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State Estimation for a Zero-Dimensional Electrochemical Model
of Lithium-Sulfur Batteries
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Abstract— Lithium-sulfur (Li-S) batteries have become one
of the most attractive alternatives over conventional Li-ion
batteries due to their high theoretical specific energy density
(2500 Wh/kg for Li-S vs. ~250 Wh/kg for Li-ion). Accurate
state estimation in Li-S batteries is urgently needed for safe
and efficient operation. To the best of the authors’ knowledge,
electrochemical model-based observers have not been reported
for Li-S batteries, primarily due to the complex dynamics
that make state observer design a challenging problem. In
this work, we demonstrate a state estimation scheme based
on a zero-dimensional electrochemical model for Li-S batteries.
The nonlinear differential-algebraic equation (DAE) model is
incorporated into an extended Kalman filter. This observer
design estimates both differential and algebraic states that
represent the dynamic behavior inside the cell, from voltage and
current measurements only. The effectiveness of the proposed
estimation algorithm is illustrated by numerical simulation
results. Our study unlocks how an electrochemical model can
be utilized for practical state estimation of Li-S batteries.

I. INTRODUCTION

Lithium ion batteries (LIBs) have occupied a dominating
market share in electric vehicles (EVs), large-scale energy
storage systems and portable electronics. However, they still
fail to meet the increasing demand for high energy density
storage applications due to their limited capacity and low
energy density. Consequently, there is a strong incentive to
develop next generation battery systems with much higher
energy densities [1]. Lithium-sulfur (Li-S) batteries, with
sulfur as the cathode material, are considered a promising
candidate because of their high theoretical energy density,
environmental friendliness and low cost. Unlike the “inser-
tion” mechanism in LIBs, a multi-electron electrochemical
redox reaction takes place in Li-S battery systems, where
Li ions react with sulfur to generate lithium sulfide (LiyS)
at the end discharge. This achieves a much higher energy
density of 2500 Wh-kg~!, which is almost 10 times higher
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than LIBs and would enable electrified aircraft and long-
haul trucks. However, their practical use at large scales is
hindered by several challenges, such as complex reaction
kinetics and severe shuttling of soluble lithium polysulfides
(LiPSs), and all of which lead to poor cycling performance
and fast capacity decay [2]. Tremendous efforts have been
devoted to address these issues and promote the practical
demonstration of Li-S batteries. Therefore, as a potential
candidate for automotive applications, it is imperative to
develop an advanced battery management system (BMS) [3]
that implements real-time control and estimation algorithms
for their practical use in the near future.

The techniques for state estimation in commercial LIBs
are well-established, and the two straightforward categories
are “Coulomb counting” [4] and open-circuit voltage (OCV)
measurement [5]. However, these existing estimation algo-
rithms cannot be directly applied to Li-S batteries due to their
unique features, namely the complex reaction chemistry and
the “shuttle effect” [2]. For instance, the Coulomb counting
method is limited by the relatively high self-discharge behav-
ior and the high dependence of capacity on duty cycle and
applied current profile [6]. Moreover, the typical OCV-SOC
curve of Li-S batteries can be divided into two plateaus,
where the low plateau has a flat region that reduces the
observability of the system and hinders the application of
OCV-based techniques [7].

Model-based estimation techniques have been widely em-
ployed in LIBs [8], [9]. The Li-S battery models presented
in literature can be classified into two main categories: the
electrical equivalent circuit models (ECMs) and the physics-
based electrochemical models. The proposed ECMs can
reproduce the discharging behavior of Li-S batteries with
current and temperature dependent parameters [10], [11].
Their intuitive structure and relatively low computational
demands are suitable for battery state estimation and control.
However, the electrochemical dynamics as well as internal
electrochemical states cannot be accurately modelled. On
the other hand, great efforts have been put on electrochem-
ical models to understand the mechanisms inside the Li-S
cells[12], [13], [14], [15]. Due to the complex reaction path-
ways and various state variables of sulfur species involved,
even for one-dimensional models [14], [15], they still require
a large number of physical and chemical parameters as well
as significant computational effort. Recently, reduced-order
electrochemical models, especially zero-dimensional models
[16], have shown their advantages in accurately predicting
the electrochemical dynamics with relatively low computa-
tional power, which provides a suitable tool to evaluate the
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performance of Li-S cells in various applications.

To date, only few studies in the literature have demon-
strated state estimation of Li-S batteries, all of which use
ECMs. In [17], three recursive Bayesian state estimators,
i.e., extended Kalman filter (EKF), unscented Kalman filter
(UKF) and particle filter (PF), based on ECMs have been
proposed to estimate SOC according to a combination of
Coulomb counting and voltage response of the Li-S cell.
However, they showed slow convergence if the initial condi-
tions are unknown and became less accurate with variation
of current profiles. To increase the robustness and accuracy,
a “behavioral form” of the dual EKF with online parameter
identification was then introduced for estimating the SOC
and state of health (SOH) of Li-S batteries [18], [19].

The estimation of the various sulfur species is a crucial
aspect in Li-S batteries since they determine the state-of-
charge and state-of-health. The SOC is related to the mass
sulfur species in the cell during operation. However, the
mathematical definition of SOC in terms of sulfur species is
not precised in terms of a single species (like in lithium-ion
batteries) but to the different species of multiple reactions.
To the authors’ best knowledge, no previous work focuses
on state estimation with electrochemical models for Li-S
batteries, which is particularly challenging due to multiple
technical reasons. First, the electrochemical models are gen-
erally governed by complex differential-algebraic equations.
The measurable signals, namely cell current and voltage, are
nonlinear in the system states and parameters. Second, the
equilibrium potential of the low plateau of Li-S cells has a
flat region that reduces the sensitivity of the output voltage
with respect to the system states, rendering weak local
observability. Finally, the analysis and estimator design tools
for nonlinear DAEs have not been well understood for battery
estimation problems. In light of aforementioned research
gaps, in this paper we address these challenges by proposing
a state estimation scheme for a reduced electrochemical
model using voltage and current measurements only. The
contributions of this work are summarized as follows:

1) This is the first attempt in the literature to exploit
reduced-order electrochemical models for state estima-
tion in Li-S cells.

2) An analysis of the local observability of the zero-
dimensional Li-S battery model is provided using DAE
techniques.

3) We employ an extended Kalman filter for a DAE system
to estimate the time evolution of sulfur species as well
as reaction kinetics during the battery discharge process,
enabling an unprecedented level of real-time monitoring
for Li-S cells.

The reminder of this paper is organized as follows. The
zero-dimensional electrochemical model is introduced in
Section II. In Section III, the local observability of the
nonlinear DAE system is analyzed. An EKF algorithm for
the state estimation of DAE systems is proposed in Section
IV. Simulation results and discussion are provided in Section
V, followed by conclusions in Section VI.

TABLE I
ZERO-DIMENSIONAL LI-S MODEL SYMBOL DESCRIPTION

Symbols Description Units
Msg molar mass Sg [g/mol]
Nns8,M84,182,1S number of S atoms in polysulfide [-]
ne electron number per reaction [-]
F Faraday’s constant [C/mol]
R gas constant [J/K/mol]
T temperature [K]
Ps density of precipitated sulfur [g/L]
kg shuttle constant [sh
kp precipitation rate [s7"
§2- §%~ saturation mass [g]
Eg standard potential for high plateau (H) [V]
Eg standard potential for low plateau (L) [V]
iH0 exchange current density H [A/m?]
iro exchange current density L [A/mZ]
1 Applied current [A]
fu dimensionality factor H [g L/mol]
fr dimensionality factor L [g2- L2/mol]
a, active reaction area [m?3]
v electrolyte volume per cell [L]
Nu.NL surface overpotentials [V]

II. L1-S BATTERY MODEL

In a typical discharge process, elemental sulfur Sg reacts
with lithium by a two-electron reduction process to form
a series of soluble polysulfide intermediates with different
chain lengths. Then further polysulfide reduction takes place
to produce the solid Li,S after full discharge. During charg-
ing, the reverse reaction occurs to convert LiS to elemental
sulfur SY.

A. Zero-Dimensional Model

The model equations for the Li-S battery presented here
closely follow the derivations in [16]. This zero-dimensional
model considers a two-step electrochemical reaction chain:

SY+de «— 2877, (1)
S37 tde” +—28* | 4827, )

where each of the two discharge regions is dominated by one
of the electrochemical reactions above. The reaction in the
low plateau involves precipitation from liquid sulfur species
S2~ into solid sulfur, denoted as Sp. It should be noticed
that not all of S?>~ is precipitated during the precipitation
reaction, which is determined by the saturation mass of Sp
in the electrolyte (S27).

As a zero-dimensional model, only reactions that occur at
the cathode side have been considered and the impact of mass
transfer has been neglected. The “shuttle effects” of high
order polysulfides and the precipitation of lithium sulfide are
modelled via shuttle constant (k) and precipitation rate (kp),
respectively. The following dynamical equation describes the
time evolution for the various sulfur species in the system,

x(t) = f(x(1),2(1)), 3)

where x=[x; x» x3 x4]' € R™, n, =4 is the differential
state vector representing the amount of sulfur species for Sg,
Sézf, S2-, and Sp, respectively, and z = [in iL]—r eR%:, n, =

3115

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 24,2022 at 00:51:27 UTC from |IEEE Xplore. Restrictions apply.



2 is the algebraic state vector representing reaction currents
related to the two respective electrochemical reactions (1)
and (2). In the present model, it is assumed that the entire
sulfur mass is in the form of dissolved Sg in a fully charged
cell. The nonlinear function f is given by

nssMss
———— iy —kex1
neF'
nsgMsg nsaMsg
R
JFx(1),2(1)) = | 2ng Mg . ¢ e )
o ot =51
1
—kpyx4(x3 —S£7
Skprln=ST)

The equilibrium potentials for the reactions (1)-(2) are
described by the Nernst equations

En =B+ <fH 2) 5)
0 %
Ep=Ef + 111 <fL2(x3+x4)> (6)

Remark 1: Under the assumption of mass conservation
between S%’ and the sum of S?~ and Sp, ie., m(Sz_) =
m(S?~) +m(Sp), the time evolution of S>~ has been ignored.
Specifically, the five-order state equations presented in Egs.
(8a)-(8e) in [16] is equivalently reduced to the four-order
system (3)-(4) in this work. Furthermore, this model reduc-
tion produces an observable DAE system in the linear sense
as detailed in Section III below.

When current is present, the battery is in a non-equilibrium
state. Under this condition, the currents associated with the
two electrochemical reactions (1) and (2) are given by the
Butler-Volmer equations:

neF Ny ) ’ %)

2RT

neFng
2RT ) ®

iH = 21'[-17061, sinh (

iL = 2iL,0ar sinh <

A non-zero surface overpotential, denoted by ng,ny, is the
driving force for a reaction to occur and it is given by the
difference between the voltage of the cell and the reaction
Nernst potential [16],

Nu =V — Eq, )
nL=V-—Er. (10)

The output of the system can then be written as

y(t) = h(x(2), (1)), (11)

where

h(X(f),Z(t)) =
EY +

2RT .  _ ig
)
(fH 2) neF o \2igoay
2 .

X5 2RT .  _ iL

ln( ) sinh 1( - )

fo%(x3 +x4) + neF ' 2ip oay
(12)

EL+

The output vector y(t) = [yi(t) y2(¢)]" represents the
voltage measurement of the Li-S cell computed from the
high and low voltage plateau kinetics, respectively. Namely,
yi(t) =V(t) =nu(t) + Ep(r) and y2(r) = V(1) = nct) +
Ey (1), which are (the same) measured signals.

Finally, the measured cell current / is the summation of
currents from the two reactions, i.e.

I=ig+ir. (13)

B. Differential-Algebraic System

The dynamical equations (3)-(4) as well as the algebraic
constraints (5)-(13) can be arranged in the following compact
state-space form as a nonlinear differential-algebraic system,

x(t) = f(x(t),z(t)), (14)
= g(x(1),2(1),u(r)), (15)
() h(x(t),z(t)), (16)

with function g(x(¢),z(z),u(t)) given by
g(x7z,u)= [gl(xazvu) g2(x7zvu):|Ta (I7)

with
g1=ig+ir—1, (18)
_po (RT (o x o RT B

= Entgp! (fo%) R (fL 2(x3+X4)>

2RT ) 2RT )
+ sinh™! - il — sinh™! - i .
nekF 2ig oar nekF 2iy oay
(19)

We have substituted (5)-(8) into (9)-(10) to form (17). System
(14)-(16) can be conveniently verified to be a semi-explicit
DAE of index 1 as dg/dz has full rank (invertible) [20]. It
is also worth highlighting that in some battery applications,
e.g., [21], function g is linear in z such that under suitable
conditions we can explicitly solve for z in terms of x and
substitute it back into (14) to form a reduced ODE system.
This is not applicable in the Li-S battery system because
function g is highly nonlinear with respect to both z and x,
prohibiting a closed form solution of constraint (15).

III. OBSERVABILITY ANALYSIS

Prior to state observer design, it is crucial to conduct
an observability analysis to confirm that the entire state-
space, including both the differential and algebraic states,
can be reconstructed from input-output data. In this section,
we mathematically analyze the local observability of the
nonlinear differential-algebraic system (14)-(16).

Let w=[x 2] be the augmented state. In order to study
the observability of the nonlinear DAE system (14)-(16), we
linearize the system around an equilibrium point w = wy
and verify the observability conditions for the linearized
system. If the linearized system is observable at w = wy,
then the nonlinear system is locally observable. However, it
is further noted that the observability results from linearizing
the nonlinear system is only sufficient, i.e., no conclusion can
be drawn for the nonlinear system if the linearized system
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Fig. 1. The sensitivities of low plateau voltage with respect to system

states, simulated using a constant discharge current at 1.7 A.

is not observable [21]. The linearized model of (14)-(16) is
given by
Ew(t) = Aw(t) + Bu(t),
y=Cw(t),

(20)
21

where the state matrix A € R(%#72)%(+1%) and output matrix
C € R2*(tn2) are given by

of of

_ Inxxnx 0rz,;><nZ o a aiz

E‘lonzm On|” A7 |0g dg|
dx dz -

C:[% 9’1] . (22)
w=wq

Jdx 0z

Let us now introduce the definition of complete observ-
ability (C-observability) for a linear DAE system [22].

Theorem 1 ([22]): The regular linear differential-
algebraic system (20)-(21) is C-observable if and only if the
following two conditions hold:

C.1 rank{[ET,CT]T} =ny+ng;

C2 rank{[(sE —A)T,CT]T} =n,+n;, VseC.

Condition C.1 verifies C-observability of the algebraic
subsystem (fast subsystem) while C.2 involves the dynamic
subsystem (slow subsystem). Condition C.1 is satisfied if
dh/dz has column rank n;, since the identity sub-matrix in
E already provides a column rank of n,. This can be easily
verified from (12).

The verification of condition C.2 requires the numerical
computation of the generalized eigenvalues of the pair (E,A).

Although condition C.2 has to be validated against all s
in complex domain, it is automatically verified when s is
not one of the generalized eigenvalues of pair (E,A). The
sensitivity of the equilibrium potential with respect to system
states are demonstrated in Fig. 1, which is simulated using
a constant discharge rate at 1.7 A. During discharge at low
plateau, in which the transition from high to low occurs at
around 1 Ah position, the sensitivity values are significantly
smaller than those from high plateau, indicating relatively
weak observability.

IV. OBSERVER DESIGN

In this section, an EKF approach for nonlinear DAE
systems, similar to the UKF reported in [23], is used for
estimation in our system. This algorithm applies to measured
outputs that are functions of both differential and algebraic
state variables. The standard EKF algorithm for ODE sys-
tems, however, can only be applied when the differential
states are decoupled from the algebraic ones. Then the
algebraic states can be computed as implicit solutions to the
nonlinear algebraic constraints at each time step.

The nonlinear DAE system (14)-(16) is transformed into
discrete-time domain to facilitate the implementation of the
EKF for DAEs,

X1 = X+ AL f (X, 2x) + Uk (23)
0 = g(xk, 2k, Uk ), 24)
Vel = h (Xeq1,2k+1) + Viern (25)

where Ar is the sampling time, x| and zzy; are the
discretized differential and algebraic states at time ¢t = (k +
1)A¢, respectively, and f,1 and Vi, are assumed to be
stationary, zero-mean and Gaussian white noise processes
with covariance matrices Q and R, respectively. At time step
k, the differential state is propagated in time to time step
(k+1) according to (23) using the current differential and
algebraic values, x; and z;. Once the differential states at
time step (k4 1) is obtained, the algebraic equation (24)
is solved numerically for zz, . This process is repeated to
simultaneously propagate differential and algebraic states in
time.

The EKF mathematics are reported in Algorithm 1. Es-
sentially, the algorithm first computes algebraic states that
are consistent with the DAE, i.e. they satisfy the nonlinear
algebraic equations. Then, both the differential and algebraic
states at time k are used to predict the differential state at the
next time instant through the nonlinear state function as well
as correct it via output error injection. The linearized ODE
model is subsequently used for the covariance propagation
of the differential states, followed by the computation of the
gain matrix using the covariance matrix and the linearized
model matrices. It should be noted that this algorithm only
performs estimation update for the differential states using
the classical Kalman filter approach [24], whilst the algebraic
state estimates are updated at each time step by solving
the nonlinear algebraic constraints. The (x,y,u) satisfy the
constraint only for the mean of the assumed distribution
N(&, Pe).
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Algorithm 1: EKF for Nonlinear DAEs
Inputs: uy, yi, k=1,2,---
Outputs: %y, 2, k=1,2,---
« At time step k, the (consistent) estimates of the algebraic
states are calculated using the algebraic equations of
DAE system to satisfy the algebraic constraints:

8(&x, 2k, ux) = 0.

« Given the up-to-date estimates %; and consistent
algebraic state estimates Zi, the differential state
estimates are propagated forward in time using the
nonlinear discrete-time model and corrected through
output error injection as

Rt = R+ A1 f (R, 2)) + Kie (0 — h(8,20))

in which the forward Euler method has been employed.
o The computation of the covariance matrix of the
differential state estimation error is given by

Pect = RBE] + 0~ Kic (HcPH +R) K],
and the Kalman gain matrix is
T T -
K. = F.PH, (HkPka —|—R) ,

where Fj and Hj, are the linearized state and output
equations with respect to the differential state evaluated
at Xy,

_If
T ox

L

Fr k=50

, .
Lk Lk

V. SIMULATION RESULTS

In this section, we present studies on simulation to demon-
strate the performance of the proposed EKF-based estimation
scheme for nonlinear DAE systems (14)-(16). The parameter
values for plant model and estimator are obtained from [16].
We apply a constant 1.7 A discharge current to the plant
model from a fully-charged state for 5000 seconds (approx
83 minutes). At fully charged state, the entire sulfur mass is
in the form of dissolved Sg. At high plateau, the dissolved Sg
is consumed to form Sﬁ*. The low plateau is reached when
S(S) has been entirely consumed, as demonstrated in Fig. 2.
The estimation is conducted by using only the applied current
and terminal voltage measurements, where the voltage signal
was corrupted with a zero-mean Gaussian noise sequence of
10~* mV variance. The actual initial conditions of the states
in the plant model are wy = [2.6730 0.0128 8.9339 x

1077

2.7x107°

1.7 0]7, whereas the EKF is initialized

with g

2 05

1073

1073

— 0.1838

1.8838]".

Fig. 2 presents the estimates for the mass of various sulfur
species as well as their simulated values from the plant
model. The estimation of algebraic states (i and iy ) as well
as the voltage (V) are plotted against their true values in Fig.

x1
- - =21
0.5 ]
T3
0 0 I 2ol
4 0 0.5
0.02 . T
><1074 X3
51 i .
=) ! n Z3
0.01F | 4 ,
& I "
2ol I
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10 x1076
— \
o0, \
Z05F |\
) 51,
\
0 0.3
0 L L L 1 1 1 1 1
0 10 20 30 40 50 60 70 80
Time [min]
Fig. 2. The estimation performance for the amount of sulfur species in

discharge process.

3. By tuning the EKF with the following parameters,

Py =diag([2.5x107° 1077 107" 4.895x 107 ")),
Qi1 =diag([10712 10712 107" 1072)),
Ry1 = diag([1077 1077]),

the estimates effectively converge to their true values (within
approximately 0.5 min) from large initial estimation errors,
according to the design procedures presented in Section IV.
It is worth noting that during low plateau, the state estimates
slightly diverge from the plant model simulated signals,
which confirms our conclusion in Section III that the states
are weakly observable from the system input-output data.
Although not reported in detail here, we have additionally
tested how much initialization error this EKF can withstand
until the estimates diverge. Our experiments show that the
initial estimates must be physically unreasonable before
the algorithm diverges, thereby demonstrating significant
robustness to state initialization error. The robustness and
accuracy of the developed estimation algorithm against main
parameters (e.g. shuttle rate and precipitation rate) were
also analyzed, where the estimator still shows excellent
convergence performance.
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VI. CONCLUSION

This paper explores the potential use of the reduced-order
electrochemical model for state estimation of Li-S batteries,
which have 10X the theoretical specific energy of Li-ion
batteries. A state observer based on a zero-dimensional elec-
trochemical model has been presented. Observability of the
linearized DAE system has been studied. The analysis shows
the states are indeed locally observable, but observability
is relatively weak in the low plateau region. An extended
Kalman filter-based algorithm is then adopted to estimate
the amount of sulfur species, as well as the reaction kinetics
inside the cell. The accuracy of the proposed estimation ap-
proach is demonstrated in simulation. Real-time monitoring
of the electrochemical state information enables i) a further
understanding of the electrochemical mechanisms inside the
cells, and ii) high-performance control and operation in
advanced BMSs for practical applications, including electric
aircraft and long-haul trucks. This estimation scheme will be
further validated using experimental data of Li-S batteries.
Additionally, approaches to estimate the SOC and SOH of
Li-S cells based on this reduced-order electrochemical model
will be studied in the future.

REFERENCES

[1] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon,
“Li-O, and Li-S batteries with high energy storage,” Nature materials,
vol. 11, no. 1, p. 19, 2012.

[2] B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou, W. Lv, Y.-B.
He, Y. Wan, F. Kang, and Q.-H. Yang, “Optimized catalytic WS,-
WO3 heterostructure design for accelerated polysulfide conversion in
lithium—sulfur batteries,” Advanced Energy Materials, vol. 10, no. 15,
p. 2000091, 2020.

[3]

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

3119

N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic,
“Algorithms for advanced battery-management systems,” IEEE Con-
trol systems magazine, vol. 30, no. 3, pp. 49-68, 2010.

R. Xiong, J. Cao, Q. Yu, H. He, and F. Sun, “Critical review on the
battery state of charge estimation methods for electric vehicles,” leee
Access, vol. 6, pp. 1832-1843, 2017.

Y. Xing, W. He, M. Pecht, and K. L. Tsui, “State of charge estimation
of lithium-ion batteries using the open-circuit voltage at various
ambient temperatures,” Applied Energy, vol. 113, pp. 106-115, 2014.
H. S. Ryu, Z. Guo, H. J. Ahn, G. B. Cho, and H. Liu, “Investigation of
discharge reaction mechanism of lithium— liquid electrolyte— sulfur
battery,” Journal of Power Sources, vol. 189, no. 2, pp. 1179-1183,
2009.

A. Fotouhi, D. J. Auger, K. Propp, and S. Longo, “Lithium-sulfur
battery state-of-charge observability analysis and estimation,” /EEE
Transactions on Power Electronics, vol. 33, no. 7, pp. 5847-5859,
2017.

S. J. Moura, F. B. Argomedo, R. Klein, A. Mirtabatabaei, and
M. Kistic, “Battery state estimation for a single particle model
with electrolyte dynamics,” IEEE Transactions on Control Systems
Technology, vol. 25, no. 2, pp. 453—468, 2016.

D. Zhang, S. Dey, L. D. Couto, and S. J. Moura, “Battery adaptive
observer for a single-particle model with intercalation-induced stress,”
IEEE transactions on control systems technology, 2019.

V. Knap, D.-I. Stroe, R. Teodorescu, M. Swierczynski, and T. Stanciu,
“Electrical circuit models for performance modeling of lithium-sulfur
batteries,” in 2015 IEEE Energy Conversion Congress and Exposition
(ECCE), pp. 1375-1381, IEEE, 2015.

K. Propp, M. Marinescu, D. J. Auger, L. O’Neill, A. Fotouhi, K. So-
masundaram, G. J. Offer, G. Minton, S. Longo, M. Wild, et al., “Multi-
temperature state-dependent equivalent circuit discharge model for
lithium-sulfur batteries,” Journal of Power Sources, vol. 328, pp. 289—
299, 2016.

K. Kumaresan, Y. Mikhaylik, and R. E. White, “A mathematical
model for a lithium—sulfur cell,” Journal of the electrochemical society,
vol. 155, no. 8, p. A576, 2008.

V. Thangavel, K.-H. Xue, Y. Mammeri, M. Quiroga, A. Mastouri,
C. Guéry, P. Johansson, M. Morcrette, and A. A. Franco, “A mi-
crostructurally resolved model for Li-S batteries assessing the impact
of the cathode design on the discharge performance,” Journal of The
Electrochemical Society, vol. 163, no. 13, p. A2817, 2016.

D. N. Fronczek and W. G. Bessler, “Insight into lithium—sulfur
batteries: elementary kinetic modeling and impedance simulation,”
Journal of power sources, vol. 244, pp. 183-188, 2013.

A. F. Hofmann, D. N. Fronczek, and W. G. Bessler, “Mechanistic
modeling of polysulfide shuttle and capacity loss in lithium—sulfur
batteries,” Journal of Power Sources, vol. 259, pp. 300-310, 2014.
M. Marinescu, T. Zhang, and G. J. Offer, “A zero dimensional model
of lithium—sulfur batteries during charge and discharge,” Physical
Chemistry Chemical Physics, vol. 18, no. 1, pp. 584-593, 2016.

K. Propp, D. J. Auger, A. Fotouhi, S. Longo, and V. Knap, “Kalman-
variant estimators for state of charge in lithium-sulfur batteries,”
Journal of Power Sources, vol. 343, pp. 254-267, 2017.

V. Knap, D. J. Auger, K. Propp, A. Fotouhi, and D.-I. Stroe, “Con-
current real-time estimation of state of health and maximum available
power in lithium-sulfur batteries,” Energies, vol. 11, no. 8, p. 2133,
2018.

K. Propp, D. J. Auger, A. Fotouhi, M. Marinescu, V. Knap, and
S. Longo, “Improved state of charge estimation for lithium-sulfur
batteries,” Journal of Energy Storage, vol. 26, p. 100943, 2019.

K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution
of initial-value problems in differential-algebraic equations. SIAM,
1995.

D. Zhang, L. D. Couto, S. Benjamin, W. Zeng, D. E Coutinho,
and S. J. Moura, “State of charge estimation of parallel connected
battery cells via descriptor system theory*,” in 2020 American Control
Conference (ACC), pp. 2207-2212, 2020.

G.-R. Duan, Analysis and design of descriptor linear systems, vol. 23.
Springer Science & Business Media, 2010.

L. D. Couto and M. Kinnaert, “Internal and sensor fault detection
and isolation for Li-ion batteries,” in IFAC-PapersOnLine, vol. 51,
(Warsaw, Poland), pp. 1431-1438, 2018.

G. Goodwin and K. Sang Sin, Adaptive Filtering Prediction and
Control. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1984.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 24,2022 at 00:51:27 UTC from |IEEE Xplore. Restrictions apply.



