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Abstract

Background

Since 1999, West Nile virus (WNV) has moved rapidly across the United States, resulting in

tens of thousands of human cases. Both the number of human cases and the minimum

infection rate (MIR) in vector mosquitoes vary across time and space and are driven by

numerous abiotic and biotic forces, ranging from differences in microclimates to socio-

demographic factors. Because the interactions among these multiple factors affect the

locally variable risk of WNV illness, it has been especially difficult to model human disease

risk across varying spatial and temporal scales. Cook and DuPage Counties, comprising the

city of Chicago and surrounding suburbs, experience some of the highest numbers of

human neuroinvasive cases of WNV in the United States. Despite active mosquito control

efforts, there is consistent annual WNV presence, resulting in more than 285 confirmed

WNV human cases and 20 deaths from the years 2014–2018 in Cook County alone.

Methods

A previous Chicago-area WNV model identified the fifty-five most high and low risk locations

in the Northwest Mosquito Abatement District (NWMAD), an enclave ¼ the size of the com-

bined Cook and DuPage county area. In these locations, human WNV risk was stratified by

model performance, as indicated by differences in studentized residuals. Within these areas,

an additional two-years of field collections and data processing was added to a 12-year WNV

dataset that includes human cases, MIR, vector abundance, and land-use, historical climate,

and socio-economic and demographic variables, and was assessed by an ultra-fine-scale (1

km spatial x 1 week temporal resolution) multivariate logistic regression model.
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Results

Multivariate statistical methods applied to the ultra-fine-scale model identified fewer explan-

atory variables while improving upon the fit of the previous model. Beyond MIR and climatic

factors, efforts to acquire additional covariates only slightly improved model predictive

performance.

Conclusions

These results suggest human WNV illness in the Chicago area may be associated with

fewer, but increasingly critical, key variables at finer scales. Given limited resources, these

findings suggest large variations in model performance occur, depending on covariate avail-

ability, and provide guidance in variable selection for optimal WNV human illness modeling.

Introduction

West Nile virus (WNV; Family Flaviviridae), a mosquito-borne disease originating from the
West Nile region of Uganda, first arrived to the United States (U.S., New York, NY) in 1999.
Once arriving in New York, the virus took only three years to traverse the contiguous U.S.,
reaching California in 2002 [1]. The virus has now become one of the most widespread arbovi-
ruses in the world, and is present in every continent except Antarctica [2]. In the Midwestern
U.S., mosquitoes of the Culex (Cx.) genus are the main vectors for transmitting WNV [3].
Culex mosquitoes are capable of feeding on several hosts to satisfy one blood meal, increasing
the opportunity for multiple infections across species [4]. Although primarily ornithophilic,
prior studies indicate that Cx. species may shift feeding preferences to humans later in the
summer months [5, 6].

From 1999–2018, there have been a total of 50,830 human cases resulting in 2,330 deaths
across the US [7]. At local scales, drivers of human disease, including WNV, vary in actual
effect and magnitude from values reported in studies that more commonly assess disease
dynamics at state, regional, or national scales [8]. Previous studies have identified similar abi-
otic and biotic factors associated with human WNV illness, including prior weather conditions
(weekly temperature and precipitation lags), mosquito infection and abundance, socio-demo-
graphic characteristics of the local population, and level of public awareness and education,
but these were all at state or regional scales [9–17].

Karki et al. (2020) [18] and Ruiz et al. (2010) [19] are two of the few studies to evaluate
weekly spatiotemporal factors and their associations with human WNV illness at a smaller
scale (1-km hexagonal spatial units), in a highly urban 2-county area (Cook & DuPage coun-
ties, encompassing the greater Chicago, IL area). This region consistently experiences one of
the highest annual WNV incidences in the country [20]. While an excellent overall model fit
was achieved by using a large number of explanatory variables (n = 40), the relative importance
of covariates and the resulting strength of disease prediction across the study area varied
widely. Understanding how and why these relationships change at specific spatiotemporal
locales has been a major conceptual challenge when modeling human WNV illness, and is the
central focus for this study.

The Northwest Mosquito Abatement District (NWMAD), occupying the northwest corner
of Cook County, is one of Chicago’s four abatement districts responsible for mosquito control,
and has an excellent long-term mosquito abundance and testing data throughout its
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jurisdiction. Human and environmental factors are heterogenous throughout the NWMAD,
presenting a strong gradient of human population density, household size and age, socio-eco-
nomic values, and land-use and land-cover, providing a highly representative enclave of the
greater Chicago region.

Specifically, the main objectives of this study were to: (i) evaluate and contrast key variables
in this study to the larger Cook and DuPage model, (ii) assess the similarities and differences
among locations that were predicted accurately by the larger model and those that were pre-
dicted poorly, and (iii) quantify the impact of newly acquired data on prediction of human
WNV illness. The authors hypothesize that evaluating human WNV risk at an ultra-fine-scale
(UFS) will improve overall model performance (as compared to broader scale models). Addi-
tionally, the authors hypothesize that by including several additional covariates that are specific
to the UFS study area, the eco-epidemiologic relationships of human WNV transmission will
be improved.

Methods

Ethics statement

All data collected from the Illinois Department of Health (IDPH) were through a user agree-
ment approved by the University of Illinois Institutional Review Board and the Illinois
Department of Public Health Institutional Review Board. The human activity observation
protocol was approved by the University of Illinois Institutional Review Board. Field collec-
tions and any use of generated data were approved by the University of Illinois Biosafety
Committee.

Study area

This study was conducted within the NWMAD, a 605-km2 area that comprises the northwest
suburbs of Chicago (Cook County, IL, Fig 1). The NWMAD study area is an enclave of the
Cook & DuPage counties model, the previous research site conducted by Karki et al. (2020)
[18]. Within the NWMAD study area, fifty-five 1-km hexagonal units were specially selected.
These fifty-five 1-km units denote the “ultra-fine-scale” (UFS) study area and contained a total
of forty human WNV cases from 2005–2016 (S1 Table). By focusing on the spatiotemporal
dynamics of WNV transmission in humans in this UFS study area, research efforts have
focused on additional data collection, more than doubling the total amount of covariates
related to WNV in the Chicago region than the previous Karki et al. (2020) [18] study.
Through these additional collection efforts, this study aims to better control, assess, and ulti-
mately, understand the relationships among key predictors of human WNV disease at very
fine scales. All model data were summarized and processed within 1-km diameter hexagons,
as a neutral configuration in both size and shape, free of any political boundaries. Using statis-
tical selection processes (described below), fifty-five of the 1,019 hexagons within the
NWMAD were selected as the observational units for this study.

Model covariates

The Cook and DuPage model evaluated forty covariates derived from a variety of abiotic and
biotic factors associated with human WNV transmission, including climate and weather rec-
ords, mosquito infection, environmental land use, and socio-demographic census data. For
this study, additional data processing and field collections resulted in forty-two additional
independent variables, each determined to be ecologically- or epidemiologically-related to
human WNV illness in our study areas of focus (Table 1). Each variable was independently
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calculated by hexagon and averaged for each Centers for Disease Control and Prevention
(CDC) epidemiological week (18–38, Sunday-Saturday) of the years 2005 through 2016 [7].
Previously collected data used in this study are explained in detail in Karki et al (2020) [18]
and can also be found in S1 Methods.

Fig 1. The UFS study area, contained within the Northwest Mosquito Abatement District (NWMAD), in relation
to Cook and DuPage Counties. Overlaid are 1-km diameter hexagons, the observational units used in this study.
Northwest Mosquito Abatement District comprises 1,019 of the total 5,345 hexagons in all of Cook and DuPage
Counties.

https://doi.org/10.1371/journal.pone.0251517.g001
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Table 1. Ecologically- and epidemiologically-related human WNV illness variables assessed.

Cook/DuPage Model Ultra-fine-scale Model

Covariate Information

Designation Description Notation

Environmental Land Cover Proportion of developed open space dospct X X

Proportion of developed low intensity dlipct X X

Proportion of developed medium intensity dmipct X X

Proportion of developed high intensity dhipct X X

Proportion of deciduous forests dfpct X X

Proportion of evergreen forests efpct X X

Proportion of mixed forests mfpct X X

Proportion of barren land blpct X X

Proportion of shrubs shrubspct X X

Proportion of grassland glandpct X X

Proportion of pasture pasturepct X X

Proportion of cultivated land clpct X X

Proportion of woody wetlands wwpct X X

Proportion of herbaceous wetlands hwpct X X

Proportion of total forest ftotpct X

Proportion of total wetlands wtotpct X

Proportion of open water owpct X X

Normalized Difference Vegetation Index NDVI X

Biological Minimum Infection Rate
(MIR)

MIR one week before mirlag1 X X

MIR two weeks before mirlag2 X X

MIR three weeks before mirlag3 X X

MIR four weeks before mirlag4 X X

Average MIR current week MIRmean X

Difference in weekly average MIR from 12-year average MIRdiff X

Vector Index current week Vector Index X

Vector Index one week before VIlag1 X

Vector Index two weeks before VIlag2 XMosquito Abundance

Vector Index three weeks before VIlag3 X

Vector Index four weeks before VIlag4 X

Light and gravid trap collection mean current week Trap_Mean X

Light and gravid trap collection mean one week before Trap_Meanlag1 X

Light and gravid trap collection mean two weeks before Trap_Meanlag2 X

Light and gravid trap collection mean three weeks before Trap_Meanlag3 X

Light and gravid trap collection mean four weeks before Trap_Meanlag4 X

Mosquito Biting Rates (HLC) Mosquitoes per visit mosquitoes per visit X

Culex spp. per visit Cx per visit X

Weather Temperature Average temperature current week tempc X

Average temperature of one week before templag1 X X

Average temperature of two weeks before templag2 X X

Average temperature of three weeks before templag3 X X

Average temperature of four weeks before templag4 X X

Precipitation Mean January temperature Jantemp X X

Average precipitation current week preci X

Average precipitation of one week before precilag1 X X

Average precipitation of two weeks before precilag2 X X

Average precipitation of three weeks before precilag3 X X

Average precipitation of four weeks before precilag4 X X

(Continued)
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Previously existing data

Human illness. Human WNV cases in Illinois were classified as either confirmed or prob-
able, as reported to the IDPH by public health or licensed medical professionals (mandatory
reporting of WNV cases is required in the state). Human cases were converted into binary
form (presence/absence of illness) and weekly case rate, controlling for human population, for
each hexagon.

Table 1. (Continued)

Cook/DuPage Model Ultra-fine-scale Model

Covariate Information

Designation Description Notation

Anthropogenic Socio-demographic Percentage of White population whitepct X X

Percentage of African American population blackpct X X

Percentage of Asian population asianpct X X

Percentage of Hispanic population hispanicpct X X

Median household income Income X X

Percentage of housing constructed before WWII hpctpreww X X

Percentage of housing constructed post WWII (1945–
1969)

hpctpostww X X

Percentage of housing constructed from 1970–1989 hpct7089 X X

Percentage of housing constructed in 1990 or later hpctpost90 X X

Land change & manipulation Catch basin density CB X

Total area of building structures bldg_footprint_area_total X

Average area of building structures bldg_footprint_area_avg X

Total perimeter of building structures Building_Footprint_peri_total X

Average perimeter of building structures Building_Footprint_peri_avg X

Total area of residential lot Residential_lot_area_total X

Average area of residential lot Residential_lot_area_avg X

Total perimeter of residential lot Residential_lot_peri_total X

Average perimeter of residential lot Residential_lot_peri_avg X

Ratio of total building area by total lot area total_bldg_area/total_lot_area X

Ratio of average building area by average lot area avg_bldg_area/avg_lot_area X

Ratio of total building perimeter by total lot area total_bldg_peri/total_lot_area X

Ratio of average building perimeter by average lot area avg_bldg_peri/avg_lot_area X

Number of buildings buildings X

Building density per mi.2 bldg_density X

Number of residents per building persons_per_bldg XHuman population

Total human population totpop X X

Mean light pollution lightpol X

Activity Observations Senior Citizen Observations per visit Senior_obs per visit X

Adults Observations per visist Adults_obs per visit X

Children Observations per visit Child_obs per visit X

Male Observations per visit Male_obs per visit X

Female Observations per visit Female_obs per visit X

Total Observations per visit Total_obs per visit X

Other Year yr X X

Hexagon Designation hexid X X

Total Covariates Evaluated 40 82

List of covariates used previously in Cook & DuPage Counties WNV model and those newly acquired variables used in newly revised 55 hexagon UFS model.

https://doi.org/10.1371/journal.pone.0251517.t001
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Abiotic predictors. Thirty meter resolution land cover from the 2011 United States Geo-
logical Survey [21] National Land Cover Database (NLCD) provided 30 m resolution classified
raster data for the NWMAD.

There were 15 unique land cover types, ranging from various forests and vegetation to built up
urban space. Weekly mean temperatures and weekly precipitation totals, acquired from the PRISM
Climate Group [22], were extracted for each hexagon in this study using ArcGIS 10.5.1 [23].

Newly added data

Abiotic predictors. Catch basin density. Due to the high preference for breeding in catch

basins (e.g. sewers) by Culex pipiens, the density of catch basins ( #catch basins
unique hexagon) was calculated and

assessed. The NWMAD provided point data for each catch basin within its jurisdiction. All point
data were then aggregated to each hexagon using the spatial location join feature in ArcGIS. A
combined total of 8,443 catch basins were recorded among all hexagons (min = 1, max = 543).

Building and residential structures: Previous WNV studies in the Chicago area found a link
between the density, size, and age of housing and human cases [9]. Through high-resolution (1
m) aerial imagery from ArcGIS and USDA (2018) [24], every permanent structure (e.g. residence,
shed, garage, deck) was traced and converted to polygons in ArcGIS. The area and perimeter of
each polygon was calculated and aggregated for each hexagon. Commercial and residential lots
were provided by Cook County Data Catalog (2019) [25], using 2016 tax appropriations. In total,
there were a combined 22,892 lots with 24,468 buildings or permanent structures.

Light pollution. A recent study by Kernbach et al. (2019) [26] has linked increases in light pol-
lution to WNV in the environment. Because the NWMAD consists of a metropolitan area with
an abundance of artificial light, pollution values were evaluated. Light pollution was provided by
the New World Atlas of Artificial Night Sky Brightness [27, 28]. Light pollution was acquired
from 2014 data of the VIIRS DNB sensor on the Suomi National Polar-orbiting Partnership satel-
lite. Pixel resolution was 0.75 km; mean value for each 1-km hexagon was calculated in ArcGIS.

Biotic predictors. Historical mosquito abundance. The NWMAD consistently collected
and diligently maintained their mosquito trapping and identification data throughout the study
period. Once deployed, traps were usually checked at least twice a week. Over the 2005–2016
study period, there were a total of 59 traps used in the NWMAD, resulting in a total of 48,406
female Culex. spp. from 22 light traps, and 1,110,024 from 37 gravid traps. Weekly mosquito
collections by trap were geocoded and interpolated across all hexagons via IDW and extracted
using the zonal statistics as table function for each hexagon in ArcGIS. The regular mainte-
nance, collection, and identification, frequency of mosquitoes caught, and distribution of traps
within the NWMAD provided strong evidence that mosquitoes collected were representative
for the remainder of the study area. Additionally, standard error values as a result of IDW meth-
ods were very low, and thus, the assumption for spatial dependency is satisfied (S1 Fig). Mos-
quito abundance was calculated as the weekly cumulative number of captured female Culex spp.
from each respective gravid trap (GT) and light trap (LT). Since Cx. pipiens and Cx. restuans are
very difficult to morphologically identify, and with prior studies establishing these as the major
Culex. species present in this area, all collected specimens from the genus Culex were pooled.

Normalized Difference Vegetation Index (NDVI): Trees and shrubs are a major source of
nectar and serve as resting places for mosquitoes, especially those that recently blood-fed [29].
To evaluate the magnitude of all vegetation, NDVI was incorporated by hexagon, recorded as
an average value at three timepoints of each year: CDC epidemiologic weeks 21 (3rd-4th week
of May), 28 (2nd-3rd week of July), and 35 (4th week of August-1st week of September). These
CDC epidemiologic weeks mark the center of each the three 8-week active WNV periods in
the Midwest, represented as T1 = low WNV activity, T2 = high WNV activity, and
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T3 = moderate WNV activity. The best available Landsat 7 or 8 bands for each respective time
period were acquired from EarthExplorer [30] and processed in ArcGIS.

Human activity observations. To provide the most complete measurement of human risk to
potential mosquito vectors in nature, this study attempted to quantify human exposure during
crepuscular time periods. Human activity observations were conducted in public spaces inside
each hexagon, during the crepuscular hours between 6–9:30pm, the preferred feeding period
for Cx. pipiens/restuans. Observations were conducted within each hexagon for a total of ten
minutes per visit. Specifically, a researcher remained stationary for 2 minutes, walked 2 min-
utes, remained stationary in the new position for 2 minutes, walked back to origination point
for 2 minutes, then remained stationary in the original position for 2 final minutes. Human
exposure was determined as any period in time a person was outside of any building, vehicle,
or enclosed dwelling during the observation period. Observations were classified by apparent
gender and age (child, adult, or senior citizen).

Human landing catch (HLC): In conjunction with human activity observations, the num-
ber of human-seeking mosquitoes that attempted to blood-feed were collected via human
landing catch methods for a fifteen-minute period at each hexagon weekly. To mitigate actual
biting events, the researcher would expose only one limb (arm or leg) at a given time. Any
mosquito that landed was collected via mechanical aspirator and transferred to a 2 ml collec-
tion vial. All collected mosquitoes were transported to the NWMAD within 2 hours and stored
at -80˚C. All mosquito specimens were identified to species within three days. Any mosquitoes
identified as Culex spp. were sent to the Fritz Lab at the University of Maryland for species
confirmation by Cx. pipiens group-specific primers via PCR.

Vector index. The vector index (VI) was calculated as an estimate of the relative number of
WNV-infected mosquitoes. For this study, VI was calculated as the average number of pooled
Culex spp. collected per trap-week multiplied by the proportion of mosquitoes infected with
WNV. The following equation was modified from the CDC (2013) [31]:

VI à
X

iàCulex spp:ÖpooledÜ
�NiP̂i;

where �Ni = average density (number of mosquitoes per trap week) and P̂ = estimated MIR
(proportion of mosquito pools testing positive for WNV). Calculated weekly VI for each trap
by week was then interpolated via IDW method for estimations across the NWMAD.

Nuisance factor and humanWNV added risk. The combination of human activity observa-
tions, serving as a proxy for potential mosquito bloodmeals, and HLC data, serving as a proxy for
potential rate of mosquito biting, formed two unique WNV disease indices: the Nuisance Factor
and Human WNV Added Risk. Since the majority of mosquitoes collected were non-Culex, a
quantitative index, nuisance factor, was created to provide a risk spectrum of encountering nui-
sance mosquitoes in a given hexagon. The following equation defines the nuisance factor:

Nuisance Factor à
Human Obsevations

Hour ⇤ Nuisance Mosquitoes
Hour

100

Nuisance factor values ranged from a low of 0 to a high of 32.3. To quantitatively estimate poten-
tial risk for exposure to disease within a given hexagon, the human WNV added risk factor was
created. This index is defined by the following equation:

Human WNV Added Risk à
Human Obsevations

Hour ⇤ Culex spp:
Hour

100

Human WNV added risk ranged from a low of 0 to a high of 1.44.
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Statistical methods

Location selection. Of the total 1019 hexagons within the NWMAD, fifty-five (5.4%) were
selected as the maximum number of sites that our research team could visit for fifteen minutes
each, weekly. The subset of fifty-five hexagons were selected based on two criteria: (1) human
population was> 0, and (2) the previous Cook and DuPage model either predicted human
WNV extremely well or extremely poorly, as determined by the 2005–2016 average residual out-
put. Furthermore, the residual output was stratified by those locations that had or had not experi-
enced a human case during the 12-year period. These processes created a performance spectrum
consisting of five categories of hexagons: negative residuals without a human case (NR0), low
residuals without a case (LR0), low residuals with a case (LR1), positive residuals without a case
(PR0), and positive residuals with a case (PR1) (S1 Table). No hexagons with negative residuals
in the Cook and DuPage model had experienced a human case. The spatial arrangements of
these hexagons provide adequate coverage of the NWMAD’s jurisdiction (Fig 2).

Model selection. Two seasons of field collections and processing of new data provided the
UFS model with an additional 42 covariates not made available in the previous Cook &
DuPage model. The generation of linear and logistic regression models began with a two-step
selection process for the initial covariate inclusion: (1) conduct a univariate analysis with each
predictor (independent variable) to the WNV disease outcome (binary = logistic, case
rate = linear, dependent variable). Candidate variables for multivariate analysis were selected
using slightly more conservative p-value than Bursac et al. (2008) [32], p-value 0.20 vs.
0.25). Models that create cut-off values of p-value 0.1 for purposeful univariate covariate
selection can erroneously prevent important variables from entering final models [33, 34]; (2)
the final model, a generalized linear model with a Poisson distribution and probit link func-
tion, was selected using forward selection method, selecting the final model based on the
Bayesian information criterion (BIC). Non-significant covariates were removed from the final
model as a product of the iterative selection process. Secondarily, a receiver operating charac-
teristic (ROC) curve was used to visualize overall model performance and Area Under the
Curve (AUC) was calculated. All predictors were evaluated for multicollinearity using the
PROC REG procedure (SAS Institute Inc. Cary, NC, USA) (S2 Table). Regression analyses
were analyzed using the Fit Model feature in JMP 14.2.0 (SAS Institute Inc. Cary, NC, USA).
Binary WNV case outcome was analyzed with as a nominal logistic personality. The continu-
ous WNV case rate outcome was analyzed as a standard least squares personality.

Model comparisons. Human WNV illness in the NWMAD was assessed under four
model environments, each expressing a defined set of specific parameters. The four model
environments were:

1. MIR & Mosquito Abundance (contains no VI covariates),

2. Vector Index (contains no MIR or mosquito abundance covariates),

3. Best-Fit (best fit with all covariates in respective assessment), and

4. Global (all covariates made available in respective assessment)

As a comparison, the original Cook & DuPage model (Karki et al. 2020 [18]) was fit using
only 40 covariates. Each of these four model environments were assessed using four different
covariate sets:

1. All covariates (82 available covariates),

2. Excluding HLC and human observations covariates (74 available covariates),
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3. Force-fitting HLC and human observations covariates (8 forced covariates, 82 available
covariates), and

4. Only the covariates made available to the Cook & DuPage 2019 model (control model, 40
available covariates).

Under each model environment and covariate set, the outcome of human WNV illness was
analyzed using:

1. Logistic regression (presence/absence human WNV illness) and

2. Linear regression (WNV case rate) methods.

In total, there were 36 models assessed (Fig 3); models are named using the convention
ExCyOz, where x is the model environment number (0–4, with number 0 assigned to the con-
trol environment), C is the covariate set number (1–4), and O is the outcome number (1–2).
For both logistic and linear regression, each of the four model environments was fit using each
of the four covariate sets. In addition, the control models using only the covariates from the
final Cook & DuPage model applied to the UFS region were fit with and without force fitting
HLC and human observation covariates.

Fig 2. Location of the 55-hexagon study area within the Northwest Abatement District. Hexagons are labeled by field season visited for mosquito
collections and human activity observations (color outline) and by total human cases from 2005–2016 (gray scale shaded interior).

https://doi.org/10.1371/journal.pone.0251517.g002
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Half of the models were assessed under logistic and linear outcomes, respectively, and
based on the # of Significant Covariates (quantity of variables included in final model with
p<0.05) and Degrees of Freedom (the number of values in the final model that are free to vary).
Overall model performance was determined by BIC. While BIC and Aikake’s Information Cri-
terion (AIC) are both maximum likelihood estimators, BIC was chosen to determine model
strength due to its stronger penalty term for covariate inclusion [35].

Covariate performance. Similarly to the model performance index, to evaluate the per-
formance for all covariates across 18 logistic and 18 linear models, each of the 82 covariates
were standardized by creating the following index:

�pCovariate à Significance Level
Data Availavility

where: Significance Level = significance level of covariate in each of the 36 final models
(p<0.001 = 4, p<0.01 = 3, p<0.05 = 2, included in the final model = 1), and Data Availability
= resources required to acquire a respective covariate (level 1 = data widely available, no pro-
cessing needed, level 2 = data available, requires minimal to moderate processing/analyses,

Fig 3. Flow diagram displaying how models were characterized, assembled, and compared in this study. Global models failed to converge and were
excluded from the final results. The control model (optimal Cook & DuPage Counties (2019) model) was only used as a comparison for covariates made
available only to that original model. Of the original 36 models initially assessed, 8 were removed, resulting in 28 final models assessed in this study.

https://doi.org/10.1371/journal.pone.0251517.g003
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level 3 = data available, requires extensive processing/analyses, level 4 = data not available,
needs to be collected, processed, and analyzed, S3 Table). The final net prediction:availability
tradeoff used to create the Data Availability variable are categorical and based on the authors’
personal experiences with data used in this study.

Results

Model comparison

The highest performing WNV human risk models were E3C4O3 (Cook & DuPage Best Fit,
df = 8, BIC = -227444) and E2C4O1 (Cook & DuPage + VI, df = 14, BIC = 576.2), for linear and
logistic regressions, respectively (S4 and S5 Tables).

The top five models that predicted human WNV cases strongest were represented by the
control (E0, n = 2), best-fit (E3, n = 2) and vector index (E2, n = 1) environments (Fig 4B and
Table 2). These models’ corresponding covariate sets were represented by variables only avail-
able to the original Cook & DuPage models (C4, n = 4), and force-fitting HLC covariates (C3,
n = 1) environments.

Covariate performance

Of the 82 available covariates, 70 (85.4%) were included at least once among a given model,
excluding the overfit global models (individual predictor summaries located in S6 Table).
Of the 41 covariates (58.6%) that were greater than the mean covariate performance, seven
were highly efficient (determined by natural break in the distribution), providing a crude
estimation as most valuable variables for human WNV estimation (Fig 4A). These covari-
ates are provided here in descending order of most importance: tempc (temperature (˚C), �p
= 1.15), preci (precipitation (mm), �p = 1.14), Yr (year, �p = 1.0), templag3 (temperature
lagged by 3 weeks, �p = 0.92), blpct (barren land (%), �p = 0.92), precilag1 (precipitation
lagged by 1 week, �p = 0.90), and VIlag4 (vector index 4 weeks prior, �p = 0.88). All eight HLC
and human observation covariates were included in at least one final model, but none per-
formed highly (�peach HLC Covariate = 0.25). Estimates and calculations for individual covari-
ates are available in S3 Table.

The eight HLC and human observation covariates provided significant differences (P
0.05) in observations and mosquito collections by hexagon type (Fig 5A and 5B). The indices,
nuisance mosquito exposure and human WNV added risk, significantly differed by hexagon
type (Fig 5C). Hexagons designated as PR1 (positive residual (underpredicted actual cases)
with a prior human WNV case) were found to have the most human observations and col-
lected mosquitoes (from both Culex and non-Culex spp.) per visit. This combination of factors
provides hexagons among the PR1 type as the most “risky” in regard to human WNV added
risk and increased nuisance mosquito exposure (Fig 5).

Discussion

In addition to model comparisons, this study evaluated the performance of the newly acquired
VI in comparison to the more commonly used MIR in combination with mosquito abundance.
Overall, when fit to the UFS study area, adding mosquito abundance and associated 4-week lags
improved this model. When evaluating WNV prediction as a linear outcome, the best-fit model
using only covariates available to the original Cook & DuPage model was the highest performing
in WNV predictability. However, when evaluating WNV prediction as a binary outcome, VI and
its associated 4-week lags replaced MIR as the best predictor of human WNV. While no model
emphasizing MIR and abundance was selected as one of the best predictive models, at least one
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of these variables (and their associated lags) were represented in 4 of the 5 best models (control
and best-fit, n = 2 for each model). On the contrary, VI, as an emphasized model environment,
was selected as the best performing logistic model. Both MIR and VI are critical components in
predicting WNV. Under ideal settings, the VI is the preferred method for estimating the risk of
mosquito infection, as opposed to MIR. However, deciding between the two biological indicators

Fig 4. Overall performance for each predictor and final model used in this study. Each of the 70 covariates used in
the study, listed in alphabetic order by data availability/work load to acquire score (1–4), were evaluated by mean
performance (A). Highest performing covariates are noted by enlarged label text and darker blue bar color. The overall
performance for each linear and logistic model (n = 14 for both) was evaluated by BIC value (B). Means for each
outcome (�xcovariate = 0.48; �x linear = -193406; �x logistic = 670.9) are designated by vertical dashed lines. Details of scoring
for each covariate and model are provided in S3 Table.

https://doi.org/10.1371/journal.pone.0251517.g004
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will be largely dependent upon the data availability for each model of interest. Our study suggests
that if resources are limited, net model value leans in favor of using MIR.

The addition of 42 new covariates required a significant allocation of resources but pro-
vided minimal benefits towards reducing variance in human WNV prediction. Fortunately,

Table 2. Overall assessment of performance for each model environment, covariate, and outcome combination.

Modela Cumulative Significance Total # of Significant Covariates DF (lower is better) BIC value BIC value (lower is better) rank Regression Type

E0C3O2 6 5 21 -227300 3 Linear

E0C4O2 6 5 15 -227354 2

E1C1O2 7 4 13 -182037 11

E1C2O2 7 4 13 -182037 12

E1C3O2 7 4 19 -181982 14

E1C4O2 7 5 17 -182001 13

E2C1O2 8 4 8 -185362 7

E2C2O2 10 4 7 -185373 6

E2C3O2 7 3 12 -185322 10

E2C4O2 10 5 9 -185347 8

E3C1O2 6 2 4 -185389 5

E3C2O2 8 3 4 -185395 4

E3C3O2 6 2 9 -185344 9

E3C4O2 10 6 8 -227444 1

E4C1O2 Global Models Excluded

E4C2O2

E4C3O2

E4C4O2

E0C3O1 4 4 21 683.40 9 Logistic

E0C4O1 3 3 15 632.30 3

E1C1O1 4 3 30 742.50 12

E1C2O1 5 4 34 768.70 14

E1C3O1 9 7 32 757.70 13

E1C4O1 7 6 21 653.30 6

E2C1O1 4 3 26 692.70 10

E2C2O1 7 4 23 661.10 7

E2C3O1 4 3 26 696.60 11

E2C4O1 5 5 14 576.20 1

E3C1O1 5 3 19 634.60 4

E3C2O1 8 5 21 640.40 5

E3C3O1 5 3 23 672.70 8

E3C4O1 8 6 12 580.80 2

E4C1O1 Global Models Excluded

E4C2O1

E4C3O1

E4C4O1

Detailed assessment of each model evaluated in this study. Overall model strength was determined by BIC value (by linear and logistic regression types), with the

following characteristics denoted as follows: Cumulative Significance Total, sum of each variable score, denoted as: p<0.001 = 4, p<0.01 = 3, p <0.05 = 2, included in

model = 1; # of Significant Covariates = summation of included covariates with p-value<0.05; DF = degrees of freedom denoted in model; BIC value = overall model

rank (best model = 1, worst model = 14)/14 for each logistic and linear model group, respectively.
aAll global models were excluded from analysis as they were all overfit and statistically biased

https://doi.org/10.1371/journal.pone.0251517.t002
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this study suggests that excellent disease prediction models can be achieved with conventional
covariates that are publicly available, requiring little to no processing and/or analyses (data
availability scores 2, Fig 4B). However, any covariate used should be adjusted and properly
designed for the highest spatial and/or temporal resolution possible, which may require addi-
tional efforts to accomplish.

Fig 5. Relationship of hexagon by type. Hexagon type (LR = low residual, PR = positive residual, NR = large, negative
residual; 0 = no human case, 1 = human case) are detailed by human observations per visit (A), mosquitoes collected
per visit (B), and a product of the two former variables, nuisance factor and WNV added risk (C). Letters above each
box and whisker plot designate significantly different groups by hexagon type, as calculated by Tukey’s HSD.

https://doi.org/10.1371/journal.pone.0251517.g005
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Extensive review of literature indicated no other studies have evaluated covariate strength
given limited resources, particularly in the context of making decisions to acquire data. Therefore,
the categorizations of covariates by resource allocation (values ranging from 1 (low) to 4 (high))
are based on the experiences of the authors during this study. These values are subjective and
may vary across institution or research group, but they may be used as a general estimation in
model selection and decision-making. For example, variables related to building and lot size (avg
bldg. area: avg lot area, bldg. footprint area avg, bldg. footprint area total, bldg. footprint peri avg.,
bldg. footprint peri total, and total bldg. area: total lot area) were all ranked a value of 4 because of
extensive data processing and review. The authors downloaded high resolution, cloud-free satel-
lite images that were used as a basemap for digital tracing of every building structure (houses,
businesses, sheds, detached garages, storage units, etc.) and lots (residential and commercial).
This resulted in>47,000 structures and lots digitally traced manually. On the other hand, weather
variables (e.g. preci, tempc) were ranked a value of 1 because very little resources were devoted to
have the data in a “ready” state. The source of these data, PRISM Climate Group, allows for
monthly summaries to be downloaded and extracted with one quick geostatistic process.

This study also aimed to address a key missing index that few studies have evaluated: the
relationship of human activity, mosquito exposure, and WNV disease risk. While the related
variables did not greatly impact overall model strength, they did provide key insight into a
potential key in WNV ecology–the areas that were previously underpredicted with recorded
human WNV (hex type: PR1) were consistently found to have the most human activity at cre-
puscular times, the most mosquitoes overall, and the most Culex mosquitoes. However, our
results appear to contradict the findings of Read et al. (1994) [36], who discovered that as
reports of biting nuisance mosquitoes increased beyond 2 per minute, outdoor human activity
rapidly declined. Our results indicate that as mosquito collections increased, human observa-
tions also increased (Fig 5). Not only is this a potentially dangerous combination that can fos-
ter environments ideal to mosquito-human spillover, previous modeling efforts failed to
capture these cases. Future directions will target these highly susceptible locations and aim to
capture any additional unaccounted variance.

Like all disease modeling efforts, there are always reporting biases that directly affect true
case prevalence. Unfortunately, many vector-borne diseases are largely underreported [37–
40], as human cases are vastly overlooked or misdiagnosed, largely due to low severity in dis-
ease manifestation in a majority of cases [41, 42]. This creates difficulties in predicting when
and where VBD incidence will arise. Specifically regarding WNV, it is estimated that about
80% of human infections are unreported, as clinical signs are minor or asymptomatic [43, 44].
The remaining 20% of humans develop West Nile fever, and among this group, about 1% will
develop severe and sometimes fatal neuroinvasive disease. In the Chicago area, models in both
the UFS and Cook & DuPage locations have very high human WNV prediction capabilities.
Despite having among the highest total number of human WNV cases in the U.S. [20], this
region has more observational units denoted as non-cases than cases. That has resulted in
models with excellent accuracy in predicting where there are no human cases, thus inflating
the true accuracy of our models. Nonetheless, while our models are able to reliably predict
where human cases are present, the magnitude of effect can be missed (e.g. “hot spots” with
greater than 1 case may not be represented).

Disease modelers need to be cognizant of saturating their efforts, both statistically and bio-
logically. Statistically, additional and meaningful covariates will usually improve model fit
parameters. However, the inclusion of too many variables can result in overfitting, resulting in
models failing to converge [45–47]. It is possible that no matter the amount of effort to
improve model fit, there is an element of variability attributed with infected humans not seek-
ing medical attention and thus, reducing true disease prevalence [48].
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Overall, when compared to the Cook & DuPage model, the best UFS models required fewer
predictors and produced a stronger overall fit using most, if not all, the same covariates made
available to both model types. Spending the resources (time, money, human-power, processing,
analyses, logistic, etc.) to acquire additional covariates may not necessarily be worth the impact
on improving human WNV modeling predictions. Rather, fine-tuning the traditional covariates
(climatic, weather, and MIR, for example), to the highest spatiotemporal resolution possible
may be the most efficient use of resources to minimize variance in VBD prediction models.

Conclusions

1. The factors and their overall effect on the prediction of human WNV cases differs across
scale. Although improved, in comparison to the control Cook & DuPage model applied to
the same study region, the “best fit” UFS model AUC = 0.89, suggesting newly unaccounted
variances are present.

2. Both vector index and MIR contribute to high performing human WNV prediction models
under UFS study areas. In direct comparison, VI is favorable to MIR. However, given lim-
ited resources in acquiring and processing additional data, MIR is more efficient for pre-
dicting human WNV illness.

3. The effort and resources required to acquire additional covariates, most of which are not
publicly available, demonstrate a slight improvement in model prediction and appear less
important in reducing variance.

4. In addition to the conventional WNV covariates, namely weather and infection rates, land-
use and land-cover and SES/demographic information are widely available with little to no
processing or analyses required, and provide the breadth to develop excellent prediction
models. However, any covariate utilized must be structured at the finest spatial and/or tem-
poral resolution possible.

5. Human exposure to mosquito biting rates provided minimal benefits to model prediction.
More importantly however, these two covariates provided potentially key insight to the sus-
ceptibility of humans in locations where WNV is prevalent. Additionally, where WNV is
less of a concern, these results provide insight into nuisance mosquito exposure that may
lead to improvements in targeted control efforts.
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S1 Fig. Measurement of standard error associated with interpolated Culex species abundance
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weekly mean MIR created a third infection parameter, the vector index.
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required = 4, Data available, but requires many resources to use = 3, Data available, but
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resources to use = 1; Covariate Value = Quotient of previous two columns.
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available to the previously published Cook & DuPage model (covariate set 4). Each model out-
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linear (WNV case rates, controlling for human population) methods. Asterisks indicate level
of statistical significance (⇤ = p 0.05, ⇤⇤ = p 0.001, ⇤⇤⇤ = p 0.0001. aLogistic regression
outcome = human WNV presence/absence per hexagon, per week; GLM outcome = WNV
human case rate (per hexagon, per week). bROC applies to only logistic regression. cAs the
final selected model in the Original Cook & DuPage paper (2019), this model environment
was assessed only for the comparison to the Cook & DuPage models for this study and not
applied to the UFS model. The original model covariates, eftpct and ehwpct, have 0 observa-
tions among the selected 55 hexagons and were removed.
(DOCX)

S5 Table. Model fit comparisons of the UFS hexagons, using best-fit models with addi-
tional human landing catch and human activity observations to incorporate added human
risk. Human risk covariates were added to the UFS model by (A) best-fit integration (covariate
set 1) and (B) force-fitting (covariate set 3). Asterisks indicate level of statistical significance
(⇤ = p 0.05, ⇤⇤ = p 0.001, ⇤⇤⇤ = p 0.0001. aLogistic regression outcome = human WNV
presence/absence per hexagon, per week; GLM outcome = WNV human case rate (per hexa-
gon, per week). bROC applies to only logistic regression. cAs the final selected model in the
Original Cook & DuPage paper (2019), this model environment was assessed only for the com-
parison to the Cook & DuPage models for this study and not applied to the UFS model. The
original model covariates, eftpct and ehwpct, have 0 observations among the selected 55 hexa-
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