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The gas-phase first, second, and third ionization potentials have been determined for the actinide 
series of elements using an ab initio composite scalar and fully relativistic approach, employing 
the coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) and Dirac 
Hartree-Fock (DHF) methods, extrapolated to the complete basis set (CBS) limit. The impact of 
electron correlation and basis set choice within this framework are examined. Additionally, the 
first three ionization potentials were obtained using an ab initio heavy element correlation consistent 
Composite Approach (here referred to as α-ccCA). This is the first utilization of a ccCA for actinide species.  
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Introduction 
 The importance of actinides are evident from their applications ranging from nuclear fission reactions 
to harness nuclear power for the military decades ago to more common use in nuclear power plants 1, 
providing routes to curb carbon emissions 2 – 4 . Their curative uses include actinium in the form of 
actinium-225 as a label for targeted alpha therapy to treat cancer 5–7. Among the everyday uses of 
actinides, americium-241 is utilized in ionization smoke detectors 8 and plutonium-238 for cardiac 
pacemakers.  Despite these applications, much of the chemical behavior of the actinides is less 
known than for main group and transition metal species. A better understanding of the chemistry 
of actinides will enable new applications, and will optimize current use and waste mitigation strategies 
for these species    
 
Experimentally, the elements following uranium (Np-Lr) are more difficult to study than the first four 

elements in the series. In addition to their increasing radioactivity and thus expense and safety protocols for 
proper handling and maintenance, these species are difficult to study experimentally because the 
transuranium elements are not naturally occurring. The elements neptunium through fermium have+ been 
synthesized by neutron bombardment. The later actinides beyond fermium are known to undergo 
spontaneous fission9, and thus, their creation involves bombardment of an actinide target with  very 
light nuclei, such as the bombardment of einsteinium-253 with helium atoms to produce 
mendelevium 10. The synthesis of these elements is often very slow, and it can take years to produce 
small amounts. Therefore, available experimental data for the actinide series is quite limited. 
Thus, computational studies are particularly vital in helping to understand the chemistry of 
actinide species. 

 
 Calculations on heavy element species have been dominated by density functional theory 
(DFT)11–14 due to its lower computational cost, relative to ab initio methods  such as coupled cluster 
or multireference configuration interaction (MRCI) approaches. However, ab initio calculations 
are important because of the multitude of low-lying electronic states that arise, many of them are 
near-degenerate from the highly open-shell nature of most of these elements, and from the strong 
relativistic (mainly spin-orbit) effects that become significant in heavy elements. While DFT has 
improved vastly since its foundation in the 1960’s by Hohenberg and Kohn15, it is still known to 
struggle with or fail for highly correlated systems 16,17. Specifically, overall, DFT has shortcomings in 
treating static correlation that arises in situations with degeneracy or near-degeneracy 18; this makes it 
less than ideal for treating species containing f-elements. Though much work has been done and 
significant progress has been made towards treating multi-reference systems using DFT19–29, the 
efficacy of these methods for f-block elements has not been demonstrated. 
  
 Multi-reference methods are typically necessary for the accurate and reliable treatment of non-
dynamic correlation effects. However, even internally-contracted MRCI  methods 30 become 
prohibitively expensive for systems with a large number of reference configurations, as is typically 
needed for the actinides. Identifying single-reference ab initio methods that can better (and more 
reliably and consistently) describe the energetics for these elements than DFT methods, while being 
less expensive than multi-reference methods, are of tremendous interest. 

 
 In terms of less computationally costly approaches, ab initio composite methods provide a route 
to reduce computational cost, while preserving the accuracy of more advanced, albeit, more 
computationally costly methods. Among the best-known composite methods are the Gaussian-n (Gn)31–
36, Weizmann-n (Wn)37–40, Complete Basis Set (CBS-n)41–46, High accuracy extrapolated ab initio 
thermochemistry (HEAT)47,48, Feller-Peterson-Dixon (FPD)49–51, and our own correlation consistent 
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Composite Approach (ccCA)52–54 approaches. Composite strategies have evolved over several decades, 
have proven effective, and are widely used for earlier main group species 52–55. Fewer methods have 
targeted transition metals; these methods include ccCA from our group which has proven useful 56–58. 
ccCA has been extended to the lanthanides but in the early work, utilized the Sapporo basis sets due 
to the initial unavailability of the correlation consistent basis sets for lanthanides. While the lanthanide 
composites have been shown to be just as effective with the Sapporo and correlation consistent basis 
sets, the unique systematic convergence of the correlation consistent basis sets provides superior 
convergence to the complete basis set (CBS) limit, providing improved reference energies for a 
composite strategy for the heavy elements 59. More recently, Peterson60 and Feng et al 61 have 
developed correlation consistent basis sets for actinides, including the cc-pVnZ-DK3 and cc-pwCVnZ-
DK3 basis sets, contracted using the third-order Douglas-Kroll-Hess (DKH3) Hamiltonian. 

 
For both lanthanides and actinides, as noted, computational studies of energetic properties have 

been dominated by DFT 6 2 – 6 6 . Recent calculations targeting the Ln54 and An6667 sets, sets of 
enthalpies of formation and dissociation energies for lanthanides and actinides with experimental 
uncertainties of  5 kcal mol-1 or less, have assessed the utility of a number of density functionals for 
heavy element species 68,69.  For lanthanides, the typical errors in the dissociation energies and 
enthalpies of formation of small molecules are on the order of 1 eV 69! This performance is not 
surprising, as available functionals have not been parameterized explicitly for use with heavy elements. 
Given that the actinides tend to bond more covalently than the lanthanide elements, overall, the errors with 
respect to experiment when DFT is used are lower on the order of 10 kcal mol-1, on average, for most 
compounds) than for the lanthanide containing species67. In considering and developing routes to improve 
the prediction of energetics for heavy elements, ionization energies can serve as a useful early gauge 
of methods, as there are only a handful of molecules which have experimental uncertainties that rival 
the uncertainties of many hundreds of early main group species. 
 
For lanthanides, prior DFT predictions of ionization energies include fully relativistic DFT 

(RDFT) 70, and relativistic ab initio pseudopotential RDFT 71 calculations. Ab initio approaches that 
have been employed include multi-reference average coupled pair functional (MRACPF) 72, 73, and 
coupled cluster calculations73.  
 
 
In prior work, the third ionization potentials of  lanthanides were calculated using the coupled 

cluster with single, double, and perturbative triple excitations (CCSD(T))  method 74 with non-scalar 
relativistic effects accounted for using Dirac Hartree Fock calculations. In this prior study, the  impact  
of  core  correlation  and  basis  set  choice were also examined 75. This CCSD(T)+DHF approach 
(details given in the computational methods section below) was shown to be effective in modeling 
lanthanide ionization energies. The use of a scalar relativistic Hamiltonian for the post-Hartree-Fock 
correlation energy reduced the computational cost relative to a fully relativistic treatment. The fully 
relativistic Dirac Hartree-Fock method used for treating spin-dependent fully relativistic effects 
requires a four-component Hamiltonian and significantly increases computational cost. Therefore, 
accounting for these effects with a separate calculation and adding the resulting contribution to the 
scalar relativistic effects a posteriori provides an efficient   and, as shown in the recent lanthanide 
study, an  effective approach at much reduced computational cost. 
 
For actinides, there have been a number of computational studies to investigate methodologies 

needed to predict atomization energies. Feng and Peterson 61 used the Feller-Peterson-Dixon (FPD) 
composite approach, based on MRCI+Q energies   to  calculate the  first,  second,  and third  ionization 
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energies for the actinide series. In an earlier work, Cao and Dolg 76 used complete active space self-
consistent field (CASSCF) and multi-reference averaged coupled-pair functional (MRACPF) levels 
of theory, corrected for spin-orbit interaction, in combination with relativistic energy-consistent small 
core ab initio pseudopotentials (PP) 77,78 to calculate these ionization potentials. 
 
For first ionization energies (IE), the FPD composite approach based on MRCI+Q energies 

tends to underestimate the IE’s by several kcal mol−1. The method predicts second and third 
ionization energies well within the range of error of experimental values, with uranium the notable 
exception, as discussed below. The same level of accuracy is achieved for the ionization potentials 
obtained using the PP-CASSCF/MRACPF method. 
 
In the current study, strategies that were effective for lanthanides (CCSD(T)+DHF) are considered 

for the actinides, predicting the first, second, and third ionization potentials  for the entire actinide 
series. This is done to determine the potential utility of the strategies for the prediction of actinide 
ionization potentials in comparison to experiment as well as efficient prediction (i.e., disk space, 
memory, speed) as compared to multi-reference and fully relativistic methods, as were used in prior 
studies. The effects of basis set and level of electron correlation (electrons included in the active space) 
are also examined within the CCSD(T)+DHF framework. In its first use for the actinides, a variant of 
ccCA, here referred to as α-ccCA, is also introduced and considered.   
 
 
Computational Methods 
 
I. CCSD(T)+DHF  
 

In this study, scalar relativistic calculations are addressed utilizing CCSD(T) with the third-order 
Douglas-Kroll-Hess (DKH3) Hamiltonian 79. For ab initio calculations on early main group species, 
the frozen core approximation is typically used with the default set of valence electrons for the 
effective prediction of a broad range of properties. For atoms and molecules of the lower periodic table 
where the electron manifold becomes far more complex due to the increased numbers of electrons and 
many close-lying electronic states, it is important to consider the impact of a more explicit treatment 
of the electrons, incorporating a greater number of electrons within the valence space. Thus, in this 
work, the cc-pVnZ-DK3 basis set 61 with n=D,T,Q was used for calculations that consider valence 
electron correlation only.    For the actinide series of elements this encompasses electrons in the 6s, 6p, 
5f, 7s and 6d orbitals. The cc-pwCVnZ-DK3 basis set 61 was used for two sets of calculations. The 
first addresses valence electron correlation only and the second includes the orbitals involved in the 
valence calculation and additionally correlates electrons in the 5s, 5p, and 5d orbitals. 
 

The ionization potential energy is determined as the difference between the energy of the 
atoms/ions being considered. For example, the second ionization energy is obtained as 

𝐼𝑃	 = 	𝐸(𝐴𝑛!") 	− 	𝐸(𝐴𝑛") (1) 
 
where An is an actinide element. 
 
The total energy for each atom and ion is calculated as shown in equation (2): 
 

𝐸#$# 	= 	𝐸%&' 	+	∆𝐸()*+ (2) 
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where Eref is the CCSD(T)-DKH3 scalar relativistic energy. The second term, ∆Espin, accounts for 
the spin-dependent (vector) relativistic effects in the Dirac Hamiltonian for the electronic energy. 
This term is calculated as follows: 
 

∆𝐸()*+ = 𝐸,-. −𝐸,-./0. (3) 
 

and is the difference between the Average-of-Configurations Dirac-Hartree-Fock (AOC- DHF) energy and 
the spin-free DHF energy 80. The AOC method 81 as implemented  in the DIRAC 82 software package is 
particularly useful for the optimization of Hartree-Fock orbitals when multiple open subshells lead to many 
possible fractional occupancies. The Dyall-VTZ basis set 83 was used for all AOC-DHF energy calculations, 
and was uncontracted for the all-electron relativistic four-component  calculations.  The  triple-ζ level Dyall 
basis set was chosen based on the prior work which demonstrated 75 that the spin-dependent term was 
impacted only slightly (< 0.6 kcal mol−1 difference) by the choice of basis set level (double-, triple-, or 
quadruple-ζ) used in ionization potential calculations for the lanthanides; in that work, using the double-ζ 
level basis set for ∆Espin was found to provide sufficiently accurate results for describing the third ionization 
energy of the lanthanides with respect to experimental values. Here, the triple-ζ basis set was chosen as a 
compromise between predicted accuracy and cost in this work.  Following the DHF calculation, a Complete 
Open-Shell Configuration Interaction (COSCI) 84 calculation was done to resolve the energy of the 
individual states included in the AOC-DHF calculation. From this, the desired electronic state energy was 
selected. 
 
For a number of the calculations, the CCSD(T)-DKH3 scalar relativistic energies were 

extrapolated to the CBS limit. For these, the CCSD(T)-DKH3 calculations utilized both the 
valence and outer core electrons in the valence space, and the cc-pwCVnZ-dk3 basis set. The 
Hartree-Fock energies were extrapolated using the following 85:  

 
𝐸+ = 𝐸1 + 𝐴 ∗ 𝑒(/3.56+)	(4) 
 
The first exponential extrapolation scheme was introduced by Feller8687 and used later by Williams et 
al. to extrapolate Hartree-Fock energies obtained for transition metal diatomics88.  This approach is a 
two-point extrapolation, where n represents the cardinal number corresponding to the basis set 
levels used in the CCSD(T)-DKH3 calculations. In the formula, E∞ represents the energy at the 
CBS limit.   The CCSD(T) correlation energies were extrapolated separately, using a series of 
calculations at the double, triple, and quadruple-ζ level basis set and the following89:  
 
		𝐸+ = 𝐸1 + 𝐴(𝑛 + 0.5)/8																										 (5) 
 
which has been used previously90 to extrapolate CCSD(T) correlation energies. 
 
II. α-ccCA composite  
 

The ccCA approach overviewed here is based upon a second-order Møller-Plesset (MP2)91 reference 
energy with a number of additional contributions. One contribution accounts for dynamic correlation that 
is not sufficiently recovered by the MP2 method (∆Ecc). The second contribution, ∆Ecv, accounts for core-
core and core-valence interactions not treated sufficiently by ∆Ecc. Finally, a term accounting for spin-orbit 
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interactions is included. (Parallel development of ccCA methodology is ongoing for the lanthanides.)).  
 
Overall, the total energy equation is as follows: 
 
		𝐸#$# = 𝐸%&'(𝑀𝑃2) + ∆E𝑐𝑐 + ∆E𝑐𝑣 + ΔE()*+                (6) 
 
For the reference energy, the Hartree-Fock energy and MP2 correlation energy are each separately 
extrapolated to the CBS limit, and the HF/CBS and MP2/CBS energies are combined to form the reference 
energy. The CBS limits are based on energies arising from a series of MP2 calculations using the cc-pVnZ-
DK3 basis set, where n is the cardinal number of the basis set (n=D,T,Q). Several schemes are considered 
for the extrapolations (as discussed further in Section III).  The considered schemes have been broadly 
used for earlier portions of the periodic table and have had comparatively limited use for the heavy 
elements.  The formulas used to extrapolate the Hartree-Fock energies include equation (4) and the 
Karton-Martin formula92: 
 
𝐸+ = 𝐸1 + 𝐴(𝑛 + 1)𝑒(/5.9:√+)                    (7) 
 
Equation (7) was originally proposed for extrapolation of Hartree-Fock energies, and has also been used 
more recently to extrapolate complete active space self-consistent field (CASSCF) reference energies 
obtained for calculation of actinide ionization potentials61.  The MP2 correlation energy was  extrapolated 
using equation (5) 89, which was also used successfully for the actinides in the study by Feng and Peterson61. 
The MP2 energies were also extrapolated using the mixed Gaussian formula by Peterson, Woon, and 
Dunning93, 
 
𝐸+ = 𝐸1 + 𝐴𝑒(/(+/3)) + 𝐵𝑒(/(+/3)

!)                  (8) 
 
Equation (8) has been used for the extrapolation of MP2 energies with excellent results in the ccCA and is 
being employed in several ongoing studies involving ccCA for the heavy elements.  
 
Returning to equation (6), the dynamic correlation contribution,		∆E𝑐𝑐, is found as the difference between 
energies obtained using the MP2 and CCSD(T) methods, using the same cc-pVnZ-DK3 basis set. This basis 
set was used with n=T (triple-ζ) in composite method one, referred to as CM1, and with n=Q (quadruple-
ζ) in composite method two (CM2). The dynamic correlation term was therefore calculated as 
 
𝐸<< = 𝐸(𝐶𝐶𝑆𝐷(𝑇)/𝑐𝑐 − 𝑝𝑉𝑛𝑍 − 𝐷𝐾3, 𝑛 = 𝑇, 𝑄) − 𝐸(𝑀𝑃2/𝑐𝑐 − 𝑝𝑉𝑛𝑍 − 𝐷𝐾3, 𝑛 = 𝑇, 𝑄)     (9) 
 
Both the MP2 and CCSD(T) energies in equation (6) utilized an active space with only the valence electrons 
included. For the actinide series of elements this includes any electrons in the 6s, 6p, 5f, 7s and 6d orbitals.  
The contribution for core-core and core-valence interactions,	∆E𝑐𝑣, was found as follows: 
 



 7 

∆E𝑐𝑣 = 𝐸(𝐶𝐶𝑆𝐷(𝑇)/𝑠𝑢𝑏 − 𝑣𝑎𝑙𝑒𝑛𝑐𝑒) − 𝐸(𝐶𝐶𝑆𝐷(𝑇)/𝑣𝑎𝑙𝑒𝑛𝑐𝑒)                 (10) 
 

The	core-valence term is the difference between the CCSD(T) energy with a smaller frozen core, with 
both valence and sub-valence (5s, 5d and 5p) electron interactions treated in the active space, and the 
CCSD(T) energy with a larger frozen core (with only valence electrons included in the active space). In 
CM1, both the CCSD(T)/sub-valence and CCSD(T)/valence energies were found using the cc-pwCVnZ-
DK3 basis set with n=D (double-ζ level) basis set. In CM2, the CCSD(T)/sub-valence and 
CCSD(T)/valence energy used n=T (triple-ζ level) basis set. All energies obtained for use in the first three 
terms in equation (6) (𝐸%&' , ∆E𝑐𝑐 and ∆E𝑐𝑣) utilized the third-order, spin-free Douglas-Kroll-Hess (DKH) 
Hamiltonian79, and thus account only for scalar relativistic effects.  

  
Finally, the last term in equation (6) is the previously introduced term accounting for spin-dependent 

(vector) relativistic effects in the Dirac Hamiltonian for the electronic energy (equation (3)). All of the 
scalar relativistic components for both the CCSD(T)+DHF composite method and α-ccCA (MP2 and 
CCSD(T) energies) were obtained using the MOLPRO2010 ab initio software package94. The spin-
dependent DHF calculations were done using the DIRAC19 program95. 

 
 
Results and Discussion 
 
I. General Considerations 
Some of the early actinides, namely actinium (Ac) and protactinium (Pa), required correlation of 

the 7s spinors as well as the 6d spinors in the DHF calculations to obtain ionization potentials 
consistent with experiment. This was previously noted in work done by Feng and Peterson61. For 
actinium, CCSD(T) calculations were done in addition to the AOC-DHF calculation in order to 
calculate ∆Espin. As this improved the accuracy of the first ionization energy for actinium, the 
CCSD(T) level ∆Espin was used for the first ionization energy, which is shown in Table 1. As 
demonstrated in previous studies 76,96, relativistic effects (∆Espin) were found to be much larger 
between states where the f-orbital occupations change. For example, the second ionization energy 
for americium (between states with configurations of 5f 77s1 and 5f 7) has a contribution (∆Espin) equal 
to 0.96 kcal mol−1. In comparison, the contribution (∆Espin) to the second ionization energy for 
curium (between configuration states of 5f 77s2 and 5f 8) is -7.5 kcal mol−1. Even larger spin orbit 
contributions occur for most of the third ionization energies, and these tend to become larger across 
the series. Table 1 provides the electron configurations and electronic states considered in this 
work. 
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II. CCSD(T)+DHF  
The ionization energies determined using the CCSD(T)+DHF approach are shown in Tables 2 

(first ionization energies), 3 (second ionization energies) and 4 (third ionization energies). 
Experimental and previous theoretically determined ionization potentials are given for comparison. 
 
  

Table 1. Electronic states and configurations considered for the actinide (An) elements. 
 An An+ An2+ An3+ 
Ac 6d17s2 2D3/2 7s2 1S0 7s1 2S1/2 6p6 1S0 
Th 6d27s2 3F2 6d17s2 2D3/2 5f16d1 3H4 5f1 2F5/2 
Pa 5f26d17s2 4K11/2 5f27s2 3H4 5f26d1 4I11/2 5f2 3H4 
U 5f36d17s2 5L6 5f37s2 4I9/2 5f4 5I4 5f3 4I9/2 
Np 5f46d17s2 6L11/2 5f46d17s1 7L5 5f5 6H5/2 5f4 5I4 
Pu 5f67s2 7F0 5f67s1 8F1/2 5f6 7F0 5f5 6H5/2 
Am 5f77s2 8S7/2 5f77s1 9S4 5f7 8S7/2 5f6 7F0 
Cm 5f76d17s2 9D2 5f77s2 8S7/2 5f8 7F6 5f7 8S7/2 
Bk 5f97s2 6H15/2 5f97s1 7H8 5f9 6H15/2 5f8 7F6 
Cf 5f107s2 5I8 5f107s1 6I17/2 5f10 5I8 5f9 6H15/2 
Es 5f117s2 4I15/2 5f117s1 5I8 5f11 4I15/2 5f10 5I8 
Fm 5f127s2 3H6 5f127s1 4H13/2 5f12 3H6 5f11 4I15/2 
Md 5f137s2 2F7/2 5f137s1 3F4 5f13 2F7/2 5f12 3H6 
No 5f147s2 1S0 5f147s1 2S1/2 5f14 1S0 5f13 2F7/2 
Lr 5f147s27p1 2P1/2 5f147s2 1S0 5f147s1 2S1/2 5f14 1S0 
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Comparison to experimental data and previous theoretical work 
 

 
As noted earlier, one of the most challenging aspects of theoretical work on the actinide series is 

the limited amount of experimental data to which to compare. However, a benefit of focusing on 
ionization energies is that there is some data available.  Experimental results used for comparison to 
the ionization energies from this work are collected from the NIST database97 and are shown in Table 
2. The first ionization energy for actinium (24.0709 ± 0.0006 kcal mol−1) was experimentally 
determined using  Resonance Ion Spectroscopy (RIS) where three different Rydberg series 98  were 
analyzed. This work is in good agreement  (<0.01 kcal mol−1 difference) with an earlier experimental 
result obtained by Resonance Ionization Mass Spectrometry (RIMS) 99. Both RIS and RIMS are highly 
sensitive spectroscopic methods that are effective in the measurement of ionization potentials of 
radioactive samples that are often available only in trace amounts. 

 
The first ionization energies for thorium (Th), neptunium (Np), plutonium (Pu), americium (Am), 

curium (Cm), berkelium (Bk) and californium (Cf) were determined using RIMS by Köhler and 
coworkers 100 .  Their work made use of a saddle-point model by extrapolating observed 
photoionization thresholds obtained at differing field strengths to zero field strength. Samples of 1012 
atoms were used, and the first ionization potentials for americium, curium, berkelium, and 
californium were measured for the first time. The “experimental” ionization potentials given in Table 
2 for protactinium (Pa), fermium (Fm), and mendelevium (Md) are semi-empirical estimates. The 
energy levels needed    to determine the first ionization energy have not been determined experimentally, 
but rather were extrapolated from experimentally known energy levels using the Rydberg-Ritz formula 
by Sugar 101. In that study, the ionization energy was derived. The ab initio  ionization potentials 
determined in this work at the quadruple-ζ level are consistent with reference 101, with a difference of ∼1 
kcal mol−1.  

 
As the first actinide element discovered, uranium is the most widely experimentally characterized 

element of the actinide series.  The empirical ionization potential given in Table 2 was obtained by 
Coste and coworkers 102,  The experimental value for einsteinium (Es) in Table 2 was determined again 
using RIMS by Waldek and coworkers99.   Nobelium’s first ionization potential was recently 
determined with high precision (to within 0.001  kcal mol−1) using laser spectroscopy by Chhetri 
and coworkers103. Finally, the experimental first ionization energy for lawrencium (Lr) in Table 2 was 
determined by Sato and coworkers through surface-ion experiments104. The current work 
overestimates the first ionization potential for uranium; previous theoretical work 6 1  underestimated 
this value by about the same amount (~4-5 kcal mol−1). 

 
 
 Figure S1 in the Supplementary Information (SI) provides the root-mean-square deviation (RMSD) 

in kcal mol−1 from experiment for the first ionization energies for all elements in the actinide series 
determined with the CCSD(T)+DHF composite. The calculated ionization energies for all data sets 
considered (VNZ, WNZ-V, WNZ-S, and CBS) in the current work, regardless of basis set and electron 
correlation approach, result in an RMSD of < 1 kcal mol−1. For comparison, the energies from 
Feng and Peterson 61 that were obtained using the FPD Composite Approach based on energies 
obtained using MRCI+Q were found using frozen core (1s-5d) CBS-extrapolated values, and the eXact 
2-component (X2C) cc-pwCVnZ-X2C (n = T, Q) basis sets optimized for outer-core correlation. These 
energies result in an RMSD of 5.59 kcal mol-1. Cao and Dolg 76  used relativistic PP calculations at the 
CASSCF and MRACPF level of theory, corrected for spin-orbit interaction and PP errors. As 
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mentioned previously, Gaussian basis sets were used in the Cao and Dolg study 76. These energies 
resulted in a RMSD of 6.67 kcal mol−1. Thus, the CCSD(T)+DHF calculations offer a significant 
improvement in accuracy, overall, as compared with previous theoretical work; the WQZ-S set, which 
utilized the cc-pwCVQZ-DK3 basis set with valence and outer-core electron correlation, has the smallest 
RMSD for a single basis set, at just 0.46 kcal mol−1. The CBS extrapolation of the cc-pwCVnZ-DK3 basis 
sets with valence and outer-core electrons active results in a RMSD for the first ionization energies of 0.38 
kcal mol-1.  

 
 Figure 1 shows the first ionization energies determined with CCDS(T)+DHF extrapolated to 
the CBS limit with valence and outer-core electrons in the correlation space in comparison to prior 
theoretical work and to experiment. 
 

The empirical data for the second ionization potentials of the actinide series (Table 3) is limited, 
and only available for actinium, thorium, and uranium. The experimental value for actinium (271.05 
± 0.69 kcal mol−1)  was determined in the same manner (using the Rydberg-Ritz formula and 
extrapolation from experimentally determined energy levels) as the first ionization potentials for 
protactinium, fermium, and mendelevium 105.  The second ionization energy determined for Ac using 
the CCSD(T)+DHF composite extrapolated to the CBS limit is 0.10 kcal mol−1 below the range of 
empirical error, at 270.26 kcal mol−1. This value, using only a coupled cluster-based approach, is only 
0.19 kcal mol−1 below the MRCI+Q value obtained by Feng61. 
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The second ionization energy of thorium (Th) was determined in prior work using ionization trap 
two-step laser excitation106. The CBS extrapolated CCSD(T)+DHF composite results in a second 
ionization energy of thorium of 286.7 kcal mol−1, lying above the experimental value of 279.0 ± 4.6 
kcal mol−1. In the ionization trap two-step laser excitation work 106, 43 energy levels were observed 
for the Th+ ion, within a 1 eV (~23 kcal mol-1) energy range. Additionally, thorium exhibits strong 
coupling and near degeneracy between nuclear and electronic motions, apparent in the hyperfine structure. 
The multi-reference character for the Th+ ion was also noted in an experimental spectroscopic and 
theoretical quantum chemical study done on ThO+ and ThC+107.  This multi-reference nature may result in 
the overestimation of the ionization potential by single-reference methods such as CCSD(T). 

 
In addition to the second ionization energy reference data in Table 3 provided from 

FPD/MRCI+Q61, previous values obtained using PP-CASSCF/MRACPF are again given for 
comparison 76. Figure S2 in the SI shows the CCSD(T)+DHF CBS data for the second ionization energy 
in comparison to prior work.  The experimental second ionization energy for uranium (268 ± 9 kcal mol-1) 
was determined by Blaise and coworkers 108; the poor reliability of this result has been discussed 
previously109.  The second ionization energy obtained using the FPD composite based upon MRCI+Q 
energies 61 is reported as 276.42 kcal mol−1; the PP-CASSCF/MRACPF second ionization energy 76 for 
uranium is given as 274.9 kcal mol−1. The value of 276.42 kcal mol-1 is reported in Table 3, as it was 
determined in the same manner and in the same work by Feng and Peterson61 as the rest of the ionization 
potentials used for comparison here. However, it should be noted that in earlier  work by Peterson and 
coworkers on the first six IP’s for the uranium atom, the second ionization potential for uranium was 
determined to be 271.2 kcal mol-1 109, in much better agreement with experiment than the ionization 
potential (276.42 kcal mol-1) determined in 61 . This value was also determined using the FPD composite 
and MRCI+Q energies; the difference in the two values is thus attributed to the contraction scheme used in 
the MRCI+Q treatment, as well as the methods used for obtaining the spin-orbit correction61. Specifically, 
the spin-orbit correction in 109  was carried out with the Kramers-restricted configuration interaction 
(KRCI)110–112 method, whereas the treatment for the spin-orbit correction in 61 utilized the AOC- DHF level 
of theory.  The CCSD(T)+DHF composite value (270.6 kcal mol-1) deviates less than 0.6 kcal mol-1 from 
the FPD /MRCI+Q result in 109. 
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Only two elements have available experimental third ionization energies in the NIST  database  (see Table 
4): thorium 113 and uranium 108. The experimental value for the third ionization energy for thorium is semi-
empirical and has a value of 422.5 ± 1.2 kcal mol-1. The current study underestimates this value, with an 
ionization energy of 417.1 kcal mol-1 obtained using the CCSD(T)+DHF method. The CCSD(T)+DHF 
method performs much better for the uranium third ionization energy: the experimental value is 457 ± 7 
kcal mol-1; the CCSD(T)+DHF with CBS extrapolation results in 450.8 kcal mol-1, within the experimental 
error range . This value is in much better agreement with experiment than the previously obtained 
theoretical values. The performance of the CCSD(T)+DHF method in comparison to the experimental 
values offers some interesting insight. As discussed previously, thorium is known to possess strong 
multireference character. However, the electron configurations of the Th2+ and Th3+ ions are 5f16d1 and 
5f1, respectively. The electron configurations of the U2+ and U3+ ions are 5f 4 and 5f 3, respectively. 
While spin-orbit effects are known to be large for ionization potentials between two ions that contain 
different f-orbital electron occupations (such as is the case for uranium), it can be inferred that there 
are even larger effects that are not being accounted for when considering ionization potentials between 
two ions of different total angular momenta (such as is the case for thorium). See Figure S3 in the 
SI for a comparison of the performance of theoretical methods when determining the third ionization 
energy.  
 
 

 

Figure 1. Comparison of first ionization energies obtained using theoretical methods and experiment; 
MRCI+Q with Feller-Peterson-Dixon (FPD) composite method (blue) 61, PP-
CASSCF/MRACPF(green) 76, and the CCSD(T) + DHF  composite method CBS extrapolated values of 
the current work (CCSD(T)+DHF/CBS, red), and experimental (purple) 97 . 
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Effect of basis set and electron correlation space choice for CCSD(T)+DHF 
 

For the first ionization energies (Table 2), the additional electron correlation included in the active 
space for WNZ-S as compared to WNZ-V does improve the accuracy of the energy values compared to 
experiment for most elements. This is clear from the RMSD from experimental values as discussed 
previously. The difference in energies between WNZ-V and WNZ-S is quite small for most elements 
(less than 1 kcal mol−1, or far less than 1 percent of the total ionization energy). However, energies 
obtained using basis sets of different cardinal numbers (n=D,T,Q) display an increase in precision when 
outer-core electrons are included in the active/correlation space, versus energies obtained using only 
valence electrons in the active space. For example, the standard deviation between the double-ζ, triple-ζ 
and quadruple-ζ values for protactinium (Pa) when valence electrons are correlated only is 2.25 kcal 
mol−1, while the standard deviation between the same basis sets obtained when both valence and outer-
core correlation is included in the active space is 1.71 kcal mol−1.   

 
 In Table 3, the effect of electron correlation on the second ionization energies is shown. There 
is a significantly larger difference between the WNZ-V and WNZ-S data sets when considering the 
second ionization energies than when comparing values for the first ionization energies. The 
differences tend to decrease at the quadruple-ζ level. Including sub- valence electron correlation in the 
active space is important for obtaining accurate values of the second ionization energies when compared to 
experiment. For example, the second ionization energy for thorium is 289.31 kcal mol−1 (WQZ-V) and 
the value obtained using outer-core correlation (WQZ-S) is 286.53 kcal mol−1. Additional correlated 
electrons thus bring the second ionization energy value ∼3 kcal mol−1 closer to the experimental 
value. The same is true for the second ionization energies obtained for actinium and uranium; 
outer-core correlation significantly increases the accuracy of these energies with respect to 
experimental data.  
 

The third ionization potentials (Table 4) obtained in the WNZ-V and WNZ-S data sets display larger 
differences than those observed between the two sets for the second ionization energies. For most elements 
this difference again decreases with increasing cardinal number (n); for example, there is a smaller 
difference between the WQZ-V and WQZ-S set than between the WTZ-V and WTZ-S data set. For the 
third ionization energies, using sub-valence electron correlation is indispensable for obtaining accurate 
values when compared to experimental data. For uranium for example, the ionization energy obtained at 
the WQZ-V level is 447.01 kcal mol−1, while the ionization energy obtained at the WQZ-S level is 450.08 
kcal mol−1, or more than 3 kcal mol−1 closer to experiment.  
 
 
The cc-pVDZ-DK3 and cc-pwCVDZ-DK3 basis sets generally underestimate the first ionization 

potentials by as much as 5-6 kcal mol−1. This error is apparent in the RMSD discussed previously 
and shown in Figure S1 in the SI. The RMSD for the first ionization energy falls quite dramatically 
(from ∼0.90 kcal mol−1 to ∼0.57 kcal mol−1) when the cardinal number is increased to the triple-ζ 
level (n=T) regardless of which basis set is used (cc-pVnZ-DK3 or cc-pwCVnZ-DK3). For the second 
ionization potentials, the difference between the data obtained at the double-ζ basis set level versus 
that obtained with the triple- or quadruple-ζ  basis set is not as large as the differences for the first 
ionization energies. For example, the cc-pwCVDZ-DK3 (WDZ-V) second ionization energy is 267.9 
kcal mol−1, while the second ionization energy obtained using the cc-pwCVQZ-DK3 (WQZ-V) basis 
set is only about 1 kcal mol−1 larger, at 268.8 kcal mol−1. Therefore, this property is not as 
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sensitive to the size of the basis set. However, the most accurate energies obtained utilized the 
quadruple-ζ level basis sets.  Examining the third ionization potentials for basis set dependence shows 
that they are most sensitive to size of basis set used. For many elements, the difference between the 
third ionization energy obtained at the double-ζ and quadruple-ζ levels is 10 kcal mol−1 or larger, and 
for some of the later actinides this difference even surpasses 20 kcal mol−1 (see Figure 2 for a basis 
set comparison of all third ionization energies obtained in this work). The differences between the 
triple-ζ and quadruple-ζ basis sets are generally much smaller, not more than 4-5 kcal mol−1. Therefore, 
using a basis set of at least triple-ζ quality is essential for calculation of the third ionization energies.  
As the actinides often form An(III) cations during thermodynamic processes, it is important to use 
at least a triple-ζ level basis set when obtaining thermodynamic properties using the CCSD(T)+DHF 
composite method as well. In considering the impact on the accuracy of the ionization energies of choosing 
the cc-pwCVnZ-DK3 or cc-pVnZ-DK3 basis sets, there is not much of a difference for the first, second, or 
third ionization energies. For most elements in fact, the difference is far below 1 kcal mol−1. 

 

 
Figure 2. Third ionization energies obtained with the CCSD(T)+DHF , at all basis set and electron 
correlation levels considered, in kcal mol−1. 
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III. Ionization potentials determined within α-ccCA formalism  
 

To further reduce computational cost in comparison to the CCSD(T)+DHF/CBS extrapolated  scheme, a 
ccCA formulism was used to obtain the first, second, and third ionization potentials for the entire series of 
actinide elements (as outlined in the methods section). Here, the performance of extrapolation schemes for 
the HF and MP2 energies is first examined, followed by an assessment of the method in terms of accuracy 
and cost relative to the CCSD(T)+DHF method.  
 
Performance of Extrapolation Schemes 
 

As mentioned in the computational methods section, the HF and MP2 energies were extrapolated 
separately to the CBS limit. To investigate the impact of different extrapolation schemes on the accuracy 
of the ionization potentials with respect to experimental data, nine different combinations of extrapolation 
schemes using equations (4)85,88, (5)89,90, (7)92 and (8)93 were employed, with both two- and three-point 
extrapolations considered. The two-point extrapolations utilized n=T,Q or triple- and quadruple-ζ level 
energies. The three-point extrapolations additionally included n=D (double-ζ) level energies. For 
simplicity, these nine extrapolation combinations are labeled A-I and correspond to the combinations 
given in Table 5. Equation (7) was attempted using a two-point extrapolation as well as a three-point 
extrapolation but using just the triple- and quadruple-ζ HF energies in this formula gave an extremely poor 
fit to the data, with R2 values well below 0.1, and thus this data was excluded.  
 
Table 5. For simplicity, labels are provided to identify combinations of extrapolation formulas used to obtain the CBS 
limit for HF and MP2 energies, using the cc-pVnZ-DK3 basis set and valence electron correlation.  All of the formulas 
are in the form 𝐸! = 𝐸" + 𝑋, where X is shown in the table.  The labels are subsequently used in Figure 8. 
Label HF Formula, X= n= MP2 Formula, X= n= 
A 𝐴𝑒(#$.&'() T,Q 𝐴(𝑛 + 0.5)#* D,T,Q 
B 𝐴𝑒(#$.&'() D,T,Q 𝑒(#((#$)) +𝐵𝑒(#((#$)!) D,T,Q 
C 𝐴(𝑛 + 1)𝑒(#&.+,√() D,T,Q 𝑒(#((#$)) +𝐵𝑒(#((#$)!) D,T,Q 
D 𝐴𝑒(#$.&'() D,T,Q 𝐴(𝑛 + 0.5)#* D,T,Q 
E 𝐴𝑒(#$.&'() T,Q 𝐴(𝑛 + 0.5)#* T,Q 
F 𝐴(𝑛 + 1)𝑒(#&.+,√() D,T,Q 𝐴(𝑛 + 0.5)#* D,T,Q 
G 𝐴(𝑛 + 1)𝑒(#&.+,√() D,T,Q 𝐴(𝑛 + 0.5)#* T,Q 
H 𝐴𝑒(#$.&'() T,Q 𝐴𝑒(#((#$)) +𝐵𝑒(#((#$)!) D,T,Q 
I 𝐴𝑒(#$.&'() D,T,Q 𝐴(𝑛 + 0.5)#* T,Q 
 

The total first ionization energies determined with α-ccCA resulting from these extrapolations of the 
reference energy were then compared to experimental first ionization energies available from NIST97 (see 
Table 2). To determine which extrapolation scheme A-I gave the best result, the root-mean-square deviation 
(RMSD) from experimental data was found for the first ionization energies using each combination of 
extrapolation formulas, for both CM1 and CM2 (described in the methods section). The RMSD is shown 
in Figure 3. From the RMSD, composite scheme A performs the best overall, with a RMSD of 1.84 kcal 
mol-1 for CM1 and 1.89 kcal mol-1 for CM2. The second and third lowest RMSD occurs for composite 
schemes D (CM1:1.91 kcal mol-1, CM2:2.02 kcal mol-1) and F (CM1: 1.91 kcal mol-1, CM2:2.03 kcal mol-
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1). This offers the following insights: equation (4) is a better choice than the Karton-Martin formula 
(equation (5)) for finding the CBS limit of the HF energies for the actinide series of elements overall. 
Additionally, a two-point extrapolation of equation (4) performs better than the same formula using a three-
point extrapolation. In other words, the use of the energies obtained using the cc-pVDZ-DK3 basis set are 
not favorable for obtaining the most accurate first ionization energies with respect to experimental data. 
This indicates that when calculating HF energies for the actinide elements, basis sets containing [spdfgh] 
functions at a minimum are important.   

 

Figure 3. Root-mean-square deviation (RMSD) of the first ionization energies from experiment for the CM1 and 
CM2 approach for each of the CBS routes (A-I) to the reference energy in the composite. For the second and third 
ionization energies, the RMSD is relative to CCSD(T) + DHF/ CBS extrapolated energies. 
 
 For the MP2 correlation energy, the same RMSD data indicates that the use of equation (5), with a 
three-point extrapolation versus a two-point, provides the most accurate route to obtain the first 
ionization potentials overall, when added to the two-point extrapolated HF energies.  
 

There is limited experimental data for comparison to the α-ccCA second ionization energies. 
Therefore the RMSD from the second ionization energies obtained using CCSD(T)+DHF method of 
section II, with valence and sub-valence electrons in the active space, and the cc-pwCVnZ-DK3 basis set 
extrapolated to the CBS limit is used for comparison. This RMSD from the CCSD(T)+DHF method for 
the second ionization energies for CM1 and CM2 using extrapolation schemes A-I for the reference energy 
is shown in Figure 3 as well. For the second IE's obtained using CM1, the nine extrapolation schemes give 
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RMSD's that are within a spread of ~0.32 kcal mol-1. Regardless of extrapolation scheme used, the second 
ionization energies have an RMSD from the CCSD(T)+DHF/CBS second ionization energies of < 3 kcal 
mol-1.  For CM2, the spread between RMSD values for the second ionization energy extrapolation schemes 
is smaller, around 0.24 kcal mol-1. The RMSD from the CCSD(T)+DHF/CBS second ionization energies 
when using CM2 is near or below 1.5 kcal mol-1.  Because there is not enough experimental data to 
compare the second ionization energies to, and extrapolation scheme A worked best for the first ionization 
energies with regard to experiment, scheme A will again be used for the second ionization energies. The 
very small spread in RMSD (less than 0.5 kcal mol-1) as mentioned above, depending on if CM1 or CM2 
is being used, helps validate this choice.    
 
Because there is also limited experimental data available for the third ionization energies, the RMSD 

with respect to the CCSD(T)+DHF composite values is shown in Figure 3 also. The spread in RMSD values 
is ~ 0.1 kcal mol-1 for CM1, and 0.15 kcal mol-1 for CM2. For CM1, the RMSD from the third ionization 
energies determined using CCSD(T)+DHF/CBS is ~2.5 kcal mol-1, regardless of extrapolation scheme 
used. . For CM2, the RMSD from the third ionization energies determined using CCSD(T)+DHF/CBS is 
~1 kcal mol-1, regardless of extrapolation scheme used. Again, given the very small spread between the 
RMSD, and the lack of experimental data for which to compare, scheme A is used for the third ionization 
energies.  
 
Comparison of α-ccCA formalisms with prior theoretical work and experiment 
 
In this section the ionization energies obtained using α-ccCA (both CM1 and CM2) are compared to 
experimental ionization energies.  Additionally, the individual terms in equation (6) (the total energy 
obtained using α-ccCA) are further examined. 
 

In Table 6, the MP2 first ionization energies (Eref) obtained using extrapolation scheme A, and used 
in both CM1 and CM2 are shown. Also in Table 6, the components of equation (6) used to obtain the first 
ionization energies using CM1 and CM2, the total ionization energies obtained using CM1 and CM2 , the 
ionization energies obtained using the CCSD(T)+DHF method from section II (labeled CBS), and the 
experimental ionization energies obtained from NIST97 are listed as well.  
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Table 6. Components of the α-ccCA used to obtain the first ionization energies, total calculated ionization 
energies obtained using CM1 and CM2, and experimental ionization energies from NIST97, in kcal 
 mol-1.i  

 CM1 CM2  
An Eref ∆ECC ∆ECV ∆Espin Etot ∆ECC ∆ECV ∆Espin Etot CBS Expii 
Ac 119.3 1.93 -1.11 3.72 123.93 1.93 -1.39 3.72 123.65 122.3 124.0709(6) 
Th 148.7 -2.24 -0.67 0.98 146.86 -2.23 -0.64 0.98 146.89 145.5 145.436(7) 
Pa 139.5 -1.07 -0.69 -2.35 135.46 -1.34 -1.63 -2.35 134.25 135.9 135.8(28) 
U 143.3 2.29 -1.36 3.61 147.95 2.28 -1.51 3.61 147.80 147.7 142.838(1) 
Np 143.0 0.98 0.88 0.30 145.27 0.61 0.76 0.30 144.78 144.7 144.486(7) 
Pu 136.0 -0.43 0.55 2.36 138.59 -0.66 0.41 2.36 138.23 138.1 138.958(7) 
Am 137.1 -0.80 0.51 0.85 137.73 -1.04 0.42 0.85 137.41 137.3 137.759(7) 
Cm 129.9 1.25 -0.48 4.23 134.97 1.07 -0.65 4.23 134.62 134.1 138.165(7) 
Bk 143.3 -1.68 0.53 1.10 143.38 -1.94 0.44 1.10 143.02 143.0 142.925(7) 
Cf 146.0 -2.19 0.56 1.12 145.58 -2.45 0.50 1.12 145.25 145.1 144.859(7) 
Es 148.3 -2.47 0.50 1.06 149.98 -2.77 0.48 1.06 149.95 147.1 146.840(7) 
Fm 151.0 -2.79 0.51 1.10 149.74 -3.11 0.48 1.10 149.39 149.3 149.9(16) 
Md 153.2 -3.11 0.48 1.20 151.83 -3.45 0.47 1.20 151.49 151.4 151.7(16) 
No 155.4 -3.46 0.49 1.32 153.83 -3.83 0.49 1.32 153.46 153.3 153.4(16) 
Lr 91.7 3.38 -0.03 18.58 113.73 3.20 0.02 18.58 113.59 113.6 114.4(18) 

i For CM1, the ∆ECC term utilized the cc-pvtz-DK3 basis set, while the ∆ECV  term used the cc-pwCVDZ-DK3 basis set. In CM2, the ∆ECC term 
utilized the cc-pvqz-DK3 basis set, while the ∆ECV  term used the cc-pwCVTZ-DK3 basis set. 
ii The error in the experimental ionization energies for the last digits is given in parentheses.  
 
Figure 4 shows the absolute difference between the first ionization energies obtained using CM1, CM2, 
CCSD(T)+DHF/CBS, and experimental values. The difference between experimental first ionization 
energies and those obtained using MRCI+Q/FPD61 are also included for reference. From Figure 4, it is 
apparent that both CM1 and CM2 are consistent with the CCSD(T)+DHF energies, with the ionization 
energy for einsteinium (Es) being the only exception. The source of this error for Es arises from the core-
valence term, ∆ECV. For CM1 and CM2, this term contributes 0.50 kcal mol-1 and 0.48 kcal mol-1, 
respectively, to the total first ionization energy. This term is likely underestimated. For example, the 
MRCI+Q/FPD61 method for obtaining the first ionization energy results in a core-valence CBS extrapolated 
contribution of -1.52 kcal mol-1. 
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Figure 4. Absolute difference from experiment of first ionization energies obtained using CM1, CM2, the 
CCSD(T)+DHF/CBS composite method and MRCI+Q/FPD61. 
 
Table 7 gives the MP2 energy (Eref) obtained using extrapolation scheme A, and used in both the CM1 and 
CM2 methods to obtain the second ionization energies. Also shown are the individual terms used in 
equation (1) to calculate the second ionization energies using CM1 and CM2, respectively, the total 
ionization energies obtained using CM1 and CM2, the ionization energies obtained with the 
CCSD(T)+DHF composite (labeled CBS), and the experimental values from NIST97 where available. 
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Table 7. Components of the α-ccCA used to obtain the second ionization energies, total calculated 
ionization energies obtained using CM1 and CM2, and experimental ionization energies from NIST97, in 
kcal mol-1.i  

 CM1 CM2  
An Eref ∆ECC ∆ECV ∆Espin Etot ∆ECC ∆ECV ∆Espin Etot CBS Expii 
Ac 267.9 1.61 1.08 -0.22 270.3 1.44 1.25 -0.22 270.3 270.3 271.05(69) 
Th 290.4 3.36 5.45 -4.84 294.4 3.10 -0.37 -4.84 288.3 286.7 279.0(46) 
Pa 272.2 2.54 1.55 -4.00 272.3 2.06 3.76 -4.00 274.1 274.1 - 
U 264.2 2.40 4.22 4.70 275.5 2.19 1.40 4.70 272.5 270.6 268(9) 
Np 250.7 4.58 1.80 9.35 266.4 4.79 -0.26 9.35 264.8 263.1 - 
Pu 272.6 -4.97 1.21 -0.74 268.1 -2.65 1.06 -0.74 270.2 270.0 - 
Am 276.5 -3.29 1.18 0.95 275.4 -3.33 1.12 0.95 275.3 275.1 - 
Cm 291.7 4.91 3.91 -7.45 293.1 5.30 3.02 -7.45 292.6 291.3 - 
Bk 284.2 -3.82 0.55 0.96 281.9 -3.95 1.16 0.96 282.4 280.1 - 
Cf 288.4 -4.69 1.10 1.13 285.9 -4.79 1.05 1.13 285.8 285.6 - 
Es 291.5 -4.91 0.94 1.42 289.0 -5.07 0.92 1.42 288.8 288.7 - 
Fm 295.1 -5.23 0.16 1.63 291.7 -5.43 0.74 1.63 292.0 288.3 - 
Md 298.3 -5.58 0.77 1.78 295.3 -5.82 0.77 1.78 295.1 295.0 - 
No 301.5 -6.12 0.77 1.90 298.0 -6.37 0.79 1.90 297.8 297.7 - 
Lr 338.7 -5.24 0.59 1.77 335.8 -5.70 0.57 1.77 335.4 335.3 - 

iFor CM1, the ∆ECC term utilized the cc-pVTZ-DK3 basis set, while the ∆ECV  term used the cc-pwCVDZ-DK3 basis set  . In CM2, the ∆ECC 
term utilized the cc-pVQZ-DK3 basis set, while the ∆ECV  term used the cc-pwCVTZ-DK3 basis set . 
 iiThe error in the experimental ionization energies for the last digits is given in parentheses.  

 
 

The second ionization energies obtained using CM2 show a much smaller RMSD from those obtained using 
CCSD(T)+DHF, overall, than CM1, regardless of which HF/MP2 extrapolation is used (Figure 3).  . The 
largest differences between CM1 and CM2 are seen near the beginning of the series, for elements Th, Pa 
U, Np, and Pu, and then again for Cm. Because of this, each of the individual term(s) in the composite are 
examined to determine what may be causing the differences. Because the reference energy and spin-orbit 
terms are identical for CM1 and CM2, this involves examination of ∆ECC and ∆ECV.  
 
The values of ∆ECC obtained using CM1 and CM2 are similar in terms of both sign and magnitude, differing 
by well under 0.5 kcal mol-1 for all elements except Pu. For Pu, this term is almost twice as large for CM1 
as compared to CM2. This term is the source of the difference between the second ionization energy 
obtained using CM1 and CM2 for Pu. 
 
 The ∆ECV term is responsible for the observed discrepancies between the second ionization energies 
for Th, Pa, U, Np and Cm obtained using CM1 and CM2. Considering the electron configurations for the 
states considered where there is a large difference in the ∆ECV term for CM1 and CM2, it is shown that 
ionization does not occur in a simple electron removal process between these states. Rather, there is an 
additional rearrangement of the remaining valence electrons. For example, for Th+→Th2+, an electron is 
not just removed from the doubly occupied s-orbital, leaving one electron remaining. Rather, this remaining 
electron is moved to an f-orbital. Similarly, for Pa+→Pa2+, an electron does not remain in the s-orbital after 
one is removed, but rather now occupies a d-orbital. Similar rearrangements occur for U, Np, and Cm. The 
contribution of ∆ECV to the second ionization energy of Th is positive, at 5.45 kcal mol-1. The same term 
obtained using CM2 gives a negative contribution, at -0.37 kcal mol-1. When using CM1, this term is the 
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difference between the energy obtained using the cc-pwCVDZ-DK3 basis set with valence and sub-valence 
electrons considered active, and the energy obtained using the same basis set but with only valence electrons 
active. For CM2, the term is obtained in the same way but using the cc-pwCVTZ-DK3 basis set. This 
indicates that for ionization energies that have significant core-core and core-valence interactions stemming 
from a rearrangement of electron configuration, using the double-ζ level basis set is not sufficient for 
recovery of this interaction. While the triple-ζ basis sets do better, this term is still lacking at this level to 
give an overall accurate ionization energy with respect to experimental values. For example, for Th, the 
core-core and core-valence CBS extrapolated correction term obtained using MRCI+Q/FPD61 for the 
second ionization energy is larger than for any other element in the series, at -8.40 kcal mol-1. Therefore, 
using CM2 this term at least has the correct sign. This large negative term would make up for the difference 
between the CM2 obtained second ionization energy for Th (288.3 kcal mol-1) and the experimental value 
(279 kcal mol-1). Even using the cc-pwCVQZ-DK3 basis sets and CCSD(T), this term is -2.78 kcal mol-1; 
still much too small. Therefore, this is likely to be a consequence of using a single-reference method versus 
a multi-reference method.  

 
The next large difference in the ∆ECV term obtained using CM1 and CM2 occurs for the next 

element in the series, Pa. Unfortunately, there is not experimental data available for the second ionization 
energy for this element to compare to.  The second ionization energy obtained using CM1 is 272.3 kcal 
mol-1, with ∆ECV = 1.55 kcal mol-1. The second ionization energy obtained using CM2 is 274.1 kcal mol-1, 
corresponding to ∆ECV = 3.76 kcal mol-1. Previous studies done at the MRCI+Q/FPD61 and CASSCF/MR-
ACPF-PP76 levels of theory gave second ionization energies for Pa of 273.24 and 274 kcal mol-1, 
respectively. Therefore, both CM1 and CM2 give a second ionization energy for Pa that is within 1 kcal 
mol-1 of that determined in these multi-reference studies, at a significantly reduced computational cost 
associated with a single reference method and a reduced number of basis functions. 
 
There is a large difference in the ∆ECV term obtained using CM1 and CM2 for calculation of the second 
ionization energy of U. This term contributes 4.22 kcal mol-1 when using CM1, and the calculated second 
ionization energy for this element is 275.5 kcal mol-1. The ∆ECV term obtained using CM2 is also positive, 
but only 1.40 kcal mol-1, contributing to a second ionization energy of 272.5 kcal mol-1; this value is 3 kcal 
mol-1 closer to the experimental second ionization energy for uranium, which is 268 ± 9 kcal mol-1. 
Similarly, the core-core and core-valence correction terms for Np obtained using CM1 and CM2 are ~2 
kcal mol-1 apart, and for Cm these terms are ~1 kcal mol-1 apart. The difference in the ∆ECV term obtained 
using the two composite methods is not as pronounced for the remaining elements, often far under 0.5 kcal 
mol-1.  

 
Table 8 gives the MP2 CBS extrapolated energies (Eref) obtained using extrapolation scheme A and used in 
both CM1 and CM2 to obtain the third ionization energies. Table 8 also gives the individual terms used in 
equation (6) to calculate the third ionization energies using CM1 and CM2, respectively, the total ionization 
energies using CM1 and CM2, the CCSD(T)+DHF composite total ionization energies, and the 
experimental values from NIST97 where available.   
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Table 8. Components of α-ccCA used to obtain the third ionization energies, total calculated ionization 
energies obtained using CM1 and CM2, and experimental ionization energies from NIST97, in kcal 
 mol-1. i  

 CM1 CM2  
Element Eref ∆ECC ∆ECV ∆Espin Etot ∆ECC ∆ECV ∆Espin Etot CBS Expii 

Ac 400.1 0.31 1.88 0.52 402.8 0.25 2.26 0.52 403.2 403.2 - 
Th 408.2 3.24 -0.92 6.50 417.0 3.15 -0.80 6.50 417.1 417.1 422.5(12) 
Pa 421.1 1.48 -5.80 11.42 428.2 2.02 -1.1 11.42 433.5 435.8 - 
U 454.9 -3.81 -0.69 -3.57 446.8 -3.81 1.50 -3.57 449.0 450.8 456.6(69) 
Np 477.6 -9.39 0.56 -4.93 463.8 -9.33 1.94 -4.93 465.2 466.2 - 
Pu 505.8 -6.95 -1.66 -6.80 490.4 -7.14 -0.29 -6.80 491.6 492.9 - 
Am 547.5 -9.34 -3.63 -27.36 507.1 -9.46 -2.94 -27.36 507.7 508.9 - 
Cm 473.8 -10.51 -1.84 9.52 471.0 -11.21 -0.98 9.52 471.1 472.3 - 
Bk 516.0 -13.30 -2.70 4.35 504.4 -13.83 -2.58 4.35 504.0 503.7 - 
Cf 545.2 -12.52 -5.23 -3.39 524.0 -13.44 -4.21 -3.39 524.1 525.0 - 
Es 577.2 -19.84 -3.77 -11.88 541.7 -20.44 -3.43 -11.88 541.4 542.4 - 
Fm 600.2 -24.56 -3.40 -14.68 557.5 -25.13 -3.52 -14.68 556.8 557.7 - 
Md 637.4  -26.40 -4.43 -39.28 567.2 -27.14 -4.42 -39.28 566.5 567.2 - 
No 678.5 -28.77 -6.86 -24.68 618.2 -29.49 -7.04 -24.68 617.3 618.0 - 
Lr 507.3 -7.22 0.81 2.03 502.9 -7.58 0.83 2.03 502.6  502.7 - 

iFor CM1, the ∆ECC term utilized the cc-pVTZ-DK3 basis set, while the ∆ECV  term used the cc-pwCVDZ-DK3 basis set. In CM2, the ∆ECC term 
utilized the cc-pVQZ-DK3 basis set, while the ∆ECV  term used the cc-pwCVTZ-DK3 basis set. 
iiThe error in the experimental ionization energies for the last digits is given in parentheses. 
 

 
As was observed for the second ionization energies, the RMSD from the third ionization energies 

obtained using the CCSD(T)+DHF composite is smaller when using CM2 than when using CM1 to obtain 
these values ( Figure 3). In fact, for the third ionization energies using CM2 instead of CM1 reduces the 
RMSD by more than half. The largest differences between the third ionization energies obtained using CM1 
and CM2, and those obtained using the CCSD(T)+DHF method occur for Pa, U and Np. 

 
Though the ∆ECC contribution to the energy is very large (nearing ~30 kcal mol-1 for some elements) 

there is little variation in this term regardless of which composite method (CM1 or CM2) is used. For most 
elements in the series there is < 0.5 kcal mol-1 of a difference between this term obtained with CM1 and 
that obtained using CM2. Therefore this indicates that while the method used (CCSD(T) versus MP2) 
affects the ionization energy greatly, the use of a triple- or quadruple-ζ basis set is fairly inconsequential 
for the determination of this contribution to the energy. 

 
Examining the ∆ECV term obtained using CM1 and CM2 for the third ionization energy, the range of values 
between the two composites is not as large as for the second ionization energies. The largest difference in 
terms occurs for Pa (∆ECV=-5.8 kcal mol-1 using CM1 and -1.1 kcal mol-1 using CM2). The terms for U are 
closer together, with about 2 kcal mol-1 difference and opposite signs. Using CM1, the ∆ECV term for U is -
0.69 kcal mol-1, with a total third ionization energy of 446.8 kcal mol-1. When using CM2, ∆ECV is 1.50 kcal 
mol-1 and the total third ionization energy for U is 449.0 kcal mol-1. The experimental value for the third 
ionization energy of uranium is 457 ± 7 kcal mol-1. Therefore, the third ionization energy obtained using 
CM2 is < 1 kcal mol-1 below the lower bound of the experimental value (450-464 kcal mol-1). Previous 
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theoretical work done using MRCI+Q/FPD61 and CASSCF/MRACPF-PP76 gave a third ionization energy 
for this element of 435.38 kcal mol-1 and 433.5 kcal mol-1, respectively. Thus either composite in this work 
offers a significant improvement in accuracy for uranium's third ionization energy, using only single-
reference methods, at a significantly reduced computational cost when compared to multi-reference 
methods.  

 
There are differences of ~1.5 kcal mol-1 for Np and Pu between terms obtained using CM1 and CM2. 

The differences between terms obtained using CM1 and CM2 are far smaller for the remaining elements 
(less than 1 kcal mol-1, and even far below 0.5 kcal mol-1 in some cases). 

 
While the ∆ECV term for thorium is fairly consistent regardless of whether CM1 (∆ECV = -0.92 kcal 

mol-1) or CM2 (∆ECV = -0.80 kcal mol-1) is used, this term is quite a bit smaller in magnitude than the CBS 
extrapolated value found using MRCI+Q/FPD61 (-3.37 kcal mol-1). However, the total third ionization 
energy for thorium found using either CM1 or CM2 is ~4 kcal mol-1 below the lower bound of the 
experimental error range, at 417.0 and 417.1 kcal mol-1, respectively. Therefore it may be the positive ∆ECC 
contribution that is lacking in this case. This indicates that even the use of a quadruple-ζ basis set is not 
sufficient for recovery of the post-HF correlation energy for this element; correct recovery of this term may 
require a multireference treatment.  

 
To further compare the α-ccCA performance to that of the CCSD(T)+DHF composite with CBS 

extrapolation, the total times required for CM1 and CM2 are 24% and 60% that of the CCSD(T)+DHF 
composite scheme, respectively. Table S1 in the SI shows the percentages of the total time for each step for 
the three composite methods when used to obtain the total energy for actinium (Ac), as well as the number 
of basis functions used. The bottleneck for CPU time for both CM1 and CM2 is in calculating the CCSD(T) 
energy and considering only the valence electrons active, for use in obtaining the core-core and core-valence 
term (using the cc-pwCVDZ-DK3 and cc-pwCVTZ-DK3 basis sets, respectively). For the CCSD(T)+DHF 
total energy calculation the time required for each step increases monotonically with the number of basis 
functions used.  
 

Conclusions 
 
The first, second, and third ionization energies have been obtained using the CCSD(T)+DHF 

method. This method offers an improvement in accuracy for theoretically determined ionization 
energies at a decreased computational cost as compared to more costly multireference methods. The 
overall RMSD of the CBS extrapolated (valence and outer-core electrons correlated, cc-pwCVnZ-
DK3 basis set) first ionization energies from experimental data for the series is 0.38 kcal mol−1; 
multireference methods resulted in RMSD’s relative to experiment of 5.59 kcal mol−1 61  and 6.67 kcal 
mol−1 76.  
 

 Additionally, for the first time, a correlation-consistent composite approach (α-ccCA), has been 
implemented for calculating ionization potentials for the actinide series. For the first ionization energies, 
the RMSD with respect to experiment obtained using the α-ccCA is 1.85 kcal mol-1. Additionally, this 
method is significantly less computationally expensive than the single-reference CCSD(T)+DHF /CBS 
method (as illustrated for the first ionization energy of actinium, where the total times required for CM1 
and CM2 (two variants of the α-ccCA) are 24% and 60% that of the CCSD(T)+DHF/CBS composite, 
respectively). 
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The second and third ionization potentials are compared to experimental values where (sparingly) 
available. For the elements actinium and uranium, second ionization energies obtained are within error 
limits of the experimental values. The α-ccCA method is found to give a value for the second ionization 
energy of thorium that is ~4 kcal mol-1 above the upper limit of experimental error; this is due to insufficient 
recovery of core-core and core-valence interactions. As a whole, the second ionization energies have a 
RMSD from the CCSD(T)+DHF composite values of below 1.50 kcal mol-1 when CM2 is used.  
 

For the third ionization energies, the closest value to experiment for thorium obtained with the α-ccCA 
is ~4 kcal mol-1 below the lower limit of the experimental value when CM2 is used. The α-ccCA does much 
better when obtaining the third ionization energy of uranium, ~1 kcal mol-1 below the lower limit of the 
experimental uncertainty. Taken together, the third ionization energies have a RMSD from the simple 
composite values of just 1.03 kcal mol-1 when CM2 is used.  
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