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Electrode-Level State Estimation in Lithium-lon
Batteries via Kalman Decomposition
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Abstract—Lithium-ion battery electrode-level online
state estimation using high-fidelity nonlinear electrochemi-
cal models remains a key challenge. This is particularly due
to weak observability inherited from the complex model
structure, even for reduced-order electrochemical models.
This letter presents a systematic and rigorous strategy to
analyze the local observability of a single particle model
(SPM) with both electrodes, which is commonly known
to be locally unobservable from current-voltage measure-
ments. Estimating the essential states, e.g., state of charge
(SOC) and solid-phase lithium surface concentration, is
crucial for battery charge and health monitoring since
different degradation mechanisms affect each electrode
individually. In this letter, the proposed observability analy-
sis approach based on the Kalman decomposition enables
provably convergent estimates. Ultimately, using the
observability analysis, we propose a state estimator based
on the nonlinear SPM dynamics and prove estimation
error system stability. The observability analysis and state
estimation scheme exploits the conservation of lithium
property. Simulations demonstrate the effectiveness of the
electrode-level state estimator as opposed to the cell-level
estimator.

Index Terms—Lithium-ion batteries, state estimation,
observability, Kalman decomposition.

. INTRODUCTION

NERGY storage is a critical enabling technology for

electrified transportation and clean variable renewables
integration. In this context, lithium-ion (Li-ion) batteries are
the technology of choice, given their high efficiency and
energy/power density [1]. The internal electrochemical states
of Li-ion batteries should be carefully monitored in order to
prevent over-charge and over-discharge. Most internal states
of the battery electrochemical models cannot be directly mea-
sured, and therefore algorithms should be implemented for
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estimation. This task is difficult because the states are typ-
ically weakly observable and have nonlinear relationships
with the output measurements. A battery management system
(BMS) that estimates the state of different battery compo-
nents would be a leap forward for the advanced control of
battery systems.

Model-based estimation of Li-ion batteries have been widely
considered in the literature [2]. The estimation methods
can be classified according to the mathematical models at
their core. The first models — data-driven models — do
not have any physical interpretation and require a large
amount of training data [3], [4]. Meanwhile, equivalent cir-
cuit models rely on an electric circuit analogy for batteries,
and thus do not explicitly represent relevant electrochemi-
cal processes [5], [6]. Electrochemical models are the most
complex, and they directly characterize the electrochemi-
cal behavior of Li-ion batteries [7], [8]. Even if high-order
electrochemical models serve as a benchmark (e.g., the Doyle-
Fuller-Newman model), reduced-order models are needed for
real-time implementations in estimation and control. The most
popular reduced-order electrochemical model is the single par-
ticle model (SPM) [9], due to its intriguing balance between
model accuracy and simplicity.

A common model reduction for electrochemical model-
based observer designs is to consider only one electrode.
The reason behind the single-electrode approximation is the
weak observability when estimating the lithium concentra-
tion in both electrodes, from the cell’s output voltage [10].
The one-electrode simplification can be achieved through two
approaches: (i) assume an open-loop model for one electrode;
or (ii) assume the moles of lithium are conserved. In the first
approach, one electrode provides a pseudo voltage measure-
ment and the other electrode state is estimated [9], [11], [12].
This method requires a proper initialization of the electrode in
open-loop in order to ensure that the state estimates of the elec-
trode in closed-loop converge to the true values. In the second
approach, lithium balance adds one algebraic constraint that
can be exploited for observer design. This is, by far, the most
prolific research direction, giving rise to Kalman filters [10],
sliding mode observers [13], robust observers [14], and par-
tial differential equation (PDE) backstepping observers [15],
where the state of one electrode depends linearly on the
other. In contrast to the first approach, the second one trades
off proper initialization of the second electrode with cor-
rect knowledge of the lithium balance. Note that all the
aforementioned estimators effectively estimate the state of
only one of the electrodes.

Recently, estimating states in both electrodes has been gain-
ing attentions. This task is rewarding in real-time monitor of
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operational conditions in both electrodes, but extremely chal-
lenging due to weak observability. Recent works have been
attempting to tackle this issue via three different paths. The
first one is to use extra measurements such as temperature
sensors [16] or expansion sensors [17], besides current and
voltage, to improve observability. The additional instrumen-
tation, however, might be inconvenient in practice since it
increases the cost and complexity of the sensing network. The
second option is to use interconnected state observers that deal
with the estimation of each electrode separately but exchange
information to guarantee closed-loop convergence [18], [19].
Although these observers provide convergent estimates, they
do so at the expense of complex interconnected observer
structures. Yet a third way relies on lithium material bal-
ance in the electrode phase to design either PDE backstepping
observers [9], [20] or Luenberger observers [21]. Ultimately,
although relevant and illuminating, the first two approaches
do so at the cost of extra hardware sensors and added math-
ematical design complexity. The last one builds on battery
physical intuition and explores the conservation of lithium in
the electrodes, but does not provide any analysis and guarantee
on observability with both electrodes. In this letter, we specifi-
cally address the letter gaps in the third approach by proposing
an elegant and mathematically rigorous framework to tackle
the lack of observability issue when simultaneously estimat-
ing states in both electrodes in SPM. This task is achieved
by developing a comprehensive and rigorous scheme utiliz-
ing the concept of Kalman decomposition, which attempts to
transform a system into a structure in which the new system is
decomposed into observable and un-observable sub-systems.
The transformed system enables a systematic way to analyze
the local observability, and ultimately a nonlinear state estima-
tor with asymptotic convergence is designed in the transformed
domain to reconstruct the essential states in both electrodes.
Note that even though the proposed analysis similarly requires
knowledge of the moles of lithium, it performs observabil-
ity analysis which facilitates the electrode-level state observer
designs in an elegant and rigorous manner based on Kalman
decomposition.

Notation: Throughout this letter, R” denotes a coordinate
space over the real numbers with dimension n. N7 is the space
containing all strictly positive integers. For a matrix A, A;;
represents the element located at the i-th row and j-th column.
For a vector x, x; indicates the k-th entry. || - || indicates the
L» Euclidean norm. T is an identity matrix.

[I. MODEL DESCRIPTION

In the full-order electrochemical model [7], Li-ion transports
in the solid and electrolyte phases. The key idea of the SPM is
that the solid phase of each electrode can be modeled as a sin-
gle spherical particle, and Li-ion concentration in electrolyte
phase is assumed to be constant. The intercalation process of
SPM is modeled through a linear diffusion PDE over a spher-
ical domain, which describes the lithium concentration in an
electrode active material particle,

dct L[9%cE 29ct
=D N - N 1
5, D =D5| S+ —— (D) (1

with Neumann boundary conditions

+

9 dct
L 0.n=0, ZRE ) = —mFu), ®)
or or

TABLE |

SINGLE PARTICLE MODEL SYMBOL DESCRIPTION

Symbols Description Units
aT Specific interfacial surface area [mZ/m3]

A Cell cross sectional area [m2]
o Li-ion conc. in electrolyte [mol/m3]
cf:E Solid phase Li-ion concentration [mol/m3]
Css Li-ion conc. at particle surface [mol/m3]
Cs Volume-averaged Li-ion conc. [mol/m3]

C3,max Max Li-ion conc. in solid phase [mol/m3]
055 Normalized Li-ion surface conc. [mol/m3]
éf Normalized volume-averaged conc. [mol/m3]
DSi Solid phase diffusion coefficient [m2/sec]

F Faraday’s constant [C/mol]

1 Applied current [A]
k+ Charge transfer reaction rate [A-m2-5/mol!-5]
L* Electrode thickness [m]

NLi,s Total Li in the solid phase [mol]

T Radial coordinate [m]

R Universal gas constant [J/mol-K]
R i Contact film resistance [Ohm]
R Particle radius [m]

t Time [Second]
U+ Open circuit potential [V]
at Charge transfer coefficient [-]
agt Volume fraction of solid phase [-]

where ¢ (r, 1) : [0, RT]x [0, 00) — R and c; (r, 1) : [0, Ry ] x
[0, 00) — R map the radial position and time to solid phase
lithium concentration in the positive electrode and negative
electrode, respectively. Symbol u(7) is the input, and it rep-
resents either an intercalation current /(¢) or an intercalation
current density JE(1), and coefficients m* and m~ are factors
determined by the choice of u(r) [22]:

JE = —;I(t),

Fa*L* o=

1(1). 3
oL 0] 3)
The output terminal voltage V(¢) is a function of solid
phase surface concentrations, open circuit potentials, electric
overpotentials, and the Butler-Volmer kinetics:

T I 0 (O B 1y ()
V() = 67 sinh Tt aL(C =) 8~ sinh —ia(cs_s(t))
+ UT(cf(0) = U (ei5(0) — R (0), “4)

where 6% = RT/(a*F), % = 1/(2a*AL%), and the exchange
current density ia—L(~) is given by

() = 1\ et () (s — cE 1), 5)

cE) = cERE 1), (6)

UT(-) and U~ (-) in (4) are the equilibrium potentials of the
positive and negative electrode material as functions of solid
phase surface concentrations. A complete notation description
for the SPM can be found in Table I.

IIl. OBSERVABILITY ANALYSIS

This section provides insights on PDE model reduction
in the frequency domain, and model decomposition oriented
towards observability analysis in the linear sense.
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A. Model Reduction

According to existing works in [15], [23], the PDE
model (1)-(2) for each electrode can be described in the
frequency domain as a transcendental transfer function
between the surface concentration and input,

ex(s)(Rsi—r) (eZK(s)r _ 1)m:|:(R§|:)2

ch(s, r) _
(1 + REK(s) + 2RO (REkc (s5) — 1))/

U(s)

)

where «(s) = \/s/D}—L. Two physically important quantities of
the SPM are surface concentration ¢ and volume-averaged
concentration Esi. The surface concentration plays a role in the
electrochemical reaction and the volume-averaged concentra-
tion is associated with SOC of each electrode. Evaluating (7) at

r = RE yields the transfer function for surface concentration,
O sinh(k ()RS )m* RS
U(s)  Rix(s)cosh(k (s)RY) — sinh(k ()R5)
One can also conveniently obtain the volume-averaged con-
centration by evaluating
— +
cE(s) 1 RS cE(r, s) 2 q*
= T @rrydr=—, (9
Uls)  4/3n(R)? Jo U(s) s
where ¢ = 3D§'Emi /Rf. Next, Padé approximation is applied
to the transcendental transfer function (8) and (9). The Padé
approximation approximates the transcendental transfer func-

tions as a ratio of two power series that naturally contain poles
and zeros:

®)

_ bos" 4+ b1+ 4 by s+ by
s tas T e ta s tag

The coefficients of the numerator and denominator are com-
puted via moment matching [22], [23]. The order of the
approximation is determined based on the trade-off between
the number of states and desired model accuracy required to
predict the frequency response of the original diffusion PDE
model. The authors of [23] note that a third order trunca-
tion is often sufficient for capturing the solid-phase diffusion
dynamics, particularly in electric vehicle applications.

There are essentially an infinite number of state-space real-
izations for (10). We choose to adopt the controllable canonical
form in this letter. Note the proposed approach can be univer-
sally adapted to other realizations. The controllable canonical
form for a 3rd-order Padé approximation is defined in terms
of the coefficients of (10) as follows,

G(s)

(10)

it = ATxT + B, a1
o= HEE, T =HaE (12)
where xt, x~ € R3,
X 0 1 0 0
Xt = xi, AF=1 0 0 1, Bi=|:0:|,
x% —a3i — aéc — af 1
HE =[b% b3 bE) B =["a q*af ¢F] (13)

The fact that a3+ = a; = 0 indicates that there is one
pole at zero in each electrode. Thus, an open-loop observer
will not guarantee asymptotic convergence. The system that
concatenates dynamics of both electrodes and the voltage
measurement is written as

X=Ax+Bu, y=h(x,u, (14)

where function h(x, u) is given by (4) and x = [xT 17
A = diag(A*,A7), B=[BT* B7]'.

It is previously noted in the literature, e.g., [10], [15], that
the single particle model with both electrode dynamics is not
locally observable from the cell’s output voltage measurement.
This conclusion can be physically interpreted from the out-
put voltage expression (4). Intuitively, the cell voltage (4) is
dependent on voltage difference from two electrodes, which
guarantees the observability of the difference of the electrode
voltage but does not make each electrode voltage observable.
Additionally, the Jacobian of the cell voltage with respect to
surface concentrations of cathode and anode are low for cer-
tain regions within the battery operational window. This low
Jacobian also degenerates system observability. Furthermore,
this phenomenon can be also demonstrated mathematically. If
we linearize the nonlinear output equation A(x, ) about the
states around an equilibrium point to produce a matrix Cp,
the rank of the observability matrix for the pair (A, C,) is less
than the order of system (14), which will be further detailed in
Section III-C. Hence the lithium concentration from both elec-
trodes are not locally observable from the cell voltage output
in the linear sense.

>

B. Model Decomposition

A Kalman decomposition transforms a linear time invari-
ant (LTI system into a form in which the system can be
decomposed into (non)controllable and (non)observable com-
ponents [24], [25]. It essentially combines the controllability
canonical decomposition, where the state space is separated
into the controllable subspace and its complement, and observ-
ability canonical decomposition, in which the state space is
decomposed into observable and unobservable subspace. The
standard Kalman decomposition makes clear the controllable
and observable components of a system.

The objective of this work is to examine the observabil-
ity of the SPM Padé approximation with both electrodes in
a mathematically rigorous way using Kalman decomposition.
Although the system (14) is nonlinear, we study the observ-
ability in the linear sense by linearizing the output function
h(x, u) around an equilibrium point. The next theorem sets the
foundation for the observability decomposition.

Theorem 1 (Observability Decomposition) [26]: Let x €
R”", x = Ax+Bu, y = Cx+Du be unobservable with rank of the
observability matrix, rank(QO) =d < n. Let P = [P, P,lT,
where P, consists of d linearly independent rows of O, and Py,
are added rows to complete the basis and yield a nonsingular P.
Then X = Px transforms the system to

% | _ [A O07[% B, B .,
|:Xu()i| a [221 Zuo:| |:fuui| + |:Euoi|u’ X, € R%, (15)
y= [Eo O] |:)—200j| + Du. (16)

Furthermore, the pair (4,, C,) is observable.

The similarity transformation P in Theorem 1 preserves the
stability properties of the system prior to the transformation,
i.e., the system (15) also has two poles at the origin. The
transformation P in Theorem 1 clearly turns any LTI system
into a structure in which observable and unobservable com-
ponents are decoupled. Specifically, it is guaranteed that X,
is observable from the system input-output data, so that we
are able to construct a closed-loop observer to estimate the
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unknown X,. Additionally, if the matrix A,, for the unobserv-
able part of the system is Hurwitz, i.e., all eigenvalues of
Ay, have strict negative real part, then we could design an
open-loop observer for the unobservable component. Under
this scenario, the system (15)-(16) is detectable. These con-
ditions are sufficient for the reconstruction of the entire state
space in x¥-domain, which can be subsequently used to estab-
lish the estimates of x by performing the inverse transformation

x =P 'x

C. Observability Analysis via Kalman Decomposition

Under equilibrium conditions with zero current, the output
expression simplifies to

V(1) = h(x) = U (c5(1) — U™ (ci,(1). a7)

We first analyze the observability of the nonlinear system (14)
with (17) by linearizing function A(x) and checking the rank
of the linear observability matrix. Let the partial derivatives
of h(x) be C, = dh/dx. Namely

oh  0h 0h 0Oh Oh Oh 18
P E))c;r B)c;r 8)63r ox; ox, Oxy | (18)
where
oh  AUT dck ah AU dc
—w =73 ad —=-——— (19
8xj dCys 8xj ij dCgs axj

with j = {1, 2, 3}. The terms dU " /dc and dU~ /dcy; are gra-
dients (Jacobian) of open circuit potential (OCP) function for
cathode and anode, respectively. It is well known that the OCP
function for anode (typically graphite) is flat, especially within
10%-90% anode SOC range (see, for instance, [17, Fig. 6]).
This flatness renders small numeric values for the gradient
oU™ /dcy,, weakening the local observability by potentially
lowering the rank of the linear observability matrix. Similar
observation can be made from the cathode OCP function.
However, even with high OCP gradients in some regions,
system (14) is still not locally observable in the linear sense
because the rank of the observability matrix constructed by the
pair (A, Cp), denoted by O,, is (n—1) around any equilibrium
points (rank deficient). This because of the zero pole at each
electrode, which causes the first and the fourth columns of
matrix A to be all-zero columns. Thus, the first and the fourth
columns of matrix A’, for all i € NT, are all-zero columns.
This leads to the fact that the first and the fourth elements of
C- A, for all i € NT, are zeros. Hence, these two columns in
O, are linearly dependent.

Applying Theorem 1 to decouple system (14) for observ-
ability analysis in the linear sense would require d = 5 linearly
independent rows from the matrix O,. The special structure
of Op, in which the only non-zero elements in the first and
the fourth columns are offered by the first row (Cp), requires
that the transformation matrix P must include the first row
of Op, otherwise P will not be invertible however we con-
struct Py,. Another intriguing point to highlight is that the
element A, = 0 regardless of the design of P,,. That is, the
eigenvalue of A,, is zero. This can be verified by declaring
Py, as a symbolic variable in any numerical computation tool
and checking the general expression of A = PAP~!. Hence,
for the battery system (14), the transformed system (15)-
(16) is not detectable, prohibiting the design of an open-loop
observer for Xx,,.

Proposition 1 (Conservation of Solid-Phase Lithium): The
total moles of lithium in the solid phase is conserved [9], [21].
Mathematically,

LA
j=r) 437 (Re)?
=€ LTAC] + €, L Ac,,
where M = [Mt M~] with
M* = [efL*Aqtay  efL*Aqtaf eFL*AqT]. (1)

nLis = Mx =

R
/ A (r, ny(dmr?)dr
0

(20)

Our ultimate goal is to estimate all states in X-domain, and
in turn, the surface concentrations cxis and volume-averaged
concentrations Eﬁc. This cannot be accomplished if X, is not
estimated or known a priori. Hence, we utilize the conservation
of solid-phase lithium property to construct P,, by making

P,, = M. The result of such a construction ensures
(22)

is a known constant. Therefore, although X, is not observable,
its temporal values are pre-determined and uniformly equal to
the total moles of lithium of solid phase over time.

The analysis in this section is based on the linearized system
and the observability conclusions are local. In the next sec-
tion, we design an observer to estimate X, using the nonlinear
voltage function.

Xuo = Puox = Mx = NLi,s

IV. OBSERVER DESIGN

The dynamics for the observable component in (15) after
the observability decomposition are given by

X, = ApXo + B, (23)

where X,, = nLis is a constant by construction, and the non-
linear function 4 is the output voltage represented by the states
in the transformed coordinate,

Y = h(Xo, Xuo, ),

—BTIt “I(t
h=38"sinh™!| ——— ’:3 _( ) |~ 5 sinn™! —,_ﬁ_ (_)
Ly (X0, Xuo) Ly (%05 Xuo)
+ U+ (X0, Xuo) — U™ (X0, Xyo) — Rfl(t)’ (24)
where we have replaced ¢\ and c; in (4) with
6
i = Y BTNk + b3 Noi + b N3 o). (25)
k=1
6
¢y = D _(by Nk + by Nso+ by Neo¥,  (26)
k=1

in which N is the inverse transformation N = P~

Remark 1: Tt is evident from (5) and (24) that function
h is continuously differentiable with respect to the state x
within the normal battery operational region, which is a suffi-
cient condition for Lipschitz continuity [27]. Mathematically,
a Lipschitz constant with respect to the state X can be
obtained by computing the infinity norm of 9h/dX,, ie.,

v = 10h/0%, |00, such that
AL, Tuor ) — W2, Fuos | < YIRS — T2 (27)

We are now positioned to propose the following observer
with linear output error injection for system (23),

io = Z0§0 + Eou +L(y — 5’)1 57 = h()%m Xuo, 1), (28)
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where X, is the estimate of X, and gain L is to be designed
to ensure observer convergence. Similar design procedures
for nonlinear Lipschitz system can be found in [14], [28].
Theorem 2 provides the convergence results of the observer.

Theorem 2: Consider the plant model dynamics (23) and
the corresponding state observer (28). Let the error between
the actual and the estimated states be x, = X, — xo If there
ex1sts sjymmetnc positive definite matrices Q = Q" > 0 and

> 0, such that the following linear matrix inequalities
(LMI)
—T —
2,0+ 048, -0|_ o [rLTL 0 1,
-0 0 ’ 0 -I-K|—"
(29)

yield a feasible solution, then the estimation error o converges
to zero asymptotically. ~
Proof: The dynamics for error system X, is given by

X, = Aox, — L¥. (30)

where ¥ = y — 3. We choose the Lyapunov function candidate
=T ~

WH =X,0%, 0=0" >0,

and the time derivative of W along the trajectory of X, is

€29

s AT = =T =
W= x;erg +Xx, 0%,
=T =T — =~ T A =T ~
=X, (A 0+ QA)X, — (Ly) 0%, — X, Q(Ly)
—T — =
f— =T T A Q + QA _Q Xo
X, z iy 0 paE
where z = Ly. For W to be negative definite, we require
the first condition in (29). Moreover, according to Remark 1,

Lipschitz continuity with respect to X, produces ||y|| < y ||%,]-
Applying Cauchy-Schwarz inequality [14] to z = Ly yields

(33)

(32)

llzll < ILINFI < LI,

. . . =T~
which can be alternatively written as 'z < yZLTLxO X,. We
can add a tuning term to form a linear matrix inequality,

=T =~
2"z =%, (y’L"LDX, < —z' Kz, (34)
where K > 0 is a positive definite matrix chosen by the
designer. Reformulating (34) into
Xo
l¥]=0

[;T T] [yZLTLI 0
X, z
Therefore, for W to converge to zero asymptotically, the matrix

; 0 - (35)
inequalities in (29) need to be satisfied. |

V. SIMULATIONS

In this section, we present simulation results to demonstrate
the performance of the proposed observer for electrode-level
state estimation. The input current in Fig. 1(a) is generated
from an Urban Dynamometer Driving Schedule (UDDS) drive
cycle, to imitate a practical electric vehicle driving pattern.
The considered battery chemistry is graphite/lithium cobalt
oxide, whose model parameters can be found in [15]. For
all simulations presented in this section, the state estimates
are initialized at incorrect values. The observer (28) is imple-
mented numerically on the observable X,-system (23). The
observer gain is selected based upon the LMI condition (29)

o
= 4
Iy
o 2
€ 0
<]
2 -2
=
O 4
.1
g
S 0.8
O
]
Q
£ 0.6
=]
n
T
S
2+
- 0,
) 2
S 0,
0 s
0,
=
)
o0
0,
R=
o
=
0 5 10 15 20 25 30
Time [min]
Fig. 1. Observer results for SPM via a nonlinear observer design

in a transformed coordinate using observability decomposition, using
an UDDS drive cycle in simulation. (a) applied current; (b). surface
concentration; (c) volume-averaged concentration (SOC); (d). voltage.

in Theorem 2. The observer gain that satisfies condition (29)
is L = [190 126 0.32 0.014 —0.0020]". The nor-
malized surface concentration estimates are initialized at 0.50
and 0.89 for positive and negative electrode, respectively, and
each with 8.1% error against the plant model, to validate
the convergence property. Figure 1(b) presents the tempo-
ral evolution of the surface concentration estimates, with an
asymptotic convergence time less than 180 seconds. After the
initial transient period, the root mean squared errors (RMSE)
between the (normalized) estimates and the plant models are
2 x 107* and 1.2 x 1073, respectively for positive and neg-
ative electrodes. Similarly, the normalized volume-averaged
concentrations (namely the electrode-level SOCs) are plotted
in Fig. 1(c), with RMSE being 1.5 x 10™* and 2.4 x 1073
after the initial transient. With the appropriately selected gain,
as detailed in Theorem 2, the voltage estimates also converge
to their true values from the plant model asymptotically, shown
in Fig. 1(d), with RMSE value at 0.15 mV.

V1. CONCLUSION

This letter presents a local observability analysis for a sin-
gle particle model (SPM) with dynamics of both electrodes.
The SPM is first reduced in frequency domain with a Padé
approximation. The state-space realization, which has been
proven to be locally unobservable, is decomposed according
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to the Kalman decomposition. This coordinate transforma-
tion permits a separation of observable components from the
unobservable sub-system. By assuming knowledge of the total
moles of solid-phase lithium, this conservation law can be
integrated into the transformation matrix, enabling an inverse
transformation to reconstruct the essential electrochemical
states of both electrodes. Subsequently, an asymptotically
convergent state observer is designed for the observable sub-
system in the transformed coordinate. The proposed electrode-
level observer retains a simple structure compared to other
works with complex interconnected observers. This letter
addresses the local observability issues for SPM, and paves a
path for state estimation for both electrodes. Future works will
examine the practical performances of the proposed framework
on real battery experimental data.
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