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ABSTRACT
This paper addresses the parameter estimation problem for

lithium-ion battery pack models comprising cells in series. This
valuable information can be exploited in fault diagnostics to
estimate the number of cells that are exhibiting abnormal be-
haviour, e.g. large resistances or small capacities. In particu-
lar, we use a Bayesian approach to estimate the parameters of
a two-cell arrangement modelled using equivalent circuits. Al-
though our modeling framework has been extensively reported
in the literature, its structural identifiability properties have not
been reported yet to the best of the authors’ knowledge. More-
over, most contributions in the literature tackle the estimation
problem through point-wise estimates assuming Gaussian noise
using e.g. least-squares methods (maximum likelihood estima-
tion) or Kalman filters (maximum a posteriori estimation). In
contrast, we apply methods that are suitable for nonlinear and
non-Gaussian estimation problems and estimate the full poste-
rior probability distribution of the parameters. We study how the
model structure, available measurements and prior knowledge
of the model parameters impact the underlying posterior proba-

bility distribution that is recovered for the parameters. For two
cells in series, a bimodal distribution is obtained whose modes
are centered around the real values of the parameters for each
cell. Therefore, bounds on the model parameters for a battery
pack can be derived.

INTRODUCTION
Lithium-ion (Li-ion) batteries are one of the most promis-

ing technologies to store energy in a variety of applications,
ranging from portable electronics to electric vehicles and smart
grids. These batteries benefit from high energy and power den-
sity, low self-discharge and long lifetime [1]. However, in con-
trast to other battery technologies, they need to be properly mon-
itored and controlled to prevent safety hazards [2]. Moreover,
since a single battery cell is relatively low voltage, many need
to be connected in parallel/series arrangements to form a large
scale battery pack. Models of these packs can be seen as inter-
connected systems with algebraic constraints and dynamic cou-
plings. These features make them more difficult to handle math-
ematically, and therefore to design monitoring systems for.
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There are different approaches to address condition mon-
itoring in batteries, which can be cast as a parameter estima-
tion problem. Two categories can be distinguished, namely ap-
proaches that resort to specific experimental techniques, and ap-
proaches based on models [3]. The former approaches are com-
putationally simple but they require either a large amount of data
or specialized experimental equipment. On the other hand, the
latter approaches can be purely data-driven or resort to a spe-
cific type of model. Data-driven techniques like support vector
machines [4] or neural networks [5] have been used to estimate
battery parameters that reflect degradation, such as battery ca-
pacity. However, they suffer from requiring big data sets for
model training, and they are not constrained by physical prin-
ciples. Model-based approaches have a more clear interpretation
but require skilled domain knowledge to be formulated. Among
them, grey-box models like equivalent circuit models (ECM),
and more recently white-box models like electrochemical mod-
els, are the most widely used frameworks to represent the battery
dynamic behaviour. Although electrochemical models are very
expressive, they tend to be overparameterized and might be dif-
ficult to solve due to model complexity. Overall, ECMs offer
a reasonable tradeoff between simplicity and accuracy, even if
some degree of physical relevance is lost.

ECMs have been used across the board since the very be-
ginning of battery modeling efforts. When ECMs are concate-
nated together, they form battery packs. The observability prop-
erties of ECMs have been reported several times, either for a
single cell [6], cells in parallel [7, 8] and in series [2, 7]. Surpris-
ingly enough, the contributions tackling the parameter identifia-
bility properties of ECMs are limited to recent studies [9, 10],
where the structural global identifiability of the 1st-order RC
model for a single cell was verified. The parameters of ECMs
can be estimated via identification techniques such as nonlin-
ear curve fitting [11, 12], genetic algorithms [13], least-squares
methods [14, 15], among others [16]. In contrast to batch model
identification, another line of research has focused on real-time
state/parameter estimation through Kalman filter-based adaptive
filtering techniques [17–19]. All the aforementioned efforts have
been devoted to single cells. Results for identifiability and pa-
rameter identification of battery packs are more scarce. To the
best of the authors’ knowledge, structural identifiability of in-
terconnected ECMs for battery packs has only been analyzed
in [7]. In the latter work, the identifiability problem is addressed
as the observability of the linearized augmented system, while
it is known that the observability conditions for nonlinear and
linearized systems might differ [6]. On the other hand, the iden-
tification problem has only been solved by online state/parameter
estimators based on dual Kalman filters [17,20] and dual nonlin-
ear predictive filter [21].

As described above, most of the parameter estimation
schemes used for batteries provide either a point-wise estimation,
for example using least squares (maximum likelihood) methods,

or assume a Gaussian distribution for parameter posteriors, for
example in Kalman filters. In contrast, other contributions ex-
plored more general Bayesian estimation methods, which are
less restrictive since they do not assume a priori any form of
the conditional density, and they provide confidence bounds for
the estimates. Within battery systems, different particle filters
(PFs) have been designed for parameter estimation in ECMs
[22], as well as state/parameter estimation schemes [23, 24]. Fi-
nally, other uses of Bayesian approaches include Markov chain
Monte Carlo (MCMC) sampling [25] and uncertainty quantifica-
tion [26–29] of the model parameters.

In this paper, we use a Bayesian approach to estimate
the (possibly non-Gaussian) posterior probability distribution of
model parameters in a 2-cell lithium-ion battery described by
equivalent-circuit models. The rationale behind allowing non-
Gaussianity is that multi-modal distributions can appear when
heterogeneous battery cells are considered, especially if they in-
clude model parameters far apart in the parameter space. Our
contributions are as follows. First, we demonstrate a structural
identifiability analysis for an arrangement of two cells in series.
Second we estimate the probability distribution of the model pa-
rameters, in contrast to the traditional and widely used point-wise
estimation. Finally, we analyze the impact of the model structure
and parameters on the estimation.

MODELING
We begin by describing the equivalent circuit model (ECM)

approach used here to represent the voltage-current dynamics of
a single lithium-ion cell. Then, multiple ECMs are intercon-
nected in series to form a string.

Single Battery Cell
An ECM is used to describe the behaviour of the i-th single

lithium-ion cell in a string. Figure 1 shows a representation of an
ECM, which can be mathematically described by the following
continuous-time dynamical system:

ẋi(t) = Ai(ωi)xi(t)+Bi(ωi)ui(t), (1)
yi(t) = OCVi(xi(t))+Cixi(t)+Di(ωi)ui(t), (2)

where the state vector is xi = [zi Vci]
> consisting of the state

of charge (SOC) and the voltage across the R-C pair, respec-
tively, the input ui is the applied current, the output yi is the
terminal voltage and the parameter vector is defined as ωi =
[R1i

1
R2iCi

1
Ci
]>. The model parameters consist of an ohmic re-

sistance R1i and the resistance and capacitance of an R-C pair R2i
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FIGURE 1. EQUIVALENT CIRCUIT MODEL.

and Ci, respectively. The state and input matrices are given by

Ai(ωi) =

0 0

0 − 1
R2iCi

 , Bi(ωi) =


1
Qi
1
Ci

 , (3)

the output function is characterized by the nonlinear open-circuit
voltage (OCV) as a function of SOC. Here, a polynomial func-
tion

OCVi(xi(t)) = p0 + p1zi(t)+ p2zi(t)2 + p3zi(t)3 (4)

is considered. Finally, Ci = [0 1] and Di(ωi) = R1i.
Notice that the ECM in Eqn. (1),(2) has been written in

a linear-in-the-parameters form by appropriately grouping the
electrical parameters.

String of Cells
When cells are interconnected in series, as depicted in

Fig. 2, each cell in the string is represented by an ECM of the
form in Eqn. (1),(2) with i = 1, . . . ,Ncell for Ncell cells in the
string. The electrical interconnection of cells in series involves
the following Kirchhoff’s laws for current and voltage

u(t) = ui(t) ∀i ∈ {1, . . . ,Ncell}, (5)

y(t) =
Ncell

∑
i=1

yi(t), (6)

where ui and yi are cell currents and voltages, respectively, and u
and y are string currents and voltages, respectively.

Without loss of generality, let us take the case of two cells in
series (Ncell = 2) to maintain tractability. In that case, the model
for the string of cells is given by

ẋ(t) = f (ω,x(t),u(t)), (7)
y(t) = h(ω,x(t),u(t)), (8)

where the string vectors are now the concatenation of the cell
vectors, i.e. the state vector is x = [x>1 x>2 ]

> and the parameter

u u1 u2 u3 uNcell−1 uNcell

y1 y2

V

y

y3 yNcell

· · ·

FIGURE 2. SERIES INTERCONNECTION OF BATTERIES.

vector is ω = [ω>1 ω>2 ]>, but the output vector structure depends
on what voltage is measured. The nonlinear functions are given
by

f (ω,x(t),u(t)) = A(ω)x(t)+B(ω)u(t), (9)
h(ω,x(t),u(t)) = OCV(x(t))+Cx(t)+D(ω)u(t). (10)

In the state equation,

A(ω) = diag{A1(ω1),A2(ω2)},B(ω) = [B1(ω1)
> B2(ω2)

>]>,

where the diagonal operator diag{·} produces a block-diagonal
matrix with the input matrices. In the output equation, two forms
can be considered and are compared in this work, namely mea-
suring the string voltage y1 + y2 with notation

OCV[1](x(t)) = OCV1(x1(t))+OCV2(x2(t))
C[1] = [C1 C2], D[1](ω) = D1(ω1)+D2(ω2).

(11)

or measuring each cell voltages [y1 y2]
> leading to

OCV[2](x(t)) = [OCV1(x1(t)) OCV2(x2(t))]>,
C[2] = diag{C1,C2}, D[2](ω) = [D1(ω1) D2(ω2)]

>.
(12)

STRUCTURAL IDENTIFIABILITY
Structural identifiability is a property of the model equations

and describes whether or not the model parameters can in prin-
ciple be uniquely determined from input-output data [30]. Many
methods have been proposed to study the structural identifiabil-
ity of nonlinear systems, such as approaches based on Taylor
series expansions, similarity transformations or differential alge-
bra [30, 31]. Here we use differential geometry, which is based
on the idea that structural identifiability can be seen as a special
case of observability by considering the parameters to be state
variables with zero dynamics. We examine the nonlinear (local)
observability to assess structural local identifiability.

Let us now introduce the notion of local observability for
the system in Eqn. (7),(8) with a time-varying input u̇(t) 6= 0.
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To improve notational clarity, we write x instead of x(t) and as-
sume that the parameters ω are embedded in the functions, there-
fore denoting f (ω,x(t),u(t)) and h(ω,x(t),u(t)) as f (x,u) and
h(x,u) respectively. In this context, the extended Lie derivative
can be defined as [32]

L f h(x,u) =
∂h(x,u)

∂x
f (x,u)+

j=∞

∑
j=0

∂h(x,u)
∂u( j)

u( j+1), (13)

where u( j) and u( j+1) denote the j-th and ( j + 1)-th derivatives
of the input, respectively. Higher order Lie derivatives can be
calculated as

Lk
f h(x,u) =

∂Lk−1
f h(x,u)

∂x
f (x,u)+

j=∞

∑
j=0

∂Lk−1
f h(x,u)

∂u( j)
u( j+1).

(14)
Lie derivatives in Eqn. (13),(14) can be used to compute the local
observability matrix as

O(x) =
[

∂

∂x
h(x,u)

∂

∂x
L f h(x,u) · · · ∂

∂x
Ln−1

f h(x,u)
]>

. (15)

The system in Eqn. (7)-(8) is locally observable around x = x0 if
rank(O(x0)) = nx where x ∈ Rnx .

Remark 1. For a constant input u(t) = ū, the extended Lie
derivatives in Eqn. (13),(14) simplify to the standard Lie deriva-
tives by cancelling the second terms on the right-hand-side in
Eqn. (13),(14).

By augmenting the state of the system with the model pa-
rameters with zero dynamics (ω̇(t) = 0), i.e.

x̄(t) =
[

x(t)
ω(t)

]
(16)

structural local identifiability can be studied [33]. Similarly as
before, the augmented system is locally observable around x̄= x̄0
if rank(O(x̄0)) = nx̄ where nx̄ = nx +nω and ω ∈ Rnω .

BAYESIAN ESTIMATION
We are interested in estimating the posterior distribution of

the parameter vector θ conditioned on the observed data y, which
is denoted as p(θ |y). Using Bayes’ rule, this distribution is given
by

p(θ |y) = p(y|θ)p(θ)
p(y)

(17)

where p(θ) is the prior distribution of the parameters, p(y|θ)
is the likelihood of the measurements given the parameters and
p(y) is a normalization constant defined as

p(y) =
∫

p(y|θ)p(θ)dθ . (18)

Unfortunately, this integral is often intractable, but its evaluation
is usually avoided by suitable computational algorithms. There-
fore, we can actually focus on estimating the marginal posterior
distribution of the parameters given by

p(θ |y) ∝ p(y|θ)p(θ), (19)

which is our target distribution.
In parameter estimation it is often convenient to work with

the energy function or unnormalized negative log-posterior in-
stead of the marginal likelihood or marginal posterior explic-
itly [34]. This energy function can be defined as

φ(θ),− log p(θ |y) =− log p(y|θ)− log p(θ), (20)

which can be easily evaluated recursively under the Markovian
assumption.

First, note that the ECMs in Eqn. (7),(8) can also be written
in discrete-time form as

xd(k+1) = Ad(θ)xd(k)+Bd(θ)ud(k), (21)

yd(k) = OCVd(xd(k))+Cdxd(k)+Dd(θ)ud(k) (22)

where the superscript d denotes the discrete-time variables. The
matrices for the i-th cell are given by

Ad
i (θi) =

[
1 0
0 ai

]
, Bd

i (θi) =

 1
Qi
bi

, Cd
i = [0 1], Dd

i (θi) = ci,

(23)
OCVd

i (x
d(k)) is in Eqn. (4) and θi = [ai bi ci]

>, with

ai = e
(
− 1

R2iCi

)
, bi = R2i (1−ai) , ci = R1i, (24)

assuming a sampling time Ts = 1 s.
The energy function for model in Eqn. (21),(22) is given by

φ(k) = φ(k−1)+
1
2

log |2πR|+ 1
2
(y(k)− ŷ(k))>R−1(y(k)− ŷ(k)),

(25)

Copyright © 2020 ASMEV001T20A003-4

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2020/84270/V001T20A003/6622311/v001t20a003-dscc2020-3218.pdf by U

niversity of C
alifornia Library - Berkeley user on 24 June 2022



where the dependency on θ has been omitted for the sake of sim-
plicity, and where φ(0) =− log p(θ) at k = 0. The term R is the
estimation error covariance, y is the measured output and ŷ is the
output predicted by the model with parameters fixed to θ .

By running this algorithm from k = 0 up to k = T , the full
energy function φT = φ(T ) is obtained. Then, sampling meth-
ods such as Markov chain Monte Carlo (MCMC) can be used
to generate a Monte Carlo approximation of the posterior dis-
tribution p(θ |y). The MCMC is used to draw random variables
from a given distribution by exploiting a Markov chain whose
stationary distribution is the desired distribution. The advantage
of using MCMC to sample from a posterior distribution is that the
difficult to compute normalization constant given by Eqn. (18)
in Eqn. (17) is not required [34]. Among the different MCMC
algorithms, we use an adaptive parallel tempering (APT) algo-
rithm [35]. The APT algorithm allows good mixing with mul-
timodal target distributions π , where conventional Metropolis-
Hastings (MH) algorithms [36, 37] often fail by getting stuck in
one mode. This better mixing within modes is achieved through
the tempering of π , i.e. considering auxiliary distributions with
density proportional to πβ with β ∈ (0,1) [35].

The APT algorithm is presented in Tab. 1. In contrast to
the MH algorithm based on a single Markov chain, the APT al-
gorithm defines L Markov chains, each of which is associated
to a ”temperature level” in a temperature ladder. In this way,
the APT algorithm is able to explore the parameter space more
through the chains at higher temperature and less with the lower
temperature chains. Each iteration step of the algorithm can be
broken down into three steps. The first step consists of a local
exploration that relies on the random walk Metropolis (RWM)
algorithm, which is applied to each of the chains ` = 1, . . . ,L.
This step allows us to keep the most probable parameter candi-
dates while still leaving some room to accept parameters that are
less likely. In the second step, the state of two adjacent tempera-
ture levels are possibly swapped. The state of the algorithm after
the swap is denoted as θ̌

(`)
j , whereas after the random-walk step

it is denoted as θ
(`)
j . While the previous steps are part of tra-

ditional parallel tempering algorithms, the third step introduces
the adaptation laws. In this step, the temperature parameters T (`)

j
are continuously updated through a stochastic optimization pro-
cedure, where the log-differences between adjacent temperatures
ρ
(`)
j = log(T (`+1)

j −T (`)
j ) is used for the temperature update in-

stead of the temperatures themselves. Then, the random-walk
proposal distribution is also adapted at each level through the
adaptation of the covariance matrix Σ

(`)
j . These steps are repeated

for Niter number of iterations.

SIMULATION RESULTS
A simulation study for a string of two lithium-ion cells was

carried out to evaluate the performance of the APT algorithm to
estimate the underlying (possibly non-Gaussian) probability dis-

TABLE 1. APT ALGORITHM [35].

Initialization: for j = 0, θ(0)(`) = θ
(`)
0 , Σ(0)(`) = Σ

(`)
0 .

Computation: for j = 1,2, . . . ,Niter do the following.

Random-walk step: for `= 1,2, . . . ,L, do

Sampling: draw a candidate point θ ∗ from the proposal

distribution

θ
∗ ∼ q(θ ∗|θ (`)

j−1) =N (θ ∗|θ (`)
j−1,Σ

(`)
j ).

Acceptance probability evaluation:

α
(`)
j = min

1,exp
(

1
T (`)

(
φT (θ

(`)
j−1)−φT (θ

∗)
)) q(θ (`)

j−1|θ
∗)

q(θ∗|θ (`)
j−1)


Parameter update: accept candidate point θ

(`)
j = θ ∗ if

α
(`)
j ≥ U(0,1).

Otherwise θ
(`)
j = θ

(`)
j−1. Keep also track of φT (θ

( j)).

Swap step: choose a random index l ∈ {1, . . . ,L−1}

uniformly. Evaluate the acceptance probability

ω j = min
{

1,exp
((

1
T (l)
− 1

T (l+1)

)(
φT (θ

(l+1)
j )−φT (θ

(l)
j )
))}

Accept swap θ̌
l+1
j = θ l

j and θ̌ l
j = θ

l+1
j if

ω j ≥ U(0,1).
Do not swap otherwise.

Adapted parameters update: for `= 1,2, . . . ,L do

Temperature adaptation step:

ρ
(`)
j = ρ

(`)
j−1 + γ1 j(ω j−α

∗).

Covariance update:

Γ
(`)
j = (1− γ2 j)Γ

(`)
j−1 + γ2 j(θ

(`)
j −µ

(`)
j−1)(θ

(`)
j −µ

(`)
j−1)

>.

µ
(`)
j = (1− γ2 j)µ

(`)
j−1 + γ2 jθ

(`)
j

Level scaling parameters update:

β
(`)
j = β

(`)
j−1 + γ3 j(α

(`)
j −α

∗).

Adaptive covariance update:

Σ
(`)
j = exp(β (`)

j )Γ
(`)
j

tribution of electrical parameters. We first study the identifiabil-
ity properties of the 2-cell ECM. Then, the simulation conditions
and implementation issues are established. Finally, the effective-
ness of the APT algorithm is showcased.

Identifiability Analysis
We use the differential geometry approach explained above

to evaluate the structural local identifiability of system in Eqn.
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(7),(8). Different cases are considered in terms of input, parame-
ters and output. First, two inputs are evaluated, namely constant
input u(t) = ū and time-varying input u̇(t) 6= 0. Secondly, the
parameter vectors of the two cells might be equal ω1 = ω2 or
different ω1 6= ω2. Finally, the measured output can consist of
the local voltages [y1 y2]

> or the total voltage y = y1 + y2.
Under constant input current u̇(t) = 0, the model in Eqn.

(7),(8) is always structurally unidentifiable (i.e. rank(O(x0)) <
nx̄) regardless of the parametric structure or measured outputs.
Therefore, from now on we focus on time-varying inputs u̇(t) 6=
0. All these remaining cases are summarized in Tab. 2, together
with the obtained identifiability results. When the two voltage
measurements are considered, the system model in Eqn. (7),(8)
is structurally locally identifiable (rank(O(x0)) = nx̄). But when
the string voltage is measured, structural identifiability is lost
(rank(O(x0))< nx̄).

TABLE 2. IDENTIFIABILITY OF THE ECM IN EQN. (7),(8).

Parameters Output nx̄ rank(O(x0))

ω1 = ω2 [y1 y2]
> 7 7

ω1 = ω2 y1 + y2 7 6

ω1 6= ω2 [y1 y2]
> 10 10

ω1 6= ω2 y1 + y2 10 8

Implementation of the APT Algorithm
Based on the identifiability analysis results shown in Tab. 2,

we know that we need at least a non-constant excitation u̇(t) 6= 0
for the model to be identifiable. With respect to the parameters
of each cell, we do not have control over them in a real battery.
The heterogeneity of cells depends on the manufacturer and the
condition of the batteries themselves. We also know that it is
preferable to measure the local voltages of the two cells in the
string. Now, we exploit these insights to properly formulate the
probabilistic model that is used by the APT algorithm to estimate
the ECM parameters.

In the following, we set up the series of experiments to be
carried out in simulation as well as the APT algorithm for the
specific problem at hand, i.e. the estimation of the probability
distribution of the ECM parameters for two lithium-ion battery
cells connected in series. A driving cycle is used as input cur-
rent profile (Fig. 3). Even if this input becomes zero during
some specific time intervals in which the structural observability
is lost, such periods are scarce and observability can be recovered
quickly as soon as u 6= 0. The model for simulation of the two
battery cells in series correspond to the discrete-time model in
Eqn. (21),(22). The parameter values for each ECM are reported
in Tab. 3.

The different cases considered are shown in Tab. 4. Re-
call that the parameter vector is θ = [θ>1 θ>2 ]> with θi =
[ai bi ci]

>, i ∈ {1,2} defined in Eqn. (24). Two main cases for

0 10 20 30
Time [min]

-10

-5

0

5

C
ur

re
nt

[A
]

FIGURE 3. APPLIED UDDS DRIVING CYCLE.

TABLE 3. ECM SIMULATION PARAMETERS.

Parameter Cell 1 Cell 2

R1 0.005 0.015

R2 0.0014 0.0047

C2 2470.3 923.4

Q 3600 3600

p†
i {3.4707,1.6112,−2.6287,1.7175}

†Both cells share the same OCV function, with i = 0, . . . ,3.

the model structure are considered in simulation, namely the two
cells differ in one (case 1) or two (case 2) parameters. These
cases are further subdivided into:

a) cases 1.1 and 2.1, where the parameter to be estimated is
chosen to be c, and the structure of the model (i.e. the degree
of equivalence between cells) is studied;

b) cases 1.1 and 1.2, where the nature of the parameters to be
estimated is different, since b and c are input coefficients in
the state and output equations, respectively;

c) cases 2.1, 2.2 and 2.3, where the model structure is specified
to be b1 6= b2 and c1 6= c2, and the parameters to be estimated
are studied (i.e. the structure of the estimator).

Note that for the sake of simplicity, only parameters b and c
are subject to parameter estimation, while a1 = a2.

We devised a parameter identification scheme that provides
us with the underlying probability distribution associated with
each ECM parameter for a battery pack described by Eqn.
(21),(22). However, instead of considering directly the model
in Eqn. (21),(22), we reformulated the model in two ways:

1. The parameter identification setup consists of assuming the
same parameter vector θ̂ = [â b̂ ĉ]> for all cells in the string,
instead of taking a specific point value θi for each i-th cell.
In other words, each component of the parameter vector θ̂ is
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TABLE 4. CONSIDERED SIMULATION CASES

Case b1
?
= b2 E† c1

?
= c2 E

1.1 = - 6= ×

1.2 6= × = -

2.1 6= - 6= ×

2.2 6= × 6= -

2.3 6= × 6= ×
†The entries in column E marked with × mean that a particular

parameter is estimated.

described by a distribution that could be non-Gaussian. Note
that the proposed parameter vector θ̂ ∈ R3, which contrasts
with θ ∈ R6 in model Eqn. (21),(22).

2. Instead of directly dealing with the discrete-time model pa-
rameters θ as in Eqn. (24), we rewrite the parameter vec-
tor θ̂ introduced in point 1 above in terms of the vari-
ables ∆θ = [∆a ∆b ∆c]

> that perturb the parameter around
a nominal value θ̄ , i.e. θ̂ = ∆θ θ̄ (this product is under-
stood component-wise). Normalized parameters ∆θ are bet-
ter conditioned than true parameters whose values might dif-
fer in orders of magnitude.

We aim at identifying ∆θ whereas θ̄ is known. To make these
two notions more explicit, we can reformulate the model in Eqn.
(21),(22) accordingly as

xd(k+1) = Ad(∆θ θ̄)xd(k)+Bd(∆θ θ̄)ud(k), (26)

yd(k) = OCVd(xd(k))+Cdxd(k)+Dd(∆θ θ̄)ud(k) (27)

Remark 2. These simplifications allow us to directly estimate
a (possibly non-Gaussian) probability distribution associated to
the ECM parameters for a given battery pack. If the battery pack
has e.g. 100 cells, then the resulting estimation for e.g. the series
resistance R1 represents the probability distribution associated
with the resistance of the pack. This information can be further
exploited for pack SOH estimation while having an idea of the
proportion of cells that are in the most critical condition.

The APT algorithm is designed on the basis of Eqn.
(26),(27). In all the experiments, the estimation algorithm was
set up with the conditions presented next. In the general case of
Ncell battery cells connected in series, the likelihood function is
selected to be multimodal, which takes the form

p(y|θ) = 1
Ncell

Ncell

∑
i=1

1
|2πRi|1/2 exp

(
−1

2
(yi− ŷi)

>R−1
i (yi− ŷi)

)
.

(28)
The subscript i represents each i-th battery cell. This likelihood
function in Eqn. (28) is used in the energy function in Eqn.

(25). For the case of two cells in series, Ncell = 2 and the co-
variance of the estimation error is R = 10−4I2. The nominal
parameter values θ̄ in the model Eqn. (26),(27) are set to the
mean values of the real discrete-time parameters θ̄i for the con-
sidered cells. The parameters ∆θ to be estimated by the APT
algorithm are initialized with ∆θ (0) = ∆θ ,01ne×1, where ne is the
number of parameters to be estimated and ∆θ ,0 = 1.6. The al-
gorithm was initialized with a uniform prior probability distri-
bution p(∆θ ) = U(u11×ne ,u11×ne), u = 0, u = 3. These bounds
are selected because we know that the parameters are positive
and we add approximately 90% of uncertainty to the initial pa-
rameter value. The initial values for the adapted parameters
are: covariance Σ

(`)
0 = σ2

0 Ine , σ2
0 = 10−6, temperature differ-

ence ρ
(`)
0 = 1 and scalings β

(`)
0 = 1. The step-size sequences are

γk j = ( j+1)−0.6,k ∈ {1,2,3}. A total of 5000 MCMC iterations
were considered.

Results & Discussion
The estimation results for case 1 are shown in Fig. 4. The

state of charge and the voltage response of cell 1 are depicted in
Fig. 4(A) and (D), respectively. It can be seen that the drive cycle
has been scaled to cover a wide range of SOC. Figures 4(B),(E)
and Figs. 4(C),(F) show the estimation results for parameters
∆c (case 1.1) and ∆b (case 1.2), respectively. Figures 4(B),(C)
show the evolution of the estimated parameter for each iteration,
whereas Figs. 4(E),(F) show the resulting probability distribu-
tions. The two dashed black lines in the plots represent the true
parameters, whereas the solid green line in the bottom plots cor-
respond to the uniform prior probability distribution. These plot
conventions are maintained for the other plots. Two output equa-
tion structures are also compared here, namely when the two cell
voltages are measured (blue curves) and when only the total volt-
age is measured (red curves). Focusing on the two voltage mea-
surements first, the results for ∆c (Figs. 4(B),(E)) show a bi-
modal distribution with the two modes centered around the true
parameter values, and the results for ∆b (Figs. 4(C),(F)) show a
unimodal distribution centered around 1, which also corresponds
to the average value of the two real parameters.

Notice that for both parameters ∆c and ∆b, the same consid-
erations apply: the simulations were done for two cells in series
with different parameters (approximately 0.5 and 1.5), and both
parameters are input coefficients, the former in the output equa-
tion and the latter in the state equation. However, the shape of
their associated probability distribution is different. Even if a
bimodal distribution was also expected for ∆b, it is suppressed
in favor of a unimodal distribution. Since this model has been
verified to be structurally identifiable, these results only suggest
that the energy function is maximized around the mean value of
the true parameters instead of the real parameters. Therefore,
the type of parameter to be estimated influences the associated
probability distribution.
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(A) (B) (C)

(D) (E) (F)

FIGURE 4. PARAMETER IDENTIFICATION RESULTS USING THE APT ALGORITHM FOR CASE 1. (A) CURRENT, MARKOV CHAIN
FOR (B) ∆c and (C) ∆b, (D) VOLTAGE, PROBABILITY DISTRIBUTION FOR (E) ∆c and (F) ∆b.

When the total voltage of the string is measured (red curve
in Fig. 4(B) and distribution in Fig. 4(E)), then a unimodal dis-
tribution is obtained for ∆c, which is centered around 1 (the av-
erage value of the true two parameters). Therefore, the measured
signals impact the underlying probability distribution obtained
from parameter estimation, which in this case could be ascribed
to identifiability issues. From now on, the two cell voltages are
measured.

Now we look at case 2. On the one hand and due to space
constraints, the cases 2.1 and 2.2 are not plotted here but the re-
sults are equivalent to the ones obtained for cases 1.1 and 1.2,
respectively. This fact confirms that the model structure does not
affect the shape of the estimated probability distribution. On the
other hand, Fig. 5 shows the estimation results for case 2.3. Fig-
ures 5(A),(D) and Figs. 5(B),(E) depict the results for parame-
ters ∆c and ∆b, respectively. Figures 5(D),(E) show the marginal
posterior distribution for each parameter. Figure 5(C) portrays
the simulated points of the tempered distributions corresponding
to the joint distribution for both ∆c and ∆b parameters, where
the temperature levels from 1 to 5 are shown from top to bottom
plots. Notice that a more diffuse distribution is obtained at higher
temperature levels (bottom plot, level 5) whereas clear peaks ap-
pear at lower temperatures (top plot, level 1). In this case, when
both parameters ∆c and ∆b are estimated together, they exhibit bi-
modality, even though when only ∆b is estimated (it is assumed

that ∆c is known), a unimodal distribution appears. This result
implies that the prior knowledge (which parameters are known)
as well as the structure of the estimator (which parameters are
estimated) impact the final estimation results to the extent that
wrong estimates might be obtained under reckless assumptions.
Again, the APT algorithm chooses one distribution over another
by maximizing the energy function.

CONCLUSIONS
The parameters of a lithium-ion battery system with 2 cells

in series have been estimated. Firstly, structural identifiabil-
ity was undertaken for cells in series. The analysis shows the
model to be structurally locally identifiable if the input current
is time-varying and the voltage of each cell is measured. Then,
a Bayesian approach was used to estimate the underlying proba-
bility distributions characterizing the model parameters. In gen-
eral, we found that the shape (unimodal or bimodal) of the prob-
ability density of the posterior distribution depends on whether
some parameters are known or should be estimated, as well as
the type of parameters (where they appear in the model) to be
estimated. Moreover, the model structure, understood as the de-
gree of equivalence between the two cells, has little impact on
the estimation results. Future work will be devoted to increasing
the number of cells and estimating the probability distribution
of the battery pack as a whole using the proposed identification
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(A) (B) (C)

(D) (E)

FIGURE 5. PARAMETER IDENTIFICATION RESULTS USING THE APT ALGORITHM FOR CASE 2. MARKOV CHAIN FOR (A) ∆c and
(B) ∆b, (C) TEMPERATURE LEVELS FROM 1 (TOP) TO 5 (BOTTOM), PROBABILITY DISTRIBUTION FOR (D) ∆c AND (E) ∆b.

framework.
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