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Abstract— One of the most crucial challenges faced by the
Li-ion battery community concerns the search for the minimum
time charging without damaging the cells. This goal can be
achieved by solving a large-scale constrained optimal control
problem, which relies on accurate electrochemical models. How-
ever, these models are limited by their high computational
cost, as well as identifiability and observability issues. As an
alternative, simple output-feedback algorithms can be employed,
but their performance strictly depends on trial and error
tuning. Moreover, particular techniques have to be adopted to
handle safety constraints. With the aim of overcoming these
limitations, we propose an optimal-charging procedure based
on deep reinforcement learning. In particular, we focus on a
policy gradient method to cope with continuous sets of states and
actions. First, we assume full state measurements from the Doyle—
Fuller-Newman (DFN) model, which is projected to a lower
dimensional feature space via the principal component analysis.
Subsequently, this assumption is removed, and only output
measurements are considered as the agent observations. Finally,
we show the adaptability of the proposed policy to changes in the
environment’s parameters. The results are compared with other
methodologies presented in the literature, such as the reference
governor and the proportional-integral-derivative approach.

Index Terms— Actor—critic, approximate dynamic program-
ming (ADP), electrochemical model (EM), fast charging,
reinforcement learning (RL).

NOMENCLATURE
A. Electrochemical-Thermal Model States, Inputs, and
Outputs

csi Lithium concentration in the solid phase [mol/m?].

c. Lithium concentration in the electrolyte phase
[mol/m?].
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T Cell temperature [K].

Solid electric potential [V].

¢.  Electrolyte electric potential [V].
i Tonic current [A/m?].

j%  Molar ion flux [mol/m?-s].

igt Exchange current density [A/m?].

7t Overpotential [V].

¢ Lithium concentration at the solid particle surface
[mol/m?].

0*  Stoichiometry [-].

I Applied current [A/m?].
\% Terminal voltage [V].

B. Electrochemical-Thermal Model Parameters

D and D, Diffusivity of solid and electrolyte
phases [m?/s].

t? Transference number [-].

¢ and ¢, Volume fraction of solid and electrolyte
phases [-].

F Faraday’s constant [C/mol].

ot Conductivity of solid [1/Q-m].

K Conductivity of electrolyte [1/Q-m].

R Universal gas constant [J/mol-K].

fesa Mean molar activity coefficient in

electrolyte [-].
a*t Specific interfacial surface area [m?/m?].

a, and a, Anodic and cathodic charge transfer
coefficients [-].

k* Kinetic reaction rate [(A/m2)(mol*/mol)+®].

CE Maximum concentration of solid material
[mol/m?].

U* Open-circuit potential of solid material [V].

ij Solid—electrolyte interphase film
resistance [Q-m?].

R* Particle radius in the solid phase [m].

L/ Length of region j € {—, sep, +}.

E, Activation energy [J/mol].

cp Heat capacity of the cell [J/(Kg-K)].
Ry, Thermal resistance [K/W].

m Mass of cell [Kg].

I. INTRODUCTION

ITHIUM-ION batteries are crucial technologies for elec-
trified transportation, clean power systems, and consumer
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electronics. Although Li-ion batteries exhibit promising fea-
tures in terms of energy and power density, they still present
limited capacity and long charging time [1]. While the former
is mostly related to the battery chemistry, materials, and
design, the latter depends on the employed charging strategy.
Within this context, the tradeoff between fast charging and
aging has to be taken into account. In fact, charging time
reductions can be easily achieved by using aggressive current
profiles, which, in turn, may lead to severe battery degradation
effects, such as solid—electrolyte interphase (SEI) growth and
lithium plating deposition. Consequently, safety constraints
must be enforced in order to prevent possible thermal runaway
and overcharge.

The most common charging procedure for Li-ion batteries
is the well-known constant-current constant-voltage (CC-CV)
method. This is employed in the industry due to its ability
to provide reasonable performance with a relatively simple
implementation [2]. However, such a simple charging algo-
rithm is often based on excessively conservative constraints
that reduce the probability of safety hazards at the expense
of higher charging times. Therefore, it does not constitute
an optimal policy for the problem that we aim to solve—
at least not in all cases. For these reasons, several advanced
battery management strategies have been employed. In partic-
ular, we can classify them as: 1) model-based strategies and
2) model-free strategies. The former seeks to find an optimal
input trajectory based on a specified battery model, while the
latter interacts directly with the battery [denoted as the “envi-
ronment” in the language of reinforcement learning (RL)].

The use of mathematical models for battery control is a
large topic in the literature. Equivalent circuit models are
simple, intuitive, and mimic the battery behaviors through
lumped electrical parameters, which can be easily identi-
fied [3]. Electrochemical models (EMs) exhibit higher accu-
racy than equivalent circuit models and the ability to describe
internal battery phenomena from the perspective of electro-
chemistry and, therefore, are usually preferred for simulation
purposes [4]. There are a number of studies to investigate the
health-aware fast charging strategy for EMs. Klein et al. [5]
formulate a minimum-time charging problem with health-
related constraints and use nonlinear model predictive con-
trol. Similarly, Perez et al. [6] propose a reference governor
approach to solve a minimum-time charging problem, and
Torchio et al. [7] propose a quadratic dynamic matrix con-
trol formulation to design an optimal charging strategy for
real-time model predictive control. Zou et al. [8] synthesize
a state estimation and model predictive control scheme for
a reduced electrochemical-thermal model, in order to design a
health-aware fast charging strategy. The problem is formulated
as a linear time-varying model predictive control scheme, with
a moving horizon state estimation framework. In the context
of aging mechanism for EMs, Perez et al. [9] studied the
tradeoff between charging speed and degradation, based on
an electrothermal-aging model. Pozzi et al. [10] minimize the
film layer growth of an EM by formulating shrinking-horizon
nonlinear model predictive control. The multiobjective optimal
charging problem is considered for EM in [11] where the fast-
charging strategy is characterized by three charging stages
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considering the fact of charging time, temperature rising,
and charging loss. However, the exploitation of model-based
charging procedures has to face some crucial challenges.

1) Every model is subject to uncertainties and model-
ing mismatches, which affects its accuracy. Since the
controller’s performance depends on the model accu-
racy, a proper parameter identification procedure has
to be conducted based on experimentally collected
data. In the case of EMs, there are typically dozens
of parameters to be identified. This motivates sophis-
ticated optimally designed experiments for parameter
estimation [12], [13].

2) EMs usually consist of a large number of states, thus
leading to a large-scale optimization problem. Moreover,
most states are not measurable in a realistic scenario,
and therefore, the presence of an observer is required to
reconstruct the full state information from the available
measurements [14].

3) The model parameters drift as the battery ages. It is
important to notice that none of the model-based strate-
gies proposed in the literature considers the adaptability
of the control strategy to variations in the parameters.

In order to overcome all the limitations of the model-based
approach, there has been a substantial effort in the literature
to design fast-charging strategies that do not rely on a math-
ematical model. Some of them rely on rule-based adaptation
of the CC-CV protocol [15]-[17]. Yin et al. [18] propose a
charging algorithm that incorporates CC-CV charging profile
and battery health estimation using an extended Kalman filter,
where the magnitude of CC and the threshold for CV are
updated from the estimator. Attia et al. [19] propose an opti-
mal design of fast-charging procedures relying on machine
learning. In particular, the current profile is parameterized by
six steps of 10 min each, and the Bayesian optimization is
used to select the optimal sequence, which maximizes battery
cycle life. Patnaik ef al. [20] propose closed-loop charging
techniques called CC constant-temperature CV (CC-CT-CV),
where a rule-based proportional—integral—derivative (PID) con-
troller is employed. This closed-loop charging strategy con-
stitutes an output-feedback control law, which enables the
CC-CV protocol to consider temperature constraints. It is
important to notice that the difficulty of the observability
and identifiability is no longer an issue as this strategy
relies only on the output measurements. The main issues of
this output-based strategy are represented by the fact that:
1) the optimality of the resulting charging policy is no longer
guaranteed; 2) the controller gain should be obtained by trial
and error; and 3) the controller does not adapt to parameter
changes.

All these challenges can be addressed by using a charging
procedure based on the RL framework [21]. An RL framework
consists of an agent (the battery management system), which
interacts with the environment (the battery) by taking specific
actions (the applied current) according to the environment
configuration (charging time). The main idea is that that
the agent learns the feedback control policy directly from
interactions with the environment, namely, observations of the
reward and state. The control policy is iteratively updated
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to maximize the expected long-term reward. Notice that the
reward has to be properly designed, so the agent learns how
to accomplish the required task. Most RL algorithms can be
classified into two different groups: tabular methods, e.g.,
Q-learning, state-action-reward-state-action (SARSA), and
approximate solutions methods, which is also called approx-
imate dynamic programming (ADP). While the former per-
forms well only in the presence of small and discrete sets of
actions and states, the latter can be used even with continuous
state and action spaces, thus solving the so-called “curse of
dimensionality.” On the other hand, the convergence of the
former is proven under mild assumptions, while no proof of
convergence exists for the approximate methods in the general
case. The recent success in several applications of RL using
deep neural networks as function approximators has greatly
increased expectations in the scientific community [22]-[25].
From a control systems perspective, the design of RL algo-
rithms involves the computation of feedback control laws for
dynamical systems via optimal adaptive control methods [26].
RL can be regarded as an indirect adaptive controller, wherein
the parameters of the value function are estimated, and then,
the controller is improved based on the estimated value
function.

In this article, a fast-charging strategy subject to safety
constraints, using a deep RL framework, is proposed as an
extension of the authors’ previous work [27]. While, in such
previous work, only a proof of concept has been proposed in
order to assess the applicability of RL to the context of lithium-
ion battery management, a more sophisticated framework is
here considered with the aim of developing an RL-based
BMS from a control engineering perspective. As the first
contribution, a physics-based model simulator is considered
as the real plant in order to accurately represent the internal
cell phenomena (such as aging dynamics). The electrochemical
parameters are directly measured by electrochemists from the
battery manufacturer. It is evident that such an accurate model
cannot be used as the model for the controller design due to
its high computational burden and its lack of observability
and identifiability, thus further motivating the use of RL as a
model-free control algorithm. As in [27], two control schemes
are implemented: the first one considers full states accessi-
bility, while the second one is based on the more realistic
assumption that only the battery outputs are available. Finally,
a significant contribution of this work is the development of an
RL algorithm, which is able to adapt its action as the battery
degrades with aging. In particular, a simulation scenario in
which the cell parameters are drifted in time is considered. The
results highlight the ability of RL to adapt to the environment
changes by adjusting its parameters and, therefore, guarantee
safety constraints satisfaction. Among RL algorithms, deep
deterministic policy gradient (DDPG) [28] is adopted for RL
algorithm. DDPG is an actor—critic method that deals with
continuous state and action spaces. The safety constraints
are considered soft constraints where the agent (controller)
receives penalties in the reward function in the case of
violation.

We summarize our novel contributions to the relevant
literature as follows. First, RL is adopted to overcome the
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challenges of the fast-charging problem in battery manage-
ment systems: computational complexity, observability, and
adaptation. To mitigate the computational complexity associ-
ated with feedback controller design for a high-dimensional
state space, we project the state onto a lower dimensional
feature space via the principal component analysis (PCA). This
approach, however, requires a state observer to estimate the
states in a real-world application, which motivates an output
feedback controller using voltage, temperature, and current
measurements only. The validities of the state- and output-
feedback controllers are tested in simulation and compared
to other existing charging algorithms, namely, the reference
governor and CC-CT-CV. Finally, we show that RL policies
are capable of adaptation when the battery parameters are
changing over the cycles. This demonstrates that the use of
the proposed methodology enables adaptation to uncertain and
drifting parameters, which is a distinct advantage over other
conventional approaches.

This article is organized as follows. Section II briefly
presents the RL approach. Section III describes the bat-
tery model we are interested in. Section V exhibits control
problem formulation for fast charging. Section VI presents
simulation results and discussion for the proposed framework.
In Section VII, we summarize our work and provide perspec-
tives on the future direction.

II. REINFORCEMENT LEARNING FRAMEWORK
A. Markov Decision Process, Policy, and Value Functions

In the following, we briefly review the Markov decision
process (MDP) to provide the critical background. A thorough
exposition can be found in [29] and [30]. In the MDP setting,
we seek the best policy that maximizes the total rewards
received from the environment, E (i.e., the plant). At each
time step ¢+ € R*, the environment conditions are described
by a state vector, s, € S, where S is the state space, while
the control policy picks an action @, € A, with A being
the action space, which is based on the observation of the
state §,. The action is, therefore, applied to the environment,
whose state evolves to s;y; € S, according to the state-
transition probability p(s;+1]s;, a;), and the agent receives
a scalar reward r,.; = r(s;,a;). The policy is represented
by 7, which maps the state to the action and can be either
deterministic or stochastic. The total discounted reward from
time t onward can be expressed as

[ee}

R, = Z 4 kr(SH—ka i)

k=0

ey

where y € [0, 1] is the discounting factor.

The state value function, V™ (s;), is the expected total
discounted reward starting from state s,. In the controls’
community, this is sometimes called the cost-to-go or reward-
to-go. Importantly, note that the value function depends on the
control policy. If the agent uses a given policy 7 to select
actions starting from the state s,, the corresponding value
function is given by

V7i(s) = E[Rr | st]- (2)
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Reward, ¢

SYSTEM
(Environment)

State, s¢

(2)
Fig. 1.

Then, the optimal policy 7 * is the policy that corresponds
to the maximum value V*(s,) of the value function

¥ = argmax V” (s;). 3)

The solution of (3) is pursued by those methods that follow
the dynamic programming (DP) paradigm. Such a paradigm,
however, assumes perfect knowledge of the environment E
(i.e., the state-transition probability and the reward function).

The next definition, known as the “Q-function,” is fun-
damental since it enables the concept of model-free RL.
Consider the state—action value function, Q™ (s;, a;), which is
a function of the state—action pair that returns a real value. This
corresponds to the expected total discounted reward when the
action a, is taken in state s;, and then, the policy 7z is followed
henceforth. Mathematically,

0" (sa) =E[R, | 51, ai]. ©
The optimal Q-function is given by
Q* (s, a;) = argm;lx Q" (s, a) (5)

and represents the expected total discounted reward received
by an agent that starts in s;, picks (possibly non-optimal) action
a,, and then behaves optimally afterward. Since V*(s;) is the
maximum expected total discounted reward starting from state
sy, it will also be the maximum of Q*(s;, a,) over all possible
actions a, € A

V*(s;) = max Q*(s;, a,). (6)

a,cA
If the optimal Q-function is known, then the optimal action
a; can be extracted by choosing the action a, that maximizes
Q*(s;, a,) for state s; (i.e., the optimal policy 7 * is retrieved)

a = arg flng‘( O*(s;, a;) (7

without requiring the knowledge of the environment dynamics.
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RL framework for battery fast charging: (a) actor—critic scheme and (b) EM for the environment (schematic of first principles EM).

B. Actor-Critic

Actor—critic is an ADP method that solves DP heuristi-
cally, as depicted in Fig. 1(a). The actor—critic is a policy
gradient approach, i.e., it seeks to model and optimize the
policy directly. Importantly, the actor—critic approach allows
for continuous state/action spaces by using a function approx-
imator, e.g., a neural network. In RL, as well as in DP, the
action is taken by a policy to maximize the expected total
discounted reward. By following a given policy and processing
the rewards, one should estimate the expected return given
states from the value function. In the actor—critic approach,
the actor improves the policy based on the value function that
is estimated by the critic. We specifically focus on the policy
gradient-based actor—critic algorithm in this work, and, in par-
ticular, the DDPG [28]. This algorithm is an extension of deep
Q-network (DQN) [22] to continuous actions, maintaining the
importance of features, such as: 1) random sampling from
a replay buffer where tuples are saved and 2) the presence
of target networks for stabilizing the learning process. The
algorithm is characterized by the parameterization of both the
critic, Q(s;, a,102), and the actor, 7 (s;|07), as a deep neural
network. In addition, the correspondent target networks are
defined as Q'(s;, @,|02") and z'(s;|0""), where the parameters
02 and O™ are slowly updated in order to track and filter
the ones of the actual network (9¢ and 67), thus reducing
the chattering due to the learning process and enhancing its
convergence. In the next paragraphs, the concepts of critic
and actor are explained in detail. Both the actual and target
parameters are initialized to the random vectors 6 and 66Q.

1) Critic: The role of the critic is to evaluate the current
policy prescribed by the actor. The action is taken as the
sum of the actor network output, which is a function of the
environment states, and an exploration noise N;, namely,

a, = (s;10™) + N, (8)

where the exploration noise is a random variable, for instance
an Ornstein—Uhlenbeck process is considered in this article.
After applying the action, we observe the reward r,,; and the
next state ;1. For each time step ¢, the tuple (s;, a;, 41, Si+1)
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is stored in the replay buffer memory. As soon as the number
of tuples stored in the memory reaches a default threshold
N, at each time step, a random minibatch of N transitions is
sampled from the buffer, and for each of them, we set

yi = rie 47 Q' (51,7 (11107 109) i =1 N ©)

where superscript © denotes the target network, whose para-
meters are slowly updated in (15). The minibatch, which is
randomly extracted at each time step from the buffer if enough
tuples are stored in the memory, is exploited for updating the
networks. In particular, the critic is updated to minimize the
loss function £(69)

1
£09) = 5 (i = Qlsi.l09))” (10)
08, =08 — noVeeL(09) a1

where index-k denotes the gradient descent algorithm iterates
and 7o denotes the learning rate of the critic network. Note
that the subscript k in the network parameters 2, 67, 0le,
and O,f/ is omitted when clear from the context.

2) Actor: The parameters of the actor network are updated
in order to maximize the cumulative expected reward V7 (s;).
In this paragraph, we refer to the cumulative reward with the
variable J(6™), in order to highlight its dependence on the
actor parameterization. The update of the actor parameters is
done as follows:

87, = 0F + 1:Ve- T (07) (12)

where index-k denotes the gradient ascent algorithm iterates
and 7, denotes the learning rate of the actor network. Notice
that, according to the proof in [31], the policy gradient in (12)
can be expressed as

Vor T(07) ~ E[Va Q(si, a,109) Vo= (5,107)]  (13)

which is then approximated by samples as follows:

1
Vor T O7) %+ > [VaQ(si, ai10°) Vorz (5i167)]. (14)
i
Once the parameters of critic and actor network given
samples are updated, then the target networks are also updated
as follows:

0% «— 7609 4+ (1 —1)p¢

0% «— 10" + (1 —1)0" (15)

where 7 is the level of “soft-update.” Equation (15) improves
the stability of the learning procedure. Note that the con-
vergence is no longer guaranteed, in general, when a value
function approximator is used. Since the convergence of the
critic network is not guaranteed, it is important to note that
these target networks should update slowly to avoid diver-
gence. Thus, one should choose a small value of 7. This is a
challenging point when the action space becomes continuous,
unlike tabular Q-learning. Finally, the actor and critic networks
are trained from the database, called replay buffer, where
the pair of (s;, a;, s, s,+1) is stored by interacting with the
environment. The RL model gets updated by using a stochastic
gradient descent algorithm from randomly selected samples in
the replay buffer.
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II1. ELECTROCHEMICAL-THERMAL MODEL

Next, we review the mathematical battery model used for
this study. Insights on battery cell design can be obtained via
high fidelity battery models that allow for an assessment of
the impact of physical parameters on battery performance.
A mathematical model is built on the porous electrode the-
ory where Li-ions are intercalated in spherical particles in
the negative/positive electrodes. During charging, the Li-ions
in the positive electrode are deintercalated, solved into the
electrolyte, and then diffused to the negative electrode passing
through the separator. Fig. 1 describes this process and shows
the computation domain of the present model. We consider the
Doyle—Fuller—Newman (DFN) model to predict the evolution
of lithium concentration in the solid cf (x, r, t), lithium con-
centration in the electrolyte c.(x, ), solid electric potential
¢ (x, 1), electrolyte electric potential ¢,(x,t), ionic current
iZ(x,t), molar ion fluxes j(x, ), and battery temperature
T(t). The finite element is constructed in the x-direction,
including negative electrode, separator, and positive electrode.
Each finite element has active particles where spherical lithium
intercalation occurs. The detailed symbols are defined in the
Nomenclature. The governing equations are given by

oc* 1 0 oc*
% (x,r, 1) = — [Dfrzg(x,r, t):| (16)

ot 2 or

ocl G . ocl 110
gé a: ()C,t) = a{D:ff(Cé)a—;(x,l) + Tlej(x»t)i|
(17)
Ty = T — T + 0 (18)
mcp di = Ru amb

for j € {—,sep+}. Q is the rate of heat transferred to the
system [32], defined as

Q=I0[U@®)-U () - V(@)
—I(r)T(r)g[UW) -U-m] 19

and the algebraic equations of the model are given by

+
gt %(x, 1) =if(x, 1) —1()

o (20)
. o _ . 2RT
KMee) - 1) = =i ) e - == (1= 1)
dln fc a Oln Ce

x(1+ dlnc/ (x,t)) oy (x,1)

@1)
ai»fi tr.E

~S (1) = @ Fj () (22)

JEe, ) = %,‘Oi(x,;)[e“ﬁhi(m _ e—“,éfni(x,t)]
(23)
ioi(x, 1) = k* [ci(x, t)]a”
x[ce (x,1) (c:fmalx — ci(x, t))]a” (24)
(1) = @5 (x, 1) = Belx, 1) = UF(ci5(x, 1)
—FR;j; (x,1) (25)
csis(x, 1) = cf(x, Rf, 1) (26)
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where DS = D,(c,) - (e2)°¢, o' = 5 - (e] + ejlv)b"“g, and
kT = K(c,) - (e])"™€ are the effective electrolyte diffusivity,
effective solid conductivity, and effective electrolyte conduc-
tivity given by the Bruggeman relationship. The boundary

conditions for solid-phase diffusion PDE (16) are

o (x,0,1) =0 27)

or
:t
Cs

(x R, 1) = — Dij" (7). (28)
The boundary conditions for the electrolyte-phase diffusion

PDE (17) are given by

- +
Y= S0 =0

(29)
qep
£, Do(L~ ) Ce (L 1) = &5PD, (osep) (osep )
(30)
aczep

ePD, (L‘eP) (L*?,1) = ¢/ D, (L+) e (L+ 1 (3l
ce(L , 1) = c.(0°P, 1) (32)

Ce(L*P, t) = Ce(L+a 1). (33)

The boundary conditions for the electrolyte-phase potential
ODE (21) are given by

¢(07,1) =0 (34)
¢€(L75 t) = ¢e(0$ep» t) (35)
¢e(Lsep’ t) = ¢6(L+9 t)' (36)

The boundary conditions for the ionic current ODE (22) are
given by
le_ (0_7

1) =ir 0", 1) =0. (37)

Note that i.(x,7) = I(¢) for x € [0%P, L*P]. In addition,
the parameters, D;t, D,, k., and kT, vary with temperature via
the Arrhenius relationship

E(,, 1 1
Y = Yref €XP T T_f
re

where y represents a temperature dependent parameter, £, is
the activation energy, and . is the reference parameter value
at the room temperature. The model input is the applied current
density 7(¢t) [A/m?], and the output is the voltage measured
across the current collectors

V() =¢S (0", 1) — ¢, (07, 0).

The level of charge in the cell is defined by the bulk state
of charge (SOC) of the negative electrode, namely,

(38)

(39)

L~ co 1
SOC™ (1) :/ S (1) .
0 Cs,max(eloo% - 90%)L

where ¢ represents the volume averaged of a particle in the
solid phase defined as

3 Ry
co(x, 1) = W/o rre; (r,t)dr.

dx (40)

(41)
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The main battery degradation mechanism, i.e., lithium plat-
ing [33]-[35], is related to the side reaction overpotential #s;,
which is defined as

Nse(x, 1) = ¢ (x, 1) — ¢, (x,1) — Uy

where Uy, denotes the equilibrium potential of the side reaction
and is assumed to be zero [35]. A complete description
of the model equations and notation can be found in [32]
and [33]. Given the mathematical structure of the model,
which contains linear PDEs (16), quasilinear PDEs (17),
ODE:s in space (20)—(22), and nonlinear algebraic constraints
(23)—(25), it is possible to obtain nonlinear differential alge-
braic equations (DAEs) after a model discretization via
suitable numerical methods, e.g., finite differences, Padé
approximation, and spectral methods [36], [37]

(42)

X = f(X, z, M), X([O) = X0 (43)
0= g(X, z, M), Z(l‘()) =1 (44)
y = h(x,z,u) (45)

T.cr, ¢, T € R™ as state vectors, z =
(o5, g iy s, if e s ]p +17 ¢ R" as algebraic variables,
y = V() as output variable defined in (39), and u is equivalent
to the applied input current, /(¢), as shown in (20). The
system is a semiexplicit DAE of index 1 as [6 g/ 61]71 exists.
To simulate the model, we choose the sample time as ot = 30s.

where x = [c‘

IV. EXPERIMENTAL MODEL VALIDATION

It is well known that a proper experimental validation
phase is required in order to assess the model’s accuracy in
describing the cell behavior. Within this context, the use of an
accurate digital twin of the electrochemical cell is fundamental
since it allows the researchers to test the proposed control
algorithms directly in simulation and, therefore, avoid time-
consuming experiments on the real battery. In this section,
we assess the level of confidence of the electrochemical
thermal model presented in Section III. The electrochemical
parameters of the cell (a graphite anode and LiNiMnCoO2
cathode chemistry) are experimentally measured by the cell
manufacturer. The details of electrochemical parameters can
be found in [13].

The experimental setup for model validation is depicted in
Fig. 2(a). The jig maintains the uniform pressure to the pouch
cell, while temperature and voltage sensors are placed inside
the jig for measurements. To validate the thermal dynamics
(18) accurately, we take the average of two temperature
measurements. The comparison of simulation and experiment
is plotted in Fig. 2(b). V, I, and T for the 1-C CC-CV charging
protocol are obtained from the experiment and then plug-in to
the EM.

The model can be validated by comparing various pro-
files, such as driving cycles, pulse inputs, and constant cur-
rent. In this work, we present the 1-C CC-CV charging
profile in order to validate the model’s accuracy. In addi-
tion, we test the model with different levels of pulse pro-
files in the specific SOC region. The root mean square
error (RMSE) is used as a metric to quantify the performance
of the electrochemical-thermal model simulator summarized
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Fig. 2. DFN model validation with experimental measurements in terms of
temperature and voltage outputs. (a) Experiment setup. (b) Model validation.

TABLE I
DFN MODEL VALIDATION RESULTS

Profile Voltage RMSE [mV] | Temperature RMSE [°C]
1C CC-CV 34.2 0.9446
1C Pulse 8.5 0.1899
1.5C Pulse 5.2 0.0659
2C Pulse 7.6 0.2054

in Table I. We notice that the simulation exhibits physical
cell behavior, and the output measurement errors are in
the acceptable ranges, i.e., voltage RMSE < 50 mV and
temperature RMSE < 1 °C according to the existing sys-
tem identification of Li-ion batteries in the literature [38],
[39]. With these validated electrochemical parameters, the
learning-based fast-charging protocols are developed in
Section V.

V. FAST-CHARGING PROBLEM

The crucial role in the battery management system is to
the tradeoff between fast charging and aging while satisfying

IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 8, NO. 2, JUNE 2022

safety constraints. In this context, the fast charging problem
can be described as reaching the final SOC in minimum time
without violating constraints. The input current is limited by
the hardware configuration of the battery charger, namely,

_Imax = I(t) =< 0 (46)
with the convention that a negative current is charging the
battery. In order to limit the different degradation mechanism
of the cell, we consider constraints that have to be satisfied
during the whole charging process. First, the cell temperature
is not allowed to exceed a maximum temperature, 7p.x, such
as
T(t) < Tax (47)
as the temperature is closely related to the SEI layer
growth [34]. Furthermore, we aim to avoid lithium plating
deposition by constraining the side-reaction overpotential in
(42) to be positive. Lithium plating is a particularly harmful
phenomenon, which happens when it becomes thermodynam-
ically favorable for lithium to plate onto the surface of the
negative electrode particles instead of intercalating [34]. If this
phenomenon persists, then dendrites can form, grow, and
pierce through the separator, causing a short circuit. Note that
this degradation mechanism is aggravated when the battery
operates at a low temperature. We impose the side-reaction
overpotential constraint as follows:
(L™, 1) = 0. (48)
In consideration of the preceding characteristics, we formu-
late an optimal control problem as follows:

max —t
I(t) !

s.t.  battery dynamics, (16) — (25)
input constraint, (46)
state constraints, (47) — (48)
V(t) = Vo, T(t0) = To
SOC™ (t7) = SOCiet (49)
where 1o = 0 and 7, are the initial and final times of the
charging procedure, V and 7y are the initial values for voltage
and temperature, respectively, and SOC, is the reference
SOC at which the charging is considered to completed. This
formulation is also referred to as a minimum-time charging
problem. Notice that the problem (49) becomes a large-scale
optimal control problem when the full-order electrochemical
battery model is considered. This is because the model com-
prises hundreds of time-derivative states and algebraic states
describing the internal behaviors of the Li-ion battery. This
fact motivates to explore the ADP approach where the value
function is estimated from generated samples while improving
the controller performance.

For the case in which only output measurements are
available (output feedback policy), we cannot consider the
positivity constraint on the side-reaction overpotential since
it is an unmeasured state. Therefore, the constraint (48) is
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TABLE 11
ACTOR-CRITIC HYPER PARAMETERS

Variable Description Value
oY Discount factor 0.99
Nrs MQ Learning rate of actor, critic 10—4, 1073
T Soft update of target networks 10-3

replaced with a more conservative constraint that limits the
voltage below a predefined threshold Vi, as follows:

V() < Vinax- (50)

VI. RESULTS AND DISCUSSION

In this section, we assess the performance of the RL in sim-
ulation when the battery fast charging problem (see Section V)
is developed for both state- and output-based configurations.
The objective is to compare the proposed actor—critic approach
with some benchmark algorithms that have been discussed in
the literature and exhibit satisfying results in accomplishing
the required task. We consider the modified reference gov-
ernor (MRG) technique [6] and CC-CT-CV protocol based
on a PI controller. As previously stated, we rely on the EM
presented in Section III as a battery simulator. The electro-
chemical parameters of the battery model are obtained from
the battery manufacturer in order to represent a real battery
cell with a graphite anode and a LiINiMnCoO2(NMC) cathode
chemistry. Note that NMC electrochemical parameters used in
this work are not disclosed; however, the implementation for
proposed RL fast charging can be found by using publicly
available electrochemical parameter sets, i.e., graphite anode
& LiCoO2 (LCO) cathode in the code availability section.

Notice that the structure of the actor—critic networks remains
consistent for different charging problems. The actor—critic
networks are based on neural network architectures [28] with
different numbers of neurons. Specifically, the actor network
uses two hidden layers with 20-20 neurons, while the critic
network uses two hidden layers with 100-75 neurons. The
training hyperparameters are described in Table II.

The reward function is designed according to the optimiza-
tion problem in (49) with the aim of achieving fast charging
while guaranteeing safety

T4l = Ffast + rsafely(sn a,) (5D

where rqg 1S an instantaneous penalty for each time step that
passes before the reference SOC is achieved. In addition,
a penalty is also introduced at each time step when the
safety constraints are violated by means of linear penalty
functions [40]. Note that the proposed RL framework does
not require specific knowledge of the system, which makes
the constraint violation to be experienced by the agent during
the training. The model-based RL can be considered to guar-
antee the robustness for safety-critical applications, such as
autonomous driving [41]. In this work, the learning process
is allowed to exceed the constraint for learning purposes,
and this assumption is valid as the battery is a marginally
stable system [42]. As discussed in Section V, the safety
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constraints enforced in the case of a state-based framework
and in the case of an output-based one are different due to the
fact that the side-reaction overpotential measurement is not
available for the output-based case. Therefore, in the state-
based configuration, we have the following safety term in the
reward function:

I'safety (s, ar) = Tne (s, a;) + T'temp (sr, @) (52)
where
A se(t), if 5 () < O
ry. (8, a;) = 53
e (51> @) [0, otherwise (53)
Atemp (T () — Tinax), if T(t) > Tnax
Fremp (51> @) = [Ote ' a otherwise S

where the temperature threshold is set to Tp,x = 40 °C. The
fast charging term and penalty function coefficients have been
tuned as rpg = —0.1, A = 10, and Aemp = —3.

For the output-based setting, we substitute the limit on
the side-reaction overpotential with the more conservative
constraint on the voltage, such as

rsafely(sn a;) = ryoi(sr, a;) + rtemp(sn a,) (55)
where riemp is equivalent to (54), and
Avot(V () — Vinax), 1if V() > Vinax
rvolt(shat) _ olt( ( ) a ) 1 ( ) a (56)

0, otherwise

where Viy.x = 4.2 V as specified in the datasheet, and the
coefficient in the voltage constraint is set to Ay = —100.

The current is limited within the range [—2.5C, 0], where
C is the C-rate related to the considered cell. In particular, the
current constraint is imposed by considering that the agent’s
action is inherently bounded within the open interval (—1, 1)
due to the choice of its last layer as a hyperbolic tangent
operator.

A. State-Based Learning Policy

We first] consider the state-based RL approach. Although
deep RL has the distinct advantage of side-stepping Bellman’s
curse of dimensionality for tabular optimal control, it is
also known in the literature that a proper features’ selection
procedure can significantly increase the performance [43].
Therefore, due to the fact that the EM presented in Section III
presents a large number of states after discretization, we trans-
form the state-space into a reduced observation space through
PCA [44].

1) Principal Component Analysis: Suppose that we have m
time-series data samples for the states, s € R”, represented as
matrix § € R"*”. Consider a so-called “principal component”

that can be expressed as
P=uw'S (57)

where w € R"*! is a vector of weights and P € R is an
arbitrary principal component. If we consider $ as a random
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matrix, then we seek to choose w to maximize the variance
of P

var(P) = w! SST w. (58)

We then formulate the following optimization problem
while constraining w to have unit length:

max w!SSTw

w

T

S.t. w'w =1 59)

whose solution w* yields the first principal component accord-
ing to P = (w*)TS. This method can be extended to compute
q principal components, in which the original data s € R" is
projected onto a reduced basis of dimension ¢ that maximizes
variance [45]. The number of principal components is deter-
mined by calculating the ratio of each eigenvalue, A, to the
sum of eigenvalues, > ;\j. The most significant principal
component is the one with the largest eigenvalue, which is
the most informative. To see how much information we retain
through PCA, we calculate the explained variance ratio of the
principal components as follows:

L. 60

Z j Aj ©0

To apply PCA for dimensionality reduction in the battery
model, we first generate a time-series dataset using general
charging schemes, i.e., constant current, multistep constant
current profiles, in order to collect the evolution of electro-
chemical states. Then, the state matrix, S, is formulated as
the dynamical states in the differential equations (16)—(18).
Note that these dynamical states are comprised of hundreds
of states after spatial discretization. The goal of PCA is to
project the large-scale dynamical system onto a small number
of subspaces while maximizing the interpretability of the
reduced space. One may wish to use reduced-order EM while
preserving specific properties of the high-fidelity model; it is
obvious that aging-related constraints, such as lithium plating
constraints, may not be preserved in the reduced-order model.
Furthermore, the benefit of PCA is to diminish the input size
for actor network (policy), which enables to accelerate the
training procedure in the deep RL framework. Fig. 3 describes

Explained variance ratio =
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the PCA results on the EM. The general states’ evolution of
EM can be compressed into five principal components that
explain 99.8% of states’ information. This can significantly
reduce the size of inputs to the actor network by a factor
of 100. Based on this dimensionality reduction technique,
the learned policy maps the PCA states to input current by
interacting with the environment.

2) Training Results of State-Based Policy: In the following,
we discuss the performance of the state-based RL approach
applied in two different settings of environment temperature,
Tymp = 25 °C and T, = 15 °C. Fig. 4 shows the training
results of the actor—critic approach, where the shaded region
represents the variance of the different variables for each
episode over five different initializations of the networks’ para-
meters. The solid lines describe their average value. During the
training, an exploration noise is added to the agent’s action,
and the EM is randomly initialized with SOC~ (¢y) € [0.2, 0.4]
and T (1) € [25 °C, 32 °C], thus increasing the exploration
capability. Fig. 4(a) depicts the cumulative reward by eval-
uating the policy every ten episodes without the exploration
noise. As it can be noticed, the cumulative reward approaches
—3.08 for Tymp = 25 °C and —3.51 for Ty = 15 °C. It is
important to consider that, although 3000 training episodes
are considered, the cumulative reward converges already after
500 cycles. This number of episodes, however, constitutes a
large part of the lifetime of a standard Li-ion cell (which is
about 1000 cycles). For this reason, it is not feasible to conduct
a complete training process directly on a real cell, but, as it
is common in RL, the training phase is carried out on a very
detailed simulator, and then, only a fine-tuning of the network
parameters is done online on the real cell during the first few
cycles.

Fig. 4(b) and (c) describes the constraint violations
during training. The constraint violation scores are com-
puted according to max{T (1) — T, Vt € [0,7]} and
max{O — (), Vt € [0, t f]} for each episode. Positive values
imply that the constraints are violated during that particular
episode. We can see the constraint violation scores approach
zero as the episodes increase, which implies that the optimal
control policy involves a boundary solution in which these
constraints are active (i.e., true with equality during segments
of the optimal trajectory). Another interesting interpretation
of these figures comes by analyzing which constraint has
a greater impact on achieving a fast charging protocol. For
instance, the cell temperature constraint is the dominant factor
when the ambient temperature is 25 °C, while side-reaction
overpotential dominates the charging at T, = 15 °C.
This fact is also reported by the literature stating that low
temperatures lead to lithium plating and subsequent lithium
dendritic growth [46]. Finally, Fig. 4(d) displays the charging
time versus episode number. The charging time decreases to
around 15 min at Ty, = 25 °C and 17 min at Ty, = 15 °C
on average. Note that lower ambient temperature takes more
time to reach the target SOC as the side reaction overpotential
constraint is prone to a violation when the battery is in
charging. Note, upon convergence, the proposed actor—critic
approach achieves the minimum time goal without violating
the safety constraints.
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Fig. 4. State-based learning policy results with different initializations of the actor—critic networks at Tymp = 25 °C and Tymp = 15 °C. (a) Learning curve.

(b) Temperature constraint violation. (c) 7. (d) Average charging time.

It is also informative to examine the charging profiles of
SOC, voltage, temperature, and side-reaction overpotential that
are obtained by testing the agent after the training process.
We consider the initial conditions SOC™ () = 0.2 and
T(toy) = Tamp (for both the cases of Ty = 25 °C and
Tomp = 15 °C). The results of this analysis are shown in
Fig. 5. Moreover, a comparison with an MRG approach [6] is
provided. In the MRG approach, the applied current /(¢) and
the reference current I”(¢) are related according to

It+1)=p@)I" (), pel0,1]

where f(t) is the ratio of reference value that maintains the
states in the admissible set. Note that the reference value
is equivalent to the allowable charging current in the RL
framework, i.e., —2.5 C for comparative analysis. For the
25 °C ambient temperature case, MRG/RL takes 19/20 min
to reach the target SOCt = 0.8. the For 15 °C ambient
temperature case, MRG/RL takes 21.5/22.5 min to reach the
0.8 target SOC,s = 0.8. The proposed actor—critic approach
performs similarly to this MRG benchmark. Note that the
MRG assumes perfect knowledge of the model and computes
the forward dynamics in the optimization to achieve the
goal. In contrast, the state-based actor—critic method is com-
pletely model-free. Now, this requires careful qualification.
The actor—critic method in this study obviously interacts with
a simulation model via iterative episodes. In practice, the
actor—critic method could interact with a physical battery,
thus avoiding the modeling step. In either case, the results in
Fig. 5 assume full state measurement. In a realistic scenario
in which only outputs—voltage, temperature, and, in the case
of coulomb-counting approximation, also SOC—can be mea-
sured, the use of a model-based observer becomes necessary
if the state-based RL configuration is adopted. Due to the fact
that the development of such a model-based states estimator is
a challenging task, we provide in Section VI-C an alternative,
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Fig. 5. Validation of state-based learning policy compared with MRG at
Tamb = 25 °C and Tyyp = 15 °C.

a completely model-free RL strategy that relies on outputs
measurements only.

B. Output-Based Learning Policy

The previously discussed state-based RL charging strategy
requires a state estimator to estimate the internal states from
the output measurements. However, this is a formidable task
as the mathematical structure of the DFN model is formulated
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as nonlinear DAEs. For this reason, most of the relevant works
in the literature on design estimators and controllers are based
on reduced-order models. As an alternative, we present, for
the first time to the best of our knowledge, a model-free RL
charging algorithm based on output measurements only. In par-
ticular, in this section, we provide voltage, temperature, and
SOC (retrieved through coulomb-counting) as observations to
the deep RL agent.

Fig. 6 presents the training results for output-based learning
policy using the actor—critic approach at 25 °C and 15 °C
ambient temperatures. All the settings are consistent with
previous case studies, except for the observations provided
to the actor—critic networks, which, here, consists of output
measurements only. Also, the safety constraint that enforces
a positive side-reaction overpotential is substituted with the
more conservative one that limits the terminal voltage below a
predefined threshold, as discussed in Section V. In Fig. 6(a),
the performances of the learned policy are evaluated every
ten episodes with exploration noise removed. The cumulative
reward approaches —3.79 and —4.13 for the two ambient
temperatures, respectively. Simulation results confirm that the
proposed actor—critic approach can be applied for output-based
controller design without safety violations. We also notice
that the output-based learning policy has fewer neurons in the
input layer of the deep neural network compared to state-based
policy; however, the level of improvement is not critical since
PCA has been applied to the state-based learning policy and
decreased the hundreds of states into five.

In particular, Fig. 6(b) and (c) describes the constraint
violations during training. The violation scores are cal-
culated according to max{V(t) — Viax, VI € [O, tf]} and
max{7 (t) — Tmax, V1 € [0,17]} for each episode. For the
output-based policy, the voltage constraint is dominant, at least
for the battery model and parameters considered here. The
agent is able to learn to ride the voltage constraint while

—— RLat25°C
—- CC-CT-CVat25°C
—— RLat15°C
—-2.0 — CC-CT-CVat15°C >

5 10 15 20 25
Time [min]

Fig. 7. Validation of the output-based learning policy compared with
CC-CT-CV at Tymp = 25 °C and Tymp = 15 °C.

minimizing the charging time. This is not surprising since it is
known that the voltage constraint is particularly conservative.
Finally, Fig. 6(d) displays the charging time for achieving
the reference SOC. The charging time decreases to around
19 min at Ty, = 25 °C and 21 min at Ty, = 15 °C ambient
temperature on average. We also observe that the charging time
takes longer when the ambient temperature is lower, which is
consistent with the state-based policy case.

In the following, we focus on the charging profile obtained
from the policy at the end of the training process. Moreover,
we compare to another output-feedback model-free scheme
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that is based on PI controller as a baseline. This PI controller
achieves CC-CT-CV protocol for battery charging. The CC-
CT-CV algorithm is defined as

Iref, I = tpk
I(t) = Iref + er(t) + Ki Zi:oe(f): tpk =1 = ey
ICV» t > tCV

where e(t) is the controller error, i.e., e(t) = T(t) — T, ty is
the period where constant peak current is applied, i.e., —2.5 C,
and 7., is the time when the voltage reaches its maximum.
In the CV mode, the current is decreasing in an exponential-
like fashion, while the voltage is kept constant until the target
SOC is reached. The control gains, K, and K;, are obtained
by human trial and error. The main defining feature of the
CC-CT-CV method is the fact that a temperature constraint is
considered, thus enabling a safer charging procedure compared
to the conventional CC-CV approach [20]. In this study,
we are interested in assessing the RL performance in terms
of charging time and state violations compared to the CC-CT-
CV method.

We use the same configuration as the previous case study
for the initial conditions of the battery. The comparison is
shown in Fig. 7. For the 25 °C ambient temperature case, CC-
CT-CV/RL takes 23/23.5 min to reach SOC,s = 0.8, while,
for the case of Tmp, = 15 °C the charging time increases
to 25/25 min. We conclude that the output-based actor—critic
approach can be used to design an output feedback control for
battery fast charging with similar performance to CC-CT-CV.
This is due to the fact that the CC-CT-CV profile seems to be
the optimal charging procedure in the presence of temperature
and voltage constraints. However, the main limitation of the
CC-CT-CV relies on the fact that an accurate tuning of the
controller is required. Therefore, a possible solution may be

the exploitation of RL strategies for the automatic tuning of
the PI coefficients in the CC-CT-CV framework. Although we
have shown that RL only provided equivalent performance
to existing methods when addressing the charging of a fresh
battery, we aim to highlight in Section VI-C its ability to adapt
the charging control policy in the face of battery aging.

C. Adaptive Output-Based Learning Policy

One of the main challenges facing battery management
system development is the controller’s adaptability to changes
in the cell behavior as it cycles. The proposed deep RL
framework exhibits the advantage of learning the optimal
policy by directly interacting with the surrounding environ-
ment. Specifically, it can adapt to slow changes in the battery
parameters due to aging. First, we analyze the adaptability of
RL by comparing the fixed parameters of actor—critic called
static RL policy with an adaptive RL policy that continues
to adjust the actor—critic network parameters as the cell ages.
Note that exploration noise is not considered in this adaptive
study because the controller is updated from the estimates of
the critic, not an exploration.

First, Fig. 8 describes the results in terms of rewards,
state violation, and average charging time in the adaptive
test study. To emulate the aging mechanism, we increase the
film resistance in the anode, R, every 100 cycles, up to
1000 cycles. The battery aging mechanisms are a relatively
slow process compared to battery dynamics and require a large
number of cycles to observe. Furthermore, the degradation
process is sophisticated and difficult to identify the root
cause of a specific mechanism during cycling. The resistance
growth during cycling is a well-known aging phenomenon,
but this is one of many observations. The objective of this
adaptive test study is to analyze the adaptive behavior of
output-based learning policy by perturbing one of the internal
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Verification and validation of adaptive output-based learning policy. (a) Comparison of cumulative temperature constraint violation score over

1000 cycles. (b) Validation of adaptive output-based learning policy compared with CC-CT-CV at Tymp.

electrochemical parameters in the environment, which ulti-
mately affects the voltage and temperature measurements. The
actor—critic networks are initialized by the last training results
from previous output-based learning policy studies. Both the
static and adaptive RL policies achieve the same cumulative
return for the first 100 cycles since there are no parameter
changes in the environment. However, the static output-based
controller fails as the battery is aged, while the adaptive
one adapts its control policy through learning, as shown in
Fig. 8(a). The drops in the reward can be explained by states’
violations in Fig. 8(b) and (c). Note that, after a certain number
of cycles, the battery reaches voltage and temperature limits
quickly due to aging, which makes it difficult to adapt the
learning policy. Nevertheless, the adaptive output feedback
policy exhibits better performance than the static (no-updating)
output feedback policy. We can also observe that the RL
policy is capable of adapting by updating the parameters of
actor—critic from the reward (penalty). Fig. 8(d) indicates that
the charging time increases from 23.4 to 40.1 min on average
at cycle 1000 due to battery aging.

Second, Fig. 9(a) describes what would be the resultant
of repeated constraint violations for each cycle throughout
battery life. The temperature violation score at each cycle is
computed as > {T(t) — Tyax | T(t) = Trax V1 € [0,2/]}, and
its cumulative score is plotted in the Fig. 9(a). It is obvious
that using an adaptive characteristic of a learning-based con-
troller could mitigate the excessive temperature violation and
heat generation. This adaptive controller study can be further
extended to design a thermal management system in the future.

Finally, we validate the adaptability of the RL method by
comparing it with CC-CT-CV, as shown in Fig. 9(b). From
this figure, we can clearly see that adaptive RL can satisfy
the constraints, while static RL and CC-CT-CV violate the
temperature constraint during the charging process. For the
CC-CT-CV method, one might need to tune the PI controller

TABLE III
SUMMARY OF CHARGING TIME [MIN] AND ADAPTABILITY FEATURE

Strategy Condition States-based Outputs-based
RL MRG RL CC-CT-CV
25°C 20 min 19 min - -
Model-based o0 225 min 215 min - -
25°C - - 23.5 min 23 min
Model-free 50 - - 25Smin 25 min
Adaptability 25°C YES - YES NO

gains heuristically. Consequently, RL (actor—critic) demon-
strates a distinct advantage as an adaptive battery fast-charging
controller that adjusts as the cell ages.

D. Discussion and Remarks

We show that the proposed RL framework can be uti-
lized for solving the battery fast charging problem using
both state- and output-based frameworks. The overall results
are summarized in Table III. We make several remarks in
this section for readers. First, the availability of full state
information enables faster charge times than output feedback
only since one can consider the side-reaction overpotential
constraint instead of the more conservative voltage constraint.
This motivates the design of state/parameter estimators as a
very important component for reducing the charging time and
carefully monitoring immeasurable degradation mechanisms,
such as lithium plating. Second, temperature plays a significant
role in the battery management system, as it affects both
side-reaction overpotential and terminal voltage. The battery
thermal management system is another key component for bat-
tery fast charging. Third, deep RL, commonly associated with
artificial intelligence, can be applied to the battery manage-
ment system. This work demonstrates that RL is comparable
with other existing approaches, and its adaptability to aging is
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well-suited for battery fast-charging applications. Finally, the
detailed EM that matches with the actual cell can provide an
opportunity to investigate the delayed reward problem in the
real-world application. The aging-related reward, e.g., capacity
retention, can be considered as a sparse reward signal mea-
sured by the end of cycles. This is an open research question
on how to design a controller that maximizes the delayed
reward in the context of the health-aware battery charging
problem.

The key advantages of RL are: 1) online adaptation and
2) model-free RL algorithms that are not specialized to a
particular battery model/cell design. The methods can be
applied to real BMS production in two ways.

The first approach is to use the RL algorithm offline with
simulations or physical cells in the lab to determine an optimal
charging profile. These RL-optimized profiles can often be
represented by a simple protocol, such as CC-CT-CV, or a
multiconstant current-current-CV (CC1-CC2-CV) profile. This
simple profile can be programmed into an existing BMS sys-
tem. In other words, an implementation-ready approximation
of the optimal result can be obtained via off-line RL.

The second approach is to use RL as adapt an existing fast
charging protocol as the cell ages. For example, one could use
DDPG in the following way. Fit an actor and Q-function to
a default fast charging protocol (e.g., CC-CV). Then, as the
cell cycles, use DDPG to adapt this policy slowly based on
reward signals collected online to improve the performance
online.

VII. CONCLUSION

In this article, we propose a model-free deep RL framework
for solving the battery fast-charging problem in the presence
of safety constraints when a detailed EM is used as a battery
simulator. Among the RL paradigms, the actor—critic scheme
and, specifically, the DDPG algorithm have been adopted due
to its ability to deal with continuous state and action spaces.
To address the state constraints, the reward function has been
designed such that the agent learns constraint violations. First,
we assume full state measurements and compare a state-based
RL algorithm with a reference governor approach considered
as a state-of-the-art benchmark. Subsequently, a more realistic
scenario in which only output measurements are available is
taken into account. In this case, instead of relying on a state
estimator, which is challenging to design, we formulate an
output-based configuration of the same RL approach. This
relies on measurements of voltage, temperature, and SOC (via
Coulomb counting). This latter strategy is compared against a
CC-CT-CV approach, which can be considered a benchmark
state-of-the-art output feedback model-free approach. For both
the RL formulations, simulation results show that RL performs
similarly to the state-of-the-art benchmarks. Finally, the main
advantage of RL is adaptation. Namely, we analyze the output-
based RL strategy in the presence of changing battery para-
meters that mimic battery aging. The results highlight that the
proposed approach is able to achieve reasonable performance
as the environment changes according to aging throughout the
whole battery life, while the CC-CT-CV approach eventually
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violates safety constraints. Ongoing work involves experimen-
tal validation of the proposed framework using a hardware-in-
the-loop testing environment with different objectives. To the
best of our knowledge, this is the first work that combines
artificial intelligence and battery management system. With the
open-sourced implementation, one could improve the learn-
ing performance using an advanced RL algorithm, i.e., soft
actor—critic (SAC) [47], or explore different perspectives of
RL, such as inverse RL [48] and hierarchical RL [49].

CODE AVAILABILITY

The code for the proposed deep RL framework for
fast charging is publicly available at https://github.com/
sachong/RL-BATT-DDPG.
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