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ABSTRACT

Detrital chromites are commonly reported within Archean metasedimentary rocks, but have
thus far garnered little attention for use within provenance studies. Yet, systematic variations
of Cr-Fe spinel mineral chemistry with changing tectonic setting means chromite has been
extensively used as a petrogenetic indicator, and so detrital chromites represent good candidates
to investigate the petrogenesis of eroded Archean mafic and ultramafic crust. Here, we report
the compositions of detrital chromites within fuchsitic (Cr-muscovite rich) metasedimentary
rocks from the Jack Hills, geologically renowned for hosting Hadean (>4000 Ma) zircons,
situated within the Narryer Terrane, Yilgarn Craton, Western Australia. We highlight signatures
of metamorphism, including highly elevated ZnO and MnO, coupled with lowered Mg# in
comparison to magmatic chromites, development of pitted domains, and replacement of
primary inclusions by phases abundant as metamorphic assemblages within host
metasedimentary rocks. Oxygen isotope compositions of detrital chromites indicate partial
exchange to complete equilibration with host metasedimentary rocks. Variability of
metamorphic signatures between chromites sampled only meters apart further indicates
modification occurred in-situ by interaction detrital chromites with of metamorphic fluids and
secondary mineral assemblages. Alteration likely occurred during upper greenschist to lower
amphibolite facies metamorphism and deformation of host metasedimentary rocks at ~2650
Ma. Regardless of metamorphic signatures, sampling location or grain shape, chromite cores
yield a consistent range in Cr#. While other key petrogenetic indices, such as Fe;O3 and TiO2
contents, are complicated in Jack Hills chromites by mineral non-stoichiometry and secondary
mobility within metasedimentary rocks, we demonstrate that the Cr# of chromite yields
significant insights into their provenance. Importantly, moderate Cr# preclude a komatiitic
origin for the bulk of chromites. This reflects a dearth of komatiites and associated intrusives

within the erosional catchment of the Jack Hills metasedimentary units. We suggest Cr# fit well



51

52

53

54

55

56

57

58

59

with chromites derived from layered intrusions, and that a single layered intrusion may account
for the observed chemical compositions of Jack Hills detrital chromites. Thus, we show that,
where careful characterisation of key metamorphic signatures is undertaken, detrital chromites
may yield valuable information on the petrogenesis and geodynamic setting of poorly preserved

mafic and ultramafic crust.
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INTRODUCTION

The detrital record of crustal evolution within the early Earth is dominated by analysis of the
mineral zircon. This is particularly evident in the Narryer Terrane, within the Yilgarn Craton of
Western Australia (Fig. 1). Here, Proterozoic to late Archean (Cavosie et al., 2004; Crowley et
al., 2005; Rasmussen et al., 2010; Wang & Wilde, 2018) metasedimentary rocks in the Jack
Hills (Fig. 2) yield the oldest known fragments of terrestrial crust; individual grains of detrital
zircon yield 2°7Pb-2%Pb ages of up to 4374+6 Ma (Compston & Pidgeon, 1986; Wilde ef al.,
2001; Valley et al., 2014). Despite isolated occurrences of Hadean detrital zircon elsewhere
(e.g., Byerly et al., 2018 and references therein), including Mt. Narryer to the SW (Fig. 1;
Froude et al., 1983; Pidgeon & Nemchin, 2006), and rare examples of Hadean xenocrystic
zircon (Nelson et al., 2000; Wyche et al., 2004; lizuka et al., 2006; Chaudhuri ef al., 2018),
Jack Hills detrital zircons represent critically important remnants of Hadean (>4000 Ma) crust.

These zircons therefore provide a unique window into the Hadean Earth, and have
subsequently been rigorously interrogated using numerous geochemical and isotopic techniques
(e.g., Cavosie et al., 2018). Previous investigations have broached a wide range of subjects,
including Earth’s ancient dynamo (Borlina et al., 2020; Tarduno et al., 2020), the origins of life
(Bell et al., 2015) and the role of impacts within the early Earth (Bell & Harrison, 2013; Cox
et al., 2017). Despite intense study, what Jack Hills zircons tell us about the composition,
evolution and subsequent destruction of their original host rocks is controversial, with
conflicting hypotheses inferring vastly disparate geodynamic conditions within the early Earth.
Such hypotheses include a ‘cool early Earth’ (e.g., Valley et al, 2002), with the putative
operation of plate tectonics (Harrison et al., 2008; 2017; Bell et al., 2014), production of zircon-
bearing crust by internal reworking of mafic protocrust (Amelin et al., 1999; Kemp et al., 2010),

or compositionally diverse Hadean protoliths (Wang & Wilde, 2018).
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While the Jack Hills zircon record yields valuable, if controversial, constraints on the
evolution of felsic Hadean and Archean crust, the zircon record provides little information on
the evolution of contemporaneous mafic and ultramafic crust. This is of particular importance,
as emerging evidence suggests mafic to ultramafic crust was the dominant compositional
component of the Archean (e.g., Dhuime et al., 2015; Kamber ef al., 2015; Tang et al., 2016).
Evolved, zircon-bearing crust may therefore be over represented within detrital records, in part
due to the poorer preservation potential of its mafic to ultramafic counterparts. While the wider
Yilgarn Craton is renowned for the presence of economically significant komatiites (Arndt et
al., 2008), the generation and evolution of mafic and ultramafic crust within the Narryer Terrane
is poorly constrained. Indeed, the only >3100 Ma mafic and ultramafic crust described within
the entire Yilgarn Craton is the Eoarchean Manfred Complex (Wyche, 2007), a 3730 Ma
disseminated layered intrusion within the Narryer Terrane (Fletcher et al., 1988; Kinny ef al.,
1988; Myers, 1988b; Rowe & Kemp, 2020).

However, the largely unexplored eroded remnants of mafic and ultramafic crust are
ubiquitous within Jack Hills metasedimentary rocks, in the form of detrital chromite. Unlike
zircon and other detrital phases observed at Jack Hills, including minor monazite and xenotime
(Rasmussen et al., 2010; lizuka et al., 2010), chromite has a magmatic provenance restricted
solely to mafic and ultramafic crust (Barnes & Roeder, 2001). Furthermore, chromites within
their mafic or ultramafic protoliths are frequently used as a petrogenetic indicator, owing to the
presence of systematic chemical variations in chromite formed under different tectonic
conditions (Irvine, 1965; 1967; Dick & Bullen., 1984; Roeder, 1994; Barnes & Roeder, 2001;
Kamenetsky et al., 2001). Critically, the sequestration of platinum group elements (PGEs) into
spinel means that chromite is amenable to geochronology using Re-Os and Pt-Os decay systems
(Shirey & Walker, 1998), potentially allowing a temporal framework of the generation of

chromite-bearing mafic and ultramafic crust to be constrained from the detrital record. The
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value of detrital chromites for elucidating the provenance of magmatic protoliths has previously
been demonstrated (e.g., Barnes & Roeder, 2001; Lenaz & Princivalle, 2005; Barkov et al.,
2013), though additional care is required to quantify the effects of metamorphism on detrital
chromite found within ancient terranes (Barnes, 2000; Colés et al., 2014). Understanding how
and when the Jack Hills detrital chromite formed will therefore provide valuable information
on the composition and petrogenesis of poorly described mafic and ultramafic crust that was
potentially exposed at the time the Jack Hills sedimentary succession was deposited

Here, we report major and minor element geochemistry of detrital chromites from
thirteen samples of metasedimentary rocks collected from within the Jack Hills (Fig. 2). This
study combines data collected by two groups (University of Bristol; 14WA and 16 WA samples
and University of Wisconsin-Madison; 01JH samples), representing the first systematic study
of detrital chromite from Archean sedimentary rocks, and signifying a new direction compared
to traditional provenance studies undertaken by analysis of detrital zircon. We highlight the
effects of metamorphism on chromite mineral chemistry, discuss the retention of primary
signatures, and propose a plausible provenance for detrital chromites. Finally, we discuss the
significance of these grains for enhancing our understanding of the metamorphic history of the
Jack Hills metasedimentary rocks, the distribution of mafic and ultramafic crust within the
Archean upper crust at the time of deposition, and the wider potential of detrital chromites for

provenance studies of ancient mafic and ultramafic crust.

GEOLOGICAL SETTING

The Narryer Terrane
The Narryer Terrane is the most north-westerly terrane within the Yilgarn Craton, in Western

Australia (Myers, 1988a; Kemp et al., 2018; Fig. 1), and has been interpreted as a deep crustal
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allochthon thrust above the Youanmi Terrane (Nutman et al., 1993), prior to or coincident with
cratonic amalgamation (Kemp et al., 2018). The terrane is dominantly composed of granitic
lithologies, now largely preserved as quartzofeldspathic orthogneisses with >3 Ga protolith
ages, with minor ultramafic and mafic intrusives, and metasedimentary rocks (Myers &
Williams, 1985; Williams & Myers, 1987; Myers, 1988a). Neoarchean (~2700-2650 Ma)
granitic rocks are also abundant (Kemp et al., 2018). Much of the Narryer Terrane has
undergone high-grade, polyphase deformation, with amphibolite to granulite facies events at
~2700-2650 Ma forming the observed gneissic fabric (Myers, 1988a; Kinny, 1990; Nutman et
al., 1991). There is evidence for previous high-grade thermal events, particularly at ca. 3300
Ma (Nutman et al., 1991; Kinny & Nutman, 1996), and it has been postulated orthogneisses
within the Narryer Terrane underwent multiple episodes of deformation and anatexis during the
Archean (Kinny & Nutman, 1996).

Despite complicated zircon geochronology (Pidgeon & Wilde, 1998), three dominant
quartzofeldspathic orthogneiss units are identified within the Narryer Terrane (Kemp et al.,
2018). The Meeberrie gneiss is a biotite-rich migmatite that consists of 3670-3600 Ma
monzogranitic and 3730 Ma tonalitic protoliths (Nutman et a/., 1991; Kinny & Nutman, 1996;
Pidgeon & Wilde, 1998). The Eurada gneiss is a series of ~3480 Ma tonalitic gneisses that
comprise a fault bound lozenge west of Mount Narryer (Nutman et al., 1991). The Dugel gneiss
yields a well constrained age of 3375426 Ma (Nutman et al., 1991) and it is thought that its
syenogranitic protoliths intruded the Meeberrie Gneiss as a series of sheet-like and pegmatitic
bodies (Myers, 1988a; Kemp et al., 2018).

The Meeberrie and Dugel gneiss host dispersed fragments of the Manfred Complex, a
magmatically and tectonically dismembered and variably metamorphosed layered intrusion.
The complex is dominantly amphibolitic (after gabbro and leucogabbro), with pyroxenite,

metaperidotite and anorthosite (Williams & Myers, 1987; Fletcher et al., 1988; Myers, 1988b;
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Rowe & Kemp, 2020). Relict igneous textures and layering are locally preserved (Kemp et al.,
2018). Zircon within Manfred Complex anorthosite and leucogabbro yield 2°’Pb/?%Pb ages of
3730+6 Ma (Kinny et al., 1988; Kemp et al., 2018), with other lithologies yielding Sm-Nd and
Pb-Pb whole rock (WR) ages of 3680+70 Ma and 3689+146 Ma, respectively (Fletcher ef al.,
1988). Spinel (spinel sensu-stricto to picotite) and olivine chemical compositions are consistent
with formation of the Manfred Complex within a thickened oceanic plateau; reduced, high Al-
Ca-Fe picritic to tholeiitic basaltic parental melt compositions are thought to be derived from

shallow partial melting of spinel lherzolite (Rowe & Kemp, 2020).

Jack Hills
The Jack Hills are located at the southern margin of Narryer Terrane (Figs. 1 & 2) and comprise
a thin, ~70km-long belt, with a distinctly curvilinear morphology produced by dextral shearing
(Spaggiari, 2007a). The Jack Hills belt is tectonically juxtaposed with the surrounding gneisses,
except for localised intrusion of 2654 Ma monzogranite, also known as ‘The Blob’ (Pidgeon &
Wilde, 1998; Spaggiari et al., 2007b), and has been interchangeably referred to as a greenstone
(e.g., Spaggiari et al., 2007a/b) or metasedimentary/supracrustal belt (e.g., Wang & Wilde,
2018). It largely consists of siliciclastic units, including metaconglomerate, quartzite and
quartz-mica schist, with minor intercalated mafic and ultramafic rocks, banded iron formation
(BIF) and chert. The presence of grunerite within BIF and hornblende within mafic schist
indicates at least portions of the belt have reached amphibolite facies metamorphism; later
greenschist facies metamorphism defines the dominant metamorphic signature of the belt
(Spaggiari, 2007a).

Deformation has tectonically disturbed and juxtaposed lithological associations, making
an original stratigraphy difficult to discern. Spaggiari (2007a) divided the belt into four

associations determined by lithological variability (Fig. 2). Briefly, association 1 consists of
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interbedded BIF, chert and quartzite, mafic and ultramafic rocks, and black and white banded
quartzites. Association 2 yields pelitic to semi-pelitic associations, now present as quartz-mica
and andalusite schists, with accompanying mafic schist and quartzite. The presence of an S1
cleavage and recumbent folding absent from other lithological units suggests associations 1 and
2 were deformed prior to the deposition of units 3 and 4 (Spaggiari, 2007a). Association 3 is
restricted to the central region of the belt at Eranondoo Hill (Fig. 2), and was derived from
mature, siliciclastic sediments interpreted to have been deposited within a deltaic alluvial fan
(Spaggiari et al., 2007a/b) between ~3050 Ma and 2650 Ma (Crowley ef al., 2005; Rasmussen
et al., 2010). The discovery of Proterozoic detrital zircons (Cavosie et al., 2004; Dunn et al.,
2005; Grange et al., 2010) within the Jack Hills belt led to the recognition of Unit 4, which
hosts metasedimentary rocks deposited during the Proterozoic. Wang & Wilde (2018) observed
interbedded siliciclastic units at the same apparent metamorphic grade but with both Archean
and Proterozoic depositional ages, highlighting that the depositional and/or tectonic
relationships of units 3 and 4 may be more complex than previously postulated.
Metasedimentary rocks within Jack Hills show clear indications of deformation; intense
shearing is particularly evident within the anastomosing micaceous matrix, where a strong
foliation is coincident with flattening and recrystallisation of quartzite cobbles (Spaggiari,
2007a). Thermal or fluid events within the Jack Hills belt occurred at ~3080 Ma, 2650 Ma,
~1850-1800 Ma and 800 Ma (Spaggiari, et al., 2007b; Rasmussen et al., 2010;2011). Monazite-
xenotime thermometry of secondary inclusions within detrital zircon yield temperatures of 420-
475 °C (Rasmussen et al., 2011), argued to represent peak upper greenschist to lower
amphibolite facies metamorphism within unit 3 metasedimentary rocks at ~2650 Ma
(Rasmussen et al., 2010). However, like the depositional ages of metasedimentary units, the
exact P-T conditions and timing of metamorphism within unit 3 and 4 metasedimentary units

are ambiguous (Kemp et al., 2018). A Proterozoic overprint at ~1800 Ma (Spaggiari et al.,
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2007b; Rasmussen et al., 2010) and a discrete event at 800 Ma (Rasmussen et al., 2010; 2011)
are of unknown metamorphic grade, but also coincide with formation of monazite and xenotime
(Rasmussen et al., 2010; 2011).

Metasedimentary rocks from Eranondoo Hill, chiefly oligomict pebble to cobble
metaconglomerate and quartzite, are renowned for hosting Hadean detrital zircon (Compston
& Pidgeon, 1986; Wilde et al., 2001), with most studies focused on metasedimentary rocks at
the W-74 ‘discovery site’ (Fig. 2). Unsurprisingly, Jack Hills detrital zircons have been the
subject of numerous publications and reviews (e.g., Harrison et al., 2017; Cavosie et al., 2018).
While a detailed description of the zircons is beyond the remit of this publication, it is important
to note there is some debate surrounding the source of detrital zircon 20’Pb-2Pb age distribution
peaks, and thus the source of detritus. Whilst 227Pb-2Pb age peaks correspond with major units
of the Narryer Terrane and the granitic lithologies surrounding Jack Hills (Nutman ef al., 1991;
Pidgeon & Wilde, 1998), distal sources of more intermediate composition have also been
suggested (Crowley et al, 2005). Additionally, the protoliths of >3800 Ma zircons are
unknown, and may derive from a source exogenous to the Narryer Terrane. Sources external to
the Narryer Terrane therefore cannot be discounted for detrital chromites. If detrital phases are
derived from the Narryer Terrane, a further consideration is that both detrital zircon and
chromite are present within quartzite clasts of the metaconglomerates (e.g., Grange et al., 2010,
Dare et al, 2016). This demonstrates that the detrital phases have undergone multiple
sedimentary cycling events. It is therefore plausible that the source of detrital chromite had
already been completely or partially eroded at the time of deposition of the Jack Hills sediments
(3050 Ma to 2650 Ma), and therefore may not represent the distribution of mafic and ultramafic
crust during the late Archean (Crowley et al., 2005; Rasmussen ef al., 2010).

Despite concerted interest in detrital zircon at Jack Hills, detrital chromites within the

same metasedimentary rocks have garnered less attention. Detrital chromites with low Mg#
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(100x molar Mg/(Mg+Fe*")) and elevated ZnO and MnO were reported by Cavosie et al. (2002)
for grains from the W-74 site; comparable major element compositions were described by Dare
et al. (2016) in analyses of detrital chromites ~1 km to the NW of this locality. Dare et al.
(2016) proposed that low MgO contents of chromites precluded derivation of Jack Hills detrital
chromites from komatiites, and that both chromite and Fe-Ni-sulphides observed within
quartzite clasts are the erosional products of at least one layered intrusion. Unpublished Re-Os
model ages (Twmas) of 3500 Ma to 3200 Ma were reported by Valley et al. (2005) for the same
population of chromites described within Cavosie et al. (2002). These data suggest the analysed
detrital chromites are at least Palaeoarchean in age, and highlight the potential preservation of

robust Re-Os systematics through peak metamorphism within the Jack Hills.

METHODS AND MATERIALS

Sample collection and preparation

Sampling locations of metasedimentary rocks are shown in Fig. 2. Seven samples of pebble
metaconglomerates (14WA1-4, I6WAS5-6 and 01JH54) were collected from within 10 m of the
W-74 site (Wilde et al, 2001) at Jack Hills (Fig. 2b). A further sample of pebble
metaconglomerate (16WAS8) and a quartzite (16WA7) were collected along strike
approximately 35m to the WSW. Two pebble metaconglomerates (16WA9-10) were sampled
from a prominent ridge across the valley to the NE. 01JH35 is a metaconglomerate sampled
~800 m to the NE of the W-74 site. 01JH36, collected approximately 200m to the ENE of
01JH35, is a quartzite with discrete, mm-scale heavy mineral bands (Cavosie et al., 2004).
Petrographic sample descriptions of metasedimentary rocks and their detrital mineral
assemblages are provided in supplementary material. While fuchsite-rich (muscovite with >1

wt. % Cr203; Challis ef al., 1995) metasedimentary rocks were largely collected to yield the
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highest concentrations of chromite grains, 01JH36, 16WA6 and 16WA10 lack significant
fuchsite. Two chromite-bearing ultramafic rocks from within the Narryer Terrane are also
included, with descriptions and sampling locations provided within Supplementary Material.
Sample 13TKN22 is a metaperidotite from the 3730 Ma Manfred Complex, collected from NE
of Mt. Narryer, ~60 km SW of the Jack Hills. Sample 16 WA13 is a heavily recrystallised
ultramafic rock of unknown age sampled from the SW limb of Jack Hills (Fig. 2a); this sample
is part of association 1 of Spaggiari et al. (2007a) and so is considered >3000 Ma.

Chips of Narryer Terrane ultramafic rocks were mounted in epoxy for petrographic
study and identification of chromite. 14WA, 16 WA and 01JH35 chromites were separated
using standard crushing and separation procedures, then sieved to yield size fractions of <500
um for analysis. 01JH36 and 01JH54 chromites were separated by electric pulse disaggregation
(EPD). 14WAI1-4 heavy minerals were concentrated using the Wilfey table, followed by
magnetic and heavy liquid separation, while 16WAS5-10 separates were concentrated via
panning. 01JH chromites were concentrated using heavy liquids and magnetic separation.
Chromites were picked by hand, separated per sample location, grain size and rounding shape,
and mounted in epoxy. Detrital grains within a thin section of 14WA2 were also analysed, as
were chromite liberated via HF leaching of quartzite cobbles from 14WA2 and 16 WAS5. No
chemical differences between chromites present within quartzite cobbles or matrix were

observed, so they are discussed together below.

Chromite mineral chemistry
14WA, 16WA and 13TKN22
Chromites were imaged using reflected light microscopy and/or back scattered electron imaging
using a Hitatchi S-3500N scanning electron microscope at the University of Bristol. Chromite

major elements were determined from individual spots and line scans using the Cameca SX100
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electron microprobe at the University of Bristol. Chromium, Al, Fe, Mg, Zn, Mn, Ti, V, and Ni
abundances of chromite were determined using a 20kV accelerating voltage, a 10nA beam
current, | um beam diameter, and a PAP matrix correction. Silicon, Na and Ca were included
within the set up to monitor any silicate contamination; analyses with >0.15 wt.% oxide of these
elements were omitted. Counting times were 30s for Cr, Fe, Al and Zn and 60s for Ti, Ca, Mg,
Na, Mn, V, Si and Ni, with the following standards used for instrument calibration: Cr203 (Cr),
albite (Al and Na), ilmenite (Fe and Ti), St. John’s olivine (Mg and Si), Zn metal (Zn), Mn
metal (Mn), V metal (V), Ni metal (Ni) and wollastonite (Ca). The overlap of Ti KB on V Ka
was corrected either via analysis of V-free SrTiOs, or using high-resolution slits. No resolvable
variability in the V203 contents of chromite or chromite secondary standards was observed
between the two set-ups. Typical detection limits, expressed in ppm, were: Cr(260), Al(250),
Na(450), Fe(320), Ti(120), Mg(250), Si(180), Zn(400-500), Mn(300), V(200), Ni(350) and
Ca(140).

Four spinel standards (8316, 8311, 79-1 and 8315), well characterised for Fe**/SFe
using both EPMA and Mossbauer from Wood & Virgo (1991), were analysed in-run to monitor
the integrity of EPMA measurements. Long term reproducibility of major elements (Al, Cr, Fe,
Mg) within 8316 and 8311, which possess the most comparable mineral chemistry to samples,
are <1.2 wt.% (2c). The method of Droop (1987) was employed to calculate the ferric iron
content of chromite by stoichiometry. The determined Fe**/EFe (molar 100x Fe**/(Fe**+Fe?"))
of 8316 (0.21+0.07; 2oc) and 8311 (0.1740.06; 2c), measured across multiple analytical
sessions, are in good agreement with reported values. After correction for ferric iron, 14WAA4,
16WA6 and 16 WA9-10 yielded chromite with systematically low totals, typically between 97%
and 98%, despite other analyses within the same run yielding good totals. The cause of low
totals within these samples is unknown but may reflect non-stoichiometry, likely due to site

vacancies. Fe20s contents of chromite should therefore be considered minimum abundances for
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14WA and 16WA samples. Chromites with totals of 97.5-102% from 14WA4, 16 WAG6 and
16WA9-10 are included, while measurements from other samples are restricted to those that

yield totals of 98-102%.

01JH samples

EPMA analyses were undertaken at the University of Wisconsin-Madison Department of
Geoscience using a CAMECA SX51 electron microprobe equipped with Probe for EPMA
software. Analyses were conducted at 20 kV, with a 20 nA beam current and a focused electron
beam. Count times for all elements were 10 seconds on peak and a total of 10 seconds on oft-
peak background positions. The matrix correction was the PAP procedure. PHA differential
was used for Al and O, other elements were in integral mode. Oxygen was determined with a
60° 2d PCO diffractor crystal, while Si, Al and Mg were acquired on TAP, Ti and Cr on PET,
and V, Mn, Fe, Ni, Cu and Zn on LIF. Overlap corrections were made on Al for Cr, Ni and Ti,
on V for Ti, on Fe for Mn, and on O for Cr. The following standards were used for instrument
calibration: USNM Chromite (Cr, Al, Mg, O), Harvard University hematite (Fe), synthetic
tephroite (Mn, Si), V20s (V), rutile (Ti), Ni2SiO4 (Ni), ZnAlzOs (Zn) and Cu20 (Cu).
Reproducibility, Detection limits.

EPMA analyses were processed using two methods. In the first, oxygen measurements
were omitted and analyses were processed using the same techniques as 14WA and 16WA;
namely, calculation of ferric iron by stoichiometry using the method of Droop (1987), and
exclusion of analyses with >0.15 wt.% SiO2 and totals of <98 %. In the second method, cations
and measured oxygen were converted into molar proportions, and the ferrous/ferric ratio of iron
adjusted to balance the negative charge from measured O. This technique assumes Fe is the
only multivalent cation present (e.g., Cr is present as Cr**, V as V3* and Mn as Mn?") and that

site vacancies are negligible. The latter scenario is unlikely to be true within altered Cr-rich
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spinel (see Kamperman ef al., 1996), and so ferric iron compositions determined by the second
method represent maximum values. For consistency, data calculated using stoichiometry are
presented within the main text, while analyses processed using measured O are discussed in

supplementary material.

Oxygen isotope analyses

Chromite grains from samples 01JH36, 01JH42 and 01JH54 were analysed for oxygen isotope
ratio by laser fluorination at the University of Wisconsin-Madison Department of Geoscience.
A total of 35 analyses of oxygen isotope ratio in chromite were made using gas source mass
spectrometry with BrFs and a 32 W COz laser (Valley ef al, 1995). Chromite data were
corrected for accuracy with the UWG-2 garnet oxygen standard, which was analysed multiple
times at the beginning of the session (Valley et al., 1995). The reproducibility of UWG-2 per
session ranged from £ 0.06 to = 0.24 (25). Samples of chromite were first sieved into seven
size fractions, ranging from 105-149 um to >500 um (Supplementary Table 1). At least three
size fractions were analysed from each sample, with two to three aliquots analysed of each size
fraction. Aliquots of chromite were prepared by soaking detrital grains in concentrated HF at
room temperature overnight. Each ~2 mg aliquot of chromite thus consisted of hundreds of
clean detrital grains. Values are reported in standard per mil notation relative to V-SMOW

(Vienna Standard Mean Ocean Water).

RESULTS

Chromite morphology and inclusion assemblages

Jack Hills detrital chromites are <500 um grains of variable morphology that are enclosed by,

or closely associated with, fuchsite within quartzite or metaconglomerate matrix (Fig. 3a). Finer
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(<100 um) chromite grains have previously been reported within metaconglomerate quartzite
cobbles (Dare et al., 2016), but were uncommon in samples of this study (Fig. 3b), though HF
leaching of quartzite cobbles liberated a small number of grains (n= 12). Many chromites show
textural evidence of sedimentary transport, including abrasion and rounding of broken surfaces.
Chromite derived from Jack Hills metasedimentary rocks occur as euhedral octahedra (EO),
rounded octahedra (RO) or rounded grains (RC: rounded chromite) (Fig. 3a). EO yield minimal
rounding on two or fewer faces, with many euhedral grains showing little or no evidence of
sedimentary transport. RC grains demonstrate limited evidence of original habit on two or less
faces, and are often present as highly spherical morphologies. RO are chromites with
morphologies intermediate to EO and RC, and are the most abundant morphology. More
quartzitic lithologies possess a greater proportion of euhedral grains. 16WA9 and 16WAI10,
sampled furthest from the W-74 site, yield a more bimodal distribution with chromite
dominantly RC and minor EO.

A range of internal textures are present (Fig. 4), with grains often heavily cracked and
displaying ragged or lobate boundaries with surrounding fuchsite (Fig. 3c). Fractures
occasionally display distinct polygonal morphologies (Fig. 4b), and larger fractures may be
filled with quartz, fuchsite, and Fe-oxide. Distinct ‘pitted’ textural domains within chromite
reveal the presence of typically <10 um inclusions of dominantly quartz and fuchsite (Figs.
4&S5). Rare porous textures with >30 um inclusion assemblages may occasionally account for
the majority of the grain (Fig. 4e-f). Both pitted and porous domains are conspicuous at
chromite rims or adjacent to cracks, and particularly where chromite is enclosed by fuchsite.
Fine laths of rutile, often showing apparent alignment to chromite crystallographic directions,
are also commonly associated with pitted and porous domains (Fig. 4e-f & 5a). Isolated
monomineralic and polyphase silicate and oxide inclusions present within chromites are

typically globular or anhedral in habit (Fig. 5), but may more rarely possess subhedral to
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euhedral morphologies (Fig. 5a&d). Inclusions associated with fractures and crack filling
assemblages of quartz, fuchsite and rutile (Fig. Sa-b&e) are often accompanied by other fine-
grained (typically <10 pm) phases, including Fe-oxide (Fig. 5b), Fe-sulphide (Fig. 5¢), and

rarer monazite (Fig. 5f).

Chromite mineral chemistry

Representative analyses of detrital chromites from each metasedimentary sample location are
presented in Table 1, and the full EPMA data set is available in Supplementary Material 2.
Chromite major element abundances show no variation with grain size or rounding shape

(Supplementary Figs.) but differ systematically between sampling locations (Figs. 6 & 7).

Sample variability (Ti*" and divalent cations; Fe**, Mg®*, Zn’*, Mn**, and Ni’*)

Chromite from all sampled metasedimentary rocks yield elevated ZnO (up to 13 wt.%) and
MnO (up to 4.4 wt.%), coupled with low Mg# (typically <30; Fig. 6). Largely, samples with
increasingly elevated ZnO yield lower and more homogeneous Mg# (Fig. 6a). 14WA2
chromites possess the lowest wt.% ZnO (average ZnO 1.23 wt.%) and largest range of Mg#,
with a single grain (14WA2-PB-46) yielding Mg# of ~30. Unusually elevated MnO contents
are present in 01JH35, where chromites yield >3.5 wt.% MnO (Fig. 6b). No variation of MnO
with Mg# is apparent (Fig. 6b), though some 16 WA samples show variance between ZnO and
MnO (Fig. 6d).

Ti02 is typically <1 wt.% (Figs. 6¢). Individual analyses where TiOz is above 1 wt.%
correlate with areas where laths of rutile are present, and are omitted from consideration.
Elevated TiO2 of >1 wt.% is most apparent within lower Cr# (100x molar Cr/(Cr+Al)) grains
(Fig. 7). As the bulk of analyses possess <0.3 wt.% TiOz, this suggests analyses yielding TiO2

>0.3 wt.% may also overlap with rutile laths. However, many chromites with ~0.3-0.8 wt.%
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TiO2 show no evidence of rutile laths in BSE images. NiO within grains is largely below the

quantification limit of ~0.04 wt.%.

Sample variability (trivalent cations: Cr’*, AP*, V3", Fe’")

Despite considerable variability of divalent cation contents between sampling locations, detrital
chromite show a similar range in Cr# between samples (Fig. 7). Chromites yield moderate to
high, and variable Cr# of 48-82, with the bulk of chromites displaying Cr# of 54-66 (Fig. 7a).
The apparent smaller range of Cr# in chromites with higher wt.% ZnO is likely a sampling bias
due to fewer analyses. V203 was not measured for Il6 WAS5-7, but where measured is present at
0.05 wt.%, to 0.37 wt.% and shows no inter-sample variability. Jack Hills detrital chromites
yield low calculated Fe2Os contents; the bulk of the population contain <2 wt.% Fe203, though
analyses with up to 8 wt.% Fe2Os are present. This results in highly variable Fe**/ZFe (100x
molar Fe**/(Fe3™+Fe?")) ratios of 0-20 (Fig. 7d). Many chromites yield non-stoichiometric
compositions (e.g., deviation from A?'B3204), shown by cation totals of less than 3 when
normalised to 4 oxygens. This likely reflects cation vacancies (e.g., Kamperman et al., 1996),
and results in an under-estimation of ferric iron contents by stoichiometric calculations (Droop,
1987). Non-stoichiometry also affects analyses conducted by direct measurement of oxygen
(Supplementary Material); analyses with significant cation deficiency results in substantial
over-estimation (>10 wt. %; Supplementary Material) of ferric iron contents to balance the
negative charge of oxygen. Thus, stoichiometric and charge balance of 01JH analyses represent

minimum and maximum ferric iron contents of Jack Hills detrital chromites, respectively.

Within grain variability
Zoning, While the largest systematic variations in chromite chemistry are between sample

location, line scans of 14WA and 16WA detrital chromites reveal distinct zonation trends (Fig.
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8). Chromites do not exhibit morphologically or microstructurally distinct cores and rims, but
we use those terms here to describe the centre and outer portions of grains. Most chromites have
homogeneous ZnO contents (Fig. 8a) or else slightly lower wt.% ZnO towards rims (Fig. 8b-
¢). MnO is largely uniform across chromites, although slightly lower abundances towards the
rim may be observed. Homogeneous Mg# appears to be restricted to chromites within high ZnO
16WAT7 (Fig. 8c), with all other samples yielding chromites that display distinct variability in
Mg#. Low ZnO samples, such as 14WA2 and 16WAJS, yield clear decreases in Mg# from the
core to rim of the grain (Fig. 8a). High ZnO samples, such as 14WA3 and many examples
within 14WAA4, often yield rims with higher Mg# (Fig. 8b) though lowering of Mg# from core
to rim is also observed. Grains with elevated Mg# at the rims show increases in both MgO and
FeO from core to rim, compensated by decreases in ZnO and MnO.

While grains yield zoning profiles of divalent cations, intra-grain changes in Cr# are
largely absent (Fig. 8). Core-to-rim trends of marginally higher or lower Cr# (e.g., £2) are
sometimes observed (Fig. 8 a&c), but there is no systematic behaviour in samples from different
locations. Like Cr#, Fe2O3 contents are generally homogeneous across chromite grains, with
variability in some zonation profiles likely reflecting low calculated Fe2O3 contents. However,
individual grains do yield distinct variations in Fe2O3 that appear systematic in origin, present
as both decreases and enrichments in Fe:O3 from core to rim, with increasing Fe;O3 often

coupled with a small increase in Cr# (Fig. 8a).

Coupled elemental and textural variation; Distinct zones of elevated Cr# within detrital
chromite are rarely present (Fig. 9). These features are closely associated with pitted domains
and fractures, and exhibit both diffuse and more commonly sharp (Fig. 9a-¢) boundaries with
surrounding chromite. High Cr# domains, often distinguished by an absence of fractures and

inclusions in comparison to surrounding chromite (Fig. 9a-b), mostly occur at the edge of grains
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adjacent to enclosing fuchsite or associated with fractures (Fig. 9a-c). These domains may also
be localised, occurring as distinct polygonal areas defined by crystallographic directions (Fig.
9d-e). These domains are characterised by high Cr# (>70), low totals (<98 wt.%), the apparent
absence of Fe20s3, lower ZnO and V203, and occasionally slightly elevated MnO. High Cr#
domains within detrital chromite are chemically indistinguishable from low Fe2Os3, high Cr#
grains within the same samples. Only a single domain of low Cr# has been observed within

chromite, bounding a monomineralic quartz inclusion alongside iron oxide (Fig. 9f).

Oxygen Isotope Compositions

Analysis of oxygen isotope ratio in various chromite size fractions was conducted to determine
if detrital chromite grains preserve primary (magmatic) §'%0 values, or if there is evidence of
oxygen exchange with the metasedimentary host rocks. Exchange of oxygen isotopes between
chromite and surrounding quartz at low temperature (e.g., <600 °C) would result in lowered
8'80 values for chromite (e.g., Lowry et al., 2003). Each sample showed >1 %o variability in
8'80, with 8'%0 chromite values ranging from 0.03 to 2.19 %o (Fig. 10; Supplementary Table
1). For samples 01JH36 and 01JH42, the lowest chromite 3'%0 values (0.69 and 0.03 %o,
respectively) were detected in the smallest size fraction, and there was a systematic increase of
8!80 with grain size (Fig. 10a-b). In contrast, 01JH54 showed no systematic variation of
chromite 8'%0 with grain size, and also contained the highest 6'80 measured for chromite at

2.19 %o (Fig. 10; Supplementary Table 1).

DISCUSSION

Chromite morphology and the origin of inclusion assemblages
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The variably rounded morphologies of chromite, from RC to EO, attests to a protracted and
complex reworking history of numerous detrital grains. Further to this, the presence of chromite
within quartzite cobbles of metaconglomerates (Fig. 3b; Dare ef al., 2016) suggests cycling of
some grains in at least two sedimentation events. Categorisation of grains by shape may indicate
provenance from multiple geographic sources or differing modes of sedimentary transport
(Dott, 2003). The extensive sedimentary cycling history of some chromites is consistent with
the mature nature of host metasedimentary rocks (>98 wt.% SiO2; Cavosie et al., 2004), but at
odds with the highly fractured nature of many grains (Fig. 4b-¢), which would not survive
extensive sedimentary transport. This strongly suggests that fracturing of grains occurred in-
situ, likely alongside deformation of the host metasedimentary rocks.

Jack Hills detrital chromites contain inclusion assemblages of quartz, fuchsite, rutile,
Fe-oxide, monazite, and Fe-sulphide (Fig. 5). These phases, particularly silicates quartz and
fuchsite, typically form under distinctly different conditions to magmatic chromite. However,
quartz and fuchsite are common components of Jack Hills quartzites and metaconglomerates,
alongside minor secondary rutile, monazite and xenotime (Harrison ef al., 2007; Rasmussen et
al., 2010; lizuka et al, 2010). Inclusions of quartz and Cr-poor muscovite have also been
reported within detrital zircon (Cavosie et al., 2004; Hopkins ef al., 2008; 2010; Rasmussen et
al., 2011; Bell et al, 2015), both as monomineralic and polyphase inclusions alongside
monazite and xenotime (Rasmussen et al, 2011). Monazite and xenotime inclusions within
detrital zircons yield 2°"Pb-2"Pb ages of ~2650 Ma and 800 Ma that are demonstrably younger
than the host grains (Rasmussen et al., 2011), attesting to a secondary origin of many zircon
inclusion assemblages. Cameron et al. (2016) additionally showed that ~60 % of quartz
inclusions within zircon exhibited evidence of 8'0 exchange with Jack Hills metasedimentary
rocks. It is therefore hypothesised that many quartz inclusions within detrital zircons were

significantly altered during metamorphism of host metasedimentary rocks or, alongside
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muscovite, rutile, monazite and xenotime, were precipitated from post-depositional fluids that
filled voids left from the dissolution of primary apatite (Rasmussen et al., 2012; Bell et al.,
2015; Cavosie et al., 2018; c.f. Hopkins et al., 2010; 2012).

The occurrence of assemblages of the same phases as observed within detrital zircon,
coupled with the unlikelihood of quartz and muscovite stability within the mafic-ultramafic
melt that crystallised chromite, provides evidence that inclusion assemblages within chromite
are secondary in origin. Interestingly, many secondary inclusions of quartz and fuchsite are
apparently isolated from visible fractures within chromites (e.g., Fig. 5a & 8a). Isolation of
inclusions has been used as a line of evidence for a primary origin of many quartz and muscovite
inclusions within detrital zircon (Bell et al., 2015b). The detection of clearly secondary,
apparently isolated inclusion assemblages within detrital chromite suggests caution should be
applied when using this as a line of evidence for the presence of primary inclusions, and instead
points to the presence of sub-micron or annealed fractures within grains, or fracturing below
the 2D surface shown by electron imaging (e.g., Cavosie ef al., 2018).

Our data therefore indicate that inclusion assemblages formed from interaction of
detrital chromite and metamorphic fluids within the metasedimentary host. Pitted and porous
domains, which are analogous to spongy textures described elsewhere (Gervilla ef al., 2012;
Colés et al., 2014) and host the same secondary mineral assemblages, were also likely formed
by this process. Coarser, euhedral inclusions may reflect direct dissolution of primary inclusion
phases, akin to aforementioned replacement of primary inclusion assemblages within detrital
zircon (Rasmussen et al., 2011). It is more problematic to prescribe an origin to inclusions of
Fe-sulphide and rutile. Sulphide and chromite are commonly co-liquidus phases under iron-
sulphide saturated magmatic conditions; however, secondary pyrite is often observed within
Jack Hills metasedimentary rocks (e.g., Cavosie et al., 2004; Supplementary Material) and iron-

sulphides (typically <40 um pyrite, pyrrhotite, intergrowths of pyrite and pyrrhotite, and rarer



535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

pentlandite) are ubiquitous within isolated quartzite cobbles (Dare et al., 2016). Pyrrhotite,
pyrite and rare chalcopyrite inclusions within Jack Hills chromites appear to be closely linked
to pitted domains (Fig. 5¢); we therefore propose a secondary origin for Fe-sulphide inclusions
within chromite.

Inclusions of rutile may be anhedral, globular or preserved as laths aligned to chromite
crystallographic axes and are particularly abundant within pitted and porous domains. Observed
alignment of alteration phases within chromite (Figs. 4e & 5a) is noted elsewhere, including in
chlorite (Fleet et al, 1993; Gervilla et al, 2012) and phlogopite (Rollinson et al., 2002).
Whether rutile was precipitated from metamorphic fluids, or was exsolved from chromite,
perhaps via changes in the oxidisation state of grains (e.g., Cameron ef al., 1979), is unclear.
High-Ti domains associated with cracks within zircon (Harrison & Schmitt, 2007; Hofmann et
al., 2009), and the secondary growth of rutile within metasedimentary matrix (Harrison et al.,
2007) attests to Ti mobility within Jack Hills metasedimentary rocks. While we consider a
secondary origin of rutile most likely, we note direct exsolution from chromite that previously

had higher TiO2 contents cannot be discounted.

Chromite mineral chemistry

Signatures of metamorphism

Jack Hills detrital chromites typically yield high ZnO and MnO coupled with low Mg#
(typically <30; Fig. 6). Chromites with such distinctive chemical compositions are uncommon
(e.g., Wylie et al., 1987; Santti et al., 2010; Fanlo et al., 2015) and largely attributed to
secondary processes (e.g., Barnes, 2000). A number of studies have investigated the effects of
secondary modification of chromite major, minor and trace elements (e.g., Barnes, 2000;
Gonzélez-Jiménez et al., 2009; Mukherjee ef al., 2010; 2015; Gervilla et al., 2012; Colés et al.,

2014). Hypotheses as to the various processes that modify chromite include: elemental mobility
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via interaction with aqueous fluids during the breakdown of surrounding Mg-Fe silicates via
serpentinisation (Burkhard, 1993; Marques et al., 2007; Hodel et al, 2017) and/or
metamorphism (Barnes, 2000; Gonzélez-Jiménez et al., 2009; Gervilla et al., 2012; Colas et
al., 2014; Fanlo et al., 2015; Ahmed & Surour, 2016), Cu-Zn-Ni-(Co) sulphide mineralisation
of the host rock (Wylie, 1987; Marques et al., 2007; Fanlo et al., 2015), and magmatic sulphide
mineralisation (Groves et al., 1977). The effects of these processes on chromite chemistry are
dependent on the temperature and longevity of alteration, the nature and fO2 of the aqueous
medium, the composition of the host rock and subsequent chromite/silicate ratio, and the
fluid/rock ratio during modification (Colés et al., 2014; Ahmed & Surour, 2016). The most
commonly observed divalent cation mobility during thermal events is a decrease in Mg#, as
Fe?* diffusively enters the chromite lattice at the expense of Mg?* (Barnes, 2000; Colas ef al.,
2014). ZnO, MnO and to a lesser extent CoO, also diffuse into the chromite lattice in exchange
for MgO, NiO and often TiO2 (Barnes, 2000; Colas et al., 2014).

Within Jack Hills detrital chromites, coupled growth in ZnO content with increasingly
homogenised and lowered Mg# likely signifies greater exchange with the modifying medium
(Fig. 6a). This may indicate variable modification within their protolith; however, analogous
signatures of alteration have been previously reported by Challis et al. (1995), where detrital
chromites within fuchsitic sedimentary rocks yielded elevated ZnO (up to 13.7 wt.%) and MnO
(up to 3.5 wt.%), coupled with low Mg#. Critically, the detrital grains described by Challis et
al. (1995) possessed a well constrained provenance, demonstrating the observed signatures
could only have formed during post-depositional metamorphism.

We propose that the dominant signatures of secondary modification within Jack Hills
detrital chromites occurred from exchange of grains with metamorphic fluids and/or
assemblages during metamorphism of their metasedimentary hosts. Firstly, as established

above, interaction of chromite with metamorphic fluids is shown by replacement of inclusion
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assemblages (Fig. 5) and the development of pitted and porous domains. Secondly, large
differences in chromite chemistry between samples does not relate to the physical
characteristics of grains, such as shape or grain size (Supplementary Figs.), but are a function
of sampling site and therefore sedimentary horizon. Homogeneity of Mg# (e.g., I6WA7 &
16WAO9; Fig. 6) requires modification under the same physiochemical conditions, including
temperature, fO2 and Mg# of modifying medium, despite the probable variation in sedimentary
transport characteristics. Observed Mg# uniformity is therefore difficult to reconcile with
metamorphic modification with an ultramafic or mafic protolith.

Finally, and most significantly, chromites yield substantial inter-sample chemical
variability despite the proximity (often <5 m) of sampling locations (Fig. 2), with the meter-
scale variability of ZnO and Mg# of detrital chromites reconciled by changes in grain size and
modal proportions of chromite within the host metasedimentary rocks (14WAI1-4;
Supplementary Material). Chromites are the sole ZnO bearing phase, but are present at low
modal proportions of <1 %. As such, minor changes in the modal proportion and grain size of
detrital chromites can account for large variations of wt.% ZnO within detrital chromites during
interaction and equilibration with secondary fluids. However, 01JH36 detrital chromites,
sampled from a heavy mineral layer within which chromites represent a significant component,
yield elevated ZnO (2.02 to 4.74 wt.%) within 01JH36 detrital chromites. Simple changes in
the modal proportion of chromite therefore cannot account for the ZnO content of grains within
this sample. Instead, 01JH36 chromite mineral chemistry may be reconciled by metamorphic
equilibration of ZnO at length scales greater than heavy mineral bands (> mm-scale) and, given
the distance of this sample from the W-74 site (Fig. 2), variable physiochemical compositions
of metamorphic fluids across the Jack Hills. Thus, variability in modification signatures may
also reflect changing parameters of metamorphic fluids, as also suggested by the often poor

correlation between Mg# and MnO with the modal proportion of detrital chromite.
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Oxygen isotope compositions

In-situ modification of chromites is also suggested by oxygen isotope compositions. The
variation of 8180 with grain size in chromites from samples 01JH36 and 01JH42 (Fig. 10a-b)
indicates they experienced partial exchange of oxygen isotopes with the metasedimentary host
rocks. If exchange was by diffusion inwards from the grain boundary, then greater modification
of smaller grains is expected given their greater surface area to volume ratio. The lower 880
values of the smallest chromite grains from 01JH36 and 01JH42 may therefore approach
equilibration with host quartz during metamorphism or retrogression. In contrast, chromite
grains in sample 01JH54 show no grain size dependence on 880 (Fig. 10c). Given the
conspicuously lower chromite 3'%0 values recorded in 01JH35 and 01JH36, we tentatively
interpret chromite & '30 values in sample 01JH54 as pre-depositonal. Low §'30 (<2.5-3.0 %o)
are reported within chromitite from ophiolites and layered intrusions due to exchange with late-
stage magmatic and sub-solidus fluids (Lowry et al., 2003; Schannor ef al., 2018).

The oxygen isotope ratios for smallest chromite size fractions in samples 01JH36 and
01JH42 were compared with previously published & 'O values for quartz in the same samples
(Supplementary Table 2; Cavosie et al., 2005). Cavosie et al. (2005) found that values of
8'80(Qz) are homogeneous at hand sample scale in these rocks, indicating metamorphic
equilibration of quartz in pebbles and matrix. If attainment of oxygen isotope equilibrium
between quartz and chromite is assumed, the A'30 value (A8 Oquartz-Chromite = 8'30q - 8'80c) for
samples 01JH36 (A'80q-c = 12.02 %o) and 01JH42 (A'0q-c = 12.70 %o), can be applied to
calculate the temperature at which the observed fractionations were established (Zheng et al.,
1991). Calculated temperatures are 412 °C and 390 °C for samples 01JH36 and 01JH42,
respectively. Sample 01JH54 yields a distinctly smaller fractionation (A'80q.c = 9.11 %o) that

would correspond to a temperature of 530 °C if it represented metamorphic equilibration.
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However, as discussed above, the analysis of different sized grains suggests that chromite grains
in this sample preserve pre-depositonal §'%0 from and may not be appropriate for metamorphic
thermometry. While it cannot be demonstrated that oxygen isotope equilibrium was established
between quartz and chromite based on §!80 analysis of 2 mg aliquots in the other two samples,
we note that the derived temperatures based on measured fractionations are consistent with
greenschist facies metamorphic conditions previously documented within the Jack Hills
(Cavosie et al., 2004; Spaggiari et al., 2007b).

Quartz in the metasedimentary rocks analysed has been shown to have recrystallized
during metamorphism, and yields homogeneous §'%0 values at >cm scales (Cavosie et al,
2005). In contrast, detrital chromites in the same samples preserve detrital morphologies, likely
preserve gradients in §'80 at sub-mm scale (Fig. 10), and are not equilibrated in 8'%0. We
therefore use the 8'0 values determined for quartz (Cavosie et al., 2005) and temperatures
determined from oxygen isotope thermometry to estimate the 8'80 value of fluids present
during metamorphism (Supplementary Table 3). Calculated water 8§'30 values using quartz-
water fractionation factors of Sharp et al. (2016) and the published quartz §'30 values yields
water 3!80 values of 8.58 %o (at 412 °C) for samples 01JH42 and 8.16 %o (at 390 °C) for sample
01JH36; a value of water 3'%0 of 8.50 %o (at 530 °C) for sample 01JH54 is comparable to the
other two samples, but may be fortuitous given the lack of evidence for equilibration in sample
01JH54 (Fig. 10). Regardless, the range of all calculated water §'80 values, from 8.2-8.6 %o,

are typical for magmatic or metamorphic fluids (Sheppard, 1986).

Trivalent cations: retained primary signatures?
While divalent cations exchange more readily during metamorphism, trivalent cations appear
largely immobile during low temperature modification (e.g., Barnes, 2000). Chromite

interacting with acidic fluids during sea-floor hydrothermal metasomatism may rarely induce



660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

trivalent cation exchange (Wylie ef al., 1987; Marques et al., 2007; Hodel ef al., 2017); more
generally, however, nascent trivalent mobility occurs at greenschist facies metamorphism
(Kimball et al., 1990; Gonzalez-Jiménez et al., 2009) and becomes increasingly pervasive at
and above amphibolite facies (Barnes, 2000; Gonzalez-Jiménez et al., 2009; Colas et al., 2014).
Under oxidising conditions, trivalent cation exchange most commonly facilitates the transition
of chromite to ferritchromit [Fe?*(Fe**,Cr)204], where AL203 is lost to Fe20s either diffusively
(Wylie et al., 1987; Gervilla et al., 2012; Colas et al., 2014) or via reaction with magnetite rims
(Evans & Frost, 1975; Barnes, 2000). Extensive formation of ferritchromit and Cr-magnetite,
and thus modification of chromite core compositions, appears to be largely restricted to
amphibolite facies metamorphism and above (Barnes, 2000).

Regardless of the degree of secondary modification of divalent cations, Jack Hills
detrital chromites possess a broad but consistent range in Cr# across all metasedimentary
sample locations (Fig. 7). The range of Cr# may be explained by either the absence of
significant trivalent mobility, or the equilibration of chromite during secondary modification
with a Cr-Al bearing equilibrant (e.g., fuchsite or metamorphic fluid). If secondary exchange
was significant for trivalent cations, the latter scenario should manifest as homogenisation to
lower or higher Cr# in increasingly Zn-rich samples. This is not observed. Additionally,
zonation profiles of variable Mg# but homogeneous Cr# within low ZnO chromites (Fig. 8a)
would require more exchange, and thus faster diffusion, of trivalent than divalent cations. Such
an order of relative diffusivities is in strong contrast to previous literature (e.g., Barnes, 2000),
and considered extremely unlikely.

Unmodified Cr# within chromites is at apparent odds with the presence of surrounding
fuchsite, whose elevated Cr content is almost certainly derived from detrital chromites. Fuchsite
yields Cr203 concentrations of ~2-3 wt.% (Cr# <5; Supplementary Table 4), that decrease with

increasing distance from detrital chromite grains (e.g., Rasmussen et al, 2011). Such low
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concentrations within fuchsite require only minor mobilisation of Cr from chromite, and
suggest that the Cr required was scavenged from more heavily altered areas of chromite during
metamorphic precipitation of fuchsite, or from dissolution of strongly modified grains in acidic
fluids. This is supported by lobate boundaries of detrital chromites with surrounding fuchsite
(Fig. 9a-b). Selection of grains with well-defined shapes has likely filtered our dataset for such
heavily modified compositions; the process of fuchsite formation causes ragged grain
boundaries and extensive fracturing of chromites, which significantly modifies grain
morphology (Fig. 3).

Localised zones of Cr-Al mobility may, however, shown by high Cr# domains (Fig. 9),
with their generation reconciled via preferential loss of Al during localised exchange between
chromite and fuchsite and/or the metamorphic fluid that precipitated fuchsite. High Cr#, low
Fe’™# and inclusion free zones of alteration have previously been documented by Arai et al.
(2006), who suggested such domains represent the loss of A1** without concurrent addition of
Fe**. Alternatively, high Cr# domains may reflect compositions transitional to ferritchromit or
fluid-mediated recrystallisation, although further microstructural analysis would be required to
show this. The distinct boundary between the bulk chromite and high Cr# domains (Fig. 9) was
suggested by Arai et al. (2006) to represent a spinel miscibility gap at high-Cr, Low-Fe**
conditions. Importantly, the sharp gradients indicate negligible diffusion between high Cr#
domains and bulk chromites. Therefore, while high Cr# domains clearly represent areas of
elevated alteration during metamorphism of host metasedimentary rocks, the retention of sharp
boundaries implies an absence of trivalent cation mobility within bulk chromites.

High Cr# domains yield strong compositional similarities to high Cr# chromite, which
creates increased uncertainty as to the primary origin of high Cr# grains. However, inter-grain
variability in Mg# is still apparent within 14WAZ2, and the zonation profile of high Cr# 14WA2-

PB-12 (Cr# ~75) shows Mg# variability (Supplementary Material Fig. XX); if elevated Cr#
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were a product of enhanced trivalent mobility, Mg# heterogeneity should not be observed. This,
coupled with the sharp boundaries of high Cr# domains, provides strong evidence that chromite

with consistently high and homogeneous in Cr# are pre-depositional in origin.

Timing and cause of chromite modification

It is apparent from the mineral chemistry and inclusion assemblages of Jack Hills detrital
chromites that grains were modified within host metasedimentary rocks. However, the timing
and magnitude of metamorphic events within the Jack Hills are poorly understood (e.g., Kemp
et al., 2018). Previous work has attested to three thermal or fluid flow events within Jack Hills
metasedimentary rocks at ca. 2650 Ma, ~1850-1800 Ma and 800 Ma (Spaggiari, 2007a;
Rasmussen et al., 2010; 2011; Kemp et al, 2018). Below, we deliberate the timing and

magnitude of metamorphic events experienced by Jack Hills detrital chromites.

Dominant metamorphic signatures, a ~2650 Ma event

Metamorphism at ~2650 Ma has been proposed to represent peak metamorphic conditions at
the W-74 site (EARLIER PAPER; Rasmussen et al., 2010; 2011). While inclusion assemblages
within Jack Hills chromites have not been dated, and so cannot be definitively linked to this
event, previous investigation of secondary monazite and xenotime within detrital zircons from
the W-74 site observed a large population of this age (Rasmussen et al, 2011). Monazite-
xenotime Gd exchange and Ti-in-quartz thermometry indicates metamorphic temperatures of
<487 °C at this time, typical of upper greenschist facies metamorphism (Rasmussen et al.,
2011). Importantly, temperatures calculated for oxygen isotope equilibrium between chromite
and quartz fall within the temperatures anticipated for greenschist facies metamorphism, and
also argue for exchange at this time. Given that the ~2650 Ma event represents the highest grade

of metamorphism experienced by metasedimentary rocks local to the W-74 site, this event
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likely imposed the observed chromite mineral chemistry. The chemical compositions of Jack
Hills chromites can therefore be explained by partial to complete exchange with Fe-, Zn- and
Mn-bearing metamorphic fluids and mineral assemblages during upper greenschist to lower
amphibolite facies metamorphism at ca. 2650 Ma. Metamorphic fluids were likely acidic to
facilitate the mobility of Ti*" (e.g., van Baalen, 1993), and enable localised dissolution of
chromite to form fuchsite.

This event also coincides with amphibolite to granulite metamorphism throughout the
Narryer Terrane, including gneisses adjacent to the belt, and ubiquitous granitic emplacement
within the entire Yilgarn Craton (Kemp et al, 2018). This includes the ca. 2650 Ma
monzogranite (‘The Blob granite’; Pidgeon & Wilde, 1998), which intrudes the Jack Hills belt
to the SW of Eranondoo Hill (Fig. 2). Speculatively, this intrusion, or other granitic intrusions
adjacent to the Jack Hills belt, may have supplied heat and a metasomatic component
(particularly volatile Zn) to metamorphic fluids; similarly modified detrital chromites reported
by Challis et al. (1995) were postulated to have gained their chemical compositions by
interaction with fluids derived from local granitic plutons. An alternative and more local source
of ZnO within Jack Hills metasedimentary rocks may come from dissolution of sphalerite
(ZnS), which may be a potential detrital phase given the abundance of Fe-sulphides within
quartzite cobbles.

Studies have shown that metasedimentary rocks with Proterozoic depositional ages are
complexly intercalated with, and at the same apparent metamorphic grade, as metasedimentary
associations with inferred Archean depositional ages (Cavosie et al., 2004; Dunn et al, 2005,
Grange et al., 2010; Wang & Wilde, 2018). This, coupled with ~1850-1800 Ma and ~800 Ma
ages within the Jack Hills (Spaggiari et al., 2007b; Rasmussen et al., 2010; 2011), indicates

Proterozoic overprinting at a lower metamorphic grade than peak metamorphic conditions.



759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

Subtle zonation trends within some chromites, namely increased Mg# within 14WA4 (Fig. 8b),

may be reconciled by minor elemental mobility (Mg, Fe, Zn) within the Proterozoic.

Pre-depositional modification?

Given the susceptibility of chromite to sub-solidus exchange, signatures of modification prior
to deposition must also be considered. Divalent cations have undergone significant exchange
within host metasedimentary rocks; it is unclear if preservation of high Mg# within the cores
of some low ZnO grains (e.g., 14WA2-PB-46; Fig. 6b) represent pre-depositional Mg#, or have
still undergone partial exchange. However, pre-depositional metamorphism of accessory
chromites (e.g., within their protolith), should result in trivalent cation mobility namely the
development of ferritchromit rims (Barnes, 2000; Colas et al., 2014). While the generation of
ferritchromit is limited within chromitites, where the higher modal abundance of chromite in
chromitite has been shown to inhibit significant metamorphic exchange and thus the generation
of ferritchromit (e.g., Mukherjee et al, 2010), chromitite typically represent relatively minor
components of igneous bodies (Barnes & Roeder, 2001). Given the presence of EO, which have
undergone little abrasion and rounding during sedimentary reworking, ferritchromit or
magnetite rims should be clearly visible if present prior to deposition. No ferritchromit has been
observed within this study, providing evidence chromites have not undergone resolvable
trivalent mobility prior to erosion from their protoliths. While we cannot definitively exclude
trivalent cation mobility prior to deposition, we suggest that Cr# of Jack Hills detrital chromites

represent the most robust chemical signature for investigation of provenance.

Provenance
While detrital chromites exhibit protracted metamorphic histories, some chemical

signatures place constraints on the magmatic protolith. Consistent variability of Cr# regardless
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of shape may indicate a common mafic or ultramafic protolith. While we base this
interpretations on least altered chromites within samples 14WA2 and 01JH54, the consistent
range of chromite Cr# from all 14WA, 16WA and 01JH metasedimentary rocks analysed
potentially suggests that a single, large-scale magmatic source potentially dominated the mafic
and ultramafic crust within the catchment of the Jack Hills sedimentary rocks. Unfortunately,
important chemical tools for understanding the petrogenesis of chromite and consequently their
protolith, namely Mg# and TiOz, are not appropriate to apply to Jack Hills detrital chromites
due to modification within host metasedimentary rocks. Therefore, commonly used plots for
chromite provenance, such as TiO2 vs Cr203 or A12O3 (Kamenetsky et al., 2001), are unlikely
to be reliable. We propose trivalent cation mobility was limited within Jack Hills detrital
chromites, but cannot fully exclude metamorphic re-equilibration of Fe’*/IR3" prior to
deposition. We therefore suggest careful use of Fe**/ZR** may provide better insights into the
provenance of Jack Hills chromites; unmistakably non-stoichiometric grains (i.e., Fe’" = <0)
from 14WA2 are excluded Fig. 13 for clarity. The retention of unmodified Cr# within cores of
Jack Hills chromite will therefore yield the most information on provenance of detrital grains,
alongside careful and conservative use of Fe**/ZR*" and, where rutile laths are demonstrably
absent, TiO2 contents.

To gain understanding of the petrogenesis of Jack Hills detrital chromites, and
potentially of mafic and ultramafic crust within the Narryer Terrane, we use the fields of Barnes
& Roeder (2001), a comparative study of over 26,000 spinels from different tectonic settings.
We compare these fields to grains from 14WA2 and 01JH54, which, due to low ZnO coupled
with partial exchange of Mg#, we interpret to represent the least altered compositions of detrital
chromite. We do not include the chemical compositions of chromitites within the fields of Figs.
10-13; chromitites compromise a low volumetric component of igneous bodies, particularly

layered intrusions, and have been suggested to induce bias within provenance studies (Power
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et al., 2000; Barnes & Roeder, 2001). While 14WA2 appear conform to a Cr-Al trend (Fig. 11;
Irvine, 1967; Barnes & Roeder, 2001), where no enrichment of Fe** is observed with changing
Cr#, this likely reflects non-stoichiometry. The consistently low ferric iron contents of 01JH54
chromites are not suggestive of Fe-Ti or Rum trends (Fig. 11), which form via the reaction of
plutonic chromites with intercumulus liquid enriched in both Fe** and Ti.

As expected, in Cr# vs. Fe?*# (inverse Mg#) compositional space, Jack Hills detrital
chromites fall within the 90™ percentile of spinel within high grade metamorphic rocks (Fig.
12a). The decrease of Mg# within Jack Hills detrital chromites due to metamorphic exchange
results in comparable Mg# to chromites modified within mafic-ultramafic protoliths; this
process is also shown in Fig. 12d, where an increase in metamorphic grade from greenschist to
amphibolite facies results in significantly lowered and homogenised Mg# within komatiitic
chromites. While superficially Jack Hills detrital chromites yield a similar Cr# variability to
those modified by metamorphism, the range in Cr# shown within the metamorphic field (Fig.
12a) represents compositions transitional from magmatic Cr# to ferritchromit and magnetite.
As such alteration phases are absent within Jack Hills chromites, and zonation profiles show
limited Cr# variability, this process cannot explain the fit of grains to the metamorphic field of
Barnes & Roeder (2001). A different provenance is therefore required for the observed Cr#.

The variable and moderate to high Cr# of Jack Hills detrital chromites (typically 55-70)
are comparable to ophiolitic chromites (Fig. 12b), continental layered intrusions (Fig. 12c), and
intra-plate settings such as ocean island tholeiites and oceanic plateaus (Dick & Bullen, 1984;
Barnes & Roeder, 2001; Arai ef al., 2011). Critically, the Cr# of Jack Hills chromites indicate
the majority of detrital grains cannot be derived from komatiites (Fig. 12d). As a product of
high temperature and high degree mantle melts, komatiites have high Cr/Al ratios and therefore
yield chromite with high Cr# (typically >70; Barnes & Roeder, 2001) that yield tightly clustered

compositions due to the inhibition of magmatic fractionation or subsolidus equilibration. In
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comparison to both Al-undepleted komatiites (AUDK; Fig. 12d) and Al-depleted komatiites
(ADK), Jack Hills detrital chromites yield more variable and moderate Cr# (typically 55-70).
ADK are not shown in Fig. 12 as they yield chromite with too high Cr# (>85) to represent a
source of Jack Hills detrital chromite. Some portions of komatiitic lavas, such as olivine-rich
dunitic channels and sheets, have been shown to yield chromite with lower Cr# (60-70) than
bulk ADK and AUDK (Barnes, 1998; Barnes & Roeder, 2001). However, chromite is not
abundant in these reduced cumulates, and would be unlikely to dominate the detrital record
over their bulk komatiitic counterparts.

We suggest that, on the basis of Cr#, the most likely provenance of Jack Hills detrital
chromites is a layered intrusion. Notably, though chromitite fields are not included in Fig. 12
and Fig. 13, Jack Hills detrital chromites yield comparable Cr# to Stillwater ‘G’ and Bushveld
chromitites (e.g., Campbell & Murck, 1993; Langa et al., 2020 and references therein). While
variable chromite morphologies may reflect different transport mechanisms, an absence of
chemical variation with rounding shape of grains may be further qualitative evidence of a
potential layered intrusion source; layered intrusions may yield consistent lithologies and
mineral chemistry laterally for many kilometres. In the absence of definitive Fe203 or TiO2
concentrations, tectonic settings with comparable Cr#, including podiform and other mantle
derived Cr-spinel, cannot be excluded (as shown by ophiolites; Fig. 13a). Thus, while we
consider a layered intrusive source the most likely source of Jack Hills detrital chromites,
further investigation of additional chemical signatures may provide evidence for or against this
interpretation.

However, chromite from early Archean anorthositic layered intrusions yield marked
physiochemical differences to those from stratiform complexes, which dominate the layered
intrusion fields of Fig. 12 and Fig. 13. Archean anorthositic layered intrusions typically form

sill-like bodies that are significantly less volumetric than Proterozoic massif-type anorthositic
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intrusions, and are thought to represent sub-volcanic intrusions coeval to overlying greenstone
belts (e.g., Ashwal & Bybee, 2017). Archean sill-like anorthositic intrusions yield spinel that
are typically Fe rich, with populations of high Cr# (>70) or low Cr# (<50) (Rollinson ef al.,
2002; 2010; Mondal et al., 2006; Dharma Rao et al., 2013; Mukherjee ef al., 2015; Rowe &
Kemp, 2020), thought to reflect derivation from parental melts of komatiitic, boninitic or
hydrous basaltic compositions (Ashwal & Bybee, 2017). Thus, typical mineral chemistry of
anorthositic layered intrusive chromites are not comparable to Jack Hills chromites. While
chromites extending to Cr# comparable to Jack Hills detrital chromites are documented (e.g.,
Mukherjee et al., 2010), they typically represent a minor component of bulk chromite
compositions. As with chromites from komatiitic dunitic channels, such chromites are unlikely
to dominate detrital records over higher Cr# counterparts.

While Jack Hills detrital chromites do not yield Cr# equivalent to Cr-spinel from sill-
like Archean anorthositic layered intrusions, chromite from late Archean layered intrusions
with comparable chemical compositions are known (e.g., Rollinson et al., 2010; Berger et al.,
2013; Szilas et al., 2017). The development of massif-type anorthositic intrusions at the
beginning of the Proterozoic are thought to coincide with the emergence of increasingly
thickened and strengthened lithosphere, a consequence of secular cooling and potentially
shifting geodynamic regimes (Ashwal & Bybee, 2017). This therefore does not exclude the
presence of more massif-type layered intrusions during the early Archean; the preservation
potential of larger, and thus higher density, stratiform intrusions would be significantly lower

in the presence of hotter Archean mantle.

Potential sources within the Narryer Terrane
As the mineral chemistry of Jack Hills detrital chromites allude to a layered intrusion origin,

and unpublished Re-Os isotopic data yield model ages that are at least Palaecoarchean in age
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(Valley et al., 2005), the sole described layered intrusion within the Narryer Terrane, the 3730
Ma Manfred Complex (Kinny ef al., 1988; Fletcher et al., 1988; Myers, 1988b; Rowe & Kemp,
2020), can be considered as a potential source. Spinel within the Manfred Complex is
dominantly spinel sensu stricto or picotite, and occurs closely associated with magmatic olivine
(Rowe & Kemp, 2020) or exsolved from cumulus orthopyroxene or clinopyroxene. Chromite
is completely absent in the Manfred Complex harzburgites and websterites studied by Rowe &
Kemp (2020); however, metaperidotites within the Manfred Complex contain chromite
(Fletcher et al., 1988; Myers, 1988b; Kemp et al., 2018). Here, we compare the least altered
14WA2 and 01JH54 detrital grains with chromites from Manfred Complex sample 13TKN22
(Supplementary Material), a pyroxene-phyric peridotite metamorphically modified to
hornblende and altered to serpentine.

13TKN22 chromites (n=13 analyses) occur as disseminated crystals with variably
formed magnetite rims (Fig. 14a-b), and yield consistent Cr# of 76-80 (Table 2), coupled with
low Mg# of <20, likely reflecting metamorphism of the host metaperidotite. 13TKN22
chromites yield limited ZnO (~0.6 wt.%) and heterogeneous MnO (0.4-1.4 wt.%). NiO is
present at magmatic concentrations of >0.1 wt.%, but this may reflect the high magnetite
component of 13TKN22 chromites (Barnes, 1998). While divalent cation mineral chemistry
suggests metamorphic alteration of 13TKN22 chromites, the sharpness of the boundary
between chromite cores and magnetite rims (Fig. 14a-b) and the tightly clustered compositions
of cores (Fig. 14d-e) indicate restricted trivalent mobility (e.g., Barnes, 2000). While the highest
Cr# Jack Hills detrital grains overlap with the Cr# of 13TKN22 chromites (Fig. 14), detrital
chromites possess significantly lower ferric iron contents and TiO2, though given the
uncertainties introduced by Ti mobility within host metasedimentary rocks comparisons should
be taken tentatively. 13TKN22 chromites therefore cannot account for the bulk population of

Jack Hills chromite detrital grains, which possess lower Cr#, and these lithologies did not
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represent the dominant component of mafic to ultramafic crust within the erosional catchment
of Jack Hills metasedimentary rocks.

While mafic and ultramafic crust within the Narryer Terrane tends to be collectively
grouped as the Manfred Complex, more recent geochronological investigations have shown
many of these lithologies actually have Paleoarchean igneous crystallisation ages (Kemp ef al.,
2018). Continued investigation of these units may reveal further insights into the provenance
of Jack Hills detrital chromites. Mafic and ultramafic rocks that occur within the Jack Hills belt
may also represent the source for Jack Hills detrital chromites, particularly given the proximal
source suggested for EO. Jack Hills mafic and ultramafic rocks are heavily sheared and
extensively recrystallised (Spaggiari, 2007a), however analysis of one sample (16WAI13;
Supplementary Material) found relict chromite cores within texturally distinct chromite
stringers. Whether this texture is igneous or deformational in origin is unclear, but the
development of thick and indistinct magnetite and ferritchromit rims (Fig. 14c-d) yields
evidence for at least amphibolite facies metamorphism (e.g., Barnes, 2000), likely representing
amphibolites facies metamorphism of the Jack Hills belt prior to deposition of Unit 3 and 4
metasedimentary rocks (Spaggiari et al., 2007a/b). While 16WA13 relict cores possess
comparable Cr# to some Jack Hills detrital grains, gradational and lobate boundaries between
relict cores and ferritchromit-magnetite rims, and their compositional trend towards magnetite
(Fig. 14) are evidence for mobility of trivalent cations. This indicates that the Cr# of I6WA13
chromite cores represent maximum values, and that comparisons should be taken cautiously.
However, further analyses of Jack Hills mafic and ultramafic rocks, particularly those preserved

within lower strain areas, may prove more fruitful.

CONCLUSIONS
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We have conducted a detailed textural and chemical investigation of detrital chromite from the
Jack Hills, Western Australia, in a bid to expand beyond the intensively studied zircon record
and provide additional perspectives on sources of sedimentary detritus (Fig. 15). Detrital
chromites have undergone modification during metamorphism of host metasedimentary rocks,
with significant mobility of divalent cations. This is shown by increasingly homogenised and
lowered Mg#, elevated ZnO and MnO, and partial to complete exchange of oxygen isotopes.
Interaction with metamorphic fluids also resulted in the generation of pitted domains and
replacement of primary mineral assemblages with metamorphic phases present in the matrix of
host metasedimentary rocks, dominantly quartz and fuchsite. We propose metamorphic
modification coincided with peak upper greenschist to lower amphibolite facies metamorphism
of Jack Hills metasedimentary rocks at ~2650 Ma.

Despite the development of fuchsite and high Cr# domains, Jack Hills chromites yield
a consistent range in Cr# across all samples and have limited intra-grain variability, indicating
the Cr# of chromites cores are robust. An absence of ferritchromit rims on euhedral grains
further argues against significant trivalent mobility prior to deposition. Critically, the moderate
and variable Cr# of most detrital chromites suggest that komatiites or associated intrusives were
not a significant component of mafic-ultramafic crust within the erosional catchment of Jack
Hills metasedimentary rocks. We propose a layered intrusive origin for Jack Hills detrital
chromites, though note that in the absence of further constraints from ferric iron and TiO2
contents other sources cannot be excluded. It is currently unclear whether detrital chromites
represent the remnants of a hitherto unknown intrusion, or were sourced from the 3730 Ma
Manfred Complex or from ultramafic horizons within the Jack Hills belt. The lack of significant
komatiite contribution may have geodynamic implications for eruption efficiencies within the

catchment of Jack Hills sediments (e.g., heat-pipe vs. ‘plutonic squishy lid’; Moore & Webb,



957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

2013; Rozel et al., 2017), and more broadly, the tectonic distribution of mafic and ultramafic
crust within the Archean.

While this study focused on Jack Hills detrital chromites, we have demonstrated that
with a careful and detailed approach, characteristics of the igneous precursors of detrital
chromites may be determined. However, we show that identification of key physiochemical
signatures of chromite modification are critical to assess the veracity of interpretations derived
from detrital chromites preserved within Archean metasedimentary rocks. Future studies of
Archean detrital chromites should ideally be restricted to mature metasedimentary units that
have undergone at most lower amphibolite facies metamorphism to minimise trivalent cation
mobility. Where alteration of key physiochemical signatures can be shown to be absent, Cr#,
Fe203 and TiO:2 contents may be used to provide significant insights into the provenance of
mafic or ultramafic protoliths. Fuchsitic metasedimentary rocks are commonly reported within
Archean terranes (e.g., Randive ef al,, 2015), indicating that the eroded remnants of mafic and
ultramafic crust are abundant. Detrital chromites within fuchsitic metasedimentary rocks may
therefore represent an innovative tool in understanding the distribution of eroded Archean mafic

and ultramafic crust, and yield important insights into geodynamic regimes of the early Earth.
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Detrital chromite from Jack Hills, Western Australia: signatures of metamorphism and

constraints on chromite provenance

Figure captions

Fig. 1: Map of the Yilgarn Craton, Western Australia, showing the position of the Narryer
Terrane, Jack Hills and Mount Narryer. Modified from Kemp et al., 2018 with Terrane

boundaries after Cassidy et al. (2006).

Fig. 2: (a) Simplified geological map of Jack Hills and surrounding quartzofeldspathic gneiss
and granitoids with sampling locations, after Spaggiari et al. (2007b) and Pidgeon & Wilde
(1998). (b) Higher resolution geological map of sampling locations at and around the W-74
discovery site (see Fig. 2a). Modified after Spaggiari et al. (2007b). See Methods and Materials

for relative positions of samples from the W-74 site.

Fig. 3: Jack Hills detrital chromite. (a) Optical microscope image illustrating ex-situ variably
rounded morphologies of chromite grains. Note the green-brown fuchsite. (b) BSE image of
chromite observed in-situ within quartzite cobble. Despite isolation from metaconglomerate
matrix the cobble has been infiltrated by secondary Cr-muscovite. (¢c) BSE image of complex
and ragged boundaries between chromite and fuchsite within metaconglomerate matrix. Grain
heavily fractured on its southern margin. Chr — chromite, Qz — quartz, Fch — fuchsite. Iron

oxides are likely magnetite, but have not been analysed by EPMA.
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Fig. 4: BSE images showing chromite textural variation. All scale bars 50 um. (a) Smooth with
minimal fracturing, commonly associated with high Cr#. (b) Polygonal fracturing, no pitted
domains. (c) Fractured with very fine pitted domains. Note coarser pores, with pitted domains
localised to edges and near fractures. (d) Fractured with increasingly pitted textures, often away
from obvious fractures. (e) and (f) porous chromite, fractures apparently lost or in-filled by
secondary material. Secondary material often aligned to crystallographic axes. Qz — quartz, Fch

— fuchsite and Rt- rutile. Iron oxides are likely magnetite, but have not been analysed by EPMA.

Fig. 5: BSE images of inclusion assemblages. (a) Isolated euh-subhedral quartz (Qz). Brighter
crystallites in quartz are rutile, an Mg-silicate, and phosphate. Note the surrounding pitted
domain, including darker quartz and rutile (Rt) laths, but absence of cracks. (b) Isolated
polyphase assemblage of quartz and iron oxide. (¢) Subhedral Fe-sulphide within pitted domain
of chromite; pyrrhotite (Po) and chalcopyrite (Ccp) (outlined in red). (d) Euhedral rutile within
quartz; note the ragged boundaries of quartz and surrounding pitted domain. (e) Anhedral
inclusion of fuchsite. (f) Globular inclusion of quartz and fuchsite with monazite. Note the

expansion cracks radiating from inclusion.

Fig. 6: Variation of Mg#, ZnO, MnO and TiO2. Each data point is separated by sample and
represents a core or near-core composition of chromite. Slightly elevated Mg# of 01JH
chromites in comparison to those from 14WA and 16WA is a function of higher ferric iron
contents. (a) ZnO vs Mg#. (b) MnO vs Mg#. (c) TiO2 vs Mg#. Most grains yield low TiO2 of
<0.25 wt.%. It is likely that some analyses above this value overlapped with subsurface rutile
laths. However, some grains with >0.25 wt.% TiO2 show no evidence of rutile laths. TiO2 >1

wt.% clearly represent overlap with rutile laths, so are omitted. (d) MnO vs ZnO.
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Fig. 7: Variation of Cr#. (a) ZnO vs Cr#. No variation in the range of Cr# despite apparent
increasing ZnO. (b) Cr# vs Fe*'# (100x molar Fe?*"/(Fe**+Fe’")). (¢) TiO2 concentrations vs
Cr#. Scatter towards 1 wt.% a mixture of high TiO2 grains and likely overlap of rutile laths.
High Cr# grains appear to be slightly elevated in TiO2 in comparison to bulk lower Cr# grains.
(d) Fe**/ZFe vs Cr#. Significant non-stoichiometry of 14WA and 16WA chromites has resulted

in markedly lower Fe**/ZFe in comparison to 01JH chromites.

Fig. 8: Examples of zonation patterns observed within 14WA and 16WA Jack Hills detrital
chromites, including BSE images of line path taken. Isolated, globular inclusions of fuchsite
(fch) also highlighted in 14WA2-PB-46. (a) Decreasing Mg# towards rims: most commonly
shown by low ZnO samples 14WA2 and 16WAS. 14WA2-PB-46 yields the most variable
zoning patterns observed in all Jack Hills grains and is likely the least altered grain analysed.
This example also includes elevated Fe2Os3 at its rims, resulting in an area of slightly elevated
Cr#. (b) Elevated Mg# towards rims: commonly observed in high ZnO samples such as
14WA3-4 and 16WA7. ZnO and Mn are lost from chromite at the expense of FeO and MgO,
increasing the Mg# of rims relative to the core of the grain. (c) Largely homogeneous Mg#. No
change in mineral chemistry across the grain in divalent or trivalent cations; this example has a

slight elevation in Mg# on one edge after a minor decrease from the core.

Fig. 9: Variation in mineral chemistry: BSE images with elevated contrast to variable high Cr#
domains. (a) and (b) High Cr#, pit-free domains at the edge of grains, and (c) along or associated
with cracks. (d) and (e) High Cr# domains bound by chromite crystallographic axes, closely

associated with laths of fuchsite (fch) and anhedral quartz (qz) along margins of high Cr# zones
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and rutile (rt). (f) The only observed example of a domain of lowered Cr#, encircling an
inclusion of quartz with iron oxide rims. Note the radial fractures associated with the secondary

inclusion. Except where stated, all scale bars are 50 pm.

Fig.10: Oxygen isotope ratios ('O reported at %o variation to V-SMOW) for different size
fractions of Jack Hills detrital chromite grains measured by laser fluorination. &80
uncertainties (2c) are £0.08 for 01JH36, + 0.12 for 01JJ42 and +0.06 for 01JH54. (a) and (b)
Samples 01JH36 and 01JH42, which show strong evidence of grain size dependency on §'30

values. (c) Sample 01JH54, showing no evidence of grain size dependency on 5'%0 values.

Fig. 12: Cr**-AI**-Fe3" triangular plot, modified from Barnes & Roeder (2001), showing three
magmatic compositional pathways for spinel: Cr-Al, Fe-Ti, and Rum trends. The compositional
space of ferritchromit, Cr-magnetite, and spinel miscibility gaps shown for reference. Core or

near core compositions of low ZnO 14WA2 and 01JH54 chromites are shown.

Fig. 12: Provenance: Cr# vs Fe?'# (100xFe?/(Fe?*+Mg2"), diagrams modified from Barnes &
Roeder (2001). (a) Strong fit of 14WA?2 detrital chromite with chromite that have undergone
high-grade metamorphism due to exchange of Mg?* for Fe?*, and thus increased Fe?'#. (b) Fit
of bulk field for chromite from ophiolites, although Jack Hills chromites plot at considerably
higher Fe?>*# due to metamorphic exchange of Mg?" for Fe?*. (¢) Strong fit of chromite Cr# in
Jack Hills chromite with chromite from continental layered mafic intrusions. Jack Hills detrital

chromite Fe?'# are again largely higher than 50 percentile due to metamorphic exchange. (d)
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Distinct absence of fit with chromite from Al-undepleted (AUD) komatiites. GSF; Greenschist

facies AUD komatiites, AF; Amphibolite facies AUD komatiites.

Fig. 13: Provenance: TiO2 vs. Fe**/ZR*", diagrams modified from Barnes & Roeder (2001).
Chromites that ostensibly yield no Fe’" from 14WA2 are excluded for clarity. Fit of 14WA2
and 01JH54 chromite to all fields for and (a) ophiolites, (b) layered intrusions and (c) Al-

undepleted komatiites. GSF; Greenschist facies komatiites, AF; Amphibolite facies komatiites.

Fig. 14: Cr-spinel compositions from the Narryer Terrane. BSE images of Manfred Complex
13TKN22 chromite; (a) finer chromite (chr) within 13TKN22, with a strong magnetite rim
(mag) and an inclusion of olivine (ol), and (b) coarser chromite within hornblende (hbl).
Serpentine (srp) and magnetite (mag) also shown. (c¢) and (d) Relict, porous chromite with thick
ferritchromit and magnetite rims within 16WA13, an ultramafic from the SW limb of the Jack
Hills belt. Note the softening of the boundary between core and rim in comparison to 13TKN22.
(e)-(g) Compositional variability of 13TKN22 and 16WA13 chromite in comparison to Jack
Hills detrital chromites. Spinel compositional fields from Manfred Complex harzburgites and
websterites reported by Rowe & Kemp (2020) included for comparison. Layered intrusion
fields from Barnes & Roeder (2001). (e) Cr**-AI¥*-Fe3" triangular plot, (f) Cr# vs Fe*'# and (g)

TiO2 vs Fe3'/ZR3",

Fig. 15: The inferred petrogenesis of Jack Hills chromites. (a) Original igneous crystallisation
in a single, spatially extensive igneous protolith, postulated to represent a layered intrusion. (b)

Exhumation of layered intrusion and first sedimentary cycling event. Continued erosion
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resulted in loss of contemporaneous silicates; some chromites preserved isolated within
quartzite. Chromites (+zircon) now observed within the matrix of Jack Hills metasedimentary
rocks present previously in heavy mineral layers or disseminated throughout quartzite. (c)
Further sedimentary reworking in second cycling event deposits chromites in Jack Hills
conglomerates and quartzites. Dispersion of chromites and zircons within both quartzite
cobbles and matrix. (d) Metamorphism of Jack Hills metasedimentary rocks at ~2650 Ma, likely
representing peak metamorphism at upper greenschist to lower amphibolite facies. This event
also formed fuchsite and other metamorphic assemblages within the host metasedimentary
rock, replaced chromite primary inclusion assemblages, and led to the partial to complete
exchange of chromite divalent cations with metamorphic fluids. (e) Proterozoic metamorphic
overprint of metasediments within the Jack Hills. Minor metamorphic exchange potentially

indicated by zonation profiles.
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Table 1: Representative EPMA analysis of Jack Hills chromites.

Sample 14WA1 14WA2 14WA3 14WA4 16WAS 16WAG6 16WA7 16WAS 16WA9 16WA10 01JH35 01JH36 01JHS54
Grid Ref. 499135E 499135E 499135E 499135E 499135E 499141E 499102E 499096E 499395E 499393E 499947E 499137E
(UTM) | 7105846N  7105846N  7105846N  7105846N 7105846N  7105855N  7105837N  7105837N  7106007N  7106004N 7106431N  7105849N
Grain # 4 17 44 28 19 12 7 5 core 2 20 4 5 5
Rounding RO RO (2) RO RO/RC RO EO RO/EO RO/RC EO RC
SiO: 0.02 0.08 0.00 0.00 0.01 0.01 0.00 0.01 0.03 0.03 0.03 0.01 0.03
TiO2 0.18 0.32 0.27 0.09 0.12 0.19 0.28 0.08 0.22 0.04 0.54 0.08 0.11
AlLO3 18.52 11.89 18.13 18.53 20.28 18.26 2243 19.02 19.48 20.35 21.16 21.14 19.86
Cr203 46.20 51.52 42.43 44.42 4418 45.82 38.52 44.69 45.26 44.11 39.79 43.14 44.59
V203 0.12 0.19 0.16 0.11 n/a n/a n/a n/a 0.14 0.13 0.23 0.12 0.14
Fe20s3 0.00* 3.97* 4.37* 0.82%* 0.00* 0.00* 1.81%* 0.05%* 0.00* 0.00* 16.82*% 12.26% 15.89¥
FeO 27.66 28.26 24.39 26.17 28.76 27.50 23.79 28.63 29.19 26.65 13.52 14.15 13.49
MgO 1.20 2.40 1.39 0.62 2.18 1.67 0.49 0.91 0.76 0.42 1.06 1.32 1.92
MnO 2.13 1.46 2.03 1.84 0.71 0.33 0.73 0.95 1.80 1.28 3.66 1.51 1.46
CaO 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 n/a n/a n/a
Na20 0.00 0.10 0.00 0.00 n/a n/a n/a n/a n/a n/a n/a n/a n/a
NiO 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00
ZnO 3.08 0.84 7.29 6.19 2.11 4.32 11.24 3.95 1.39 5.50 2.22 4.74 1.80
CuO n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.01 0.02 0.00
Total 99.10 101.03 100.46 98.80 98.38 98.11 99.31 98.31 98.27 98.52 99.05 98.87 99.29
Mgt 7.20 11.83 8.03 3.95 11.90 9.77 3.30 5.36 4.44 2.76 12.19 14.24 20.24
Cri# 62.60 74.41 61.09 61.66 59.37 62.74 53.53 61.19 60.92 59.25 60.04 57.78 60.10
Fé&3t/zFe 0.00 11.22 13.87 2.74 0.00 0.00 6.42 0.00 0.00 0.00 52.81 44.51 51.46
F&t/SR3 0.00 5.17 5.65 1.07 0.00 0.00 2.34 0.00 0.00 0.00 18.32 13.86 16.93

Table 1: Representative EPMA analysis of chromite from each sample location. V203 not measured for 16WAS5-7 and partial 16WAS. *Fe2O3
calculated from AB20s3 stoichiometry using the equations of Droop (1987). ¥Fe20s3 calculated by charge balance from direct EPMA measurement

of oxygen.




Table 2: Oxygen isotopic composition (5'*0Ovsvow) of Jack Hills detrital chromites.

Size fraction (um) 105-149 149-210 210-300 300-350 350-425 Uncertainty (2sd)
01JH36 0.65 1.15 1.16 0.08
01JH36 0.73 1.41 1.71
01JH36 1.41 1.77

01JH36 Average 0.69 1.32 1.55
01JH54 1.62 2.17 1.02 1.65 0.06
01JH54 1.69 22 1.17 2.11
01JH54 2.07

01JH54 Average 1.79 2.19 1.10 1.88

Table 2: Oxygen isotopic composition (8'80smow) of detrital chromites from 01JH36 and 01JH54 determined by laser fluorination. Values
represent deviation from standard mean ocean water (V-SMOW) in per mil (%o). Each analysis consisted of a ~2 mg aliquot of chromite separated
by grain size.

Any separation by rounding shape?



Table 3: Representative EPMA compositions of 13TKN22 chromites and 16 WA13 relict chromite cores.
Sample 13TKN22 13TKN22 13TKN22 16WA13 16WA13 16WA13
Grid Ref. 489515E 489515E 489515E
(UTM) 7102336E 7102336E 7102336E
Crystal # 40 42 47
Classification chromite chromite chromite relict chromite relict chromite relict chromite
SiO2 0.00 0.00 0.02 0.03 0.02 0.03
TiO: 1.13 1.03 0.97 0.62 0.92 0.86
ALO3 9.23 9.26 9.18 13.31 12.80 12.52
Cr203 43.66 44.18 43.87 45.96 46.48 46.77
V203 n/a n/a 0.25 n/a n/a n/a
Fe203 12.88 12.63 12.95 6.47 5.76 5.87
FeO 28.10 27.72 27.20 27.89 28.25 28.17
MgO 2.72 341 3.72 2.83 2.68 2.65
MnO 1.32 0.45 0.43 1.21 1.20 1.19
Ca0 0.01 0.03 0.03 0.01 0.00 0.03
NiO 0.14 0.12 0.13 0.08 0.12 0.10
ZnO 0.60 0.59 0.58 1.08 1.06 1.08
Total 99.80 99.43 99.33 99.10 99.61 99.30
Mg # 14.73 17.99 14.59 13.00 12.49 12.37
Cr# 76.03 76.20 76.22 69.84 70.89 71.47
Fe’/3Fe 29.20 29.08 30.00 17.28 15.51 15.78
Fe3'/ 3R 17.59 17.18 17.64 8.56 7.72 7.86

Table 3: Representative EPMA analysis of chromite from Manfred Complex metaperidotite 13TKN22 and Jack Hills recrystallised ultramafic
16WA13. V203 not measured for some chromites within 13TKN22. Fe2Os calculated from AB203 stoichiometry using the equations of Droop
(1987).
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