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Abstract

The space of possible grain boundary structures is vast, with 5 macroscopic, crystallographic degrees of freedom that define the
character of a grain boundary. While numerous datasets of grain boundaries have examined this space in part or in full, we present a
computed dataset of 7304 unique aluminum grain boundaries in the 5D crystallographic space. Our sampling also includes a range
of possible microscopic, atomic configurations for each unique 5D crystallographic structure, which total over 43 million structures.
We present the methods used to generate this dataset, an initial examination of the energy trends that follow the Read-Shockley
relationship, hints at trends throughout the 5D space, variations in GB energy when non-minimum energy structures are examined,
and insights gained in machine learning of grain boundary energy structure-property relationships. This dataset, which is available
for download, has great potential for insight into GB structure-property relationships.
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1. Introduction

The interfaces or grain boundaries (GBs) separating the in-
dividual crystals in polycrystalline materials can have a sig-
nificant effect on numerous material properties. In fact, in
the 1990s, a field emerged called GB engineering that demon-
strated large improvements in properties by controlling the pop-
ulation of different GB types [1-3]. Notable achievements in
GBE include a decreased intergranular corrosion susceptibility
[4], a gain in cycle life of lead acid batteries [5], a decrease in
creep rate [6], an increased strength, ductility, fracture tough-
ness [7], among others. Unfortunately, many of these improve-
ments were limited to low stacking fault energy FCC materials
that readily form twins. To enable GBE generally we need more
information about the range of energies and structures that are
possible in different GB types. In other words, we need to un-
derstand GB structure-property relationships over the full range
of GB types.

GB structures are defined by both their macroscopic and mi-
croscopic degrees of freedom. The macroscopic degrees of
freedom are defined by five crystallographic parameters, often
referred to as the GB character. Three parameters describe the
misorientation between two grains and two parameters define
the orientation of the boundary plane (BP) separating the two
grains. The microscopic degrees of freedom are defined at the
most basic level by the positions of each atom, where N atoms
would have 3N degrees of freedom. Various metrics have been
developed to describe the atomic structure of GBs in simpler
terms, including the structural unit model [8-10], polyhedral
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unit model [11], and more recently by various collections of
local atomic environments [12-22].

It must also be noted that for every unique macroscopic struc-
ture description, there are a multiplicity of microscopic degrees
of freedom where the atoms are arranged differently [14, 23—
27]. These various configurations are typically referred to as
metastable configurations or GB phases. In experiments, these
can be seen as varying atomic configurations along a single
GB [27]. In modeling and simulation, most research focuses
on the minimum energy configurations. However, a statistical
mechanical approach using these metastable states can be used
to predict finite temperature equilibrium and non-equilibrium
properties [25].

While the 5 macroscopic degrees of freedom are signifi-
cantly fewer than the 3N microscopic degrees of freedom, es-
pecially considering the metastable states, they still constitute
a large space that is challenging to fully resolve. Symmetries
are present in this 5D space that reduce the amount of data re-
quired to explore it [28], but these symmetries can be as prob-
lematic as they are helpful because researchers do not always
use the unique descriptions of GBs, such as the disorientation’
or a unique definition of the BP, such as described in [29].

Historically, these 5 degrees of freedom have frequently been
simplified down to one degree of freedom, completely ignoring
BP and disorientation axis, focusing only on the disorientation
angle. This is often simplified even further into low vs. high dis-
orientation angles or special vs. not special, where special GBs

'A disorientation provides a single unique description for many symmetri-
cally equivalent misorientations and is defined by the minimum misorientation
angle when the misorientation axis is found in the standard stereographic trian-
gle.
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are comprised of low Z-value coincidence site lattices (CSLs)
and low disorientation angle boundaries. While these simplifi-
cations have their uses, they represent an incomplete character-
ization of the GB.

There have been many notable investigations of GB
structure-property relationships over numerous different prop-
erties, but it is beyond the scope of this work to provide a
full review of these efforts beyond highlighting some impor-
tant works [30-34]. However, we do wish to highlight those
studies that have either been particularly insightful or unique in
their investigation of GB interface energy over some portion,
if not all, of the 5D macroscopic GB space. The most well-
known of these relationships is the Read-Shockley relationship,
which predicts GB energy and atomic structure as a function
of disorientation angle, in the most basic case for tilt or sym-
metric tilt GBs [35]. This relationship has proven remarkably
useful over the years and will see reinforcement in this work.
Other noteworthy models include the broken bond GB energy
model by Wolf [36, 37], the Frank-Bilby equation to relate mi-
croscopic and macroscopic degrees of freedom [38—40] and the
Wulff construction and Cahn-Hoffman capillarity vector to un-
derstand the role of BP [41-44]. More recently Bulatov, Reed,
and Kumar created a GB energy function for FCC materials that
predicts energy for four different FCC metals based upon the 5
macroscopic degrees of freedom [45].

Of course all these models require data upon which to learn
and predict. Numerous model, experimental, and computed
datasets have been developed to provide insight into GB en-
ergy structure-property relationships. Older datasets relied on
hard sphere approximations [46] while newer datasets take ad-
vantage of advances in characterization and computation. For
example, advances in computing have also allowed larger and
more detailed atomic structures of GBs to be simulated. Re-
cent experimental datasets take advantage of automated se-
rial sectioning technologies [47-49] to recover all 5 macro-
scopic degrees of freedom and morphology of polycrystalline
microstructures.

While datasets of computed GBs date back several decades
[50-53], a dataset created by Olmsted, Foiles, and Holm [54]
has received particular attention in the literature. The dataset
consists of 388 GBs of Ni and Al and their corresponding min-
imum energies and atomic structure configurations. The 388
GBs are comprised of 72 unique disorientations where some
disorientations sample many BPs, such as the £3, while others
sample as few as 2 BPs. Numerous other computed GB datasets
have since been created including 408 GBs in BCC Fe and Mo
[55], 174 symmetric and asymmetric tilt GBs in both Al and Cu
[56], 126 [1 00] symmetric tilt Ni GBs [18, 57], 346 [1 00] dis-
orientation axis Ni GBs [57, 58], 344 GBs in Si and SiC [59],
230 GBs in both UO, and CeO, [60], more than 68 000 GBs
in Fe [61], and 327 GBs spanning 58 different elements using
density functional theory [62]. Additional detail about each of
these computational datasets is provided in the supplemental
material. The dataset from Kim et al. is by far the largest but
it should be noted that each GB only examined a single initial
condition [61], so it is not clear that this is representative of the
minimum GB energy typical to most datasets.

Experimental datasets of GBs that recover all 5 macroscopic
degrees of freedom often infer GB energy values based on pop-
ulation, geometry of the GB network, or thermal grooving. For
example, one can utilize the Herring equation or Cahn-Hoffman
capillarity vector to reconstruct the GB energy based on the ge-
ometry of triple junctions, where three GBs come together and
an energy balance of the three GBs would allow the triple junc-
tion to achieve equilibrium [33, 63, 64]. One can also infer GB
energy based on GB populations, where it is assumed that low
energy GBs would show up with high frequency and high en-
ergy GBs would show up with low frequency [65]. Using one
of these methods, GB energy has been, or can be, inferred in the
following experimentally obtained GB datasets. These include
measurements in Ni [66], Al [67, 68], NiAl [69], ferritic steel
[70, 71], GB engineered Ni and Cu [72], yttria [48], and mag-
nesia [65], among others [73], of which many of these datasets
are available for download [74].

In direct comparisons, Amouyal et al. find good agreement
between measured and computed GB energies in NiAl [69].
Barmak et al. find more variation in a limited comparison be-
tween measured and computed GB energies in Al [75]. In a
large-scale comparison of Ni datasets, Rohrer et al. concluded
that the experimental and computational results validate each
other for boundaries that are appropriately represented in both
data sets [76]. In later work, Holm et al. demonstrate that one
can also validate GB energy calculations using the GB charac-
ter distribution [68].

GB datasets are also crucial to the Materials Genome Initia-
tive focus to develop new materials on a shorter time line, be-
cause digital data is identified as one of the three pillars in the
materials innovation infrastructure, along with computational
and experimental tools [77]. As will be illustrated below, the
Olmsted GB dataset is an excellent example of how digital data
has been used in numerous studies to examine a variety of phe-
nomena [54].

The FCC GB energy function mentioned earlier, created by
Bulatov et al., was trained on the Olmsted dataset and showed
that four FCC metals all had similar GB energy trends across
the 5D space [45]. Furthermore, the energy prediction could be
changed between all four FCC metals by simply changing two
parameters related to the twin and random GB energy values.

Olmsted’s dataset was also used to gain insight into energy
variation through the 5D space. Bulatov et al. found interest-
ing properties about the energy cusps [45]. Homer and Patala
built upon Patala’s work on the symmetries of BP orientations
[78] to identify fundamental zones (or irreducible spaces) in
the BP degrees of freedom [29]. Using these BP fundamental
zones, they found that GB energy in the Olmsted dataset varied
smoothly for similar BP orientations of the same disorientation
as a function of disorientation angle. This trend was later con-
firmed more generally by Erickson and Homer in their dataset
of 346 [1 00] disorientation axis GBs [58].

Olmsted’s dataset has also been used to examine GB mobility
[79, 80], GB shear coupling [81, 82], excess volume [83], and
others [19, 84, 85]. More recently Olmsted’s dataset of atomic
structures were used as input to predict GB energy by machine
learning [15, 17, 21]. Priedeman et al. built on those meth-



ods and used dimensionality reduction techniques to illustrate a
connection between the macroscopic and microscopic degrees
of freedom [18].

The other GB datasets have been used for numerous pur-
poses. For example, Zheng developed an improved predictive
model for the GB energy of different elements based on the co-
hesive energy and shear modulus using the DFT dataset men-
tioned previously [62]. Tamura et al. also developed a predic-
tive model using machine learning, where accurate predictions
are reported from training sets with as few as 10 GBs [12].
Restrepo et al. trained an artificial neural network on the Kim
dataset to predict GB energies [61, 86].

It is clear that GB datasets have tremendous value, and
that, to continue the efforts of GB engineering, more com-
plete structure-property relationships are required. But, to ob-
tain more complete relationships the datasets must span the
full range of macroscopic degrees of freedom. Additionally,
it would be beneficial if the datasets also provide insight into
the range of microscopic degrees of freedom.

In this work, we present a computed dataset of aluminum
GBs that span the entire 5D space and provide insight into
the range of metastable atomic configurations. In total, 7304
unique aluminum GB structures are examined, with a full set
of metastable atomic structure configurations for each. All
together, over 43 million GB structures are included in this
dataset. In this work we describe the methods used to construct
the dataset, examine general statistics of the dataset, illustrate
GB energy trends in subspaces of the SD GB character, illus-
trate trends in energy distributions of the metastable configu-
rations, and examine basic machine learning predictions using
the atomic structures as input. Finally, the dataset will be made
available so that it can serve as a tool of understanding to the
entire scientific community [87].

2. Methods

2.1. GB selection procedure

As noted above, the macroscopic (crystallographic) character
of a GB is defined by 5 parameters, 3 for the disorientation
and 2 for the boundary plane. In generating our dataset, we
selected disorientations that provided comprehensive coverage
of the disorientation space, though we did not attempt to use
methods for uniform coverage, such as those described Quey et
al. [88].

To avoid the effects of free surfaces, periodic boundary con-
ditions are used in the plane of the GB. This is readily solved
when using CSL disorientations because the GB plane will be
periodic for both grains if CSL lattice points are used when
defining the supercell of the simulation. As such, all GBs used
in this work are CSLs, but it should be noted that while low
Y~ CSLs are often considered to be special, numerous works
contradict this assertion [58, 89-94]. In other words, the CSL
framework is used for its utility, not any attempt to sample “spe-
cial” GBs.

Various factors were considered in selecting the disorienta-
tions (CSLs) for the dataset, with the most important being
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Figure 1: Plot of the 150 selected CSLs in the cubic-cubic fundamental zone
in Rodriguez-Frank space. Points on the surface of the fundamental zone are
marked with a red ‘x” while points on the interior are marked with a black ‘o’.

Table 1: Statistics of the selected GBs and BPs, organized by the point group
symmetry of the CSL lattice.

Point  Hemisphere 4 CSLs Average # Total #

Group Coverage of BPs/CSL  of BPs
C; 1/1 46 54 2469
Cap 1/2 75 51 3834
Dy, 1/4 13 40 525
D3y 1/6 8 30 240
Dy, 1/8 7 32 223

Dg), 1/12 1 13 13

Total 150 7304

comprehensive coverage of the 3D disorientation space at ~ 5°
spacing. Using the selection procedure described in the sup-
plemental material, we obtained 150 CSLs. Of the CSLs in
this set, 46 lie in the interior of the fundamental zone, 7 have
[100] disorientation axes, and there are 9 on both the [110]
and [111] disorientation axes. These 150 CSLs are plotted in
the cubic-cubic disorientation fundamental zone in Rodriguez-
Frank space in Figure 1 and listed in supplemental Table S1. It
is worth noting that there are 75 CSLs with ¥ < 99, 35 CSLs
with 99 < £ < 199, 31 GBs with 199 < £ < 499, and 9 GBs
with 499 < X < 999; the largest of which is a 2999ae.

From these 150 CSLs, we wanted to select GBs that would
provide comprehensive coverage of the unique portions of the
BP space for each CSL. The BP symmetries [78] enable the
identification of the irreducible space or fundamental zone of
unique BPs. The 3D point group symmetry of each CSL is
listed in supplemental Table S1. Table 1 provides a summary
of all the point group symmetries in this dataset along with the
hemisphere coverage of the fundamental zone for that symme-
try.

BPs were selected from each fundamental zone, with the
goal of providing comprehensive coverage, such that one can
interpolate energies over regions that are not sampled. This ap-
proach led to much coarser spacing of points than occurred in



Figure 2: BP fundamental zone plot for the £9 CSL marking possible BP ori-
entations in blue that can be selected from +4 CSL lattice points and marking
the selected BP orientations in red squares that aim to provide comprehensive
coverage of the BP fundamental zone.

the disorientation fundamental zone, but was necessary to keep
the total number of GBs at a reasonable number.

Unfortunately, the method used to select possible BPs does
not lead to uniform coverage of each fundamental zone. This
results from the use of a CSL lattice to select possible BPs,
which automatically satisfy periodic boundary conditions [95].
Additional details on the BP selection procedure are provided in
the supplemental materials. Fig. 2 illustrates the possible BPs
marked by blue dots that result from this procedure for the X9
CSL. It is clear that some BPs are difficult to access using this
approach. From these available BPs, we employ an automatic
selection procedure for overall coverage. This is followed by a
manual selection procedure to fill in any large gaps over the BP
fundamental zone. The final BPs selected for the dataset in the
29 CSL are marked with red squares in Fig. 2.

A similar selection process of BPs was carried out for all 150
CSLs. The average number of BPs for each CSL is given in
Table 1 according to the point group symmetry; it is noted that
those numbers do not provide consistent coverage in terms of
the number of BPs per unit area of the BP fundamental zone.
In the end, a total of 7304 GBs with unique disorientation and
BP were selected for the dataset. It is worth noting that this is
an order of magnitude greater in size than any other minimum
GB energy dataset mentioned in the introduction (the dataset of
68 000 GBs created by Kim et al. are not necessarily represen-
tative of minimum energy GBs [61]).

2.2. Atomic GB structure creation

Once selected, the vectors defining the basis for the periodic
GB supercell are used to construct bicrystals. While many GB
simulations require the basis vectors in the GB plane of the su-
percell to be orthogonal, we do not set this as a requirement

because it allows a much larger population of BPs to be in-
vestigated [95]. We employ monoclinic simulation supercells
that contain a single GB. Periodic boundary conditions are used
in the GB plane but not in direction normal to the GB. Rigid
blocks of atoms at the two extremes normal to the GB mitigate
the effects of the free surfaces [54, 96].

In this work we simulate aluminum GB structures using the
aluminum EAM potential by Mishin et al. [97]. However, the
framework presented here is fairly general and could be applied
to other FCC metals or even translated for other pure crystal
structures.

To find the minimum energy structures we follow the meth-
ods of Olmsted et al. [54] and sample various initial configu-
rations of atom positions. These are obtained by considering
the variation of the following six variables: translation of one
grain relative to the other within the DSC lattice (3 variables),
placement of the boundary interface (1 variable), allowed prox-
imity of atoms before one is selected for deletion (1 variable),
and three possible procedures for deleting overlapping atoms (1
variable).

Each of the structures is minimized using conjugate gradient
minimization in LAMMPS [98]. On average 5888 structures
were minimized for each GB to obtain the minimum energy
structure. In total, for all 7304 unique GBs, 43 009 236 total
structures have been minimized. After minimization, the GB
energy is calculated following standard methods [96]. Note that
structures are not thermalized in an attempt to find even lower
minimum energy structures; the motivation behind not doing
this is that thermalization often leads to faceting of the GBs,
providing information about how that particular GB would like
to evolve, but not providing a measure of energy for that partic-
ular BP orientation. One can then use these energies in a Wulff
construction or Cahn-Hoffman capillarity vector [41-44] to de-
termine what the equilibrium structure and faceting would then
be from discrete GB measurements, as in [99, 100].

The dataset analyzed in this work focuses mostly on the min-
imum energy GB structure and corresponding properties of the
7304 unique GBs. These minimum energy GB structures are
also analyzed for their GB width, based on the extent of atoms
with non-FCC structure, as defined by common neighbor analy-
sis (CNA), as well as for their excess volume per unit GB area,
calculated according to standard methods [96], using Python
scripts in OVITO [101]. Data relevant to the GB disorienta-
tion, BP orientation, crystal orientations, minimum GB energy,
number of structures minimized, structure file name, and excess
volume, as well as all the minimum energy GB structures, are
published in a dataset on Mendeley Data [87].

2.3. Machine learning methods

Characterizing microscopic degrees of freedom is a signif-
icant challenge, with considerable efforts focused on atomic
structures generally [102—-107] and GBs specifically [12-22].
In this work no new structural characterizations or machine
learning methods are employed. Rather, we repeat methods
employed previously by some of the authors to demonstrate the
utility and wealth of data found in this dataset as it pertains to
machine learning methods.



As noted in the supplemental material, atoms within +15A of
the GB are available for analysis. In this work these atoms are
analyzed using Smooth Overlap of Atomic Positions (SOAP) to
characterize the local neighborhood of a selected atom [103].
SOAP is a descriptor that encodes regions of atomic geome-
tries by using a local expansion of a Gaussian smeared atomic
density with orthonormal spherical harmonic and radial basis
functions. In this work we employ the SOAP implementation
in the QUIPPY package [108—110], which outputs a vector of
all the coefficients for the basis functions. The SOAP param-
eters used are as follows: reye = 3.74, Bmax = 12, lhax = 12,
o = 0.575, normalize = true, and Z = 13. It is also worth not-
ing that we do not include atoms within r¢, of the ends of the
simulation cells since their SOAP vectors do not match that of
the bulk structure, despite their structure as bulk atoms.

Feature matrices for machine learning must always be the
same size and, for traditional machine learning methods, each
data point must be represented by a single vector. The SOAP
analysis exports a SOAP matrix for each GB, comprised of
SOAP vectors for each atom, that can be different in size since
each GB can have different numbers of atoms in the atomic
structure file. To obtain features that are the same size and to re-
duce the feature representation to single vector, the SOAP vec-
tors in this matrix are averaged to provide one average SOAP
vector that represents the GB atomic structure as a whole, and is
referred to as the average SOAP representation (ASR) in [15].

While a matrix of these ASR vectors for each GB can be used
as a feature matrix for machine learning, we choose to employ
a kernel machine for the learning and must therefore construct
a kernel from the ASR vectors. To be consistent with previous
works [15], we elect to define our kernel matrix as AAT where
A is the ASR matrix. This results in a kernel matrix K € R™"
where n is the number of features, 7304 in our case. The scikit-
learn Python library is used to implement the support vector
machine (SVM) algorithm [111]. The kernel from the ASR
vectors essentially defines a similarity matrix between the GBs
that is used by the SVM model to train and predict GB energy.

A second approach used for the machine learning in this
work is referred to as the local environment representation
(LER) [15]. The LER is a method to find a collection of
“unique” local atomic environments by comparing the SOAP
vectors of all GB atoms in the set and finding those that are
unique as defined by a dissimilarity value d less than a given
magnitude €. The dissimilarity metric employed in this work is
given by

dqg:”a-EHZ:\/a-mz-z—za-z )
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where d; ; is the dissimilarity value when comparing the SOAP

vectors @ and b [17, 18].

Once a set of these unique local atomic environments are
found for all atoms r, away from the free surfaces in the set
of 7304 GBs (50247007 atoms in total), the GB can then be
represented by its fraction of each of these unique local atomic
environments. The only parameter used to obtain the LER for
the 7304 GBs in this work is € = 0.05. Using this parameter
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Figure 3: Scatter plot of energy as a function of disorientation angle for the
7304 GBs, accompanied by histograms of the two variables. Two possible
Read-Shockley relationships are fit to the data and the low energy [1 1 1] dis-
orientation axis twist GBs are also identified.

set, 1927 unique local atomic environments were found and the
resulting LER matrix gives the fraction of each of these unique
environments for each GB as rows in the matrix. Similar to
ASR, a kernel matrix is constructed as LLT where L is the LER
matrix. The LER kernel matrix is then used as the feature ma-
trix and GB energy is predicted using SVM after the same man-
ner as ASR.

3. Results & discussion

3.1. General dataset observations

The simplest manner to illustrate all the data in a single plot
is to plot the minimum GB energy values as a function of a
single variable, disorientation angle. This is shown in Fig. 3 for
all 7304 GBs. The scatter plot of this data is accompanied by
histograms of GB energy and the disorientation angle.

The range of GB energies compares well with those reported
for an Olmsted set of Al GBs [54]. Supplemental Fig. S1 pro-
vides a comparison of GB energies for [111] Al GBs common
to both the Olmsted dataset and the present work, calculated
with the Ercolessi-Adams EAM potential [112] and Mishin et
al. EAM potential [97], respectively. The GB energy values
calculated using the Mishin potential are ~25 mJ/m? higher on
average.

Figure 3 indicates a unimodal peak in the GB energy distribu-
tion, which has mean and standard deviation values of 497 + 55
mJ/m”. Note also the trend in the GB energy, which is simi-
lar to predictions made by Read-Shockley. In its most general
sense, the Read-Shockley relationship can be defined as one of
the following [113], where Eq. 2a is valid for low angles and
Eq. 2b is valid for all angles.

y(g)low =0 [EL - Es 111(9)] /b (za)
Y(@)an = sin(6) [E. — E, In(sin(6) )] /b (2b)



Table 2: Dislocation energy parameters and RMSE values for the two Read-
Shockley relationships, along with comparison of expected dislocation energies
as taken from the literature.

Source Ec Es RMSE
[eV/A] [eV/A] [mJ/m?]

Eq. 2a 0.082 0.150 45

Eq. 2b 0.070 0.170 45

Literature* 0.002-0.630 0.1893-0.2575 -

* Values for E, and E; are from [114] and [113], respectively.

The constants E, and E; represent the dislocation core en-
ergy and dislocation strain energy outside the core, respectively.
These values are used as fitting parameters for the GB energy of
the 7304 GBs in the dataset and their values are given in Table
2, along with the RMSE values from the fits. Fig. 3 has the fitted
Egs. 2a and 2b plotted on top of the individual data points. For
reference, literature reports of dislocation core energy, E. are
included [114], along with the range of E;, based on screw and
edge dislocations estimates, as given by Wolf [113] from which
this form of the equations are taken. Note that the fit values are
near expectations even though individual dislocations are not
identifiable in many of the high angle GBs where dislocations
would overlap.

It is noteworthy that an equation based on an idealized struc-
ture of dislocation arrays to mimic the structure and energy of
GBs, developed over 70 years ago, captures the general behav-
ior of a dataset that provides comprehensive coverage of the
5D space. While it is clear that these Read-Shockley fits do
not describe all of the data points, the RMSE for both fits is 45
mJ/m?. The utility of the Read-Shockley relationship is sup-
ported by other works as well, as indicated by Rohrer [34] and
the fact that a modified form of Eq. 2b is used to interpolate
GB energies between proximal boundaries in the Bulatov GB
energy function [45], which has now be used to describe ener-
gies of four fcc and two bee metals [45, 115, 116]. Finally, it
is worth noting that the Read-Shockley fits peak between 30-
40°and higher disorientation angle GBs have slightly lower GB
energies. It should be pointed out however that at intermediate
and high disorientation angles, dislocations overlap to the point
that they cannot be readily distinguished. Thus, while the Read-
Shockley model fits these higher disorientation angles, the in-
terpretation of regularly spaced dislocations at this high angles,
care should be exercised in the dislocation interpretation of the
model.

The disorientation angle histogram in Fig. 3 is compared with
the Mackenzie Distribution, which represents the distribution of
disorientation angles for a sample with a random distribution of
cubic crystal orientations [117, 118]. The similarity between
the distribution of disorientation angles in the dataset and the
Mackenzie distribution are indicative that the sampling of GBs
in this dataset is similar to what would be observed if a sample
with random cubic crystal orientations was analyzed. A his-
togram of just the 150 CSL disorientations is also provided in
supplemental Fig. S2.

To make use of this data for GB engineering, one must un-

derstand how to control the texture, or populations of differ-
ent crystal orientations. From Fig. 3 it is clear that a sample
with random crystal orientations is unlikely to generate a GB
distribution with many GBs that are low in energy. In fact,
based on the distribution of energies in the histogram of Fig.
3, the fraction of low energy boundaries is bound to be negli-
gible. Of course most GB engineering relies on the presence
of twin boundaries and twin-related domains [2, 3, 119], which
are typically limited to low stacking fault energy FCC materials.
Aluminum does not belong in this group, but research suggests
that alignment of {1 1 1}/{1 1 1} “interconnected” planes across
GBs was frequently observed and has implications for GB en-
gineering [120]. The {1 1 1} disorientation axis twist GBs, with
{111}/{11 1} alignment, define the low energy bound as a func-
tion of disorientation angle in Fig. 3, with the exception of the
211 {1 13}/{1 13} symmetric tilt GB at a disorientation angle
of 50.5°. In other words, this data supports the appearance of
these {11 1}/{1 1 1} interconnected GBs, likely formed because
of their low energy.

If we examine “low” energy GBs, defined by having an en-
ergy less than the highest {1 1 1} disorientation axis twist GBs,
we find 27 GBs from 6 CSLs. Three near {1 11}/{111} GBs
come from the X131e (60.25°about [5 5 4]), which is vicinal to
the X3, and therefore unsurprising to have low energy. 18 of
these GBs come from the lowest disorientation angle GB stud-
ied in this work, the £265a (4.98°about [1 0 0]), which is unsur-
prising considering low angle GBs are expected to have low en-
ergy. Another GB £201a (8.09°about [1 1 0]), is also low angle,
and therefore unsurprising to be included in this list. Finally,
the 11 symmetric tilt GB, mentioned earlier, is well-known as
a low energy GB. However, the remaining two GBs and CSLs
are a bit surprising, these are a £63¢ (54.03°about [43 1]) GB
with BPs of (511 13)/(5117) and a £69d (50.92°about [55 1])
GB with BPs of (11 119)/(1 11 19). To the authors’ knowledge,
these particular GBs and CSLs have not previously been iden-
tified as having low energy. Due to the coarse nature of the
sampling of the 5D space, there may also be other low energy
cusps that exist but which have not been discovered. In any
case, the current dataset would suggest that beyond the three
GBs mentioned above (from the £11, £63¢, £69d CSLs), an op-
timal texture would generate low angle GBs and {1 11}/{1 11}
interconnected GBs.

The excess volume per unit area, referred to here as the ex-
cess volume, is also calculated for each GB. The excess volume,
normalized by the lattice parameter, is plotted against GB en-
ergy in Fig. 4, along with a distribution of the excess volumes.
The range of GB excess volumes compares well with values
of excess volume in an Olmsted set of Al GBs [54]. Note the
correlation of excess volume with GB energy (correlation co-
efficient of 0.8), which correlation has previously been shown
to be linear [54]. The {11 1} disorientation axis twist GBs are
again highlighted and have both low GB energy and low excess
volume, as would be expected based on the correlation.

Also of interest in this dataset is a chance to examine the dis-
tribution of widths observed in the GB structures. In this work,
we define the GB width by finding the GB atoms, identified
by CNA values that are not FCC, and then measuring the dis-
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Figure 5: Histogram of GB widths compared with a normal distribution based
on the mean and standard deviation of the data.

tance normal to the GB between the two most distant GB atoms
on either side. Since it has been observed that defects, such
as partial dislocations, can extend out from the GB some dis-
tance [81], this width really measures the extent of the disorder.
It does not mean that all the atoms within the “GB width” are
disordered. The distribution of GB widths is plotted in Fig. 5,
where the mean and standard deviation of the distribution are
8.8+1.5A. A Kolmogorov-Smirnov test indicates this distribu-
tion is normal with a significance value less than 0.001. These
GB width values are in the range of estimates made by a variety
of techniques in different materials [121-124].

3.2. GB energy trends in the 5D space

One of the major challenges in examining GB structure-
property relationships is the fact that the crystallographic char-
acter is 5-dimensional. This becomes challenging to graphi-
cally illustrate, which is why properties are often plotted as
a function of only one variable, as in Fig. 3. Here we seek
to demonstrate that GB energy varies smoothly through this
5D space, which has been demonstrated in previous cases, of-
ten over limited scopes or with limited data [29, 34, 45, 50-
53, 58, 67,71, 125, 126]. Fig. 6 plots the BP fundamental zones
for several [1 1 1] disorientation axis CSLs with increasing dis-

orientation angle. Note the similarity in GB energy trends and
the general increase in GB energy with increasing disorienta-
tion angle. Note also the fact that the [11 1] twist GBs con-
sistently have much lower energy values. In fact, these [11 1]
twist GBs are the lowest points in Fig. 3.

Just as was done by Erickson and Homer [58], these BP fun-
damental zones can be stacked as a function of disorientation
angle to make a quasi-3D volumetric plot of energy. The stack-
ing occurs such that the twist and symmetric tilt GBs, which are
at the vertices of the plots in Fig. 6, are consistently also at the
vertices of the 3D volume. This is illustrated in Fig. 7 where
all the GB datapoints are marked with an ‘o’ and isosurfaces of
constant energy are included at various intervals to illustrate the
gradient of energy between the sampled points. These isosur-
faces illustrate how the energy increase as a function of disori-
entation angle is slower for the [1 1 1] twist GBs than the rest
of the boundary planes. It can also be seen that just like the
Read-Shockley equation predicts, at the highest disorientation
angles, the GB energy decreases in magnitude.

While this work illustrates this variation along the [1 1 1] dis-
orientation axis, Erickson and Homer illustrated the variation
along the 100 disorientation axis in Ni [58]. These cases sug-
gest that GB energy trends have similar trends for similar dis-
orientation axes. This is supported by examinations of other
disorientation axes where there were at least 3 different CSLs
with the same disorientation axis. Supplemental Figs. S3-S6
show the isosurfaces of energy for these plots.

These evidences of smooth variation of GB energy in sec-
tions of the 5D space suggest that with the proper tools, one
could examine trends of energy throughout the 5D space.
Nearly all the 5D experimental datasets have examined GB en-
ergy throughout the 5D space and found repeated evidence that
variation in BP orientation is associated with greater differences
in GB energy than variation in disorientation [34]. This is sup-
ported by the present data as can be seen by the vertical lines
of data points in Fig. 3 and the variation of energy in Figs. 6
and 7. Additionally, Bulatov et al. in their GB energy function,
note that the cusps and grooves follow the natural symmetries
of the underlying lattice [45]. This can be seen in part by the
fact that the low and high energy values in Figs. 6 and 7 occur at
the natural symmetry points or vertices of the BP fundamental
zone. Some of these features can be seen in [29, 58] and in the
supplemental Figs. S3-S6.

Recent developments in this area show great potential to un-
derstand this space further, with new distance metrics, inter-
polation schemes, expansions, visualizations, and other meth-
ods, to examine property GB character and property variations
throughout the 5D space. For example, Francis et al. developed
the octonion to compare and interpolate between GBs [127].
This was followed by a number of tools to examine the GB
manifold [128]. Baird et al. recently demonstrated an efficient
interpolation technique in the 5D space using a Voronoi funda-
mental zone framework [85] as well as methods for quantita-
tive cartography of the GB energy landscape [126]. Hu et al.
used a genetic algorithm and deep neural network to construct
SDOF property diagrams [129]. Mason and Patala recently in-
troduced a new construction using orthornormal basis functions
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Figure 6: Plots of GB energy in the BP fundamental zones for 9 different [1 1 1] disorientation axis CSLs. Note the similar trend of increasing energy from the

[111] twist GB toward the [1 1 1] tilt GBs along the arc.
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Figure 7: Disorientation angle-BP volumetric plot with isosurfaces of different
GB energy values plotted to show the variation within the space of [11 1] dis-
orientation axis GBs. This plot is essentially a vertical stacking of the images
in Fig. 6.

that account for crystallographic point group symmetries, grain
exchange symmetry, and the null boundary singularity [130].
This sampling of recent works demonstrates that the commu-
nity is poised to gain insight into the 5D space that was not pos-
sible before. It is hoped that the comprehensive 5D sampling
provided by the present work will be a useful tool in gaining
this new insight.

3.3. Metastability

As mentioned earlier, while producing this dataset, we stored
the GB energy and structure for all structures that were mini-
mized, not just the minimum energy case. In all, this amounted
to 43 009 236 structures to obtain the minimum energy struc-
tures for the 7304 GBs. While these non-minimum energy

structures are not included with the published dataset at this
time, we present here a few insights into the energies of these
additional structures. Fig. 8a provides a plot of all 43 009 236
energies as a function of disorientation angle, along with a his-
togram of the energies. It can be seen that the distribution of en-
ergies in the histogram is not significantly altered from Fig. 3.
The mean and standard deviation of the distribution are 546+55
mJ/m?. This is the same standard deviation but the mean is
about 50 mJ/m? higher.

Interestingly, the [111] disorientation axis twist GBs that
have the lowest energy are also the most likely to have the high-
est possible energy from one of their structures; this can be seen
from the fact that the vertical array of data points for these low
energy GBs also extend well above the majority of boundaries
in the energy distribution. We choose to analyze the twist and
two symmetric tilt GBs from the [1 1 1] disorientation axis GBs,
that are shown in Figs. 6 and 7. In fact these correspond to the
GBs whose normals are labeled at two of the three vertices as
well as the mid-point of the arc. Swarm plot distributions for
these [1 1 1] symmetric tilt and twist GBs are shown in Fig. 8b.
Here it is obvious that the twist GBs have both the lowest and
highest GB energies. In contrast, the two symmetric tilt GB en-
ergies cover a much smaller range. For the whole dataset, the
average and standard deviation of the range of energies covered
by the structures for each of the 7304 GBs is 152 + 67 mJ/m?.

It is worth noting that work by Foley and Tucker examining
damage tolerance of GBs follows a similar trend [131]. In their
work, the lowest energy GBs would absorb significantly more
defects and increase the free volume in the GB before achieving
an equilibrium state at a much higher GB energy. In contrast,
the GBs that started with a higher energy absorbed a smaller
number of defects and increased the free volume in the GB by a
smaller amount before achieving an equilibrium state at a mod-
est increase to the GB energy. In short, the high energy GBs
acted as more efficient sinks for defects, whereas the low en-
ergy GBs were not efficient sinks and accommodating defects
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Figure 8: (a) Scatter plot of GB energy as a function of disorientation angle for all 43 009 236 minimized structures, accompanied by histograms of the GB energy.
(b) Swarm plots of the GB energy for the [1 1 1] twist, and the two [1 1 1] symmetric tilt GBs from top to bottom, respectively. The swarm plots are overlaid with a
box marking the first and third quartiles of the distribution, the red line marks the median, and the black square marks the mean.

resulted in large increases to the GB energy. If these [11 1]
disorientation axis twist GBs were to be advantageous because
they have lower energy, in an environment where defect accu-
mulation might be required (e.g., irradiation), the GB would
quickly turn into a high energy GB, with possible energies in
excess of that of the defect free high energy GBs, and maybe
even in excess of their accumulated defect state.

It must also be mentioned at this point that we are un-
sure which of all these structures actually represent unique
metastable states. For example, in Fig. 8b it can be seen that
many of the swarm plots have flat distributions at the bottom.
This is representative of the fact that many of the starting con-
figurations, although unique as an input file, found the same
minimum energy configuration.

Previous methods to find metastable states [25] used a finer
sampling of 2D grain translations but did not consider other
construction variables, such as boundary placement, which al-
lowed them to determine which states were unique. In order
to provide comprehensive coverage of the 5D space, we were
not able to sample in such a manner. Methods such as USPEX
[132, 133] are able to determine unique metastable states as the
GB structure evolves [14]. Zhu et al. used machine learning to
determine the common structural features of GBs [14] and such
a method may prove fruitful in the future to determine which of
all these structures represent truly unique metastable structures.

If one can indeed determine which of all these structures rep-
resent unique metastable states, a number of potential research
directions become available. First off, one can perform statis-
tical mechanical calculations to determine expected values of
different properties, as done by Han et al. [25]. It is also pos-
sible that these metastable states represent the states through
which a GB would pass as it migrates or deforms, as done by
Alexander and Schuh [134, 135]. Such an approach would al-

low prediction of dynamic properties of a GB. Winter et al. re-
cently devised a theory for nucleation of different GB phases
[136]. Finally, with knowledge about the energy of different
metastable states, and even better if they could be connected
into a potential energy landscape, one could potentially predict
thermodynamic properties, such as chemical potential, which is
defined by the change in energy with respect to changes in the
number of atoms. Thus, the metastable GB structures presented
here have significant potential in advancing our understanding
of GBs.

3.4. Machine learning

Here we turn our attention to the atomic structure of the
GBs, which represent the microscopic degrees of freedom of a
GB. As described in the methods (2.3), we characterize all the
atomic structures of the 7304 GBs using both ASR and LER.
Also mentioned in the methods is that, in this work, we make
no effort to innovate in characterization or machine learning ap-
proaches. Rather, the focus here is to illustrate the richness of
this dataset as it pertains to potential uses in machine learning.

As noted in the methods, following ASR characterization, a
kernel matrix is defined that represents the similarity between
all the GBs. This kernel matrix is illustrated in supplemental
Fig. S7 where it can be seen that the the range of values in
the kernel is quite small. Clearly some GBs are more like and
unlike other GBs, but the interesting thing to note is that the
feature matrix does not appear to provide significant discrimi-
nation.

With the feature matrix defined by the kernel matrix, we run
support vector regression with various splits of the data into
training and validation sets. These splits are defined in Table
3. In the first split, a 5-fold cross-validation is carried out with
a random split of the GBs. Since a random split could allow



Table 3: Comparison of machine learning accuracy for ASR and LER as measured by RMSE and R? for a variety of training and validation splits of the dataset.
For the answers with 5-Fold cross-validation (CV), the RSME and R? are given as the mean = the standard deviation. The low and high disorientation angle split is
defined at a disorientation angle of 15°, with 250 and 7054 GBs in the groups, respectively.

Characterization and Dataset Split RMSE [mJ/m?] R?
ASR Train Validation Train Validation
5-Fold CV Random Split 12.85+0.09 12.88+0.33 .945+0.001 .945+0.004
5-fold CV Disjoint Disorientation Angle Split 10.45+1.10  13.17+1.15 .94+.03 94+.01
Disorientation Angle Train Low-Validation High 24.15 24.09 .87 a7
Disorientation Angle Train High-Validation Low 11.28 13.55 .94 94
Shuffled GB energies Train 2/3-Validation 1/3 56.58 54.64 -.037 -.036
LER Train Validation Train Validation
5-Fold CV Random Split 23.90+0.11 14.05+0.42  .95+0.001 .93+0.003
5-fold CV Disjoint Disorientation Angle Split 5.32+.27 16.81+.32 .96+.006 .91+.007
Disorientation Angle Train Low-Validation High 15.71 33.91 .94 54
Disorientation Angle Train High-Validation Low 14.92 18.70 91 92
Shuffled GB energies Train 2/3-Validation 1/3 54.60 55.64 .032 -.073
(a) Random Split (b) Dis. Ang. Train Low-Valid. High (c) Shuffled GB energies
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Figure 9: Parity plots comparing predicted vs. computed GB energy for both the training and validation sets trained on ASR. The various splits match some of those
described in Table 3, and are identified as (a) one of the 5-Fold cross-validation random splits, (b) the disorientation angle train low-validation high split, and (c) the
shuffled GB energies train 2/3-validation 1/3 split.

training of the model at nearby points, we perform a 5-fold split ~ with the split at 15°. We perform two tests, training on the low
that is disjoint over the disorientation angles, ensuring that each angle GBs and validation on the high angle GBs and vice versa.
split has approximately the same number of boundaries. We Finally, for a control, we perform a random shuffling of the GB
also split on disorientation angle into low and high angle GBs, energy values and train and validate the model.
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The results of all these tests are shown in Table 3 as mea-
sured by the RMSE and R? values. This is accompanied by
Fig. 9 which has 2D visualizations comparing the computed
and training predictions of GB energy and the computed and
validation predictions of GB energy for 3 of the splits listed in
Table 3. In Fig. 9, a perfect prediction either in the training or
validation would fall along the parity line. The first column has
one of the 5 folds in the random split for the cross validation,
where the predictions are good as evidenced by both the RMSE
and R? values. The disjoint disorientation angle split also has
low RMSE and high R? values.

The train low-validate high disorientation angle split is illus-
trated in the second column where only 250 low angle GBs are
used to train the model and predictions are made on the 7054
validation GBs. The validation RMSE value is about double the
previous examples and the R? value is lower, but still indicative
that the majority of the variance in the predicted energy is ac-
counted for in the model.

Finally, the last column in Fig. 9 has a random shuffling of the
GB energy values such that there should be no correlation to be
found in the machine learning. In the training and validation,
the R? value near zero is indicative that the machine learning
finds no correlation, as expected. This is clearly evident in the
figure, and the predictions are just over the mean value of the
GB energy shown in Fig. 3 of 497 mJ/m? and the RMSE value
is about equal to the standard deviation in Fig. 3 of 55 mJ/m?
for both the training and validation. Thus, the random shuffle is
only able to predict the mean, but the large concentration of the
GB energy about the mean value means that the RMSE values
are low. This also means that we must take care in interpreting
the RMSE values.

The same machine learning process is repeated with the LER
kernel matrix and, similar to previous works [15], the LER
learning is not as good as the ASR learning, as evidenced by
the RMSE and R? values in Table 3. While the initial goal of
LER was to get away from the averaging and information loss
that occurs in ASR, it is notable that the predictions from ASR
are consistently better. The reason for this may be that while
LER attempts to get away from a single “average” descrip-
tion in favor of representing GB structure from a distribution
of unique local atomic environments, it discards all information
about those unique atomic environments calculated with SOAP.
This is then reduced further in the formation of the kernel, thus
losing additional information.

To reiterate, the goal of showing this learning is to demon-
strate that this dataset will be useful for machine learning ap-
proaches to find structure property relationships of GBs that
can focus on the microscopic (atomic) degrees of freedom. So,
while these two approaches provide noteworthy learning and
validation, the challenge remains to find feature representations
that are consistent in size and also encode relevant information
about the GB structure for learning on a variety of properties
and phenomena. We are optimistic that this dataset will provide
sufficient data for individuals to devise and test clever char-
acterization and machine learning approaches to advance GB
structure-property relationships that span the full 5D crystallo-
graphic (macroscopic) character while taking into account the
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atomic (microscopic) degrees of freedom that define the struc-
ture and properties of GBs.

4. Conclusions

This work examines a computed dataset of aluminum GBs
that provide comprehensive coverage of the 5D crystallographic
character space. The dataset is comprised of 7304 GBs that
cover arange of BPs in 150 different CSLs that span disorienta-
tion space. For each GB, a number of possible structural config-
urations is considered and minimized. This results in more than
43 million possible structures that could be metastable states
corresponding to the 7304 GBs. The following observations
are made concerning this dataset, with a particular focus on the
minimum energy GB structures and properties.

e The distribution of disorientation angles in the dataset
match a Mackenzie distribution, indicating equivalence to
GBs that would be present in a sample with random cubic
crystal orientations.

e The distribution of GB energies in the dataset is unimodal
with a mean and standard deviation of 497 + 55 mJ/m?2.

e The GB energies as a function of disorientation angle fol-
low the general trend of the Read-Shockley relationship
with a peak between 30-40°, with a subsequent decrease
in energy for the highest disorientation angles.

e The{111}/{111}interconnected GBs have the lowest GB
energies for all disorientation angles, with the exception of
the 211 {11 3}/{1 1 3} symmetric tilt GB. This is consistent
with experimental observations where these {1 1 1}/{1 11}
interconnected GBs are expected to have low energy.

e The GB energy and excess volume per unit area exhibit a
linear correlation.

e The GB width, as measured by the extent of disorder nor-
mal to the GB, has a normal distribution with a mean and
standard deviation of 8.8 + 1.5 A.

e The GB energy, as examined in subspaces of the 5D space,
show smooth variation and similar behaviors for similar
disorientation axes.

e Examination of all the GB energy values obtained during
the sampling of the 43 009236 structures is also Read-
Shockley-like, and the distribution of values is unimodal
with a mean and standard deviation of 546 + 55 mJ/m?.

e Examination of all the GB energy values obtained dur-
ing the sampling of the [111] disorientation axis twist
GBs, which are the same {111}/{111} interconnected
GBs, have the largest spread in GB energies for the non-
minimum energy structures, ranging from the lowest pos-
sible energies at a given disorientation angle to the highest
possible GB energies. In contrast the [1 1 1] disorientation
axis symmetric tilt GBs, which have higher GB energy,



have a much smaller range. This is consistent with obser-
vations of damage accumulation where low energy GBs
are unable to accommodate defects without a significant
increase in GB energy.

e Machine learning of GB atomic structures to predict GB
energy using previously published methods, referred to
as average SOAP representation (ASR) and local environ-
ment representation (LER), perform well on training and
validation sets as measured by RMSE and R? values. This
is true even when training on small datasets, such as train-
ing on 250 low angle GBs and predicting on all 7054 high
angle GBs.

In some ways, this dataset was unsurprising and reinforced
many known facts about GBs. For example, the fact that the
{111}/{111} interconnected GBs have the lowest energies is
unsurprising. Also, only a few new GBs were found with com-
parably low energies. However, the dataset provides insight
about the variation of properties and structure across the 5D
space of crystallographic character, which is information that is
critical to microstructure sensitive design and GB engineering.

The authors are optimistic that this dataset will be useful
for learning GB structure-property relationships on both the
5D crystallographic (macroscopic) character as well as the
atomic (microscopic) structure of GBs. As an example, a large
database of handwritten numbers, known as MNIST, has long
provided fertile ground for training of image processing meth-
ods and other machine learning models and serves as a basis for
benchmarking different algorithms [137-139]. With the explo-
sion of methods to examine GBs at both the macroscopic and
microscopic scales, this dataset may prove useful in a similar
way.

Dataset

The dataset for this work is published on Mendeley Data
[87], with an embargo date of 12/31/2022. Individuals inter-
ested in obtaining the dataset prior to this date may contact the
authors. The dataset includes a CSV file with details about the
crystallographic character, calculated properties, and other in-
formation about the 7304 GBs in the dataset. The CSV file is
accompanied by a zipped directory containing the atomic struc-
tures of all the minimum energy configurations for the 7304
GBs in this work.
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