
terminal voltage from the plant model simulation. The esti-
mates (unknown states, input, and parameter) are initialized
with incorrect values to illustrate the convergence properties.

We first evaluate the performance of observer (20), (21),
and (33) in Stage 1. The core temperature estimate is ini-
tialized with 3 °C error. Fig. 3 portrays the evolution of
the unknown state (7.) and unknown input (Q) from the
simulation of thermal system (2) and (3), with their estimated
values. Note that with an appropriate choice of observer
gain L as presented in Theorem 3, T. and Q converge
rapidly. Similarly, the effectiveness of SOC and capacity (Chat)
estimation are investigated by initializing SOC estimate with
15% initial error. These results in Fig. 3 confirm the finite-time
convergence analysis conclusions for the Stage 2 observers
in Section III-B.
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Fig. 2. Simulation of current and terminal voltage in the plant.
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Fig. 3. Estimation performance for the charge—discharge cycle in simulation
study, for core temperature, heat generation, SOC, and capacity.

B. Experimental Studies

We further demonstrate the proposed algorithm on experi-
mentally obtained capacity data. The battery cell was placed
inside of an ESPEC BTL-433 environmental chamber that
maintains the ambient temperature at 25.5°C (298.65 K).
A thermocouple was attached to the surface of the cell to
measure surface temperature. A PEC SBT2050 cycler was
used to apply a repeated charge—discharge cycle (a charging
protocol based on the SPMeT model—[23, Fig. 10]) to the
battery cell to induce aging (see Fig. 4). The effect of
battery aging on terminal voltage and surface temperature is
noticeable, especially toward the final 50 cycles, where the
cell experiences higher voltage and temperature changes for
the same input.
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Fig. 5 shows the charge—discharge profile for the first cycle,
along with the measured voltage (V7) and surface tempera-
ture (7s). The cell is first charged under Inax = 6C constant
current (CC) for 300 s which elevates SOC from initial
value 25% to final value 75%, followed by a 300-s resting
period ({ = 0). In the discharge phase, the current initially
holds constant but eventually decays over time, resulting in a
constant voltage (CV) discharge. The capacity was determined
using a 1C CC-CV cycling test at cycle numbers {0, 10,
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Fig. 7. Battery capacity estimation results, plotted every five cycles.

(a) evolution of R, and (b) and (c) more accurate estimation with updating
R in real time. (d) observer robustness against the measurement noise.

60, 110, 160, 210}. For real-time implementation, accurate
parameter estimation in the thermal model plays a critical role
in capacity estimation, due to the flat region of OCV-SOC
curve.

Here, we demonstrate the estimation performance for the
first charge—discharge cycle. The SOC estimate is initialized
with 30% error and capacity estimate is initialized with
0.3 Ah (13%) error. Fig. 6 presents the convergence of SOC
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and capacity estimates to their true values. The blue solid line
in Fig. 6 (top) represents the evolution of SOC generated by
the coulombic counting method. The value of measured battery
capacity is 2.31 Ah.

Finally, we examine the capacity estimation performance
across 210 cycles under two scenarios.

1) Effect of Updating R. in Real Time: Fig. 7(a) plots
the values of R. every five cycles as black dots. In spite of
the apparent uncertainties stemming from the noisy exper-
imental measurements, the trend of R, over cycles bears
accelerated growth behavior, especially toward the end of
the experiments. The frequency for updating R, (every five
cycles) is somewhat arbitrary, but it is selected to adequately
track the change rate. We explicitly evaluate the estimation
results by comparing two cases: 1) when R, is updated
online and 2) when R, remains at the value from the first
cycle throughout the experiments. Specifically, in Fig. 7(b),
the blue and green plus symbols (‘+’) represent the estimated
capacities from case 1) and case 2). Moreover, the red star
symbols (‘*’) are the six capacity measurements, and the
black dotted line is the fit curve using the measured data.
Note that both cases follow the black curve closely until
R, starts to deviate. Ultimately, after cycle 180, the esti-
mation from case 2) without R, being updated reveals rel-
atively larger error. The same observation can be made
in Fig. 7(c) where the percentage errors of capacity estimation
from both cases against the experimentally fitted values are
plotted.

2) Effect of Measurement Uncertainties: Despite the fact
that the cycled data are experimentally collected, the mea-
surement signals are almost noise free. In order to mimic the
real-world applications, a 2% random error is manually added
to the signals from Fig. 4 to validate the robustness of the
estimation scheme. One may clearly observe from Fig. 7(d)
that the capacity estimation result indeed suffers from errors.
According to Remark 4, the observer gain L is supposed to
be selected to appropriately balance the convergence rate and
robustness to measurement noise to minimize the size of Rj.
Here, the maximum percentage error between the estimates
and the fitted capacity curve is 4.7%.

VI. CONCLUSION

This paper rigorously analyzes an online capacity estimation
scheme for Li-ion batteries from a thermal prospective. Stage 1
estimates core temperature, heat generation, and thermal resis-
tance based on a two-state thermal model, and the second stage
receives these estimation signals to estimate SOC and capacity
utilizing a sliding mode observer. The convergence for the
observers is mathematically analyzed using the Lyapunov
stability theory. This approach only requires the tuning of three
scalar observer gains, whereas the number of tuning parame-
ters in commonly adopted KF-based methods is polynomial
with respect to the number of states. Experimental results
demonstrate the capacity estimation accuracy and robustness
by comparing with real data. The benefit of using thermal
dynamics for capacity estimation is that it decouples capacity
estimation error from the combined SOH estimation error.
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