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Recent experiments have succeeded in isolating processes for which short-range correlation (SRC)
physics is dominant and well accounted for by SRC phenomenology. But an alternative and com-
pelling picture emerges from renormalization group (RG) evolution to low RG resolution. At high
RG resolution, SRCs are identified as components in the nuclear wave function with relative pair
momenta greater than the Fermi momentum. Scale separation results in wave-function factoriza-
tion that can be exploited with phenomenologies such as the generalized contact formalism or the
low-order correlation operator approximation. Evolution to lower resolution shifts SRC physics
from nuclear structure to the reaction operators without changing the measured observables. We
show how the features of SRC phenomenology manifested at high RG resolution are cleanly iden-
tified at low RG resolution using simple two-body operators and local-density approximations with
uncorrelated wave functions, all of which can be systematically generalized. We verify that the
experimental consequences to date follow directly at low resolution from well-established properties
of nucleon-nucleon interactions such as the tensor force. Thus the RG reconciles the contrasting
pictures of the same experiment and shows how to get correct results using wave functions without
SRC components. Our demonstration has implications for the analysis of knock-out reactions for

which SRC physics is not cleanly isolated.

I. INTRODUCTION

Short-range correlations (SRCs) in atomic nuclei are
usually identified as components of the nuclear wave
function with nucleon pair momenta well above the Fermi
momentum [1]. There has long been an apparent need
for such SRCs to account for measured cross sections [2],
but direct evidence has been nebulous until recent exper-
iments succeeded in cleanly isolating this physics [II [3-
10]. SRC phenomenologies have been developed that ac-
count for the observations, but they seem to be at odds
with successful descriptions of nuclear structure such as
the shell model that do not feature explicit short-range
structure in the nuclear wave function. The application
of the renormalization group (RG) can make sense of this
conflict. RG methods are used to analyze critical phe-
nomena in condensed matter [11] and evolve the strong
coupling and parton distributions in high-energy quan-
tum chromodynamics (QCD) [12} [13]. Applied to nuclei,
the RG shows how SRC physics is manifested differently
at varying resolution scales. Here we will illustrate how
the RG can bridge low- and high-resolution treatments
of the same experiment, shedding light on the implica-
tions of SRC physics and on long-standing discrepancies
between theory and experiment [14].

To avoid misunderstanding, we must from the begin-
ning distinguish between experimental resolution and RG
resolution as manifested in nuclear applications. The
experimental resolution is set by the momentum of the
probe, with the resolving power limited to distances of
order the corresponding wavelength. The RG resolu-
tion is also determined by a limiting wavelength, which
is set not by external kinematics but by the choice of
decoupling scale in the RG-evolved Hamiltonian. This

scale dictates the minimum wavelength or maximum mo-
mentum available for the wave functions of low-energy
states (and the nuclear ground states in particular). A
high-RG-resolution description has a “hard” Hamilto-
nian that mixes high-momentum components into low-
energy states, i.e., SRCs. A low-RG-resolution descrip-
tion has a “soft” Hamiltonian for which the ground-state
wave function is closer to the mean-field limit with the
largest momenta not far from the Fermi momentum k.
We emphasize that either of these descriptions (or a con-
tinuum of intermediate RG resolutions) can be applied
to the same experiment.

FIG. 1. Cartoon snapshots of a nucleus at (a) low-RG and (b)
high-RG resolutions. The back-to-back nucleons at high-RG
resolution are an SRC pair with small center-of-mass momen-
tum.

For visualization, cartoon pictures of these resolutions
are shown in Figs. [[]and Pl Although only qualitative,
such pictures give intuition for interpreting experiments.
In Fig. [1] we visualize configurations that might be sam-
pled at different RG resolutions. Only at high-RG res-
olution do we find a high-momentum pair. In practice
we associate the high-resolution picture with local phe-
nomenological Hamiltonians, in particular the Argonne
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FIG. 2. Cartoon of a nuclear single-particle momentum distri-
bution at high RG resolution. The region below kr is a Fermi
sea of nucleons. Above kr the distribution is dominated by
SRC pairs, with center-of-mass momenta of order kr. At low
RG resolution, the upper branch is greatly suppressed.

V18 (AV18) potential [15] and its associated three-body
forces [16] [17], which have been featured in most of the
recent analyses of SRC experiments [1]. AV18 describes
nucleon-nucleon observables within experimental accu-
racy up to the inelastic threshold and the elastic part of
the cross section reasonably well up to much higher ener-
gies. The AV18 momentum distributions in nuclei extend
well above 4 fm™! or 800 MeV (in units where h = ¢ = 1),
as caricatured in Fig. [2| (see also the figures in Sec. .
For concreteness we associate the low-resolution picture
with the shell model (configuration interaction), either
in its phenomenological form [18] [19] or derived from ab
initio methods such as coupled cluster or the in-medium
similarity RG [20]. In this picture, nucleon momentum
distributions die off rapidly above k.

The smoking gun experiments for SRCs in the high-
RG-resolution picture come in two varieties: inclusive
reactions with carefully chosen kinematics [21H25] and
experiments featuring the knock-out and detection of
two high-momentum nucleons [3H7), [9 [26]. These ex-
periments manifest key features of high-resolution SRC
phenomenology [1]:

1. Universal high-momentum nucleon distribu-
tions. Ratios of inclusive cross sections at selective
kinematics (high Q2 and x > 1.4-1.5) for different
nuclei show plateaus, implying that momentum dis-
tributions at high momenta have the same shape for
all nuclei. The relative height of the plateau defines
the SRC scaling factor ae and is related to the rel-
ative probability of finding a two-nucleon SRC in
the nuclei (e.g., see Ref. [27]).

2. Kinematics of the knocked-out nucleons.
SRC pairs are in S-waves with relative momentum
larger than kp and total momentum of order or

less than kp. So when one of the paired nucleons
has a direct one-body interaction (e.g., it absorbs
a virtual photon), the other flies out almost back-
to-back with respect to the original momentum in
the lab frame. The experimental analysis implies
that roughly 10-20% of nucleons in the nucleus are
members of an SRC pair.

3. Ratio of np to pp knocked-out pairs for
intermediate relative momentum (300-500
MeV). One might expect that the ratio of neutron-
proton (np) to proton-proton (pp) pairs knocked
out would be given by basic counting [2§]. In fact
the ratio for intermediate momenta shows a strong
dominance of np pairs over pp or nn pairs. This
is interpreted as resulting from the dominance of
the nucleon-nucleon (NN) tensor interaction in this
momentum regime, which generates 3S; (np only)
but not 'Sy SRC pairs.

4. Ratio of knock-out cross sections from
neutron-rich nuclei compared to N = Z nu-
clei. The ratios imply that the high-momentum
fraction of protons is greater for N > Z than for
N = Z. The SRC interpretation is that excess neu-
trons correlate with core protons, so that protons
“speed-up” in neutron-rich nuclei. In contrast, the
high-momentum fraction of neutrons remains con-
stant.

5. Transition from np dominance of SRC pairs
to ratios expected from scalar counting. As
the momentum of the knocked-out pairs increases,
the dominance of the tensor part of the NN interac-
tion gives way to probing the repulsive core, which
affects all pairs equally. Therefore the ratio of np
to pp pairs relaxes toward the scalar limit.

These effects are all consistent with two phenomeno-
logical approaches. The Generalized Contact Formal-
ism (GCF) model uses a factorization ansatz for the
nuclear many-body wavefunction applied to these high-
momentum transfer processes [29H33]. The low-order
correlation operator approximation (LCA) [27] [34] [35]
is used to compute how SRCs affect nuclear momentum
distributions; it does so by shifting the SRC physics from
the wave function to a correlation operator, which is in
turn parametrized (the LCA will be discussed further in
Sec. .

The GCF embodies the pictures in Fig. b) and Fig.
with the nuclear wavefunction relevant for SRC physics
events represented as a product of a short-distance piece
that multiplies a mean-field piece. When applied to the
distribution of pair momenta in coordinate and momen-
tum space (meaning the probability to find two nucleons
within a distance r or having a relative momentum g¢),
these quantities take the factorized form:

Phcr.a(r) = CH @3N ()7, (1)

dera(@) = CA 108w (@ - (2)



Here A is the nucleon number (protons plus neutrons)
and « is a spin index. The common coefficient is called a
“contact” in analogy to the quantity defined in cold atom
physics [36] 37]. The two-body functions are extracted
from the short-distance (high-momentum) dependence of
the zero-energy solutions to the Schrodinger equation for
a given NN interaction

There is by now a substantial literature on applying
the GCF phenomenology to SRC experiments [9 [29] BT
33l 138] 39]; we summarize only the major features here.
The A-independence of the ¢ functions immediately im-
plies that both the short-distance and high-momentum
dependence of the pair distributions in different nuclei
will be universal. This suggests that taking ratios will
divide out model dependence, giving support to the early
focus on cross section ratios of various sorts in experimen-
tal analyses (e.g., two-nucleon knock-out to integrated
single-nucleon knock-out). Ratios of contacts are scale
and scheme independent, as validated by microscopic ab
initio calculations using both hard and soft (although not
fully soft) interactions. Three-body effects are implicitly
treated as negligible.

The success of the SRC pair interpretations and the
GCF might seem to be conclusive evidence that the high-
RG-resolution picture is the only correct one. But in fact
these observations can be explained as well by a very dif-
ferent picture, in which the Hamiltonian is at low-RG
resolution and therefore soft, while the interaction of a
virtual photon probe is not with a single nucleon that is
part of an SRC pair but with two nucleons in the Fermi
sea (i.e., a two-body current). We claim that all of the
same observables are reproduced in this alternative pic-
ture, with simpler calculations. This might seem to be a
nuclear Rashomon effect [40], in which different observers
give contradictory interpretations of the same event. The
RG shows how these pictures can both describe the phe-
nomena and how to continuously transform from one to
the other. We note that these contrasting pictures have
been discussed in the nuclear RG literature for at least a
decade [41H44], but this work has not made a substantial
impact or when cited has often been misunderstood. We
hope the presentation here will prove to be more acces-
sible.

In the remainder of this paper we flesh out the story,
striving to provide intuitive explanations of how it plays
out. In Sec.[[] we give a selected history of the two alter-
native pictures of nuclei and the experiments that seemed
to require SRCs in nuclei. This takes us up to the present
where the conflict persists; we reconcile the pictures in
Sec. [0 by means of the RG. We provide low-resolution
explanations of the SRC experiments, some directly and
some by showing how the GCF phenomenology emerges
from an RG treatment and the operator product expan-
sion. A basic second-quantized treatment that enables a

1 Tt would be misleading to call them wave functions, as pointed
out originally in Ref. [2].

systematic many-body treatment of the unitary RG ap-
proach, along with representative calculations supporting
the Sec. [[I explanations, is presented in Sec. [[V. Sec-
tion [V] provides a selection of takeaways in the form of
questions and answers, and some implications for other
experiments where SRC physics may play a role. Sec-
tion [VI is a brief summary and guide to future work.

II. HISTORICAL ANTECEDENTS

Since the 1950’s, two apparently contradictory pictures
of nuclear structure have been developed and success-
fully applied [45]. The first stems from the shell model
of Goeppert Mayer and Jensen, originally a description
of independent particles moving in a mean field. Refine-
ments from that era include the collective model of Bohr
and Mottelson, which showed that the vibrational and
rotational excitations of nuclei can be described in terms
of the time evolution of a self-consistent mean field. This
provided a unified description of single-particle and col-
lective degrees of freedom in nuclei. The key characteris-
tic for our discussion is that the momentum distribution
did not include high-momentum nucleons (that is, with
momenta well above k), as depicted in Fig. [Ifa).

In Ref. [2], Brueckner et al. considered the possibil-
ity of nonlinear phenomena altering the strong short-
range interaction evident in free space: “...the success of
the shell model has often been assumed to indicate that
the two-body forces in nuclear matter are in fact much
weaker and long-ranged and can lead in an excellent ap-
proximation to a uniform Hartree field acting on the nu-
cleons.” They go on to soundly reject this conjecture
by considering five high-energy reactions and concluding
that the measured cross sections can only result from a
nucleon momentum distribution with a significant tail:
“This momentum distribution differs substantially from
that for the shell model of the nucleus and thus provides
strong evidence for correlation in the nuclear ground-
state wave function.” This is the alternative picture in
Figs. b) and [2| which features in particular a compo-
nent of the nuclear wave function consisting of pairs of
nucleons with large relative momentum but a center-of-
mass momentum of order the Fermi momentum. Brueck-
ner et al. explained this picture as arising from the strong
short-range repulsion in the nucleon-nucleon (NN) inter-
action, which was the accepted explanation for the NN
S-wave phase shifts turning negative at high energies.
Thus the SRC was born.

A key takeaway from Ref. [2] is that SRCs were argued
for as essential wavefunction features because there was
no other way to explain the cross section: “Consequently
it follows that the usual assumptions of the shell-model
theory of the nucleus, that the particles move indepen-
dently in a uniform potential, cannot be other than very
approximately correct.” Each example was analyzed in
the Born approximation, which gave a transparent in-
terpretation. For example, deuteron pickup: ejection by



fast neutrons (of order 100 MeV) of fast deuterons by nu-
clei. In the picture of Fig. [Ia), the fast incident neutron
would have too-small matrix elements with the mean-
field protons to enable the observed deuterons to form:;
this required the picture of Fig. b). At this level of
approximation, a momentum distribution with a tail like
in Fig. [2] could be fit.

However, this clear picture was subsequently muddied
by consideration of final state (and initial state) inter-
actions (e.g., see Ref. [46]). The clean extraction of a
momentum distribution was no longer clean. Neverthe-
less, the picture associated with a hard Hamiltonian per-
sisted and Brueckner led the way in developing meth-
ods to handle such interactions and also explain how
independent-particle behavior could arise. This proved
to be a difficult program to carry out with precision using
the expansion and resummation techniques of Brueckner
theory. Instead, the most successful demonstration that
hard Hamiltonians (and the Argonne potential in par-
ticular) led to quantitative predictions of the low-lying
spectra of light nuclei was made using quantum Monte
Carlo methods [47] 48]. This might have seemed to seal
the deal on which picture was correct. Yet in the mean-
time, “phenomenological” approaches such as the shell
model and nuclear energy density functionals were suc-
cessful in describing a wide range of data using soft in-
teractions [19] 45].

An experimental advance that promised to shed light
on nuclear momentum distributions was the development
of electron scattering facilities that could detect knocked-
out protons in coincidence with the scattered electrons.
At NIKHEF and other electron scattering facilities, these
(e,e'p) experiments were used to probe occupied shell-
model orbitals and map out their momentum distribu-
tions [49,[50]. The extracted shapes were consistent with
orbitals having the appropriate separation energy and ra-
dius, but the overall normalization was significantly lower
than predicted by an independent-particle model. In the
high-resolution picture, this was explained by the deple-
tion of orbitals by both short-range and long-range corre-
lations, of order 15-20% for each. Once again, however,
this potentially clean resolution was spoiled by final-state
interactions (despite efforts to use parallel or anti-parallel
kinematics to suppress other reaction mechanisms) [51].
The picture was further muddied by purely theoretical
considerations in Ref. [52], which showed that field re-
definitions or unitary transformations imply the picture
of high-momentum SRC pairs is not unique. This would
turn out to be a foreshadowing of the RG reconciliation
of hard and soft pictures.

With subsequent experimental and theoretical ad-
vances, the modern nuclear Rashomon effect grew more
acute from both sides. The problem of cleanly verify-
ing the picture in Fig. b) was apparently solved by
experiments first at Brookhaven National Laboratory
(BNL) and then more extensively at Jefferson Labora-
tory (JLab) that knocked out and detected both members
of SRC pairs (plus inclusive experiments with specially
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chosen kinematics). By restricting to events with the ap-
propriate kinematics in the final states, a series of experi-
ments has established the key features listed in Sec. [I| [1].
At the same time, a picture closer to Fig. a) (or at
least with reduced high-momentum SRCs) has been be-
hind explosive progress in ab initio (microscopic) calcu-
lations of nuclei, which have pushed well beyond where
calculations with hard potentials have been computation-
ally feasible [20]. To reconcile these pictures, we need to
modify the hard potential into a soft one, while at the
same time preserving the results from high-momentum-
transfer experiments. This can be accomplished by uni-
tary renormalization group evolution.

III. RECONCILIATION BY THE
RENORMALIZATION GROUP

A. Applying a unitary RG

The renormalization group techniques developed by
Wilson in the late 1960s and early 1970s formalized the
ideas of block spinning introduced by Kadanoff, through
which shorter distance scales in a system are averaged
over, leaving only contributions from successively longer
distance scales [53H55]. By eliminating these degrees of
freedom (dofs), the underlying universal behavior was
revealed, which was directly applied to explain critical
phenomena (second-order phase transitions). The other
major class of RG applications from this period aimed to
improve perturbation theory. This use of RG dates from
Gell-Mann and Low in 1954 [56] and matured in applica-
tions to high-energy scattering in QCD [57, [58]. The ba-
sic idea is that a mismatch of external energy scales and
those internal to loop integrals (i.e., sums over states)
can generate large logarithms that modify the naive con-
vergence of perturbation theory. Running the RG can
shift strength between couplings and loop integrals to
minimize the impact of the logarithms [59]. The nuclear
applications of the RG inherit features of both types of
RG applications [60].

In the early 1990’s, independent efforts by Glazek and
Wilson, who sought a Hamiltonian formalism for quan-
tum chromodynamics (QCD) [61], [62], and Wegner, who
worked on condensed matter problems [63], led to uni-
tary RG evolution approaches that drove many-particle
Hamiltonians to be increasingly energy diagonal. This al-
leviates problems with small energy denominators. The
similarity RG (or SRG), particularly in the unitary flow
equation form proposed by Wegner [64], subsequently
proved to be well suited for low-energy nuclear physics.
SRG applications built on a long history of unitary trans-
formation methods in nuclear physics and especially the
earlier introduction of RG for nuclear Hamiltonians by
Bogner and Schwenk [65H67]. The SRG is technically
simpler (e.g., for evolving 3-body forces) and highly ver-
satile; it can be applied in free space for interactions and
operators [44], and in the nuclear medium as a many-



body solution method [20] [68] [69].

B. Schematic look at factorized matrix elements

The technical aspects of the SRG are well documented
in the literature [68H72]. For our purposes we do not need
to know how the unitary transformations are generated,
but only their actions and characteristics. Figure [3| pro-
vides a schematic guide to how a ratio of matrix elements
of high-momentum operators is transformed from high
RG resolution to low RG resolution. For simplicity we
take ground-state matrix elements and a ratio between
nucleus with A nucleons to the deuteron. This setup is
directly related to the experiments for inclusive cross sec-
tion ratios [21H25], but we can interpret the details more
generally. In Sec. [[V/ we provide a second-quantized for-
mulation that validates the developments sketched here.

The SRG parameter X is taken to be of order kp or
slightly higher; it provides a dividing scale between mean-
field and high-momentum physics as in Fig. [2] and it
serves as the resolution scale (because only momenta less
than A are included in the low-energy wave functions).
Details of the subplots in Fig.

a. The ground-state bra and ket are coded blue to in-
dicate they are calculated using an unevolved hard
interaction (e.g., AV18 plus three-body for definite-
ness). There are both high-momentum and low-
momentum contributions to |¢4) and [¢g4). The
operator is also blue, which signifies there are only
contributions from high momenta ¢ > A. For exam-
ple, it could be a pair or single-nucleon momentum
distribution evaluated at q.

b. The unitary transformation at A\ is denoted U).
Here we write it as a momentum matrix. The com-
bination U;LU,\ is the identity matrix, so it can be
inserted anywhere in our expression.

c. We insert U;U,\ between the operator and wave
function vectors with the plan of acting with the
transformations on each. The ratio of matrix ele-
ments is unchanged.

d. We designate the soft evolved ground-state matrix
element with A and code it red. Acting with Uy on
the original wave function yields the same result as
evolving the Hamiltonian and then diagonalizing to
extract the ground state.

e. It is evident here that to maintain the same matrix
element that the operator must also be evolved by
U\OUj.

f. When the unitary transformation is sandwiched be-
tween a part that is purely low momentum (k < \)
and a part that is purely high momentum (g > \),
then it approximately factorizes into disjoint pieces.
This factorization is derived in Refs. [41] and [42].

The low-momentum part F'°(k) is only weakly de-
pendent on momentum. The factorization approx-
imation is typically good at the 10-15% level and
corrections are calculable. The leading factoriza-
tion explains the dominant behavior but if greater
precision is desired one can always simply use the
full unitary transformation.

g. Upon substitution of the factorized unitary trans-
formation, we see that the numerator and denom-
inator have individually separated into a purely
high-momentum part that carries the full depen-
dence on the momentum of the operator but is
state independent, and a purely low-momentum
part that is independent of the operator but de-
pends on the nucleus.

h. For convenience we have simply rearranged the fac-
torized parts of the matrix elements. This is the
leading term in an operator product expansion.
If we focus on the red (high momentum) parts,
we immediately obtain the universal (i.e., state-
independent) behavior of any high-momentum op-
erator. Note that this applies to low-lying excited
states as well. With the choice of a momentum dis-
tribution this is also the embodiment of the GCF
in Eq. (or Eq. if we work in coordinate space
instead).

i. For the case of the same operator in numerator
and denominator, they cancel, leaving a purely low-
momentum ratio that turns out to be scale and
scheme independent (to leading order). This is the
GCF contact ratio, which is the type of ratio that
will dominate the ratio of inclusive cross sections.
Note that it is a “mean-field” quantity, i.e., it only
depends on the soft ground-state wave function.

Thus the GCF physics naturally emerges from a low-
resolution perspective but in a form that is systematically
improvable and more easily generalized.

Returning to (e) and (g) for the specific case of the
pair distribution at high momentum, we see that it is
sufficient to look at the unitary transformation of the
high-resolution operator in a two- or three-body space,
independent of any nucleus or state. The two-body uni-
tary transformation can be expanded in the NN channels
without reference to a particular state (see Sec. [[V for
details). In Fig. 4| the ratio of |U(ko,q)U(q, ko)| for the
coupled 3S; to 'Sy channels is plotted as a function of
q with fixed kg = 0.1fm~'. This ratio directly relates
to the fraction of knocked-out pairs that are np versus
pp or nn. We see the dominance of 3S; to 1Sy in the
region around 2fm~'(400 MeV), where the tensor force
is strong and the 'Sy potential has a node, decaying to
a combinatoric fraction at high momentum. The result
is insensitive to details as the dependence on kg is very
weak for ¢ > A\. We also see that similar results are ob-
tained for the local chiral EFT potential from Gezerlis et
al. [73] (this is true for any other chiral potential [74]).
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FIG. 3. Schematics of what happens with high-momentum operators and low resolution states. (See the text for details.)
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FIG. 4. Ratio of |U(ko,q)U (g, ko)| with fixed ko = 0.1fm™!
for the coupled 38; to 'Sy channels. Results are for the
AV18 [15] and Gezerlis N?LO (1.0 fm) [73] potentials.

One might have expected that the dominance of the
tensor means that the operator will be sensitive to 3D
admixtures in the ground state even when evolved. This
is not the case, as illustrated in Fig. The high-
resolution results (A = oo0) do come dominantly from
the 3D;-3D; part for momenta g where the tensor force
dominates while it is more evenly split with 2S;-3S; (in

a scheme/scale dependent way) at higher momenta. But
the low-resolution results (A = 1.35 fm ™" here) are always
heavily dominated by the 3S;-3S; part. Note that the
same pattern holds for both the phenomenological AV18
potential and the Gezerlis N2LO chiral EFT potential.
This S-wave dominance implies that simple ground-state
wave functions with local density approximations (LDAs)
will work quite well at low RG resolution, as verified in
the next section.

IV. CALCULATING AT LOW RG RESOLUTION

In this section we use second quantization to more pre-
cisely characterize the SRC physics and show how simpli-
fied calculations (e.g., using LDASs) are meaningful. The
details of how factorization works in second-quantized
form have already been worked out in Ref. [42], which
we build on for the current discussion. The results pre-
sented here are only a sampling of what is possible, using
the crudest approximation. Nevertheless, they suffice to
show that low-RG resolution calculations can reproduce
all the features of SRC phenomenology listed in Sec.
In future work we will explore more accurate approxima-
tions and calibrate the theoretical uncertainties [74].
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unevolved and SRG-evolved (both wave function and opera-
tor, so the net matrix element is unchanged) results where
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A. Second-quantized unitary transformations

The SRG unitary transformation at flow parameter A
takes the schematic second-quantized form:

(7,\ =T+ Z5U)(\2) atataa
+ Z5U§3)aTaTaTaaa + [4-body] +---, (3)

where we have suppressed the single-particle indices and
combinatoric factors. There is no one-body term, which
would have only a sum over a'a operators. The leading
approximations illustrated in Fig. [3] can be formulated
in second-quantization by always consmtently truncating
the operator products such as U OU at the (vacuum)
two-body level. In practice this is cleanly carried out by
applying Wick’s theorem in operator form.

The two-body term in in a plane-wave single-
particle basis is

r7(2) ’ ol
Z U (k k)a1K+k K- kMK LKk (4)
Kk K

where k and k’ are relative momenta in the two-body

subspace, K is the total momentum, and 6(})(\2) is an anti-

symmetrized matrix element (i.e., (5[7)(\2) = 5U)(\2)(1—|—P12),
where Pjs exchanges particles 1 and 2). For notational
compactness we suppress the spin and isospin indices
on (517)(\2); the latter dependence will be explicit later

when 6(7)(\2) is decomposed into the usual NN partial-
wave channels. The form in Eq. @ follows from the
structure of the SRG flow equation and the properties
of the two-nucleon Hamiltonian, which are inherited by
1) (7)(\2). Particular features of relevance in the present con-

text are that the first-quantized function 6(7)(\2) is com-
pletely determined in the two-body system and depends
on k and k' but not K from Galilean invariance, three-
body contributions are subleading (more on this below),
and 6(7)(\2)(k, k') factorizes as in Fig. f) for |k| < A and
[k'| > A

A simple example of how truncating at the two-body
level plays out is the verification of the unitary condi-
tion in Fig. b). We start by multiplying Eq. and
its hermitian conjugate and note that even maximally
contracted terms involving three-body or higher terms
from U or U will be three-body or more, and there-
fore are omitted. Only the fully contracted part of the
a'a’aaa’a’aa term from the SU pieces will have the lead-
ing two-body form, so the net result for the leading ap-
proximation in the plane-wave basis as in is

e~ ~ 1 ~ -
10, =T+ > U (kX) + 007 (k,K)

k.k/ K

+= Zw”

Kk

k,k")sU (K", k)]

T T
Xl ik kMK YK
=1, (5)

where the coefficient function in square brackets is iden-
tically zero from the unitary condition applied to (un-
symmetrized) U®?) (k, k') = 0y + U (k, K').

To find the evolved form of other operators, we sim-
ply sandw1ch the second-quantized operator expansion
between U and U )T\, apply Wick’s theorem and trun-
cate at the two-body level. For example, the leading
approximation for the evolved pair momentum distribu-
tion 1} (q, Q) for isospin projections 7 and 7’ takes the
form



fioo (L, Q)ﬁ*

+ = Z5U<2> k, q)sU > (q, k')
k k’

where the unevolved (A = co) pair momentum distribu-

tion is

Thoo Za§Q+qa1 a’1Q-q"Q+q’ (7)

g o

and we have suppressed spin and isospin indices in @
and @ If Eq. @ is summed over q at fixed Q, a simple
change of labels in the sums manifests that by consis-
tently truncating to the two-body operators, the full nor-
malization comes from the unevolved distribution, with
the terms depending on sU §2) canceling by the unitary
condition, as in .

In practice we evaluate matrix elements of §U ;2) in the
two-body space using antisymmetrized kets expanded in
partial waves [75]:

LYY Y Y s

SMSLMLJMJTMT

|k1017'1 k2027’2

x (1172|T M) \/EYL*ML (K) (LM SMg|JM,)
x [1— (=1)E+S+T] | KE(LS)J M ;T Mr), (8)

where k = 7(k1 ks), K = k; + ko, and o and 7 denote
the spin and isospin projections, respectively. The factor
of y/2/m comes from the completeness relation in relative
momentum space 1 = 2 [ dkk? |k)(k|. Formulas are
given in Appendix [A] for the momentum distributions in
the LDA that are used in Sec. [V Bl

The decomposition in Eq. @ is exact for the deuteron.
The contributions of the individual pieces are shown in
Fig. [6] for the AV18 potential unevolved and evolved to
A = 1.35fm ™', which we take as a representative low-
resolution RG scale for nuclear ground states. The full
momentum distribution at high-resolution is shown as
a solid line, which is also equal to the sum of tAhe low-
resolution pieces. The matrix element of the “I” piece
from @ (first term) has support only for low momenta;
in heavier nuclei it will correspond to the mean-field re-
gion of Fig. |2l The terms linear in U are negative at low
momentum, removing strength from this region. (Note,
the absolute value of U is shown in Fig. @) The 6USUT
piece is the sole contributor to the high-momentum re-
gion above 2fm~'. The region where the “7" and lin-
ear 6U terms fall off while the JUSUT term dominates

(2 T (2)t
Z(SU kq)alQ_s_ka1Q Kl1g- qa1Q+q+ Z(SU

t ot
K01 014" q-q QK3 Qrk

a/lQ+kaTlQ kalq k/a’1Q+k/3 (6)

103 E T T T
! —— High res.

FIG. 6. Contributions to the deuteron momentum distribu-
tion n$(q) with AV18 and A = 1.35 fm™* from the expec-
tation value of Eq. @ in the unevolved (A = oo, labeled
“High res.”) and evolved wave functions. The latter is split
into three pieces, with the sum indistmgulshable from the un-
evolved curve. The normalization is = fo dq¢®ni(q) = 1.

is shifted to higher momenta with increasing values of
A [T4].

When taking matrix elements of the SUSUT term in a
low-resolution wave function, Q, k, k’ will all be soft, so
for |q| > kg the 6U functions will be in the factorization
regime. This will isolate the q dependence of the pair
distribution as in Fig. h). For the deuteron, only the
38,-3D; part of §U will contribute.

How accurate will the truncation to the two-body level
be for A > 27 Calculations of bulk quantities such as en-
ergies and radii are sensitive to three-body contributions
at low resolution, but their role is amplified by cancella-
tions of the kinetic and potential energies. The cluster
hierarchy of the potential itself is maintained in the SRG
evolution. For high-momentum distributions, we expect
that the two-body contribution will dominate. This is
supported by the work of Neff et al. [76] on the pair dis-
tribution in the alpha particle, which showed some A de-
pendence near 2 fm ™" in the dominant S = 1,7 = 0 spin-
isospin channel when integrating over the center-of-mass
momentum Q (with significant dependence in the other
channels) but very little dependence at Q = 0; in all cases



there is little dependence above 3fm™'. In future work

we will use the RG running (i.e., the A dependence) to
test the truncation error in our calculations [74]. We em-
phasize that corrections from three-body operators are
fully accessible within our approach and that good ap-
proximations to these contributions are possible. Finally,
we note that truncation at the two-body level has much
in common with the leading term of the Brueckner ex-
pansion [2| [74]. This has implications for SRC physics
at high density, e.g., in neutron stars, where three-body
physics is essential for a quantitative description.

B. Local density approximation calculations

At low resolution there are various options for calcu-
lating SRC physics as manifested in the experiments de-
scribed in Sec. m By softening the Hamiltonian, the nu-
clear ground-state wave functions become less correlated,
more amenable to many-body perturbation theory, and
more universal in nature. Furthermore, for operators
evaluated at the highest momenta, the details of long-
range correlations should become less important. Indeed,
the physics is focused on short distances, which suggests
that an LDA should work well, particularly as the unitary
transformations in the factorization region (5(7)(\2)(k, k')
with |k| < A and |k’| > \) are weakly dependent on the
low momentum [44]. Figures included as Supplemental
Material [URL will be inserted by publisher]| illustrate
the factorization of the USUT term in Eq. @

We illustrate how to formulate an LDA by start-
ing with the second-quantized version of the unevolved
single-particle momentum distribution for isospin projec-
tion 7 from coordinate-space integrals (cf. Ref. [78]):

n’(q) = /dr/dr’ (\I/A\ﬂ(r’)@(r)mjﬁ o—iar(r—1")
= / dR / ds phy (R, )€’ (9)

where R = (r +1')/2, s = r' —r, and pf;(R,s) is the
density matrix for the A-body nucleus. We implement an

LDA as the leading term in a density matrix expansion
(DME) [79]:

pbm(R,s) = p" (R)psi(skg (R)) + - - (10)

where the Slater function is pgr,(z) = %jl (z), the local
Fermi momentum is k7 (R) = (372p7 (R))Y/? with p™ the
proton or neutron number density normalized to Z or
N, and we have applied angle averaging. Negele and
Vautherin showed this was a good approximation for not-
too-large values of s [79].

If we substitute into @ and integrate over s, we
find

" (q) ~ 2 / dRO(KL (R) — q), (11)

with the factor of 2 from the spin sum. This is a poor
approximation at very low ¢ because of the contribution
to the integral from large s, but its generalizations to in-
clude the SRG unitary transformations provide a quan-
titative reproduction of momentum distributions at high
momenta. All of the second-quantized terms with §U will
be of the form afataa. These have the same structure as
a Hartree-Fock energy for a non-local potential, to which
we can apply the corresponding DME from Refs. [79] 180].
This approximation has a single spatial integration with
two 6 functions featuring the local Fermi momenta. (The
explicit formulas for the low-resolution LDA momentum
distributions are given in the appendix.)

We demonstrate the LDA for proton momentum distri-
butions using the AV18 potential in Fig. |7} for which we
can compare to quantum Monte Carlo calculations [77)
78, [81]. We use proton and neutron densities gener-
ated from the SLy4 Skyrme functional [82] using the HF-
BRAD code [83]. We expect the approximations to be
valid at least for momenta above the gray-shaded regions
and indeed the agreement is quite reasonable, particu-
larly at the highest momenta. (We exclude the predic-
tions below ¢ = 0.6 fm ™! because of the poor approxima-
tion; better treatments will be presented in Ref. [74].) It
is evident that the high momentum tails are very similar
across the nuclei; this is the manifestation of the universal
behavior of these distributions. There is a clear signature
of the sharp cutoff caused by the 6 functions in Eq.
at momenta near the Fermi momentum k. We expect a
smoother distribution with higher-order contributions to
the DME as well as from long-range correlations. From
Table [ we see evidence that the s-waves dominate the
contributions to these momentum distributions.

TABLE I. Percentage contributions from s-waves and selected
p-waves to proton momentum distributions for ¢ > 2fm™!.
We show Nx/N with N ~ [ dqq°n3(q), where ni(q) is
the proton distribution for nucleus A with evolved operator
at A= 1.35fm™! and X denotes using only one partial wave.

Nucleus| 'So [%] 3Si [%] °Po [%] 'Pi[%] °*Pi [%]
2@ 15.5 78.9 1.0 0.8 3.8
160 15.5 79.1 1.0 0.8 3.6
0 Ca 15.4 78.7 1.1 0.9 4.0
48Ca 15.4 78.5 1.1 0.9 4.1
56Fe 15.4 78.4 1.1 0.9 4.2
208pp, 15.4 78.4 1.1 0.9 4.2

The high-momentum tail of any momentum distribu-
tion will be scale- and scheme-dependent, i.e., dependent
on the potential used. We can reproduce results at low-
RG resolution for any initial potential, but the reaction
operators must be consistently evolved. As evident from
Fig. 3} we can cancel out the scale and scheme depen-
dence in many cases by taking ratios. We show examples
in Figs. 8] and [ for the pair distribution at @ = 0. A
clarifying feature of the LDA is that the theta functions
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FIG. 7. Proton momentum distributions for 2C, '®0, and %°Ca calculated in the LDA for ¢ > 0.6fm~'. Here we use AV18
to SRG-evolve the operator setting A = 1.35 fm ™!, and divide each distribution by the proton number Z. The gray-shaded
sections are where ¢ < \. Black dots correspond to AV18 quantum Monte Carlo calculations [77].

defining the Fermi sea imply simple consequences for the
pair distribution when @ = 0. In particular, the pro-
ton and neutron Fermi spheres overlap, so when N > Z
the product of the theta functions is unity for the proton
Fermi momentum below k%, independent of k2.
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FIG. 8. Ratios of pp 4+ pn to nn + np for various nuclei
calculated in the LDA with the leading two-body truncation
of the pair distribution operator evaluated at @ = 0. Here we
use AV18 and set A = 1.35 fm ™!,

In Fig. |§] we show ratios of the pp + pn to nn + np
pair momentum distributions at @ = 0 as a function of
q for six nuclei from '2C to 2°®Pb. We restrict the range
of the plot to the region where SRC physics is expected
to dominate. The ratio is equal to one for N = Z nuclei
at all ¢, as expected from factorization as illustrated in
Fig. [3] if the nucleus in numerator and denominator are
the same. Even though there are no high-momentum
nucleons in the low-resolution wave function, the result
is consistent with phenomenology that the proton and
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FIG. 9. Ratios of proton-proton to proton-neutron distribu-
tions using AV18 and A = 1.35 fm 1.

neutron high-momentum distributions should be about
the same [1]. In the region of np dominance near ¢ =
2fm ™" (400 MeV), this ratio should be unity independent
of N/Z, while there is N/Z dependence away from this
region because there are more nn than pp pairs.

In Fig. [0] we show ratios of the pp to pn pair dis-
tributions as a function of ¢ for the same nuclei as in
Fig. The ratio dips down to essentially zero just be-
fore 2fm ™~ and then rises to about 0.15 at 4fm™"'. This
trend is also observed in the GCF calculations [10} [3§]
and reflects the transition from the dominant effect of the
tensor force toward the scalar limit. In the low-resolution
calculations here, this dependence on ¢ is purely from the
high-momentum part of the factorized unitary transfor-
mations. The ratio shows no dependence on N/Z because
the pair momentum distribution at high-g and @ = 0
is restricted entirely by the proton Fermi sphere in the



SUSUT term of Eq. (A3) for N > Z nuclei.
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FIG. 10. SRC scaling factors a2 calculated using AV18 ac-
cording to Eq. . See text for further details.

Finally, in Fig. |[10] we compare calculated SRC scaling
factors ag using AV18 to values for nuclei extracted from
inclusive cross section ratios [7, [23]. Following the pre-
scription of Ref. [27], we estimate ag by integrating single-
nucleon probability distributions (phase-space weighted
n{!(g), summing proton and neutron distributions) over

a high-momentum range:

az(A) = lim PA(q) _ zqu‘“g“ dg ¢*n3\ (@)
2 T g5 Pi(q) A quhigh dgq qzni(Q) .

(12)

We apply the LDA to both the numerator and denomina-
tor, which may help to cancel systematic errors. Results
using densities from the SLy4 Skyrme functional [82] are
shown in red and results using densities from the Gogny
functional [84] in blue. The “error bars” (which are not
statistical uncertainty intervals) are established by using
integration ranges A¢"&" = 200 fm~'and Aghigh = 3.8-
4.5 fm ™" [27]. The agreement with experiment is consis-
tent with these error bars.

The magnitude of ay and the trend with A can be
roughly understood at low-RG resolution from a mean-
field treatment of the leading operator product expansion
for the integrands in [41] 185, I86]. This means a fac-
torization approximation to 06U (k, q) (including constant
k dependence) and the dominance of the 3S; contribu-
tion. When applied to the third term of Eq. , which
is the only contribution to the as integrals, the short-
distance ¢ dependence cancels in the ay ratio and we are
left with integrals of the 6 functions over total momen-
tum K and relative momentum k. The integrals decou-
ple after switching to single-particle momenta, yielding a
product of the proton and neutron densities at R. Thus
as is simply given by the ratio of (1/A) [ d®*R p,(R)pn(R)
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factors, as would be expected from the schematic treat-
ment in Fig. This ratio accounts for about 80% of
as and the variation of the integral with A tracks the A
dependence from *He to 2°8Pb quite closely. The remain-
ing 20% comes primarily from the 'Sy contribution, with
the relative weighting of 'Sy and 3S; dependent on the
relative ¢ dependence in the 6U matrix elements seen in

Fig.

C. Low-resolution take on SRC physics

Here we revisit the key features of high-resolution SRC
phenomenology from Sec. [I[J] now understood from low
resolution via Fig. [3] and through our explicit LDA cal-
culations from Sec. [V Bl

1. Universal high-momentum nucleon distribu-
tions. The entire sequence in Fig. [3| illustrates
the outcome of taking ratios of inclusive cross sec-
tions. Figure [B(h) in particular is the embodiment
of universal distributions, with the dependence on
the nucleus factorized from the dependence on the
high momenta. Explicit calculations of the momen-
tum densities manifest the factorization as seen in
Fig. [ where each nucleus exhibits the same ¢ de-
pendence. The kinematic thresholds selected for
the inclusive experiments are those necessary for
this clean factorization to hold. For SRG parame-
ter A comparable to ki, this corresponds to the con-
ditions for factorization as well as complete domi-
nance of the two-body current. In taking ratios, the
high-momentum part cancels out, so the leading de-
pendence of the plateau heights in the cross-section
ratio, namely ag, is a mean-field quantity [38] 41],
which is well reproduced in our approximations (see
Fig. . The conditions here hold for any high-
momentum current.

2. Kinematics of the knocked-out nucleons.

If we look at Fig. e)7 we see that the external
high-momentum current operator is connected to
the soft, evolved low-energy wave function by the
operator UT. That wave function has mostly Fermi
sea nucleons and nearby admixtures. When Ut
acts, we can read off from Eq. that connecting
to a high-momentum nucleon must come from the
U l part. Since this part starts with a two-body
piece with the same pair center-of-mass momen-
tum K as for the states annihilated from the Fermi
sea or near the Fermi surface, the high-momentum
states must be a pair with center-of-mass momen-
tum distribution the same as the Fermi sea. Fur-
thermore, the contributions are dominated by rel-
ative s-waves (see Table . Thus this basic part of
SRC phenomenology [87] follows immediately.

We can address the role of the omitted three-body
terms either through direct evolution, which is non-



trivial but well-established technology for SRG evo-
lution [88], or indirectly by considering the depen-
dence on the SRG flow parameter A. Weak de-
pendence indicates small effects of three-body (and
higher-body) operators. The work of Neff, Feld-
meier, and Horiuchi [76] used the indirect method
for the SRG-evolved nucleon pair distributions for
A =3 and A = 4. For example, they look at pair
densities with SRG two-body-only unitary trans-
formations in helium-4 and identify where there
is A dependence. There is almost no dependence
for K = 0 pairs, but with larger center-of-mass
momentum it is significant, meaning that three-
body contributions cannot be neglected. When in-
tegrated over K there is slight A dependence near
2fm~' in the dominant S = 1, T = 0 channel and
strong dependence in the other channels. In all
cases the X dependence is small above 3fm~'. The
A dependence for the calculations presented here
will be explored in detail in future work [74].

. Ratio of np to pp knocked-out pairs for
intermediate relative momentum (300-500
MeV).

Tensor dominance follows directly from calcula-
tions of the unitary transformation operator in the
two-body subspace. Figure 4| shows the ratio of
unitary transformations in the dominant s-waves.
The ratio of triplet to singlet shows the peak near
g = 2fm~! for both potentials, associated with a
zero in the 'Sy channel and the enhanced tensor
contribution in the 3S; channel. Figureshow that
despite the tensor dominance, at low-RG resolution
the coupling to the wave function is through the
s-waves, not tensor correlations in the wave func-
tions. The consequences for experimental ratios are
illustrated in Figs. [§] and [9] which are consistent
with SRC phenomenology.

. Ratio of knock-out cross sections from
neutron-rich nuclei compared to N = Z nu-
clei.

In the region of np dominance, the pairs coupled
from the Fermi sea are almost all np pairs, so the
high-momentum proton and neutron distributions
are the same, independent of the N/Z ratio in the
mean-field part. This is seen in Fig. |8 and is an
immediate consequence of the U part beingAdom—
inated by the 3S; channel and this term in U cre-
ating pairs. So whatever low-energy wave function
it hits, it will always “kick above the Fermi sea” an
equal number of neutrons and protons.

. Transition from np dominance of SRC pairs
to ratios expected from scalar counting. This
transition is manifested in Figs.[4and[9] In the low-
RG resolution formalism, it is simply a consequence
of the two-body physics that is encapsulated in the
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two-body unitary transformations by the SRG evo-
lution. This physics is well-known from NN scat-
tering.

The generalized contact formalism. As already
noted, the GCF phenomenology is built on a factoriza-
tion ansatz for the many-body wave function when a pair
of nucleons has small relative distance or high relative
momenta. This leads to the pair distributions in coordi-
nate and momentum space taking the forms in Eqs. (1)
and , respectively.

The parallel formulation at low-RG resolution is that
the dependence on r or ¢ in the wave function becomes
the corresponding part of the factorized unitary transfor-
mation. As such, it is the leading term in an operator
product expansion [41] [42] [44] 85]. A key advantage of
the RG formulation is that systematic corrections are well
defined.

The low-order correlation operator approxima-
tion (LCA). The LCA methodology can be used to com-
pute observables for nucleon knockout reactions that are
dominated by SRCs. The high-resolution ground-state
wave function |¥4) or nucleus A is related to a simple
wave function |®4) (a Slater determinant in practice)

through a correlation operator G:

1

——G|P4) . (13)
(DPA|GTG|D )

[Wa) =

The LCA consists in approximating G by central (Jas-
trow), tensor, and spin-isospin SRC correlations with
terms corresponding to two-body operators. The dom-
inant contribution to the SRC part of the nuclear mo-
mentum distribution takes the form [27]

el@~ Y Y Gy tk-q

NN’e{p,n} af Kkk’
~ K
X g12(5 +k' —q)

! T T !
x (Na, N 6|a%+ka%7ka%+k,a%7k,|Na,NB),
(14)

where the «, sum runs over occupied single-particle
states in the Slater determinant |®4). The parallels to
our low-RG resolution formulation are apparent, both
using a simple many-body wave function and with the
correlation function taking the place of our two-body uni-
tary transformations. Note that these functions are not
unitary and they are constructed by matching to ab ini-
tio results rather than being constructed directly. It will
be interesting to make more detailed comparisons.

V. DISCUSSION: TAKEAWAY POINTS

In this section we summarize some of the takeaway
points from an RG-based perspective on SRC physics in
the form of answers to frequently asked questions.



e What 1is short-range-correlation (SRC)
physics? SRC physics is short-distance physics
manifesting at high RG resolution as high-
relative-momentum nucleon pairs, while such
pairs are suppressed at low RG resolution. The
SRC momentum scale starts where the tensor
force dominates the NN interaction (around
2fm~" = 400 MeV or a bit lower). The SRC pairs
have center-of-mass momentum distributions with
a width comparable to the Fermi momentum.

Where does the short-range physics of SRC
pairs appear at low RG resolution? With
decreasing RG resolution, this physics will shift
from wave functions (structure) to interaction op-
erators (potential /reactions) with smooth momen-
tum dependence. This was demonstrated explic-
itly and quantitatively for deuteron electrodisinte-
gration [89] 90]. The characteristics of this SRC
physics can be identified from the unitary transfor-
mation operator evaluated in a few-body space (it
is dominantly two-body).

Which is the correct picture of nuclei, with
hard or soft potentials? The RG explains that
both hard and soft pictures are correct descriptions
of nature (actually there is a continuum of pic-
tures!), if one treats structure and reactions con-
sistently (i.e., at the same RG resolution).

What is the best choice of RG resolution
scale? Weinberg’s 3rd Law of Progress in Theoret-
ical Physics [59)] states “You can use any degrees of
freedom you like to describe a physical system, but
if you choose the wrong ones you’ll be sorry!” For
applications to hard scattering in QCD, the reso-
lution scale is chosen to be of order the character-
istic four-momentum transfer so that the reaction
mechanism can be calculated in perturbation the-
ory and factorization is well established. But the
best choice of scale may not be so clear for analyz-
ing SRC experiments because of the trade-offs.

Is SRC physics missing from low-RG resolu-
tion descriptions of nuclei? It is not missing.
The Hamiltonians at low resolution are constructed
to match energies or scattering observables for low-
energy bound states. This can be seen explicitly
through RG evolution (e.g., with the SRG), where
short-distance modification of wave functions in co-
ordinate space due to repulsive core or tensor in-
teractions, or the related high-momentum tail of
momentum-space wave functions, is smoothly sup-
pressed with the lowering of the RG scale and the
potential shifts by weakly momentum-dependent
pieces. If appropriate (i.e., consistent) operators
are omitted, then SRC physics will be missed, but
it can always be accommodated in a consistent cal-
culation.
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e What are the advantages of a high-RG-

resolution description of nuclei? A high-
RG description enables models of short-distance
physics that use resolved degrees of freedom. This
can mean that the dominant reaction mechanism is
particularly simple (e.g., one-body currents). The
high-RG-resolution GCF phenomenology provides
a reasonable, if not yet high-precision, description
of SRC experiments to date. It is also the starting
point for evolution to low resolution.

What are the advantages of a low-RG-
resolution description of nuclei? The nuclear
structure is increasingly perturbative at low reso-
lution. Many ab initio methods only work at lower
resolutions and many-body perturbation theory be-
comes usable. Scale separations and factorization
are better exploited. Universal behavior is more
apparent. Final-state interactions have been shown
to be suppressed for deuteron electrodisintegration
and this is expected to be a general phenomena
based on local decoupling.

What does it mean for structure and reac-
tion models to be consistent? There are several
aspects to consistency. One aspect is the scale and
scheme. If one uses a low-resolution wave func-
tion with high-resolution reaction operators, this
is inconsistent and can lead to apparent quench-
ing. To maintain consistency at different scales,
one can start with a consistent Hamiltonian and
current operators and evolve them together with
an RG approach like SRG.

How do you connect the pictures at two res-
olutions? Using the (similarity) renormalization
group! The consistent low-RG resolution operators
can be evolved from high resolution (even many-
body operators). Unitary evolution is an important
aspect if we want to describe high-experimental-
resolution probes of low-RG-resolution nuclei. Or
consistent operators can be fit! (The latter possi-
bility will be explored in future work [74].)

How does RG resolution relate to experi-
mental resolution? RG resolution is set by the
decoupling scale, which dictates what momenta are
part of a low-energy wave function. Note that for
unitary RG evolution, like the SRG, this is a sep-
aration scale; the high-momentum components are
not eliminated but appear only in wave functions of
high-energy states. Experimental resolution is set
by the kinematics of the experiment. These are in-
dependent! The RG resolution is not a measurable
quantity but rather a choice of the analysis.

Can high-momentum nuclear distributions
be measured experimentally? They can be ex-
tracted from experiment in a scale/scheme depen-
dent manner. This is the same situation as with



QCD parton distributions. Note that this means
that high-momentum distributions using different
Hamiltonians (which will manifest scale and scheme
dependence) will not agree.

e When you soften a Hamiltonian, do you
“harden” the interaction operators? No.
SRG makes unitary transformations, so no physics
is lost, but it is nonperturbatively “reshuffled”.
(Note that this means that an SRG-evolved Hamil-
tonian will have the same limitations or virtues as
the original Hamiltonian!) Low-energy states fil-
ter operators so only low-momentum components
of the operator contribute to matrix elements. This
leads to numerous simplifications. Purely high-
momentum operators (meaning operators connect-
ing to only high-momentum physics) factorize and
the dependence on high momentum is state inde-
pendent. This is the manifestation of an opera-
tor product expansion. Where the tensor inter-
action plays a role, there is a de-emphasis of D-
wave physics compared to S-wave contributions.
Reduced final-state interactions are observed. The
complication is from higher many-body operators,
but these can be evolved in few-body spaces.

e What are the implications for other knock-
out reactions? Analyses of intermediate energy
nucleon knock-out experiments often mix a high-
resolution reaction mechanism (e.g., eikonal model)
with a low-resolution structure description (e.g.,
shell model) [14} 91]. Such a mismatch applied
to the electron-scattering SRC experiments consid-
ered here would lead to essentially zero cross sec-
tion predicted theoretically because the contribu-
tion from the two-body current at low RG resolu-
tion would be entirely omitted and the one-body
current has no support at high momentum. This
implies that RG evolution of the reaction operators
may be relevant for resolving systematic discrepan-
cies between measured cross sections and theoreti-
cal predictions [14] [91] (see also Ref. [92]).

VI. SUMMARY

We have demonstrated that high-RG-resolution SRC
physics is faithfully incorporated at low resolution by uni-
tary RG evolution, with weakly correlated wave functions
and simple evolved operators. We have also confirmed
that at low-resolution the consequences of SRC experi-
ments follow directly from basic and well-established nu-
clear physics: the density dependence of nuclei and char-
acterisitcs of the nucleon-nucleon interactions, in partic-
ular the tensor force and short-distance repulsion. Fur-
thermore, the basic features of the SRC phenomenologies,
in particular the GCF and the LCA, emerge naturally
by consideration of low resolution. The systematic SRG
framework points to how to improve them.
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The value so far of the SRC knock-out experiments
is not new insight into the internucleon interactions or
features of the many-body wavefunctions. Indeed, we
have seen that all that is needed to explain the obser-
vations are familiar features of the NN interaction from
phenomenological or chiral EFT potentials well under-
stood from pion exchange and fitting to NN scattering
data. Rather, it is the demonstration that this physics
can be isolated and controlled that opens the possibilities
to understand more complicated reactions. A better un-
derstanding of how to analyze reactions is critical for rare
isotope nuclear physics and extensions of the SRC exper-
iments can be a gateway. Combined with RG analyses,
such experiments can help calibrate and test reactions
cleanly and set the stage for extensions to more compli-
cated knock-out reactions.

Planned extensions of the present investigations in the
short term include [74]: further examining the SRG res-
olution (A) dependence; improving the treatment of the
ground-state wave function with DME corrections; re-
laxing the truncation to two-body operating, quantify-
ing the corrections and seeking tractable approximations;
and re-examining (e, €’p) knock-out reactions studied at
NIKHEF and other electron scattering facilities [49} 50].
Work on all of these areas is in progress.
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Appendix A: LDA formulas

In this appendix we summarize the LDA formulas ap-
plied in Sec. The single-nucleon momentum distri-
bution is:

nie) = [ @R {2007 -0

1d.’13 ’

+ 32 (2J+1)= /dkakLSJT(SUkLSJT ' |T T+ 7") [“0(k] — /—HkT— -2k
%Z (LS)ITRURLS)IT) 3| [T +) Folh; —a) [ G008~ la—2K)

/ 2 ) ) d7y @ ) /
+2L,LZ:,S¢T;(2JH)<”>/O dk:k/o dK K /_1 5 /_1 5 (K(LS)JT|5U lq — K/2|(L'S)JT)
x (la—K/2|(L'S)JT|6U|k(LS)JT) Z | (r7/|T7+7") 2Ok — [ K/2+ k|) 0(kT — |K/2 — k|)}7
T (A1)

where the local Fermi momentum is k7 (R) = (372p7 (R))'/? with p” the proton or neutron number density normalized
to Z or N. For the angle averaging we have defined

la — 2k| = /¢ + 4k2 — 4dgkz,  |q-K/2|=/® + K2/4 —qKy, |K/2+k|=+\/K2/4+k2+ Kkz. (A2)

A primed summation means a restriction to L + S + T odd and L + L’ even. Integration over [ d3q/(27)3 yields the
full normalization of n3(¢) from the first line in Eq. while the unitary condition from Eq. expanded in partial
waves enforces cancellation of the second and third terms after changing variables appropriately.

The pair momentum distribution in the LDA assuming spherical symmetry is (with explicit R or R’ dependence):

i (@,Q) = [ @RBOFR) - |Q/2-+dl) [ R 2005 (R) - 1Q/2 - a)
312< RS [ PRI - 1Q/2)

( /dSR Z > @I+ D= ((LS)ITI0U|g(LS)IT)| (rr'|T 7 + 7') 2
L.ST J

x Ok (R) — )0 (T/( R)-1Q/2—d])

2” /d3 Z > @27+ 1)( / dk k?(k(LS)JT|6U|q(L'S)JT)(q(L'S)JT|6U |k(LS)JT)

L,L',.S, T J

x [ (e | T +7) [P 0(kL(R) - 1Q/2 + K|) O(k] (R) — |Q/2 — k), (A3)

(

where for |Q| # 0, we average over the angle between Q q in the last term.
and k to evaluate the 6 functions in the last term. The
first two lines carry the full normalization of the momen-
tum distribution. It is easily verified that an integration
over [d3q/(2m)? [ d*Q/(2m)? of these terms in the LDA
followed by integrations over R and R’ yield Z(Z —1)/2
ifr=7"=1/2, N(N-1)/2ifr=7"=-1/2,and NZ/2
if 7 = +£1/2 while 7/ = F1/2. The unitary condition from
Eq. expanded in partial waves enforces cancellation
of the third and fourth terms after integrating over q, for

any Q. This is manifest after switching labels for k and L
The angle average of the # function in the second term



of Eq. (A1) is

1
7! dx T’/
@b = [ 500 ~la=2k)

1 if ¢ < kT and 2k < kI — ¢

/2 2 ,
M W2 if g < by and

kD —q <2k <kl 4+¢

12 -
kp —(q—2k)*

e if k7' < ¢ < kI and

q—kT <2k <q+ kT

0 otherwise
(Ad)

The angle average of pairs of theta functions that appear
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several times in Eqs. (A1) and (A3) is given by

1
dZ ’
Fa(Quk) = [ 5007 — Q/2+ KB ~1Q/2 ~ )
-1
1 if k< kpin — €
UEDSO-QE it k< ke + § and
pmin — @ < | < pmax — &
(kivg)zgg;_QzM if kmax — % < k and
k< f(k2e)2 - &
0 otherwise
(A5)
where
k™ = min(kT, k7)), (A6)
ke = max(ky, kL), (A7)
avg 1 12
kFg:\/§(k;2+k; ) (A8)

Extensions of the local density approximation applied
here are discussed in Ref. [74].
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