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 2 

 The southern Coast Mountain batholith (CMB) was episodically active from Jurassic to 24 

Eocene time, experiencing four distinct high magmatic flux events during that period. Similar 25 

episodicity has been recognized in arcs worldwide, yet the mechanism(s) driving such punctuated 26 

magmatic behavior are debated. This study uses zircon Hf and O isotopes, together with whole 27 

rock and mineral geochemistry, to track spatiotemporal changes in southern CMB melt sources 28 

and to evaluate models of flare-up behavior and crust formation in Cordilleran arc systems. Zircon 29 

Hf isotope analysis yielded consistently primitive values, with all zircon grains recording initial 30 

εHf between +6 and +16. The majority (97 %) of analyzed zircons yielded δ18O values between 31 

4.2 and 6.5 ‰, with only 5 grains recording values up to 8.3‰. These isotopic results are 32 

interpreted as reflecting magmatism dominated by mantle melting, during all time periods and 33 

across all areas of the southern batholith, which argues against the periodic input of more melt-34 

fertile crustal materials as the driver of episodic arc magmatism. They also indicate that limited 35 

crustal recycling is needed to produce the large volumes of continental crust generated in the 36 

batholith. Although the isotopic character of intrusions is relatively invariant through time, 37 

magmas emplaced during flare-ups record higher Sr/Y and La/Yb(N) and lower zircon Ti and Yb 38 

concentrations, consistent with melting in thickened crust with garnet present as a fractionating 39 

phase. Flare-ups are also temporally associated with periods when the southern Coast Mountains 40 

batholith advances inboard. We suggest that migration of the arc into more fertile lithospheric 41 

mantle domains triggers voluminous magmatism and is accompanied by tectonic and magmatic 42 

thickening. Overall, these results demonstrate that the magmatic growth of Cordilleran arcs can be 43 

spatially and temporally complex without requiring variability in the contributions of crust and / 44 

or mantle to the batholith.  45 

 46 
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INTRODUCTION 47 

Continental arcs are important sites of continental crust generation and modification and 48 

the large composite batholiths produced in arcs record the combined processes of partial mantle 49 

melting and crustal recycling. Most continental, or Cordilleran-type, arcs are constructed over long 50 

periods of time (≥ 100 Myr), and although subduction may be ongoing over those intervals, 51 

magmatism appears to be highly episodic (e.g. Armstrong, 1988; Ducea, 2001; Paterson and 52 

Ducea, 2015). This episodic behavior is characterized by high-flux magmatic events, or “flare-53 

ups” that quasi-periodically punctuate the baseline rates of magmatism. The processes that control 54 

the oscillation of arcs between flare-up and baseline modes remain debated, but are generally 55 

thought to be either internal to the arc (i.e. tectono-magmatic processes operating in the upper plate 56 

such as periodic crustal thickening or delamination) or external to the arc (e.g. periodic change in 57 

the obliquity or rate of plate convergence). Flare-ups are capable of producing as much as 90% of 58 

the magmatic additions to arcs (Ducea and Barton, 2007) and therefore identifying the petro-59 

tectonic mechanisms that control them is critical to our understanding of the growth of continental 60 

crust both in individual arc systems, as well as globally.  61 

Isotopic investigation of plutons in many Cordilleran arcs, particularly those emplaced 62 

along the margins of North and South America, has revealed significant incorporation (up to 50%; 63 

Ducea et al., 2015) of preexisting upper plate lithosphere in new arc melts. This process is 64 

evidenced by higher 87Sr/86Sr and lower εNd and εHf in batholithic rocks, all of which point to the 65 

incorporation of older, upper plate materials in magma sources, though cannot be used to 66 

distinguish between contributions from crustal and mantle lithospheric components. Recycling of 67 

crust is reflected in the δ18O of igneous materials elevated above mantle values, which can only 68 

occur if surficial rocks that have isotopically exchanged with the hydrosphere are partially melted 69 
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(Valley et al., 2005). Examples of these isotopic systems being interpreted to indicate upper plate 70 

recycling have been documented in the Sierra Nevada (Lackey et al., 2008; 2012; Cecil et al., 71 

2012), the Peninsular Ranges batholith (Kistler et al., 2014), the Idaho batholith (King and Valley, 72 

2001; Gashnig et al., 2011), and the Coast Mountains batholith (Samson et al., 1991; Wetmore and 73 

Ducea, 2011; Cecil et al., 2011; Girardi et al., 2012). Furthermore, upper plate additions into 74 

batholithic melts have been temporally linked to high-flux events (e.g. Ducea and Barton, 2007), 75 

leading to models wherein arc flare-ups are fueled by the periodic incorporation of more melt-76 

fertile, crustal materials (Ducea and Barton, 2007; DeCelles et al., 2009). In contrast, several recent 77 

studies have suggested that flare-ups are dominated by juvenile melts and driven by episodic 78 

events in the mantle (Decker et al., 2017; Martínez Ardila et al., 2019; Attia et al., 2020). In these 79 

cases, moderately depleted εNd and εHf signatures are attributed to contributions from enriched 80 

mantle sources.  81 

The primary goals of this study are to test the possibility that magmatic flare-ups in the 82 

Coast Mountains batholith (CMB) are driven by the episodic addition of supracrustal materials to 83 

melt sources and to develop a petro-tectonic model to explain the complex spatio-temporal 84 

magmatic patterns observed in the batholith. The southern part of the batholith is an interesting 85 

and ideal site for this test because it provides continuous, arc-perpendicular exposures of intrusive 86 

rocks that have variable compositions and that span the lifetime of the active arc. Geochronologic 87 

analysis of these intrusions revealed a complex, episodic magmatic history, and one that is distinct 88 

from the batholith to the north, yet the processes controlling arc tempos remain uncertain (Cecil et 89 

al., 2018). It appears that magmatism is at times – but not always – synchronous with periods of 90 

crustal deformation (Rusmore et al., 2013, 2019) and metamorphism (Bollen et al., in review; 91 

Dafov et al., 2020). By investigating the geochemical and isotopic compositions of Jurassic – 92 
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Eocene intrusions of the southern CMB, we can evaluate: 1) the extent to which crust and mantle 93 

sources are involved in batholith generation through time and space; 2) the depth and thermal 94 

conditions of melt generation; and 3) links between magmatism, deformation and metamorphism.  95 

Our results indicate that magmatism in the southern CMB is dominated by mantle melting, 96 

as recorded in primitive zircon εHf and uniformly mantle-like zircon δ18O values. Input of older 97 

and / or near-surface country rocks is limited, indicating that melt-fertile supracrustal materials 98 

cannot be the primary drivers of magmatic flare-ups. Crustal recycling is therefore not likely to be 99 

a volumetrically significant process within the southern CMB, which instead reflects the 100 

generation of new continental crust (Hollister and Andronicos, 2006). The processes controlling 101 

mantle-driven flare-ups remain uncertain, but spatial and temporal trends in the geochronologic 102 

and geochemical data suggest that periodic inboard advance of the Coast Mountains arc may lead 103 

to episodic tapping of more fertile sub-continental mantle lithosphere, producing the mantle-like 104 

flare-ups observed.  105 

 106 

GEOLOGIC AND TECTONIC FRAMEWORK 107 

The Coast Mountains batholith is one of the largest exposed Cordilleran arcs, extending > 108 

1500 km along the western margin of southeast Alaska and British Columbia. Subduction of paleo-109 

Pacific plates beneath western North America drove the nearly continuous growth of the batholith 110 

for ~ 150 m.y. in Jurassic to early Eocene time, whereupon the margin began transitioning to a 111 

dextral transform system (e.g. Stock and Molnar, 1988; Madsen et al., 2006). The southern part of 112 

the Coast Mountains batholith investigated as part of this study is exposed between ~ 50.5 and 52 113 

°N (Fig. 1). This is one of the widest parts of the batholith, with very little host rock exposed, 114 

making the affinity of the basement into which the southern CMB is emplaced uncertain. 115 
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Vancouver Island, which comprises rocks of the Wrangellia terrane, is located to the west of the 116 

study area, whereas Triassic – Cretaceous rocks of the Intermontane superterrane outcrop to the 117 

east; the location of the boundary between the two is unknown. Paleomagnetic results, together 118 

with patterns observed from geochronologic datasets, suggest that the Intermontane superterrane 119 

may extend westward to Vancouver Island, underlying much of the batholith at the study latitudes 120 

(Rusmore et al., 2013). This is also consistent with recent detrital zircon results from 121 

metasedimentary pendants preserved in Bute and Knight Inlets (Dafov et al., 2020).  122 

 123 

Magmatic history 124 

The southern CMB was emplaced between ca. 170 – 45 Ma, and although magmatism was 125 

continuous during that time, the rates of magmatic addition to the batholith varied considerably. 126 

The southern batholith experienced 4 magmatic flare-up events at 161-148 Ma, 114-102 Ma, 85-127 

70 Ma, and 61-48 Ma, with intervening apparent magmatic lulls at 148-114 Ma, 102-85 Ma, and 128 

70-61 Ma (Cecil et al., 2018). The Jurassic event coincides with a Cordilleran arc flare-up 129 

documented along most of the North American margin (Gehrels et al., 2009; Kirsch et al., 2016; 130 

Beranek et al., 2017). The timing of Cretaceous and Paleocene – Eocene high flare-ups differs 131 

from those documented in the central and northern parts of the batholith (Gehrels et al., 2009), 132 

which suggests a relatively small-scale (i.e. not plate-scale) control on high-volume magmatic 133 

events (de Silva et al., 2015; Kirsch et al., 2016; Cecil et al., 2018). Jurassic to Early Cretaceous 134 

intrusions are restricted to the western part of the southern CMB and magmatism generally 135 

becomes younger to the east, such that post-80 Ma plutons are only found at distances greater than 136 

100 km inboard from the coastline. Eastward migration of the post-mid-Cretaceous CMB has been 137 

recognized along the length of the arc, and although arc migration rates have been estimated at 138 
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between 2.1 to 2.8 km/Ma for all arc segments, the spatial evolution of arc magmatism may be 139 

more complex than previously recognized (Gehrels et al., 2009; Cecil et al., 2018).  140 

 141 

METHODS  142 

Whole-rock geochemistry 143 

Many of the intrusions analyzed in this study are the same as those dated and discussed in 144 

Cecil et al. (2018). Sample information and location data is provided in Supplementary Data Table 145 

1. During the zircon separation process, ~ 10 gm aliquots of crushed rock were set aside for whole 146 

rock geochemical analysis. Additional hand samples of large or complex plutons were also 147 

collected and crushed in order to characterize the geochemistry of potentially heterogeneous 148 

intrusions. Unweathered rock chips selected from crushed whole rock samples were powdered in 149 

an alumina ceramic ring and puck mill and analyzed for major and trace elements either via X-150 

Ray Fluorescence (XRF) at Pomona College or by inductively-coupled plasma mass spectrometry 151 

(ICPMS) at Activation Laboratories (Ontario, Canada). Samples analyzed by XRF at Pomona 152 

College were also digested in acid and then analyzed for rare earth elements by ICPMS at 153 

California State University, Northridge (CSUN). All whole-rock geochemical data and modes of 154 

analysis are given in Supplementary Data Table 2.  155 

 156 

Zircon Hf isotope analysis 157 

 Hafnium isotope analysis was performed on dated zircon grains via laser-ablation (LA)-158 

ICPMS at the Arizona LaserChron Center using a Nu Instruments multi-collector mass 159 

spectrometer coupled with a Photon Machines Analyte G2 excimer laser system. The analytical 160 

procedures, and mass bias and interference corrections used follow those described in Cecil et al. 161 
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(2011) and Gehrels and Pecha (2014). Hafnium isotope data were acquired for a total of 775 162 

zircons from 54 plutonic samples. These analyses are representative subsets (~ 10 - 15 grains per 163 

sample) of the same zircons dated as part of Cecil et al. (2018). Most zircon analyses reported in 164 

Cecil et al (2018) exhibited simple U-Pb systematics and did not display evidence of inheritance 165 

or overgrowths, as reflected in discrepant ages or unusual textures in cathodoluminescence (CL) 166 

images (e.g. thin, bright rims or cores with morphologies different that those of the crystal’s 167 

external shape) (Fig. 2). Nevertheless, only zircons that were concordant, had CL textures 168 

interpreted to be magmatic (oscillatory or sector zonation), and contained only a single age 169 

domain, were analyzed. Wherever possible, Hf analysis was performed on top of existing U-Pb 170 

ablation pits in order to ensure the greatest likelihood of analyzing the same age domain sampled 171 

for U-Pb geochronology. Hafnium isotopic data for individual grain analyses are given in 172 

Supplementary Data Table 3. 173 

 174 

Zircon O isotope analysis 175 

 Following zircon U-Pb and Hf isotope analysis, a subset of 22 samples were chosen for O 176 

isotope and trace element analysis of zircon. Samples were selected from all age groups and from 177 

a wide variety of locations and rock compositions in order to broadly characterize the CMB in our 178 

study area. New mounts were prepared from existing zircon separates and imaged by SEM-CL.  179 

Therefore, age and Hf isotope information cannot be directly connected to a given O isotope zircon 180 

analysis spot. However, given the intra-sample homogeneity of U-Pb ages and Hf isotope ratios 181 

(see Fig. 2), we are reasonably confident that the measured O isotope values correspond to 182 

previously-measured average U-Pb-Hf characteristics of a given intrusion. Oxygen isotope 183 

analyses were performed using a CAMECA IMS-1280 ion microprobe at the University of 184 
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Wisconsin-Madison, following procedures described in detail elsewhere (Kita et al., 2009; Valley 185 

and Kita, 2009). In summary: a 133Cs+ primary beam (~2nA) was focused to ~10-micron spots on 186 

the polished zircon surface; three FC detectors simultaneously analyzed 16O-, 16OH- and 18O-; and 187 

eight analyses of KIM-5 zircon standard (Valley, 2003) bracket every 10-20 sample analyses. 188 

Values of δ18O are reported in standard permil notation relative to VSMOW. Ratios of OH/O, 189 

corrected for background, were monitored as an indication of inclusions or radiation damage 190 

(Wang et al., 2014), which resulted in the rejection of 2 out of 175 analyses. The average spot-to-191 

spot reproducibility (external precision) for δ18O on KIM-5 for brackets of eight analyses is 0.19‰ 192 

(2SD). Oxygen isotope data for individual-grain analyses are given in Supplementary Data Table 193 

4. 194 

 195 

Zircon trace element analysis 196 

 Zircon trace element analysis was performed on the same sample subset as those for which 197 

O isotope data were obtained. Approximately 15 grains for each of the 22 samples were analyzed, 198 

for a total of 359 analyses. Trace element data were collected via LA-ICPMS at the University of 199 

Arizona LaserChron Center using a Photon Machines G2 excimer laser-ablation (LA) system 200 

coupled to a Thermo Fisher Scientific Element2 high resolution single collector ICPMS. A total 201 

of 24 different masses were analyzed, including the rare earth elements (REE), as well as P, Ti, 202 

Nb, Hf, Ta, Pb, U and Th. The natural zircon standard 91500 (Wiedenbeck et al., 2004) was used 203 

as a primary standard for calculating concentrations for all elements except for Ti, which was 204 

standardized using NIST 612 glass. Analytical methods and data reduction protocols used were 205 

the same as those described in Chapman et al. (2016). Trace element data for individual zircon 206 

analyses are given in Supplementary Data Table 5. 207 
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 208 

RESULTS 209 

Major and trace element geochemistry 210 

 Whole-rock geochemical data were generated for 96 samples collected from intrusive rocks 211 

of the southern CMB. Pluton compositions range from gabbro to granite, though the majority of 212 

the batholith is composed of tonalite and granodiorite with SiO2 contents > 65% (Fig. 3A). Plutons 213 

emplaced during the most recent magmatic event in the arc, at 64-45 Ma, have higher average SiO2 214 

(68.3% SiO2, compared with an overall average of 64.9% SiO2), and are restricted to the 215 

easternmost part of the southern batholith. Southern CMB intrusions are metaluminous to mildly 216 

peraluminous (ASI = A/CNK = 0.8 – 1.15) and show a smooth trend of increasing alumina 217 

saturation index (ASI) with increasing SiO2 (Fig. 3B).  Overall, major element data show that this 218 

part of the batholith is magnesian, calcic to calc-alkalic and generally similar to rocks of the central 219 

CMB (Girardi et al., 2012) and other Cordilleran arc granitoids (Frost et al., 2001) (Fig. 3).  220 

 Although major element data reveal little spatio-temporal variability in pluton 221 

composition, there are changes in both La/Yb and Sr/Y through time. In general, plutons emplaced 222 

during high-flux magmatic events have elevated La/Yb and Sr/Y, whereas those emplaced during 223 

periods of relative arc inactivity do not (Fig. 4). For example, 46% of intrusions with ages 224 

corresponding to a documented flare-up period have Sr/Y > 50, compared with only 12% of 225 

intrusions emplaced during magmatic lulls.  226 

 227 

Zircon Hf and O isotope compositions 228 

 Initial εHf values in CMB intrusions range from ~ +6 – +16, clustering around a mean of 229 

+11.4 ± 1.9 and are distinct from the distribution of εHf(t) values documented in the central and 230 
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northern parts of the batholith (Cecil et al., 2011) (Fig. 5A). Samples from all age groups have 231 

zircons that overlap with depleted mantle values. There are no obvious arc perpendicular trends 232 

observed in the Hf isotope data, though plutons with the lowest average values (+7.7 to +8.9) are 233 

found in axial arc positions and roughly coincide with a NW-trending package of gneisses. 234 

Temporal trends in the Hf data are equally unclear. A running mean calculated for post-145 Ma 235 

εHf(t) values reveals limited variability, with mean values ranging between ~ +11 and +13 (Fig. 6). 236 

Contouring of individual Hf data points, however, does show values scattering to lower εHf(t) 237 

values at ca. 155 - 145 Ma, a time during which a high magmatic flux event is documented for the 238 

CMB and most other segments of the North American Cordillera (Gehrels et al., 2009; Kirsch et 239 

al., 2016; Berenek et al., 2017; Cecil et al., 2018).  240 

 Zircon δ18O values from intrusive rocks of the southern CMB range from +4.2 to +8.3 ‰, 241 

though the majority of analyzed grains cluster between +5 and +6 ‰, with an average of +5.4 ± 242 

0.6 ‰ (1s) (Fig. 5B). Average δ18O values for all analyzed plutons overlap with the accepted range 243 

of mantle values (5.3 ± 0.6 ‰ (2s); Valley et al., 2005). Because of the relative invariability of the 244 

zircon δ18O data, they do not reveal any obvious spatial or temporal trends.  245 

 246 

Zircon trace element geochemistry 247 

Chondrite-normalized rare earth element (REE) trends in southern CMB zircons show 248 

typical patterns of increasing concentration from light to heavy REEs, with marked positive-Ce 249 

and negative-Eu anomalies (Fig. 7A). There are no significant changes in these trends (e.g. 250 

steepness of heavy REE pattern, size of Ce or Eu anomaly, etc.) through time or space. The 251 

majority (95%) of zircons from southern CMB plutons yield U/Th ratios <10; most of the 5% of 252 

grains with U/Th ratios >10 have corresponding U-Pb ages of ~ 140 – 150 Ma (not shown), which 253 
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is also a pattern observed in metamorphic rims of detrital zircons in metasedimentary country rocks 254 

(Dafov et al., 2020). Hafnium concentrations range from 7,000 – 14,000 ppm, are positively 255 

correlated with U/Yb, and are generally very similar in their Hf and U/Yb variation to globally-256 

compiled data for continental arcs (Fig. 7B) (Grimes et al., 2015). A bivariate plot of Ti vs Yb 257 

concentration again shows that our CMB zircon data are generally very similar to arcs worldwide, 258 

but also reveals a suggestion that intrusions crystallizing during interpreted flare-up events trend 259 

toward lower Ti and Yb (Fig. 7C).  260 

 261 

DISCUSSION 262 

Isotopic evidence for mantle-dominated batholith sourcing 263 

 Intrusive rocks comprising the southern CMB have zircon εHf(t) and δ18O values that are 264 

relatively invariant and that overlap with documented mantle values for both isotopic systems (Fig. 265 

5). Zircon δ18O sample averages range from 4.5 to 6.4 ‰ and, in all cases, overlap within analytical 266 

error the range of accepted values for the high-temperature mantle (5.3 ± 0.6 ‰; Valley et al., 267 

2005). Zircon εHf(t) values are positive and high (between ~ +6 and + 16), compatible with melting 268 

of a Lu-rich mantle source. In all geographic areas and in all stages of batholith development – 269 

apart from the Eocene, for which we have relatively little data – individual εHf(t) values overlap 270 

with the evolution of depleted mantle (Vervoort and Blichert-Toft, 1999; Dhuime et al., 2011) 271 

(Fig. 6).  Although these data do not uniquely signify a mantle source, they do require melting of 272 

materials that have not exchanged with δ18O-enriched surface fluids, and that are young, and 273 

therefore characterized by juvenile εHf values. The isotopic data presented here are therefore 274 

consistent with partial melting of variably-enriched mantle, secondary melting of mantle-derived 275 

mafic underplates (Collins et al., 2020), remelting of juvenile arc crust, or a mixture thereof. The 276 
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bulk isotope modeling presented below, together with the isotopic homogeneity and the lack of 277 

zircon inheritance observed indicates that remelting of lower crustal arc terranes likely played an 278 

insignificant role.  279 

The remarkable inter- and intra-sample uniformity observed in both the Hf and O datasets 280 

is one of the most distinctive features of the southern CMB and suggests batholith generation from 281 

a single, relatively homogeneous source. Zircon δ18O values cluster tightly around a mean value 282 

of 5.4 ‰ (Fig. 5b), and although slightly more heterogeneous, zircon εHf(t) sample averages 283 

comprise a range of only 7 epsilon units (Fig. 6). Even intrusions with SiO2 contents > 70% yield 284 

homogeneous, mantle-like values (ex: 14IY11 has SiO2 = 71.2% and εHf(t) =13.3), suggesting that 285 

fractionation of a mantle partial melt, in the absence of crustal assimilation, is sufficient to explain 286 

most of the isotope data. These results are intriguing, given the large geographic area over which 287 

the southern batholith was sampled (> 15,000 km2; Fig. 1) and the large variability in pluton 288 

composition (Fig. 3).  289 

Despite the overall isotopically primitive signature recorded in the zircon data, some 290 

deviation from purely mantle-derived melts is observed. There is a slight pull-down in εHf(t) values 291 

at ca. 150 Ma, and perhaps another less defined pull-down at ca. 110 Ma (Fig. 6). Only in these 292 

times do average pluton εHf(t) values move out of the “juvenile”, and into the “moderately 293 

juvenile” fields, defined by Bahlburg et al. (2011) as reflecting partial melts of sources that were 294 

extracted from the mantle 0-300 m.y.a., and 300 – 650 m.y.a., respectively. Therefore, although 295 

there is little evidence for significant contributions of Precambrian crust to southern CMB melts, 296 

contamination by small amounts of relatively young (Phanerozoic) crust is permissible. This 297 

contamination may be evident in Jurassic samples that have lower average εHf(t) and zircons with 298 

slightly elevated δ18O (+5.5 to + 6.8 ‰), with one sample (14IY25, from Bute Inlet) containing a 299 
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single grain with measured δ18O of +8.3 ‰. The amount and nature of the crustal-end-member 300 

contaminant permitted by our isotope data is explored in the next sections using a compilation of 301 

available Hf isotope data from CMB basement terranes, and Hf-O bulk mixture models.  302 

 303 

Incorporation of probable host rocks into batholithic melts? 304 

Modelling of the potential crustal component is hindered by uncertainty as to the rocks 305 

underlying much of the southern Coast Mountains batholith. Sparse pendants of weakly to strongly 306 

metamorphosed volcanic and sedimentary rocks have traditionally been considered part of 307 

Wrangellia, a terrane well-exposed on Vancouver Island and the westernmost mainland (Nelson, 308 

1979; Monger et al., 1982; Wheeler and McFeely, 1991). In contrast, magmatic patterns and 309 

paleomagnetic results suggest that the CMB at the study latitudes is emplaced into Intermontane 310 

(likely Stikine) terrane (Rusmore et al., 2013). Detrital zircon data from recent work on 311 

metasedimentary pendants in the southern batholith generally supports that interpretation, but are 312 

also compatible with connection to Wrangellia terrane and possibly Alexander terrane, as exposed 313 

in the Banks Island region to the northwest (Dafov et al., 2020). We approach estimating the 314 

contributions of partial melts of these terranes into CMB magmas through bulk mixture modeling 315 

of zircon Hf-O, with the understanding that this modeling is hampered by the fact that the isotopic 316 

compositions of the crustal end members are poorly known.  317 

Stikine terrane is composed primarily of Late Paleozoic through Jurassic island arc-related 318 

volcanics with juvenile isotopic signatures (Dostal et al., 1999, 2009; Barresi et al., 2015). These 319 

arc rocks overlie and / or interfinger with carbonates and siliciclastic rocks (Nelson et al., 2006) 320 

thought to have been deposited on pericratonic basement (Jackson et al., 1991; Gehrels and Kapp, 321 

1998). Wrangellia terrane, as exposed on Vancouver Island, is dominated by Paleozoic and 322 
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Mesozoic igneous rocks, including Devonian – Mississippian bimodal volcanics of the Sicker 323 

Group and similarly-aged intrusives of the Saltspring Suite (Ruks, 2015), extensive Triassic basalts 324 

of the Karmutsen Formation (Greene et al., 2009) and Jurassic bimodal volcanics and intrusives 325 

of the Bonanza arc (DeBari et al., 1999). Also present are chert, argillite, limestone and minor 326 

clastics of the lower Paleozoic Sicker Group and the upper Paleozoic Buttle Lake Group (Brandon 327 

et al., 1986; Massey and Friday, 1989; Yorath et al., 1999). The southern part of the Alexander 328 

terrane (Banks Island region) consists of Ordovician to Permian quartzite, marble and metapelite 329 

assemblages (Tochilin et al., 2014).  330 

Bulk mixture modeling is used to assess the extent to which assimilation of these probable 331 

crustal contaminants (Wrangellia, Alexander, Stikine) is permitted based on the zircon Hf-O data. 332 

Results of that modeling are shown in Figure 8. Based on the dominantly igneous nature of 333 

Wrangellia and Stikine terranes, both of which contain young, hydrothermally altered oceanic 334 

crust and volcaniclastic sedimentary rocks, we group them together and assign them a minimum 335 

zircon δ18O of ~ +10 ‰, similar to zircon δ18O values assumed for accreted ocean arc terranes in 336 

the Sierra Nevada foothills (Lackey et al., 2012). On the basis of available zircon Hf data for 337 

Wrangellia (Alberts et al., 2021), whole rock Nd from local metasedimentary pendants (Bollen et 338 

al., in review) and whole rock Nd for rocks of Stikine (Samson et al., 1989; Jackson et al., 1991), 339 

εHf(100 Ma) of these terranes is estimated to be +5 to +13, at the time of southern CMB generation. 340 

We therefore assign this crustal endmember an average εHf of +8 and a Hf concentration averaged 341 

from values reported in Lassiter et al., 1995 (2.9 ppm). The Hf isotopic character of Alexander 342 

terrane is heterogeneous; most igneous and metaigneous basement is relatively primitive (εHf(t) = 343 

+5 to +15), whereas metasedimentary rocks of the Banks Island assemblage, which is thought to 344 

be correlative with the northern Alexander terrane, yields zircons with εHf(t) ranging from +12 to 345 
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-30 (Tochilin et al., 2014). Given that the quartz-rich metasedimentary units that yield evolved 346 

values are volumetrically less significant, we assign an εHf(t) of 0 for Alexander. Hf concentration 347 

for Alexander is estimated to be intermediate between mafic rocks of Alexander reported by Israel 348 

et al. (2014) (1.8 ppm) and the average of siliciclastic sedimentary rocks reported by McLennan 349 

(2001) (5.5 ppm). The δ18O of Alexander is taken to be +11 ‰, slightly higher than that of 350 

Wrangellia-Stikine, because although Alexander basement is not significantly different, there is 351 

greater potential involvement of supracrustal rocks. The primitive end-member is assigned an 352 

εHf(t) of +13.6 and a Hf concentration of 1.3, which are the values measured from the most mafic 353 

rock analyzed in our batholith dataset (sample 15KN38B; SiO2 = 51%). We assume a mantle-like 354 

δ18O for this end-member (+5.3 ‰; Valley et al., 2005).  355 

 Results of Hf-O models show the majority of southern CMB samples forming a tight 356 

cluster in Hf-O space near depleted mantle, and do not reveal mixing trends between mantle and 357 

any of the likely crustal sources investigated (Fig. 8). There are four samples, however, which have 358 

grains recording non-mantle-like δ18O values, indicating that these samples involve melting of 359 

material that had a near-surface history. Two of these samples are Jurassic plutons discussed 360 

previously, which also yielded some of the most evolved zircon εHf(t) values recorded in this part 361 

of the batholith (average εHf(t) of +8.4 and +8.6). A third, however, yielded zircons with narrowly 362 

distributed δ18O slightly above mantle values (6.2 to 6.4 ‰) and this pluton has a crystallization 363 

age of 138 Ma, a time during which there is a pronounced magmatic lull recorded along much of 364 

the North American Cordilleran margin (Gehrels et al., 2009; Paterson and Ducea, 2015; Kirsch 365 

et al., 2016; Beranek et al., 2017; Cecil et al., 2018). The fourth anomalous sample – a 108 Ma 366 

granodiorite collected from our eastern-most field location – yielded uniformly low δ18O values 367 

(4.2 to 4.7 ‰), just below the accepted mantle range. We interpret these results as indicating 368 
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variable contamination of mantle-derived melts by heterogeneous supracrustal sources. That these 369 

contaminated samples have few commonalities (they range in age from 96 to 153 Ma, are from 370 

plutons emplaced during flare-ups and lulls, and are spatially and compositionally diverse) 371 

suggests that there is no systematic process controlling the limited isotopic variability in the 372 

southern CMB.  373 

The lack of mixing trajectories in our data makes it difficult to identify any of the crustal 374 

end-members as possible melt components, even in the slightly contaminated samples (Fig. 8). 375 

Overall, the relatively low δ18O and juvenile εHf(t) nature of southern CMB samples precludes the 376 

involvement of > ~ 10% upper crustal materials into any components of the southern batholith. 377 

The isotope data, however, are compatible with sourcing from mafic underplates and / or deep 378 

crustal materials, which would not have exchanged with δ18O-enriched surface fluids, but, in the 379 

case of young arc-related terranes, would have juvenile εHf characteristics. Indeed, it is hard to 380 

explain the generation of a large and compositionally diverse batholith from direct melting of 381 

mantle sources. Partial melts of depleted mantle ponding in the lower crust and incorporating deep, 382 

previously-generated arc rocks and / or the lower crust of Stikine and / or Wrangellia terrane could 383 

produce the isotopic and geochemical signatures observed in the southern CMB. As recently 384 

described in Collins et al. (2020), cooling and fractionation of basaltic magmas in the lithospheric 385 

mantle can also cause water to exsolve, leading to flux-melting of preexisting mafic underplates. 386 

This process allows for the generation of large volumes of silicic, isotopically primitive melt in 387 

arc systems, much like what is preserved in the southern CMB. 388 

 389 

Drivers of flare-ups in the southern Coast Mountains batholith 390 
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 Arc flare-ups likely occur as the result of increased melt fertility driven by: 1) the 391 

introduction of volatiles or different rock compositions into the sub-arc, or 2) changes in 392 

temperature or pressure conditions in the mantle wedge or upper plate lithosphere. One model for 393 

the former that has received a lot of attention calls on shortening in the rear-arc leading to periodic 394 

underthrusting of older, more evolved upper plate materials (Ducea, 2001; Ducea and Barton, 395 

2007; DeCelles et al., 2009; DeCelles and Graham, 2015). In this orogenic cyclicity model, the 396 

introduction of hydrous retro-arc crust into the sub-arc melt generation zone ignites flare-ups. 397 

Because crust that is inboard of the arc tends to be older, flare-ups in other arcs, such as the Sierra 398 

Nevada, are characterized by isotopic “pull-downs”, so called because igneous rocks generated 399 

during these times record lower εNd values (Ducea and Barton, 2007; DeCelles et al., 2009). 400 

Although not documented in the Sierra Nevada or other Cordilleran arcs, zircon εHf values should 401 

record similar pull-downs during flare-ups because of the strong positive correlation between Nd 402 

and Hf isotopes in the terrestrial array (Vervoort and Blichert-Toft, 1999). Periodic flare-ups and 403 

associated isotopic pull-downs are generally seen as an internal, autocyclic process. In contrast, an 404 

episodic change in mantle melt productivity could also lead to episodicity in arc magmatism, but 405 

potentially without the concomitant isotopic pull-down. Indeed, high-flux magmatic episodes 406 

without excursions to more crust-like isotopic signatures have recently been recognized in the 407 

Sierra Nevada and other continental arcs (Decker et al., 2017; Martínez Ardila et al., 2018; Attia 408 

et al., 2020; Klein et al., 2020). 409 

 In the southern CMB, isotopic pull-downs in zircon Hf data are ambiguous at best and, 410 

together with the O isotope data, preclude the significant involvement of supracrustal materials or 411 

old (Precambrian), Hf isotope-depleted crust. These data argue against flare-ups occurring in 412 

response to an internal underthrusting model wherein the periodic introduction of older, melt-413 
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fertile crust from the rear-arc drives high-flux events. Interestingly, however, whole rock and 414 

zircon trace element data indicate that flare-ups may be temporally associated with periods of 415 

crustal thickening. Evidence for crustal thickening is seen in elevated whole rock Sr/Y and La/Yb 416 

ratios (Fig. 4) and in lower Yb and Ti in zircon (Fig. 7C) during flare-ups. Although high Sr/Y and 417 

La/Yb ratios are not unique, surveys of those ratios in modern arcs show that Sr/Y and La/Yb are 418 

positively correlated with crustal thickness (Chiaradia, 2015; Profeta et al., 2015). Increases in 419 

these chemical indices have been linked to crustal thickening in several arc systems and are being 420 

increasingly used as proxies for paleo-thickness (e.g. Kay and Mpodozis, 2001; Schwartz et al., 421 

2011; Chapman et al., 2015). Lower Yb and Ti in zircon is attributed to garnet and/or amphibole 422 

fractionation during zircon crystallization, which may indicate increased crustal thickness given 423 

the sensitivity of garnet stability to pressure-temperature conditions (Grimes et al., 2015).  424 

Taken together, these geochemical trends suggest that the arc crust thickens and the depth 425 

of differentiation of batholithic melts increases during flare-up events. Periodic crustal thickening 426 

in the southern CMB could result from relamination of subducted buoyant material (Hacker et al., 427 

2011), shortening and imbrication of the forearc (Sauer et al., 2017), or intra-arc shortening and 428 

magmatism (Jagoutz and Schmidt, 2013), as recently documented in a similar study in the North 429 

Cascades (Shea et al., 2018). As previously discussed, it likely does not result from underthrusting 430 

of old, supracrustal materials from the retroarc. Imbrication of supracrustal forearc materials is 431 

equally unlikely given that the observed mantle-like δ18O signatures preclude the melting of near-432 

surface rocks. Periodic relamination of more felsic crustal components removed by subduction 433 

erosion is a possible mechanism that could explain the arc thickening and differentiation trends 434 

observed during flare-ups (Fig. 4). Intra-arc shortening is also a viable option and is supported in 435 

part by documented garnet growth and increasing pressure and temperature during the most 436 
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volumetric flare-up at ca. 78 Ma (Bollen et al., in review). Similar P-T increases in metamorphic 437 

host rocks are not recognized for other flare-ups, however, suggesting that additional mechanisms, 438 

such as magmatic underplating, are required. 439 

In addition to temporal changes in chemical signatures suggestive of crustal thickening, the 440 

southern CMB also records complex shifts in the loci of magmatism through time. It has been 441 

observed that plutons are generally younger in the eastern CMB, indicating an overall progressive 442 

inboard migration of magmatism through time (Friedman et al., 1995; Gehrels et al., 2009; Cecil 443 

et al., 2018). Greater detail provided by our dense geochronologic coverage in the southern CMB, 444 

however, reveals a more complex migration pattern in synch with geochemical variations in 445 

magmas. Three notable features of these data are: 1) The inboard advance of the leading edge of 446 

the arc (shown in the red dashed line on Fig. 9) appears punctuated; 2) landward advance and 447 

trenchward retreat of the arc roughly coincide with the timing of flare-ups and lulls, respectively; 448 

3) the active magmatic footprint of the arc appears to widen during flare-ups and narrow during 449 

lulls, as illustrated by the horizontal bars in Fig. 9. For example, plutons emplaced during the 450 

Jurassic flare-up (161 – 148 Ma) occupy nearly 120 km of arc width, whereas those emplaced 451 

during an ensuing lull at ca. 148 – 130 Ma are found in a < 50 km arc-perpendicular swath.  452 

We note that in the central batholith, spatial changes in the arc in the Jurassic to early 453 

Cretaceous are difficult to interpret. This is due to the fact that intrusions emplaced during that 454 

time likely reflect two distinct arcs: a western arc, emplaced into Alexander-Wrangellia terrane, 455 

with no magmatic activity at ca. 140 – 120 Ma, juxtaposed against an eastern arc, emplaced into 456 

Stikine and other related inboard terranes, with continuous early Cretaceous magmatism (Gehrels 457 

et al., 2009). In contrast to the central CMB, we suggest that Jurassic – early Cretaceous 458 

magmatism to the south represents the southern continuation of the eastern arc based on the 459 
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observations that: 1) early Cretaceous magmatism is continuous; 2) magmatism appears to sweep 460 

inboard, then outboard, as it does in the eastern arc to the north; and 3) Jurassic – early Cretaceous 461 

magmas likely intrude rocks of the Intermontane Superterrane (Rusmore et al., 2013). Dextral 462 

displacements within the batholith, such as those proposed in Rusmore et al. (2013), would be 463 

parallel to batholithic trends and would only affect post – 85 Ma intrusions (Rusmore et al., 2019). 464 

We therefore interpret the spatial record of pluton emplacement as a single arc system that is 465 

advancing and / or widening with respect to the trench. As in the case of the Jurassic event, similar 466 

landward advances of the arc are recognized during the mid-Cretaceous (ca. 110 Ma) and Late 467 

Cretaceous (ca. 78 Ma) magmatic flare-ups (Fig. 9). Post-75 Ma spatial patterns in the southern 468 

CMB are less well-defined, but it’s possible that a similar advance accompanies the Paleogene (ca. 469 

58 Ma) flare-up. We lack the data density necessary during any of these episodes to evaluate more 470 

detailed focusing or other spatial trends, as documented by Ardill et al. (2018) for the central Sierra 471 

Nevada. 472 

Although a single mechanism is not required to explain each magmatic event, similarities 473 

in migratory patterns and arc geochemical signatures (depletions in heavy REEs) indicate that a 474 

similar process is periodically recurring in the arc and driving flare-ups. It is possible that 475 

punctuated inboard advance of the arc could enhance the mantle-dominated magmatism observed. 476 

As the southern CMB advanced landward, it likely tapped into less depleted, more melt-fertile 477 

parts of the continental lithosphere, triggering flare-ups (Fig. 10A). This is attributable to more 478 

landward parts of the lithosphere 1) not having been previously melted, and / or 2) having been 479 

hydrated and (re)fertilized via the accumulation of metasomatic products from prior flux melting 480 

in the main arc, and / or 3) having been (re)fertilized via the underthrusting of older and more 481 

cratonic (igneous and quartzofeldspathic) inboard lithosphere (Chapman and Ducea, 2019). As 482 
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previously discussed, the latter is likely of limited importance in the southern CMB, based on the 483 

primitive isotopic signatures observed.  484 

Of course this leaves unanswered the question of what causes arc migration to begin with. 485 

One possibility is that inboard migration is brought on by temporal variations in orthogonal 486 

convergence rate. An increase in convergence rate, if associated with increased plate coupling, 487 

would not only gradually shift magmatism inboard and but could also lead to tectonic thickening 488 

in the arc and the increased bulk rock Sr/Y and La/Yb(N) ratios observed. Thickening could be 489 

enhanced by the addition of voluminous mafic underplates during the flare-up event. Increased 490 

convergence and plate coupling, if accompanied by a decrease in slab dip, could also explain a 491 

widening of the arc footprint. Orthogonal convergence rates for the Coast Mountain batholith 492 

region, as presented in Kirsch et al. (2016), vary considerably throughout the ca. 150 m.y. lifespan 493 

of the arc, from slightly negative (divergent) values early in the early arc (pre-160 Ma) to almost 494 

200 mm/yr in Cretaceous time. Although the temporal variability is highly complex, increases in 495 

convergence rate broadly coincide with all but the most recent (ca. 58 Ma) flare-up in the southern 496 

CMB. One problem with this mechanism is that magmatic tempo in the CMB appears to change 497 

along strike, which would require spatially variable convergence rates at unlikely scales (~ 150 498 

km of arc length) (Cecil et al., 2018).  499 

Another possibility is that arc migration is driven by non-steady-state forearc subduction 500 

erosion, as proposed in Jicha and Kay (2018). In this scenario, the periodic erosion of forearc crust 501 

drives the arc system landward, though the trench-arc distance remains the same.  Relamination of 502 

forearc crustal components, particularly if they are of the mafic, isotopically Wrangellia terrane, 503 

could promote crustal thickening and supply source rock to the subarc melt zone that is compatible 504 

with the isotopic signatures observed in southern CMB magmas. This scenario has the advantage 505 



 23 

of allowing for more along-strike variability in magmatic patterns, but is difficult to evaluate given 506 

that much of the forearc to the CMB is not exposed. In either case, coeval arc advance and 507 

magmatic flare-ups are observed and are linked to crustal thickening, trends which have been 508 

documented in other Cordilleran arcs (Haschke et al., 2002; Karlstrom et al., 2014). 509 

Eventually, flare-ups in the southern CMB wane, perhaps as fertile mantle depletes, or as 510 

the arc lithosphere overthickens, impinging on the subducting slab and cutting off asthenospheric 511 

circulation in the mantle wedge (Chin et al., 2012; Karlstrom et al., 2014), or as the hot mantle 512 

wedge is pinched out by slab flattening, which Haschke et al. (2002) argues leads to magmatic 513 

gaps in the Andean arc record. These waning stages appear to coincide with lower and more 514 

homogeneous bulk rock Sr/Y and La/Yb(N) (Fig. 4) and with trenchward retreat of the arc (Fig. 9). 515 

We speculate that these features result from the periodic removal of dense arc residue, which 516 

pushes the arc back, aligning it with thinned and / or depleted arc lithosphere (Fig. 10B). During 517 

this time, the arc enters a lull phase and the depth of magmatic differentiation decreases. A return 518 

to normal supra-slab mantle convection and landward migration of the arc into be more fertile 519 

lithosphere is required to start the next flare-up cycle.  520 

 521 

CONCLUSIONS 522 

 New zircon Hf and O isotopic data from Jurassic to Eocene plutons of the southern Coast 523 

Mountains batholith (CMB) reveal mantle-dominated melt sources across a broad swath of the arc 524 

and over ~ 120 m.y. of episodic arc activity. This suggests that magmatic episodicity is not driven 525 

by the periodic input of evolved, supracrustal materials in sub-arc melt zones, but rather must be 526 

associated with spatiotemporal changes in mantle melt productivity. Our results support recent 527 

work that documents the significance of mantle melt contributions to continental batholiths 528 
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(Decker et al., 2017; Martinez Ardila, 2019; Attia et al., 2020; Klein et al., 2020). This has 529 

important implications for the generation of continental crust in arc systems and implies significant 530 

new addition, and limited recycling, of crust along plate margins. Geochemical indices such as 531 

whole rock Sr/Y and La/Yb, and zircon Ti and Yb concentrations change as a function of magmatic 532 

flux, suggesting that although the mantle remains the dominant melt source, the thickness of arc 533 

lithosphere increases during flare-ups and decreases during lulls. A closer look at spatial trends in 534 

the available geochronology for the southern CMB reveals periods of inboard arc advance and 535 

retreat, leading us to suggest that arc migratory trends fundamentally control magmatic tempo. In 536 

our preferred model, the arc migrates inboard, accessing previously (re)hydrated and (re)fertilized 537 

lithosphere, triggering mantle-like magmatic flare-ups, as proposed in Chapman and Ducea 538 

(2019). These inboard arc advances are accompanied by tectonic and magmatic thickening of the 539 

arc. Eventually, dense arc residue formed at the base of the arc column becomes gravitationally 540 

unstable and is convectively removed, forcing the trenchward retreat of the arc into regions where 541 

the sub-arc mantle lithosphere is absent or depleted. Such a shift produces lower volumes of melt, 542 

and magmas with geochemical signatures consistent with generation and emplacement in 543 

tectonically thinned lithosphere. Overall, the results of this study highlight the fact that the growth 544 

of large volume Cordilleran batholiths does not require significant recycling of preexisting crust, 545 

and that magmatic tempos can be highly episodic if the mantle is temporally and spatially 546 

heterogeneous in terms of its degree of hydration and melt fertility.  547 
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 837 

 838 

FIGURE CAPTIONS 839 

Figure 1. Simplified geologic map of the Bute Inlet – Knight Inlet – Mt. Waddington region of the 840 

southern Coast Mountains batholith, British Columbia. All sampling locations are shown and 841 

symbolized according to the analyses performed at each location. Color-coded age information is 842 

from Cecil et al., 2018.  843 

 844 

Figure 2. Cathodoluminescence (CL) images (A), U-Pb ages (B) and initial εHf values for a 845 

representative sample of the southern Coast Mountains batholith (sample 15KS79 from Knight 846 

Inlet). The CL images show large, uncomplicated zircon grains with characteristic oscillatory or 847 

sector zoning, consistent with new igneous growth. Measured U-Pb ages and initial εHf values are 848 
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relatively invariant between grains within a given sample, as reflected in small standard deviations 849 

of the weighted means and MSWD values close to 1.  850 

 851 

Figure 3. Whole-rock major element data showing the geochemical characteristics of the southern 852 

CMB. A: Total alkali silica diagram showing range in pluton compositions as a function of age. 853 

Flare-up and lull age groups are based on the timing of magmatic flux events, as reported in Cecil 854 

et al., 2018. Intrusive rocks of the southern batholith are metaluminous to mildly peraluminous 855 

(B), calcic to calc-alkalic (C) and magnesian (D). A/CNK in part B is given as 856 

Al2O/(CaO+K2O+Na2O) in molar abundance. Southern CMB intrusions are geochemically similar 857 

to those of the central batholith (grade shaded polygons; Girardi et al., 2012) and to granitoids 858 

from other Cordilleran arc systems (cross-hatched polygons) (Frost et al., 2001). 859 

 860 

Figure 4. Bivariate plots for the southern Coast Mountains batholith showing whole-rock La/Yb(N) 861 

and Sr/Y ratios, plotted against Yb(N) and Y (ppm) in (A) and (B), respectively. The same ratios, 862 

plotted against age, are shown in parts (C) and (D). Inverted triangles in (C) and (D) represent 863 

calculated averages for each time period. Partial melting and mineral fractionation trends after 864 

Castillo, 2012. Sample symbology is the same as shown in Figure 3. The vertical shaded bars in 865 

parts (C) and (D) represent southern CMB flare-up events, as described in Cecil et al., 2018. 866 

MORB – mid-ocean ridge basalt; ADR – field representing normal arc andesite, dacite, and 867 

rhyolite lavas; amph – amphibole; cpx – clinopyroxene. 868 

 869 

Figure 5. Histograms showing the distributions of all individual zircon εHf (A) and zircon δ18O 870 

(B) measurements. Flare-up and lull periods are the same as shown in Figures 3 and 4. The 871 
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distribution of zircon εHf from the central Coast Mountains batholith (CMB) is shown for 872 

comparison in (A); data from Cecil et al., 2011. Range of mantle zircon δ18O from Valley et al., 873 

2005.  874 

 875 

Figure 6. Plot showing initial zircon εHf values for all analyzed grains (small white circles) in the 876 

southern CMB (N = number of samples analyzed; n = number of zircon grains analyzed). The 877 

average uncertainty for individual measurements is shown in the lower right at the 2𝜎 level. 878 

Individual grain analyses were contoured, and running mean calculated through them, using the 879 

Hafnium Plotter program (Sundell et al., 2019). Larger blue circles represent sample averages. 880 

Typical standard deviation of sample averages is <1.5 epsilon units at the 2𝜎 level. Depleted mantle 881 

evolution is determined using 176Hf/177Hf(0) = 0.283225 and 176Lu/177Hf(0) = 0.038512 (Vervoort 882 

and Blichert-Toft, 1999). Dashed lines indicate field of “juvenile” values (0-5 εHf units below 883 

DM), after Bahlburg et al., 2011. Gray shaded curve at the bottom of the plot shows magmatic 884 

areal addition rate in km2/m.y. in the southern CMB, from Cecil et al. 2018. 885 

 886 

Figure 7. Zircon trace element geochemical plots for intrusive rocks of the southern CMB. 887 

Chondrite-normalized spider diagrams of REE compositions for time period averages are shown 888 

in (A). Bivariate plots of U/Yb vs Hf (B) and Ti vs Yb (C) are shown with the compilation of 889 

continental arc data from Grimes et al., 2015.  890 

  891 

Figure 8. Binary mixture modeling showing sample-averaged zircon Hf and O isotope data from 892 

southern CMB intrusions. Sample symbols are the same as in figure 3. The majority of analyzed 893 

samples form a tight cluster with values near the depleted end of the mantle array. The average 894 
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δ18O value for the sample with an asterisk does not include a single grain with a measured value 895 

of 8.3 ‰ (gray diamond). WT – Wrangellia terrane; ST – Stikine terrane; AT – Alexander terrane; 896 

YTT – Yukon-Tanana terrane. See text for discussion of endmember isotopic compositions. 897 

 898 

Figure 9. Plot of pluton U-Pb ages as a function of distance from the coastline for the southern 899 

CMB. Colors are the same as in Figure 1. Also shown is the magmatic areal addition rate for the 900 

southern batholith in km2/m.y. (gray curve). Each blue bar represents the width of the arc during 901 

5 m.y. intervals, based on pluton geochronology from Cecil et al., 2018. The red dashed line 902 

outlines the leading edge of magmatism though time and, together with the black arrows, 903 

represents the interpreted temporal pattern of arc advance and retreat discussed in the text.  904 

 905 

Figure 10. Schematic cross-sections showing the potential role of arc migration in generating 906 

mantle-driven flare-ups in the southern CMB, after Chapman and Ducea, 2019. A: Landward 907 

migration of the arc into previously (re)fertilized and hydrated mantle lithosphere triggers high 908 

flux melting and leads to arc thickening. Basaltic magmas stagnate near the base of the crust, where 909 

they cool and fractionate, exsolving water that promotes melting of overlying mafic underplates 910 

and lower arc crust (Collins et al., 2020). This process produces the voluminous intermediate – 911 

felsic magmas with juvenile εHf and mantle-like δ18O that comprise the southern CMB. B: 912 

Voluminous flare-up magmatism produces a dense, unstable arc residue that delaminates. Arc root 913 

removal causes a shift in the mantle corner flow, leading to trenchward arc retreat. Because the arc 914 

migrates back into now-depleted mantle lithosphere, it enters a lull phase and magmas are 915 

emplaced into thinned arc lithosphere. WR – Wrangellia; ST – Stikine. 916 
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