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UNIQUENESS OF SOME CALABI–YAU METRICS ON Cn

Gábor Székelyhidi

Abstract. We consider the Calabi–Yau metrics on Cn constructed recently by Yang
Li, Conlon–Rochon, and the author, that have tangent cone C × A1 at infinity for
the (n − 1)-dimensional Stenzel cone A1. We show that up to scaling and isometry
this Calabi–Yau metric on Cn is unique. We also discuss possible generalizations to
other manifolds and tangent cones.

1 Introduction

On a compact Kähler manifold with vanishing first Chern class, Yau’s solution of the
Calabi conjecture [Yau78] shows that any Kähler class admits a unique Calabi–Yau,
i.e. Ricci-flat Kähler, metric. In the non-compact setting there are many construc-
tions of complete Calabi–Yau manifolds with different asymptotic behaviors, for
example, Cheng–Yau [CY80], Tian–Yau [TY90, TY91] to name but a few, and even
fixing the Kähler class these metrics are typically not unique. To recover uniqueness,
in general one needs to put conditions on the asymptotics of the metric. Our goal
in this paper is to prove such a uniqueness result for certain Calabi–Yau metrics on
Cn.

A coarse measure of the asymptotic behavior of a complete Calabi–Yau metric,
or indeed of any complete metric with non-negative Ricci curvature, is provided by
the rate of growth of the volumes of balls as a function of the radius. This must be
at least linear (see Calabi [Cal75] and Yau [Yau76]), and at most that of Euclidean
space. More refined information is given by the tangent cone at infinity which is
obtained as the pointed Gromov–Hausdorff limit of a sequence of rescalings of the
manifold by factors converging to zero. Note that in general the tangent cone may
depend on the sequence of scalings. When the volume growth is maximal, then any
tangent cone is a metric cone (see Cheeger–Colding [CC97]), and if in addition the
curvature decays quadratically at infinity then the tangent cone has smooth link and
is unique (see Colding–Minicozzi [CM14]).

On C2 a Calabi–Yau metric with maximal volume growth has tangent cone
necessarily given by Euclidean space and is therefore the Euclidean metric (see
Tian [Tia06, Theorem 5.2]). However, the Taub-NUT metric on C2 is a non-flat
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Kähler metric with the same volume form as the Euclidean metric (see LeBrun
[LeB93]) which does not have maximal volume growth. It turns out that in higher
dimensions even under the maximal volume growth condition the Euclidean metric
is not the only possibility, contrary to a conjecture of Tian [Tia06, Remark 5.3],
and non-Euclidean tangent cones can appear. For instance, for n ≥ 3, Cn admits a
complete Calabi–Yau metric ω0 with tangent cone C×A1 at infinity. Here A1 is the
(n− 1)-dimensional A1 singularity x2

1 + · · ·+x2
n = 0 equipped with the Stenzel cone

metric (see Li [Li17], Conlon–Rochon [CR17] and the author’s work [Sze17]). These
metrics all have the same volume form as the Euclidean metric, and in fact there
are infinitely many other metrics with the same volume form exhibiting different
tangent cones at infinity. Note that the examples of this kind known so far all have
tangent cones with a singular link.

It is therefore natural to try to classify Calabi–Yau metrics with a prescribed tan-
gent cone at infinity. Classification results have previously been obtained by Kron-
heimer [Kro89] in the case of surfaces, and Conlon–Hein [CH14] in higher dimensions
in the asymptotically conical setting, i.e. when the metric converges at a polyno-
mial rate to a Ricci-flat Kähler cone with smooth link. For instance in [CH14] the
asymptotically conical Calabi–Yau manifolds with tangent cone A1 are classified.
Compared to these the main novelty in our work is that we are able to deal with
tangent cones that do not have isolated singularities. Our main result is the following
uniqueness statement for the metric ω0 on Cn.

Theorem 1.1. Suppose that ω is a complete Calabi–Yau metric on Cn with tangent
cone C×A1 at infinity. Then there is a biholomorphism F : Cn → Cn and a constant
a > 0 such that ω = aF ∗ω0.

We emphasize that for a Calabi–Yau manifold with maximal volume growth the
tangent cone at infinity has a natural complex structure on the regular set (which
extends in general to the singular set by the main results in [DS15, LS]). When we say
that the tangent cone is C× A1 we are requiring that the complex structures agree
as well as the metric structures, since in principle there may be different complex
structures on a given metric cone. It is also worth noting that since a Kähler metric
on Cn is necessarily ∂∂̄-exact, the work of Donaldson–Sun [DS15] can be applied (see
Section 3.1) to see that the tangent cone is independent of the sequence of scalings,
even when it has a singular link.

The proof of Theorem 1.1 can likely be extended to classify Calabi–Yau metrics on
Cn with other tangent cones, as well as ∂∂̄-exact Calabi–Yau metrics on more general
manifolds. We will discuss this in Section 5. The proof relies on two main ingredients.
On the one hand, given a ∂∂̄-exact Calabi–Yau metric (X, ω) with tangent cone
C(Y ), the work of Donaldson–Sun [DS15] gives an algebraic description of the ring
of polynomial growth holomorphic functions on (X, ω) in terms of the coordinate
ring of C(Y ). When C(Y ) = C× A1 and X ∼= Cn, then we can use this description
to obtain an embedding X → Cn+1 as the hypersurface z + x2

1 + · · · + x2
n = 0, such

that the functions z, xi have degrees 1, n−1
n−2 respectively. This is the basic input that
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1154 G. SZÉKELYHIDI GAFA

allows us to compare the unknown metric (X, ω) with the reference metric (Cn, ω0),
which is constructed by viewing Cn ⊂ Cn+1 as the same hypersurface. We discuss
this in Section 3.

While we end up proceeding in a different way, heuristically the idea is that using
such an embedding we can hope to find a biholomorphism F : Cn → X such that
F ∗ω = ω0 +

√−1∂∂ϕ satisfies the Monge–Ampère equation

(ω0 +
√−1∂∂ϕ)n = ωn

0 , (1.1)

and in addition ϕ has subquadratic growth in the sense that r−2 supB(0,r) |ϕ| → 0
as r → ∞. Here B(0, r) ⊂ Cn is the geodesic ball with respect to the metric
ω0. In practice we are not able to do this, but if we could, we would then like to
show that F ∗ω = ω0, in analogy with the uniqueness result of Conlon–Hein [CH13,
Theorem 3.1] in the setting of asymptotically conical spaces. Instead, in the proof of
Theorem 1.1 we can only find a sequence of suitable biholomorphisms F on larger
and larger open balls. The technical heart of the proof is then Proposition 4.1,
which roughly speaking says that if on some large R-ball we have a solution of (1.1)
such that R−2ϕ is small, then for suitable λ < 1, on the λR-ball we can find an
“equivalent” potential ϕ′ such that (λR)−2ϕ′ is even smaller. Such decay estimates
are fairly standard in settings where the tangent cones that appear have smooth
cross section. However, in our setting we need to analyze L∞-small solutions of the
Monge–Ampère equation on spaces that are close in the Gromov–Hausdorff sense to
the singular tangent cone C×A1. Here we use the results of Donaldson–Sun [DS12]
and the author with Liu [LS18] in order to construct suitable barrier functions.
Iterating the decay property Proposition 4.1 and letting R → ∞ then leads to
Theorem 1.1.

Finally let us mention some related works for minimal hypersurfaces. Regarding
the uniqueness of minimal hypersurfaces with prescribed tangent cone at infinity,
Simon–Solomon [SS86] and Mazet [Maz17] showed that minimal hypersurfaces in
Cn+1 that are asymptotic to certain Simons cones are essentially unique. At the
same time, the works by Simon [Sim94, Sim93], and more recently Colombo–Edelen–
Spolaor [CES17], address the behavior of minimal submanifolds that are near to a
cone with non-isolated singularities, which is also a key point in our case. While the
details are very different, there are certainly similarities between our approach and
theirs.

2 The Reference Metric

In this section we give some preliminary results about the Calabi–Yau metrics on
Cn constructed in [Li17, CR17, Sze17]. We follow the approach from [Sze17]. We
suppose that f(x1, . . . , xn) is a polynomial such that V0 = f−1(0) ⊂ Cn has an
isolated normal singularity at the origin. We assume that V0 admits a Calabi–Yau
cone metric ωV0 =

√−1∂∂r2, whose homothetic action is diagonal with weights
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(w1, . . . , wn), and f is homogeneous of degree d > 2 under this action. The basic
example we are concerned with is f = x2

1 + · · · + x2
n, in which case wi = n−1

n−2 , and

we let r2 = |x|2 n−2
n−1 . In general it follows from Conlon–Hein [CH13] (see also [Sze17,

Section 2]) that the smoothing V ⊂ Cn given by the equation 1 + f(x) = 0 admits
a Calabi–Yau metric ωV1 =

√−1∂∂ϕ(x) with tangent cone V0 at infinity.
We then consider the hypersurface X ⊂ C×Cn given by z + f(x) = 0, which is

biholomorphic to Cn. The main result of [Sze17] is that there exists a Calabi–Yau
metric ω0 on Cn with tangent cone X0 = C × V0 at infinity which is uniformly
equivalent to the metric

ω =
√−1∂∂

(
|z|2 + γ1(Rρ−α)r2 + γ2(Rρ−α)|z|2/dϕ(z−1/d · x)

)

outside a compact set. Here γi(s) are suitable cutoff functions such that γ1 +γ2 = 1,
γ1 is supported where s > 0 while γ2 is supported where s < 2; the function R is
such that

√−1∂∂R2 defines a cone metric on Cn with the same homothetic action
as V0; the function ρ2 := |z|2 + R2; α ∈ (1/d, 1) and z−1/d · x is defined using the
homothetic action, choosing a branch of log. The form ω defines a metric when
restricted to X outside of a compact set, and the Calabi–Yau metric ω0 that is
constructed is asymptotic to ω at infinity, in the sense that |ω0 − ω|ω → 0. The
volume form of ω0 is

√−1n2

Ω ∧ Ω̄ for

Ω =
dz ∧ dx2 ∧ · · · ∧ dxn

∂x1f
. (2.1)

For more details see [Sze17].
From [Sze17, Proposition 9] we have the following. For large D, we can consider

a new embedding X → Cn+1 given by the functions z′ = D−1z, x′
i = D−wixi. The

image has equation
Dz′ + Ddf(x′) = 0,

i.e. D1−dz′ + f(x′) = 0, recalling that f has degree d under the homothetic action.
We equip this hypersurface X ′ with the scaled down metric D−2ω0. Here and below,
let us denote by Ψ(ε) a function converging to zero as ε → 0. This function may
change from line to line. From [Sze17, Proposition 9], we see that there is a constant
θ < Ψ(D−1) satisfying the following. Viewing X0 ⊂ Cn+1 as f−1(0), we define
the map G : BX′(0, 1) → X0 using the nearest point projection on the set where
|x′| > θ, and projection onto the z-axis where |x′| ≤ θ. Then G is a Ψ(D−1)-
Gromov–Hausdorff approximation to BX0(0, 1). One useful consequence of this is
that the distance from the origin in (X, ω0) is uniformly equivalent to the function
ρ. We will need the following.

Proposition 2.1. (a) The holomorphic functions z, xi on (X, ω0) have polynomial
growth with degrees d(z) = 1, d(xi) = wi.

(b) Consider the special case f = x2
1 + · · ·+x2

n. Then the vector fields 2z∂z +xi∂xi

and ajkxj∂xk
for skew-symmetric (ajk) all have at most linear growth.
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Proof. The statement in (a) is immediate from the fact that the distance function
is uniformly equivalent to ρ.

For part (b), we can work using the description of the metric ω in regions I–V
in the proof of [Sze17, Proposition 5] (note that ω is uniformly equivalent to ω0). In
each region we choose new coordinates in which we have a good model for the form
ω and so we can bound our vector fields. Let us consider regions I, III and V, the
others being very similar.

Region I. Here R > κρ for some fixed small κ > 0, and we assume ρ ∈ (D/2, 2D)
for D, which will then be uniformly equivalent to the distance from the origin. We
change coordinates to z̃ = D−1z and x̃ = D−1 · x, and we let r̃ = D−1r. In these
coordinates X has equation

D1−dz̃ + f(x̃) = 0, (2.2)

and in the proof of [Sze17, Proposition 5] the scaled down metric D−2ω on this
hypersurface is compared to the product metric

√−1∂∂(|z̃|2 + r̃2) (2.3)

on the hypersurface with equation f(x̃) = 0 (i.e. the product X0). Since |z̃| < 2 and
r̃ ∈ (κ/2, 4κ), as well as d > 1, as D → ∞ then in these coordinates the hypersurface
(2.2) converges smoothly to X0. Because of this we can compute the norms of our
vector fields with respect to the metric (2.3). For this we have

z∂z = z̃∂z̃, xj∂xk
= x̃j∂x̃k

.

The norms of these vector fields are uniformly bounded for the metric in (2.3), which
is uniformly equivalent to D−2ω (under identifying the two hypersurfaces), and so

|z∂z|ω, |xj∂xk
|ω < CD

for a constant C.
Region III. Here R ∈ (K/2, 2K), and K ∈ (ρα, 2ρα). We suppose ρ ∈ (D/2, 2D),

so |z| is comparable to D. We choose a fixed z0 such that |z−z0| < K, and we change
variables as follows:

z̃ = K−1(z − z0), x̃ = K−1 · x, r̃ = K−1r.

In these coordinates X is given by the equation

K−d(Kz̃ + z0) + f(x̃) = 0,

and we compare again to the product metric
√−1∂∂(|z̃|2 + r̃2)

on the hypersurface f(x̃) = 0. We have |z̃| < 1, R̃ ∈ (1/2, 2), and K−dz0 → 0 as
K → ∞, since Kd � D. This means that as K, D → ∞, we can measure the norms
of our vector fields on X0 with the product metric. We have

z∂z = (Kz̃ + z0)K−1∂z̃, xj∂xk
= x̃j∂x̃k

.
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It follows that
|z∂z|K−2ω < CK−1D, |xj∂xk

|K−2ω < C.

Since D is comparable to the distance from the origin, and K � D, this implies the
estimate we want.

Region V. Here R < 2κ−1ρ1/d, ρ ∈ (D/2, 2D), so |z| is comparable to D. We
choose a fixed point z0 with |z − z0| < D1/d, so we also have |z0| ∼ D. We scale our
metric down by a factor of |z0|1/d, and change coordinates by

z̃ = z
−1/d
0 (z − z0), x̃ = z

−1/d
0 · x, r̃ = |z0|−1/dr.

We have |z̃|, r̃ < C for a uniform C. The equation of X is

z
1/d−1
0 z̃ + 1 + f(x̃) = 0,

and as D → ∞, this converges to hypersurface with equation

1 + f(x̃) = 0,

and the metric |z0|−2/dω converges to
√−1∂∂

(
|z̃|2 + ϕ(x̃)

)
. (2.4)

We have
z∂z = z

−1/d
0 (z1/d

0 z̃ + z0)∂z̃, xj∂xk
= x̃j∂x̃k

.

The norms of these vector fields are uniformly bounded with respect to (2.4), and
so scaling back up, we have

|z∂z|ω < |z0|1/dC|z0|−1/d|z0| < CD, |xj∂xk
|ω < C|z0|1/d < CD1/d,

which gives the required bound. 
�
2.1 Subquadratic harmonic functions on C × A1. Let us consider the
tangent cone C(Y ) = C×A1 embedded in C×Cn as the hypersurface x2

1+· · ·+x2
n =

0, and equipped with the Stenzel cone metric
√−1∂∂(|z|2 + |x|2 n−2

n−1 ). We need to
understand the harmonic functions on C(Y ) with at most quadratic growth. In Hein–
Sun [HS16] a general result is given on Calabi–Yau cones with isolated singularities,
saying that the strictly subquadratic harmonic functions are all pluriharmonic (this
was first used crucially in Conlon–Hein [CH13]), while the space of exactly quadratic
growth harmonic functions decomposes as the sum of pluriharmonic functions and
harmonic functions that arise from isometries of the link. See also Chiu [Chi19] for
results in the case of more singular cones. We have the following.

Lemma 2.2. The space H≤2 of real harmonic functions on C(Y ) with at most
quadratic growth are given by linear combinations of the following:

(1) the real and imaginary parts of 1, z, z2, xi,
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1158 G. SZÉKELYHIDI GAFA

(2) the function (n − 1)|z|2 − |x|2 n−2
n−1 ,

(3) the functions |x|− 2
n−1 ajkxj x̄k, where (ajk) ∈ √−1o(n,R) is a purely imaginary

complex orthogonal matrix.

Proof. A general approach to this result is to extend Hein–Sun [HS16, Theorem
2.14] to singular tangent cones. This can be done along the lines of the work in
Chiu [Chi19], using cutoff functions to justify the required integration by parts near
the singular set.

Alternatively we can follow the approach from [Sze17, Corollary 12] using the
Fourier transform in the C-direction to analyze harmonic functions on the product
C × A1. The conclusion from this approach is that any harmonic function f of at
most quadratic growth can be written as

f = f0 + zf1 + z̄f1̄ + z2f2 + z̄2f2̄ + |z|2f11̄

for functions f0, f1, f1̄, f2, f2̄, f11̄ on the cone A1. We have

Δf = Δ′f0 + zΔ′f1 + z̄Δ′f1̄ + z2Δ′f2 + z̄2Δ′f2̄ + |z|2Δ′f11̄ + f11̄,

where Δ′ is the Laplacian on A1. It follows from Δf = 0 that

Δ′f1 = Δ′f1̄ = Δ′f2 = Δ′f2̄ = Δ′f11̄ = 0,

f11̄ + Δ′f0 = 0.

In addition since f has at most quadratic growth, f1, f1̄, f2, f2̄ are all subquadratic
harmonic functions, so by [HS16, Theorem 2.14] they are pluriharmonic. Since the
non-constant holomorphic functions on A1 have faster than linear growth, these
functions must all be constant. The function f11̄ is harmonic, and |z|2f11̄ has at
most quadratic growth. It follows that f11̄ = c is constant. Then

c + Δ′f0 = 0,

so f ′
0 = (n − 1)f0 − c|x|2 n−2

n−1 is harmonic, and has at most quadratic growth. Using
[HS16, Theorem 2.14] again we have that f ′

0 is a linear combination of real and
imaginary parts of 1, xi, and functions u such that V = ∇u is a real holomorphic
vector field on A1 commuting with r∂r such that JV (r) = 0. We then have V =
Re(ajkxj∂xk

) for ajk a purely imaginary skew-symmetric matrix. Using the identity√−1∂∂u = L∇u

√−1∂∂r2 =
√−1∂∂V (r2), up to adding a pluriharmonic function

to u, we have

u = V (r2) = V (|x|2 n−2
n−1 ) =

n − 2
n − 1

|x|− 2
n−1 ajkxj x̄k.

The result follows from this. 
�
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The functions in (1) are all the pluriharmonic functions of at most quadratic
growth, while (2) and (3) correspond to automorphisms of C(Y ) commuting with
the homothetic scaling, which has weights (1, n−1

n−2 , . . . , n−1
n−2) on (z, x1, . . . , xn). As

in the proof the functions |x|− 2
n−1 ajkxj x̄k correspond to the vector fields Va =

n−1
n−2Re(ajkxj∂xk

), in the sense that

Va(|z|2 + |x|2 n−2
n−1 ) = |x|− 2

n−1 ajkxj x̄k.

These vector fields preserve the hypersurfaces cz + x2
1 + · · · + x2

n = 0 for all c as well
as the volume form Ω.

Similarly, the function (n − 1)|z|2 − |x|2 n−2
n−1 corresponds to the real holomorphic

vector field W = Re((n − 1)z∂z − n−1
n−2xi∂xi

), i.e.

W (|z|2 + |x|2 n−2
n−1 ) = (n − 1)|z|2 − |x|2 n−2

n−1 .

This vector field W preserves C(Y ) ⊂ Cn+1, however it does not preserve the hy-
persurfaces cz + x2

1 + · · · + x2
n = 0. Instead we let

V = Re
(

z∂z +
1
2
xi∂xi

)

which does preserve all of these hypersurfaces. The vector field V satisfies

LV Ω =
n

2
Ω,

and

V (|z|2 + |x|2 n−2
n−1 ) − 1

2
(|z|2 + |x|2 n−2

n−1 ) =
1
2
|z|2 − 1

2(n − 1)
|x|2 n−2

n−1 ,

which is a scalar multiple of the function in (2). We conclude the following.

Lemma 2.3. Suppose that h is a harmonic function on C(Y ) with at most quadratic
growth, and write h = hph + haut, where hph is in the span of the type (1) functions
in Lemma 2.2 and is pluriharmonic, while haut is in the span of the type (2) and (3)
functions.

We can find a real holomorphic vector field V preserving the hypersurfaces cz +
x2

1 + · · · + x2
n = 0, and a constant β such that LV Ω = nβΩ, and

V (|z|2 + |x|2 n−2
n−1 ) − β(|z|2 + |x|2 n−2

n−1 ) = haut.

In addition we have |β| ≤ C‖h‖ and V = a0z∂z + ajkxj∂xk
with |a0|, |ajk| ≤ C‖h‖

for a constant C, where ‖h‖ denotes the L2 norm on B(0, 1) ⊂ C(Y ).
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3 Special Embeddings

In this section (X, η) is a complete Calabi–Yau manifold such that X is biholomor-
phic to Cn, and X has tangent cone C(Y ) = C×A1 at infinity. Let us fix a basepoint
p ∈ X and denote by Bi the ball B(p, 2i) with the metric 2−2iη, so that Bi is a unit
ball in the scaled down metric. By assumption, the sequence Bi converges to the unit
ball B(0, 1) ⊂ C(Y ) in the Gromov–Hausdorff sense. We will view C(Y ) ⊂ Cn+1 as
defined by the equation x2

1 + · · · + x2
n = 0 in terms of the coordinates z, xi on Cn+1.

The cone C(Y ) is equipped with the Ricci-flat Stenzel metric given by

√−1∂∂(|z|2 + |x|2 n−2
n−1 ),

which has volume form
√−1n2

Ω ∧ Ω̄ in terms of the Ω from (2.1). The main result
of this section is the following.

Proposition 3.1. There is a sequence of holomorphic embeddings

Fi : X → Cn+1

with the following properties:

(1) the image Fi(X) is given by the equation

aiz + x2
1 + · · · + x2

n = 0

for some ai > 0,
(2) the volume form ηn satisfies

2−2niηn = F ∗
i (

√−1
n2

Ω ∧ Ω̄),

(3) ai/ai+1 → 2n/(n−2) as i → ∞,
(4) on the ball Bi the map Fi gives a Ψ(i−1)-Gromov–Hausdorff approximation to

the embedding B(0, 1) → Cn+1. More precisely, we have a Ψ(i−1)-Gromov–
Hausdorff approximation g : Bi → B(0, 1) such that |Fi − g| < Ψ(i−1) on Bi.
Recall that here B(0, 1) ⊂ Cn+1 is the unit ball of C(Y ) under our embedding,
and Ψ(i−1) denotes a function converging to zero as i → ∞.

The main input for this result is the work of Donaldson–Sun [DS15] on the
algebro-geometric study of tangent cones, and we first review the results that we
use.

3.1 Donaldson–Sun theory. In [DS12, DS15], Donaldson–Sun consider non-
collapsed Gromov–Hausdorff limits of compact polarized Kähler manifolds with
bounded Ricci curvature. We observe that for many of the arguments compactness
is not required (see also Liu [Liu17, Liu16] for related work in the non-compact set-
ting). More precisely, suppose that (Mi, Li, ωi, pi) is a sequence of complete pointed
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GAFA UNIQUENESS OF SOME CALABI–YAU METRICS ON Cn 1161

n-dimensional Kähler manifolds with line bundles Li → Mi equipped with Hermi-
tian metrics with curvature −√−1ωi. In addition suppose that we have the Ein-
stein condition Ric(ωi) = λiωi with |λi| ≤ 1, and the non-collapsing condition
Vol(B(pi, 1)) > κ > 0 for all i, for a fixed κ > 0. If in addition we were to as-
sume that the manifolds were compact, then the sequence would be in the class
K(n, κ) considered in [DS15].

Let us suppose that (Z, p) is the pointed Gromov–Hausdorff limit of the sequence
(Mi, ωi, pi). Note that, up to choosing a subsequence, such a limit exists by Gromov
compactness. Then [DS15, Theorems 1.1, 1.2, 1.3] hold, i.e. Z has the structure of a
normal complex analytic space, and tangent cones to Z have the structure of affine
varieties and are unique. To see this note that the basic construction in [DS12] that
is used in the arguments is to “graft” a holomorphic function from a tangent cone to
Z onto M using cutoff functions for sufficiently large i, and then use the Hörmander
L2-estimate to perturb the resulting approximately holomorphic section of (a power
of) Li to a holomorphic section s. The grafting is a local construction, and the
Hörmander estimate holds on complete Kähler manifolds (see e.g. [Dem, Theorem
4.5]). Finally one uses Moser iteration and Bochner–Weitzenbock type formulas to
bound the L∞-norms of s and ∇s in terms of the L2-norm of s (see [DS12, Proposi-
tion 2.1]). Since under the non-collapsing condition and Ricci curvature lower bound
we can control the Sobolev constant on geodesic balls (see e.g. Anderson [And92,
Theorem 4.1]), the same estimates hold in our setting.

We need to use the results in [DS15, Section 3.4] where the assumptions are
that the limit space (Z, p) is a scaled limit of a sequence in K(n, κ) with scaling
factors tending to infinity. We claim, however, that the same results hold true for
a complete, exact Calabi–Yau manifold (M, ω) with maximal volume growth. In
other words, assuming that ω =

√−1∂∂ψ for a global Kähler potential ψ and
Vol(B(p, r)) > κr2n for some p ∈ M , κ > 0 and all r > 0. The basic reason is that
in this case the tangent cone at infinity is still the Gromov–Hausdorff limit of a
sequence of polarized Kähler manifolds as above: for any sequence λi → 0, we can
consider the sequence (Mi, ωi, Li, pi), where Mi = M, ωi = λ2

i ω, pi = p, and Li is
the trivial bundle equipped with the metric e−λ2

i ψ. Up to choosing a subsequence,
this sequence converges in the Gromov–Hausdorff sense to a tangent cone at infinity
C(Y ) of (M, ω). Using this, the arguments in [DS15, Section 2.2] can be applied
to the limit space C(Y ) (instead of (Z, p) in the statements of the propositions
there) without any changes. In particular [DS15, Proposition 2.9] holds, showing
that holomorphic functions on a ball in C(Y ) can be approximated by holomorphic
functions on suitable balls in Mi. This is a crucial ingredient in [DS15, Proposition
3.26], which leads to the algebro-geometric description of the tangent cone C(Y ) in
terms of the ring of polynomial growth holomorphic functions on (M, ω).

Let us briefly recall the results that we need from [DS15, Section 3.4], where
for us M plays the role of Z there. If R(M) denotes the ring of polynomial growth
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holomorphic functions on M , then R(M) has a filtration

C = I0 ⊂ I1 ⊂ · · · ⊂ R(M).

Here Ik is the space of polynomial growth holomorphic functions on M with degree
at most dk, where 0 = d0 < d1 < · · · are the possible growth rates. For a holomorphic
function f on X, the growth rate d(f) is defined by

d(f) = lim
r→∞(log r)−1 sup

B(p,r)
log |f |,

and f has polynomial growth if d(f) < ∞. It follows from [DS15, Proposition 3.26]
that these growth rates are the same as the possible growth rates on the tangent
cone C(Y ) and the dimensions dim Ik are equal to the corresponding dimensions on
C(Y ). Let us write Rdk

for the functions of degree dk on C(Y ), and μk = dimRdk
.

By [DS15, Proposition 3.26] we can find decompositions Ik = Ik−1 ⊕ Jk, where
dim Jk = μk and Jk admits an adapted sequence of bases. This means that, for fixed
k, we have a sequence of bases {Gi

1, . . . , G
i
μk

} for Jk satisfying

(1) ‖Gi
a‖Bi

= 1 for all a, and for a �= b we have limi→∞
∫
Bi

Gi
aG

i
b = 0. Here ‖ · ‖Bi

denotes the L2-norm on Bi, and as above, Bi is the ball B(p, 2i) scaled down
to unit size.

(2) Gi+1
a = μiaG

i
a + pi

a for scalars μia, and pi
a ∈ C〈Gi

1, . . . G
i
a−1〉 with ‖pi

a‖Bi
→ 0

as i → ∞.
(3) μia → 2dk as i → ∞.

Suppose now that the coordinate ring R(C(Y )) is generated by
⊕

k≤k0
Rdk

. It follows
then that R(M) is generated by

⊕
k≤k0

Jk and the adapted bases of Jk for k ≤
k0 define embeddings Fi : M → CN . Furthermore, under the Gromov–Hausdorff
convergence Bi → B(0, 1) ⊂ C(Y ), the components of the maps Fi converge to an
L2-orthonormal basis of Rd0 ⊕ · · · ⊕ Rdk0

on B(0, 1) and these define an embedding
B(0, 1) → CN .

3.2 Proof of Proposition 3.1. We now specialize to the setting of Proposi-
tion 3.1. It will be helpful to write down the homogeneous holomorphic functions of
low degree on C(Y ) = C × A1. Note that they are all spanned by polynomials in
z, xi, and d(z) = 1, d(xi) = n−1

n−2 . We treat three cases separately:

• n = 3. In this case we have

R0 = 〈1〉,
R1 = 〈z〉,
R2 = 〈z2, xi〉,
R3 = 〈z3, zxi〉,
R4 = 〈z4, z2xi, xixj〉, (3.1)

where in R4 one term is redundant because of the equation x2
1 + · · · + x2

n = 0.
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• n = 4. Here we have

R0 = 〈1〉,
R1 = 〈z〉,

R3/2 = 〈xi〉,
R2 = 〈z2〉,

R5/2 = 〈zxi〉,
R3 = 〈z3, xixj〉,

where again one term in R3 is redundant.
• n > 4.

R0 = 〈1〉,
R1 = 〈z〉,

Rn−1
n−2

= 〈xi〉,
R2 = 〈z2〉,

R 2n−3
n−2

= 〈zxi〉,
R 2n−2

n−2
= 〈xixj〉,

where again one term in R 2n−2
n−2

is redundant.

For simpicity we focus on the case n = 3. The discussion in the other cases
is completely analogous. The ring R(C(Y )) is generated by R1 ⊕ R2, and so by
the results of Donaldson–Sun [DS15] discussed above, R(X) is generated by I2 =
J0⊕J1⊕J2. This space of holomorphic functions on X with at most quadratic growth
has dim I2 = 6 and admits a sequence of adapted bases {Gi

1, . . . , G
i
6}. The growth

rates of the functions are d(Gi
1) = 0, d(Gi

2) = 1, and d(Gi
j) = 2 for j = 3, 4, 5, 6, and

for each i we obtain an embedding

Fi : X → C6

with components Gi
j . On the balls Bi these maps converge in the Gromov–Hausdorff

sense to an embedding F∞ : B(0, 1) → C6. The map F∞ is given by functions on
C(Y ) with the degrees specified above that are orthonormal on B(0, 1). Up to a
unitary transformation commuting with the homothetic scaling (which has degrees
(0, 1, 2, 2, 2, 2)) we can assume that F∞ = (1, z, z2, x1, x2, x3). We can modify our
sequence of adapted bases by the same unitary transformation, so that we still have
Fi → F∞ as i → ∞.

Since I0 consists of just the constants, the first component of Fi is constant. In
addition, we have ‖(Gi

2)
2 − Gi

3‖Bi
→ 0 by the convergence of Fi to F∞, while also

(Gi
2)

2 − Gi
3 ∈ I2. It follows that Gi

3 = (Gi
2)

2 +
∑

a qiaG
i
a, where |qiq| < Ψ(i−1).

Therefore dropping the first and third components of Fi, we still obtain embeddings
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F ′
i : X → C4. Let us now fix i, and abusing notation, let us denote by z, x1, x2, x3

the pullbacks under F ′
i to X of the coordinate functions on C4. By construction we

have d(z) = 1, d(xi) = 2. The 20 functions

1, z, z2, xi, z
3, zxi, z

4, z2xj , xjxk

are all in the space I4 of at most quartic growth functions on X, but by the earlier
discussion dim I4 = 19. Therefore we have one linear dependency between them,
which determines the equation fi in C4 defining F ′

i (X). Because of the Gromov–
Hausdorff convergence of the F ′

i to the embedding of B(0, 1) satisfying x2
1+x2

2+x2
3 =

0, the equation fi(z, x1, x2, x3) = 0 has to be a perturbation of this equation. We
can apply a linear transformation in x1, x2, x3 that is Ψ(i−1)-close to the identity
to transform the quadratic expression in the xj that appears in fi to the quadric
x2

1 + x2
2 + x2

3. Next we can complete the square in the xj , applying changes of
coordinates of the form xj �→ xj + ajz

2 + bjz + cj with small aj , bj , cj , to eliminate
all terms of the form xj , zxj , z

2xj in fi. We have now reduced our equation to one
of the form

f̃i(z) + x2
1 + x2

2 + x2
3 = 0, (3.2)

where f̃i(z) is a quartic polynomial in z with coefficients of order Ψ(i−1). Since X
is biholomorphic to C3, f̃i must actually be linear, so fi(z) = diz + ei for |di|, |ei| <
Ψ(i−1) with di �= 0. We can assume that di > 0 by multiplying z by a unit complex
number.

So far we have only performed coordinate changes Ψ(i−1)-close to the identity,
and so the new maps F ′′

i : X → C4 that we obtain still converge on Bi, in the
Gromov–Hausdorff sense, to our standard embedding B(0, 1) → C4. The image
F ′′

i (X) satisfies the equation

ei + diz + x2
1 + x2

2 + x2
3 = 0.

We want to perform a further coordinate change z �→ z +d−1
i ei so that the equation

reduces to diz + x2
1 + x2

2 + x2
3 = 0. However, this may not be a small coordinate

change since we do not yet have information about the relative sizes of di, ei. For
this we need the following.

Lemma 3.2. Suppose that we have polynomial growth holomorphic functions w, y1,
y2, y3 on X such that d(w) = 1 and d(yj) = 2, and

cw + y2
1 + y2

2 + y2
3 = 0

for some c �= 0. Then there exists a point o ∈ X such that w(o) = yj(o) = 0, and
moreover this point is independent of the choice of functions w, yj as above.

Proof. In the above discussion we have already constructed functions z, xj satisfying

c′z + x2
1 + x2

2 + x2
3 = 0.
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Let us denote by o ∈ X the point where z(o) = xi(o) = 0. In terms of these functions,
because of the degree restrictions, we must have

w = az + b,

y = Ax + cz2 + dz + e.

Here x = (x1, x2, x3),y = (y1, y2, y3), c,d, e are vectors, and A is a matrix. By
scaling we can assume that c = c′ = 1 to simplify notation. We have

0 = w + yTy = az + b + (Ax + cz2 + dz + e)T (Ax + cz2 + dz + e). (3.3)

By examining the dimensions of the spaces Rdk
in (3.1) we see that, up to scalar

multiples, there is only one linear equation satisfied by the functions

1, z, z2, xj , z
3, zxj , z

4, z2xj , xjxk,

namely z +xTx = 0. Therefore if we also have w +yTy = 0, then from (3.3) we first
find that AT A is a multiple of the identity, and in particular A is invertible. It then
follows that we have c = d = e = 0, and in turn b = 0. Therefore w(o) = yj(o) = 0,
and conversely o is the unique point where w, yj all vanish. 
�

Let us return to the proof of Proposition 3.1 and the map F ′′
i : X → C4 whose

image satisfies the equation

di(z + d−1
i ei) + x2

1 + x2
2 + x2

3 = 0.

By Lemma 3.2, we have z(o) = −d−1
i ei. However, since Fi converges to the embed-

ding B(0, 1) → C4, we also have Fi(o) → 0. For this, note that under the rescaled
metric in the ball Bi (centered at p) the point o is contained in a ball of radius C2−i

around p, where C = distη(p, o). In particular we have d−1
i ei → 0, and so we can

perform a final small coordinate change to reduce to the case ei = 0.
Next we consider the volume forms. The pullback (F ′′

i )∗(Ω) defines a polynomial
growth, nowhere vanishing holomorphic volume form on X. By the Calabi–Yau
condition on η,

F ′′∗
i (

√−1Ω ∧ Ω̄) = |gi|2η3,

where gi is a nowhere vanishing polynomial growth holomorphic function on X.
This means that gi can be written as a polynomial in x1, x2, x3, and therefore it is
constant since it has no zeros. By the volume convergence under Gromov–Hausdorff
convergence [Col97], remembering that we are using the scaled down metric 2−2iη
in the convergence, we find that |gi|226i → 1 as i → ∞. Scaling z by a factor
Ψ(i−1)-close to 1, we can arrange that |gi|2 = 2−6i.

Finally we address the claim that ai/ai+1 → 8. Let us denote the components of
our maps F ′′

i by zi, xi,1, xi,2, xi,3, so that

aizi + x2
i,1 + x2

i,2 + x2
i,3 = 0
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with ai > 0. From the proof of Lemma 3.2 we know that

zi+1 = cizi,

xi+1 =
√

ai+1ci

ai
Aixi,

for a constant ci and a complex orthogonal matrix Ai. Using that d(zi) = 1, d(xi,j) =
2, and that the zi, xi,j have normalized L2-norm approximately equal to 1 on Bi we

have ci → 2−1 and
√

a−1
i ai+1ci → 2−2 as i → ∞. It follows that a−1

i ai+1 → 2−3.
The cases n = 4 and n > 4 can be treated in an almost identical way, except that

in both cases we have dim I2 = 5, so we do not have to worry about the function
z2. In addition in the equation analogous to (3.2), the degree of f̃i is at most cubic
when n = 4, and at most quadratic when n > 4. We leave the details to the reader.

4 Decay of the Kähler Potential

In this section, we let ω = c2ω0 be a scaled down copy of the reference Calabi–
Yau metric on Cn, and we denote by o ∈ (Cn, ω) the origin. For a given ε > 0 we
will assume that c < 1 is sufficiently small so that dGH(B(o, ε−1), B(0, ε−1)) < ε,
where 0 ∈ C(Y ) is the origin in the cone C(Y ) = C × A1. Since C(Y ) is the tan-
gent cone at infinity, this condition is equivalent to the Gromov–Hausdorff distance
dGH(B(o, 1), B(0, 1)) being sufficiently small. As in Section 2 we have an embedding
Fc : Cn → Cn+1 using the functions cz, c

n−1
n−2 xi, with image given by the equation

c
n

n−2 z + x2
1 + · · · + x2

n = 0.

In addition the maps Fc on B(o, 1) converge in the Gromov–Hausdorff sense to the
standard embedding B(0, 1) → Cn+1 of the unit ball in C(Y ) as c → 0.

The main technical result of the paper is the following.

Proposition 4.1. There are λ0, α such that if λ < λ0 and ε is sufficiently small
(depending on λ), then we have the following. Suppose that c above is small enough
so that dGH(B(o, ε−1), B(0, ε−1)) < ε, and we have a smooth function u on B(o, 1)
satisfying supB(o,1) |u| < ε and

(ω +
√−1∂∂u)n = ωn.

Then we can find a constant β, an automorphism g of Cn fixing the origin o, and a
smooth function u′ on B(o, 1/2) satisfying

(1) βg∗(ω +
√−1∂∂u) = ω +

√−1∂∂u′,
(2) (βg∗ω)n = ωn,
(3) supB(o,λ) |u′| ≤ λ2+α supB(o,1) |u|.
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In this work in property (3) the constant λ2 would suffice, however we expect that
the result has other applications that need the better constant λ2+α. The strategy
of the proof is to show that once ε is sufficiently small, the function u is close to a
harmonic function on C(Y ). We then modify u by subtracting a pluriharmonic func-
tion and applying an automorphism to get a function u′ with faster than quadratic
decay using Lemma 2.3. The main difficulty is to control the behavior of u near the
singular set of C(Y ). We will achieve this by using the maximum principle with a
suitable barrier function in order to show that if u concentrates near the singular
set, then u decays rapidly when passing from B(o, 1) to B(o, 1/2). Note that much
of the argument works in more general settings than what we are considering. The
one place where we will use the fairly explicit form of the reference metric ω0 on Cn

is when we need to control the action of the automorphisms on the Kähler potential
of ω near the singular set using Proposition 2.1.

To begin, we note that on any compact set away from the singular set of C(Y )
we can apply the small perturbation result of Savin [Sav07] to get regularity of |u|
once ε is sufficiently small. For θ > 0 we define the set Nθ to be the θ-neighborhood
of the singular set under the Gromov–Hausdorff approximation:

Nθ = {(z,x) | 21/2|x|n−2
n−1 < θ},

where we note that on C(Y ) the function 2|x|2 n−2
n−1 is the distance squared from the

singular set with respect to the Ricci-flat cone metric.

Lemma 4.2. Let θ > 0. There exist Ck > 0 depending on θ with the following
property. If, in the setting of Proposition 4.1, ε is sufficiently small (depending on
θ), then on B(o, 1 − θ)\Nθ we have

|u|Ck(B(o,1−θ)\Nθ) < Ck sup
B(o,1)

|u|.

Proof. Note that by the Cheeger–Colding theory [CC97] and Anderson’s epsilon
regularity result [And90], we can bound the harmonic radius of ω on B(o, 1− θ)\Nθ

once ε is sufficiently small. Then for any δ > 0, if supB(o,1) |u| is sufficiently small, we
can apply Savin’s result [Sav07] in harmonic coordinates to obtain |u|C3(B(o,1−θ/2)) <
δ. We have the equation

(ω +
√−1∂∂u)n = ωn,

which we can write as[
nωn−1 +

(
n

2

)
ωn−2 ∧ √−1∂∂u + · · · + (

√−1∂∂u)n−1

]
∧ √−1∂∂u = 0. (4.1)

If δ is sufficiently small (so that
√−1∂∂u is small), then we can view this as a

uniformly elliptic homogeneous equation for u with Cα coefficients (the expression in
square brackets determining the coefficients of the equation). The Schauder estimates
imply that on B(o, 1 − 3θ/4) we have the bound |u|C2,α ≤ C2 supB(o,1) |u|. We can
bootstrap this estimate to obtain the required higher order bounds. 
�
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We will apply this result in the following form several times.

Lemma 4.3. Suppose that we have a sequence of functions ui as in Proposition 4.1
such that εi → 0. Let vi = (supB(oi,1) |ui|)−1ui. Then there is a (possibly vanishing)
bounded harmonic function h on B(0, 1) ⊂ C(Y ) such that under the Gromov–
Hausdorff convergence, for a subsequence, we have vi → h in C∞ uniformly on
B(oi, 1 − θ)\Nθ for any θ > 0.

Proof. By Lemma 4.2, for any given θ > 0 the functions vi satisfy uniform C∞

bounds on B(oi, 1 − θ)\Nθ for sufficiently large i, and they are all bounded by 1 on
B(oi, 1). By a diagonal argument we can find a subsequence such that vi → h for
a function h on B(0, 1) ⊂ C(Y ), with the convergence taking place in C∞ on any
B(oi, 1 − θ)\Nθ.

To see that h is harmonic, note that just like the equation (4.1), vi satisfies
[
nωn−1

i +
(

n

2

)
ωn−2

i ∧ √−1∂∂ui + · · · + (
√−1∂∂ui)n−2

]
∧ √−1∂∂vi = 0.

By Lemma 4.2, on B(oi, 1 − θ)\Nθ we have ui → 0 in C∞, and so passing to the
limit in these equations we get that h is harmonic on B(0, 1 − θ)\Nθ. This holds for
any θ, and so h is harmonic on the regular part of B(0, 1). In addition h is bounded,
so it is harmonic in a weak sense across the singular set too. 
�
4.1 Construction of a barrier function. We suppose that we are in the
setting of Proposition 4.1. The following provides the barrier function used in the
maximum principle argument below.

Proposition 4.4. There is a constant D > 0 with the following property. Let θ > 0.
There is a constant Cθ > 0 such that if ε is sufficiently small (depending on θ), then
there is a smooth real-valued function v on B(o, 1) satisfying the following properties:

(1) |∂∂̄v|ω < Cθ on B(o, 1 − θ/2).
(2) v(q) > D−1θ−1/2 whenever q ∈ Nθ ∩ ∂B(o, 1 − θ).
(3) v > D−1 on B(o, 1), and v < D on B(o, 1/2).
(4) On B(o, 1 − θ/2) the function v satisfies the differential inequality

∑
i

μi + μmax < 0,

where the μi are the eigenvalues of
√−1∂∂v relative to ω, and μmax is the

largest eigenvalue.

Proof. Let (z, 0) be a point in the singular set of C(Y ) with |z| = 1, and let q ∈
B(o, 2) be within ε of (z, 0) under the Gromov–Hausdorff approximation. Using that
C(Y ) is a cone also when centered at (z, 0), once ε is sufficiently small we can apply
[LS18, Proposition 3.1] to find a good Kähler potential ϕ for ω on B(q, 3) in the
sense that we have ω =

√−1∂∂ϕ, while also

|ϕ − d(q, ·)2/2| < Ψ(ε) (4.2)
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on B(q, 3). By adding a constant of order Ψ(ε) we can assume that ϕ > 0. We
have Δϕ = n (using the complex Laplacian), and from the Cheeger–Colding esti-
mate [CC96] together with the Cheng–Yau gradient estimate [CY75] we have

∫

B(q,2)

∣∣∣|∇1,0ϕ|2 − ϕ
∣∣∣
2

< Ψ(ε),

where we emphasize that we are taking the (1, 0)-part of the derivative of ϕ. At the
same time from the Bochner formula (computing in normal coordinates),

Δ|∇1,0ϕ|2 = (ϕiϕī)jj̄ = ϕijϕij + ϕij̄ϕij̄ ≥ n,

since ϕij̄ = ωij̄ . So

Δ
(
|∇1,0ϕ|2 − ϕ

)
≥ 0,

and the mean value inequality implies that

|∇1,0ϕ|2 ≤ ϕ + Ψ(ε).

Let us now consider the function ϕ−3/4. We have
√−1∂∂ϕ−3/4 = −3

4
ϕ−7/4

√−1∂∂ϕ +
21
16

ϕ−11/4
√−1∂ϕ ∧ ∂̄ϕ.

Fix y ∈ B(o, 1). We can choose orthonormal coordinates for ω at y such that ∂ϕ =
ϕ1dz1 and

√−1∂∂ϕ is the identity matrix. By the estimate above, we have |ϕ1|2 ≤
ϕ + Ψ(ε). The eigenvalues of

√−1∂∂ϕ−3/4 therefore satisfy

−3
4
ϕ−7/4 ≤ μ1 ≤ −3

4
ϕ−7/4 +

21
16

ϕ−11/4(ϕ + Ψ(ε)),

μ2, . . . , μn = −3
4
ϕ−7/4.

The maximum eigenvalue is necessarily μ1 and so
∑

μi + μmax = 2μ1 + (n − 1)μ2 ≤ 2μ1 + 2μ2

≤ −3ϕ−7/4 +
21
8

ϕ−11/4(ϕ + Ψ(ε))

= ϕ−11/4

(
−3

8
ϕ +

21
8

Ψ(ε)
)

.

As long as ϕ > 7Ψ(ε) we obtain
∑

μi + μmax < 0. (4.3)

In particular by (4.2) this holds if y ∈ B(o, 1−θ) and ε is sufficiently small (depending
on θ).

We also have ϕ > θ2/4 on B(o, 1− θ) once ε is sufficiently small, and so from the
bounds for the eigenvalues we have |√−1∂∂ϕ−3/4| < Cθ on B(o, 1 − θ) (where Cθ is
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of order θ−7/2, although we do not need this). On B(o, 1/2) we have ϕ > 1/10 once
ε is sufficiently small, and this leads to an upper bound ϕ−3/4 < 103/4 on B(o, 1/2).
At the same time ϕ < 1 on B(o, 1) for sufficiently small ε, and so ϕ−3/4 > 1 on
B(o, 1).

Note that once ε is sufficiently small, we have ϕ < 16θ2 on B(q, 4θ), and so

ϕ−3/4 > 16−3/4θ−3/2 on B(q, 4θ).

This means ϕ−3/4 is large near q, but we want a function that is large at all points
in Nθ ∩∂B(o, 1−θ). To achieve this, we define v to be an average of functions ϕ−3/4

constructed for different points in S1 × {0} ∈ C × A1. For a given θ > 0, we pick
z1, . . . , zK on the unit circle, and qi ∈ B(o, 2) which are ε-close to (zi, 0) ∈ C(Y )
under our Gromov–Hausdorff approximation, so that the 4θ-balls B(qi, 4θ) cover
Nθ ∩ ∂B(o, 1 − θ). For sufficiently small ε we can achieve this with K < cθ−1 for
a uniform c. We consider the functions ϕ

−3/4
i constructed as above, based at the

points qi, and define

v =
1
K

K∑
i=1

ϕ
−3/4
i .

Then v satisfies the required properties:

(1) |√−1∂∂v|ω < Cθ, since we are taking an average of functions that satisfy this
estimate.

(2) If q ∈ Nθ ∩B(o, 1−θ), then by assumption, there is a qi such that q ∈ B(qi, 4θ).
It follows that

v(q) >
1
K

ϕ
−3/4
i (q) > c−1θ · 16−3/4θ−3/2 = c−116−3/4θ−1/2,

which gives the required lower bound.
(3) We have ϕ

−3/4
i > 1 on B(o, 1) for all i, so v satisfies the same estimate. Simi-

larly, ϕ
−3/4
i < 103/4 on B(o, 1/2), and so v satisfies the same.

(4) Each ϕ
−3/4
i satisfies the required differential inequality (4.3) on B(o, 1 − θ/2),

and the expression
∑

i μi +μmax is convex on the space of Hermitian matrices.
Therefore v satisfies the same differential inequality. 
�

Note that this result can easily be generalized to other cones of the form C(Y ) =
Ck ×C(Y ′), where Y ′ has an isolated singularity, but we have crucially used that all
singular points in C(Y ) can be taken to be a vertex of C(Y ). We still expect that
with some additional work a similar barrier function can be constructed for more
general cones.

We now use the maximum principle to obtain the following important decay
property.
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Proposition 4.5. There is a constant C > 0 with the following property. Let A >
10. There exists θ > 0 depending on A such that, if in the setting of Proposition 4.1
ε is sufficiently small (depending on A, θ) and

sup
B(o,1)\Nθ

|u| ≤ τ < ε,

sup
B(o,1)

|u| ≤ Aτ,

then we have

sup
B(o,1/2)

|u| ≤ Cτ.

Note that C does not depend on A, θ.

We first need the following lemma.

Lemma 4.6. Suppose that μi > −1 are constants for i = 1, . . . , n such that

n∏
i=1

(1 + μi) = 1.

Then there is a δ0 > 0 depending only on n such that if μi < δ0 for all i, then

n∑
i=1

μi + μmax ≥ 0,

while if μi > −δ0 for all i, then

n∑
i=1

μi + μmin ≤ 0.

Here μmax, μmin are the largest and smallest of the μi, respectively.

Note that the stronger inequality
∑

i μi ≥ 0 follows directly from the inequality
between arithmetic and geometric means without assuming any upper bound on the
μi, but we prefer to state the above in a way that the lower and upper bounds are
symmetric.

Proof. Suppose that μmax = δ < δ0. For all j we have

1 + μj =
1∏

i	=j(1 + μi)
≥ (1 + δ)−(n−1).

We can choose δ0 so that if 0 < δ < δ0, then

(1 + δ)−(n−1) ≥ 1 − nδ,
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so we find that μj ≥ −nδ for all j. Then if δ < 1 we have

1 =
n∏

i=1

(1 + μi) ≤ 1 +
n∑

i=1

μi + Cnδ2

for a constant Cn depending only on n, since the remaining terms are all at least
quadratic in the μi. It follows that

n∑
i=1

μi + μmax ≥ −Cnδ2 + δ.

Finally, if δ is sufficiently small, then Cnδ2 ≤ δ. The argument for the second state-
ment is completely analogous. 
�
Proof of Proposition 4.5. Let us choose θ = A−2 and assume ε is sufficiently small
to apply Proposition 4.4. Let Λ > 0 satisfy

τ = Λ−1D−1,

so that

sup
B(o,1)\Nθ

|u| ≤ Λ−1D−1,

sup
B(o,1)

|u| ≤ Aτ = Λ−1D−1θ−1/2.

In terms of v given by Proposition 4.4, set ṽ = Λ−1v, so that ṽ > u on ∂B(o, 1 − θ)
by properties (2) and (3). We assume in addition that ε is sufficiently small (and so
τ is sufficiently small) so that Λ−1Cθ < δ0 for the δ0 from Lemma 4.6. 
�
Claim. ṽ > u on B(o, 1 − θ).

Proof of Claim. If this were not the case, then setting

t0 = inf{t > 0 : ṽ + t > u on B(o, 1 − θ)},

the graph of ṽ + t0 will lie above the graph of u, and the two graphs will touch at
a point q ∈ B(o, 1 − θ). At q we must have

√−1∂∂u(q) ≤ √−1∂∂ṽ(q). In orthonor-
mal coordinates at q we have

√−1∂∂ṽ(q) ≤ Λ−1CθId by property (1) in Propo-
sition 4.4, and so the eigenvalues μi of

√−1∂∂u(q) are bounded above by Λ−1Cθ.
Since Λ−1Cθ < δ0, Lemma 4.6 implies that

∑
μi + μmax ≥ 0, but this contradicts

property (4) in Proposition 4.4, since
√−1∂∂u(q) ≤ √−1∂∂ṽ(q). This proves the

claim.
Using the claim, it follows from property (3) that

sup
B(o,1/2)

u ≤ Λ−1D = D2τ,

which gives the required upper bound for u.
The lower bound for u is proved similarly, the only difference being that we

compare u to the function −Λ−1v instead and we use the second statement in
Lemma 4.6. 
�
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4.2 Proof of Proposition 4.1. We prove Proposition 4.1 by contradiction.
Let us suppose that we have a sequence ui as in the statement of the proposition
on balls B(oi, 1) with corresponding constants εi → 0 such that the conclusion of
the proposition fails. Here oi ∈ (Cn, ωi) is the origin. We will show that along
a subsequence, for sufficiently large i we can find βi, gi, u

′
i satisfying the required

properties, giving a contradiction.
Step 1. Let us write κi = supB(oi,1) |ui| → 0. By Lemma 4.3 we have a harmonic
function h on B(0, 1) ∈ C(Y ) such that, after choosing a subsequence, κ−1

i ui → h
in C∞ uniformly on B(oi, 1 − θ)\Nθ for any θ > 0. Note that we have |h| ≤ 1, and
it is possible that h = 0. Let us write h = h≤2 + h>2 for the decomposition of h
into pieces with at most quadratic and faster than quadratic growth. In addition we
decompose h≤2 = hph + haut, where hph is pluriharmonic, and haut is in the span of
the functions of type (2) and (3) in Lemma 2.2. From Lemma 2.3 we obtain a real
holomorphic vector field V on Cn+1 preserving the hypersurfaces

az + x2
1 + · · · + x2

n = 0,

and a constant β such that LV Ω = nβΩ, and at the same time on C(Y ) ⊂ C4 we
have

V (|z|2 + |x|2 n−1
n−2 ) − β(|z|2 + |x|2 n−1

n−2 ) = haut.

We define the automorphism gi = exp(κiV ) on Cn+1 and the constants βi = κiβ.
For any θ > 0, the spaces B(oi, 1)\Nθ converge smoothly to B(0, 1)\Nθ inside

Cn+1, and for sufficiently large i we can use the nearest point projection to identify
them. On B(oi, 1) we have Kähler potentials ϕi for ωi which converge smoothly to
|z|2 + |x|2 n−1

n−2 as i → ∞, uniformly on B(oi, 1)\Nθ for any θ > 0. It follows from this
that

sup
B(oi,1)\Nθ

∣∣∣κiV ϕi − βiϕi − κihaut

∣∣∣ ≤ κiΨ(i−1 | θ),

and so we also have

sup
B(oi,1)\Nθ

∣∣∣e−βig∗
i ϕi − ϕi − κihaut

∣∣∣ ≤ κiΨ(i−1 | θ).

Here Ψ(i−1 | θ) denotes a function which for fixed θ converges to zero as i → ∞.
At the same time, using Proposition 2.1, we have a uniform bound |V |ωi

< C on
B(oi, 1), since this ball is a ball centered at the origin in our reference metric (Cn, ω0)
scaled down to unit size. Together with the uniform gradient bound for ϕi (since
Δωi

ϕi = n), this implies

sup
B(oi,1)

∣∣∣e−βig∗
i ϕi − ϕi

∣∣∣ ≤ Cκi.

To deal with hph note that hph is in the span of the real and imaginary parts of
1, z, z2, xi, and so hph also defines a pluriharmonic function hph,i on B(oi, 1) for all

Author's personal copy
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i under the embeddings into Cn+1. For any θ > 0 we have

sup
B(oi,1)\Nθ

∣∣∣hph,i − hph

∣∣∣ < Ψ(i−1 | θ),

where as above, we are using the nearest point projection on B(oi, 1)\Nθ for suffi-
ciently large i to view hph as a function on B(oi, 1). We also clearly have

sup
B(oi,1)

|hph,i| ≤ C.

We can now define

u′
i = ui − κihph,i − (e−βig∗

i ϕi − ϕi).

By the construction we have

ωi +
√−1∂∂ui = e−βig∗

i ωi +
√−1∂∂u′

i, (4.4)

and e−βig∗
i ωi has the same volume form as ωi. By the estimates above, we have

sup
B(oi,1)\Nθ

|u′
i − κih

>2| ≤ Ψ(i−1 | θ)κi,

and also
sup

B(oi,1)
|u′

i| ≤ Cκi.

Letting θ → 0, we find that

‖u′
i − κih

>2‖L2(B(oi,1)) ≤ Ψ(i−1)κi,

where near the singular set we use a Gromov–Hausdorff approximation to view h>2

as a function on B(oi, 1).
Since h>2 has faster than quadratic growth, there exists an α > 0 (depending

only on the cone C(Y )) such that

‖h>2‖B(0,λ) ≤ λ2+2α‖h>2‖B(0,1).

Here and below, for any ball B we define

‖f‖B =
(

Vol(B)−1

∫

B
|f |2

)1/2

to be the L2-norm normalized by the volume of the ball B. We therefore have

‖κih
>2‖B(0,λ) ≤ Cλ2+2ακi,

while also

‖κih
>2‖B(0,λ) ≥ ‖u′

i‖B(oi,λ) − ‖κih
>2 − u′

i‖B(oi,λ)

≥ ‖u′
i‖B(oi,λ) − Cλ‖κih

>2 − u′
i‖B(oi,1)

≥ ‖u′
i‖B(oi,λ) − CλΨ(i−1)κi
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for a constant Cλ depending on λ. Combining these, we get

‖u′
i‖B(oi,λ) ≤ (Cλ2+2α + CλΨ(i−1))κi.

Once i is sufficiently large (depending on λ), we get

‖u′
i‖B(oi,λ) ≤ 2Cλ2+2ακi.

Step 2. Let us apply the construction in Step 1 to 8λ instead of λ, and let us scale
the balls B(oi, 8λ) up to unit size. We denote the origins of the scaled up balls by
o′
i, and also let ω′

i = (8λ)−2e−βig∗
i ωi. Letting U ′

i = (8λ)−2u′
i, on B(o′

i, 1) we have

(ω′
i +

√−1∂∂U ′
i)

n = ω′n
i ,

and for fixed λ, as i → ∞, the metrics ω′
i on Cn satisfy the same assumptions as ω

in the statement of Proposition 4.1 for arbitrarily small ε. By Step 1, (replacing C
by a larger constant if necessary), we have

sup
B(o′

i,1)
|U ′

i | ≤ Cλ−2κi,

‖U ′
i‖B(o′

i,1) ≤ Cλ2ακi. (4.5)

By Lemma 4.3 we have a harmonic function H on B(0, 1) ⊂ C(Y ) such that, after
choosing a subsequence,

U ′
i

supB(o′
i,1) |U ′

i |
→ H,

the convergence being in C∞ uniformly on B(o′
i, 3/4)\Nθ for any θ > 0. There are

two cases to consider:

• Suppose that H �= 0. Then by the L∞-bound for harmonic functions on C(Y )
we have

sup
B(0,1/2)

|H| ≤ C‖H‖B(0,1).

It follows that for any θ > 0, once i is sufficiently large, we have

supB(o′
i,1/2)\Nθ

|U ′
i |

supB(o′
i,1) |U ′

i |
≤ 2 sup

B(0,1/2)
|H|

≤ 2C‖H‖B(0,1)

≤ 4C
‖U ′

i‖B(o′
i,1)

supB(o′
i,1) |U ′

i |
,

and so using (4.5) we have

sup
B(o′

i,1/2)\Nθ

|U ′
i | ≤ 4C2λ2ακi.
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• Suppose that H = 0. Then for any θ > 0 we have

sup
B(o′

i,1/2)\Nθ

|U ′
i | ≤ λ2+2α sup

B(o′
i,1)

|U ′
i | ≤ Cλ2ακi,

once i is sufficiently large.

In either case, applying Proposition 4.5 to B(o′
i, 1/2), we can choose θ > 0 depending

on λ such that for sufficiently large i we have

sup
B(o′

i,1/4)
|U ′

i | ≤ C ′λ2ακi

for a constant C ′ depending only on C(Y ). After rescaling, we get the bound
supB(oi,2λ) |u′

i| ≤ 64C ′λ2+2ακi, and from (4.4) we have

eβi(g−1
i )∗(ωi +

√−1∂∂ui) = ωi +
√−1∂∂

(
eβi(g−1

i )∗u′
i

)
.

Letting u′′
i = eβi(g−1

i )∗u′
i we have

sup
B(oi,λ)

|u′′
i | ≤ 100C ′λ2+2ακi

as long as g−1
i (B(oi, λ)) ⊂ B(oi, 2λ), and eβi < 3/2. Both of these estimates will

hold once i is sufficiently large (depending on λ). Finally we just need to ensure that
λ is sufficiently small so that 100C ′λ2+2α < λ2+α. 
�
4.3 Proof of Theorem 1.1. We now prove the main result, Theorem 1.1.
Suppose that we have a Calabi–Yau metric (X ′, η) with X ′ biholomorphic to Cn and
with tangent cone C × A1 at infinity. Let us write (X, ω0) for our reference metric
on Cn discussed in Section 2. We have the origin o ∈ X, and using Lemma 3.2 we
also have a distinguished basepoint o′ ∈ X ′. By the discussion in Section 2 we have
embeddings Fi : X → Cn+1 such that Fi(o) = 0, and the image Fi(X) has the
equation

aiz + x2
1 + · · · + x2

n = 0,

where ai = 2−in/(n−2). At the same time using Proposition 3.1 we have embeddings
F ′

i : X ′ → Cn+1 such that F ′
i (o

′) = 0, and the image F ′
i (X

′) satisfies the equation

a′
iz + x2

1 + · · · + x2
n = 0

with a′
i > 0. In addition the unit balls for the scaled down metrics 2−2iω0, 2−2iη

converge in the Gromov–Hausdorff sense to the unit ball B(0, 1) ⊂ C(Y ), and the
maps Fi, F

′
i converge to the standard embedding B(0, 1) ⊂ Cn+1 as i → ∞.

We need to find suitable j(i) such that after a further scaling by a bounded factor,
the images F ′

j(i)(X
′) satisfy the same equations as Fi(X). Since ai/ai+1 = 2n/(n−2)

and a′
i/a′

i+1 → 2n/(n−2), for all sufficiently large i we can find j(i) such that

C−1
n a′

j(i) < ai < Cna′
j(i)
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for a dimensional constant Cn, and j(i) → ∞ as i → ∞. Let us compose F ′
j(i) with

an automorphism gi of Cn+1 of the form (z,x) �→ (ciz, c
n−1
n−2

i x) for ci > 0, where
x = (x1, . . . , xn). Then gi ◦ F ′

j(i)(X
′) satisfies the equation

c
n

n−2

i a′
j(i)z + x2

1 + · · · + x2
n = 0,

so we can choose ci ∈ (C−1
n , Cn) so that gi ◦ F ′

j(i)(X
′) satisfies the same equation

as Fi(X). The balls Bη(o′, c−1
i 2−j(i)) with the scaled metrics ηi = c−2

i 2−2j(i)η still
converge to the unit ball B(0, 1) ⊂ C(Y ), and on these balls the maps gi ◦ F ′

j(i)(X
′)

still converge to the standard embedding of B(0, 1) into Cn+1 as i → ∞. Moreover
the volume form of ηi is the pullback of

√−1n2

Ω ∧ Ω̄ under gi ◦ F ′
j(i).

Let us write ωi = 2−2iω0 and Bi for the unit ball around o with the metric ωi.
Similarly let B′

i be the unit ball around o′ with the metric ηi. We have biholomor-
phisms Φi : X → X ′ defined by

Φi = (gi ◦ F ′
j(i))

−1 ◦ Fi

which satisfy Φi(o) = o′ and Φ∗
i (η

n
i ) = ωn

i . We claim that on the ball Bi we have

|Φ∗
i dηi

(o′, ·) − dωi
(o, ·)| < Ψ(i−1). (4.6)

For this let x ∈ Bi and x′ = Φi(x). By the construction and Proposition 3.1 we have
Ψ(i−1)-Gromov–Hausdorff approximations G : Bi → B(0, 1) and G′ : B′

i → B(0, 1)
satisfying G(o) = 0, G′(o′) = 0 such that viewing B(0, 1) ⊂ Cn+1 under the standard
embedding, we have |G(x) − Fi(x)| < Ψ(i−1) and |G′(x′) − gi ◦ F ′

j(i)(x
′)| < Ψ(i−1).

Note that Fi(x) = gi ◦ F ′
j(i)(x

′) by assumption, and so |G(x) − G′(x′)| < Ψ(i−1).
At the same time, under the cone metric on B(0, 1), the distance from 0 is Hölder
continuous with respect to the Euclidean distance (it is given up to a factor by
|x|n−2

n−1 ), and so this means

|dB(0,1)(0, G(x)) − dB(0,1)(0, G′(x′))| < Ψ(i−1).

Since G, G′ are Gromov–Hausdorff approximations, we get

|dωi
(o, x) − dηi

(o′, x′)| < Ψ(i−1)

as claimed.
The balls Bi, B

′
i are both Ψ(i−1)-Gromov–Hausdorff close to the unit ball in

C(Y ). For sufficiently large i we can then use [LS18, Proposition 3.1] to find Kähler
potentials ϕi, ϕ

′
i for ωi, ηi respectively, such that

|ϕi − dωi
(o, ·)2/2| < Ψ(i−1),

|ϕ′
i − dηi

(o′, ·)2/2| < Ψ(i−1).
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Using (4.6) this means that on Bωi
(o, 1) we can write

Φ∗
i (ηi) = ωi +

√−1∂∂ui,

with supBωi
(o,1) |ui| < Ψ(i−1).

We will next apply Proposition 4.1. We can assume that the λ in the proposition
is of the form λ = 2−m for an integer m. We can also choose i0 > 0 such that the
assumptions of Proposition 4.1 hold for ωi and ui on Bωi

(o, 1) for all i ≥ i0. Let us
fix a large k > 0 and apply the proposition for i = i0 + km. We have

sup
Bωi0+km

(o,1)
|ui0+km| < εk,

where limk→∞ εk = 0. We find a βk, gk and u′
k such that

βkg
∗
kΦ

∗
kηi0+km = ωi0+km +

√−1∂∂u′
k (4.7)

on Bωi0+km
(o, 1/2) together with the estimate

sup
Bωi0+km

(o,λ)
|u′

k| ≤ λ2+αεk.

Note that Bωi0+km
(o, λ) = Bωi0+(k−1)m

(o, 1). Scaling (4.7) up by a factor of λ−2, we
have

λ−2βkg
∗
kΦ

∗
kηi0+km = ωi0+(k−1)m +

√−1∂∂λ−2u′
k,

and supBωi0+(k−1)m
(o,1) |λ−2u′

k| ≤ λαεk ≤ εk, where we dropped the λα factor. Note

that by construction the volume forms of λ−2βkg
∗
kΦ

∗
kηi0+km and ωi0+(k−1)m are equal,

and so we can apply Proposition 4.1 again, iterating the above argument. After k
steps we obtain a constant Λk, a biholomorphism Gk : X → X ′ satisfying Gk(o) = o′,
and a function Uk such that

G∗
k(Λkη) = ωi0 +

√−1∂∂Uk (4.8)

on Bωi0
(o, 1), together with the estimate

sup
Bωi0

(o,1)
|Uk| ≤ εk,

such that
(ωi0 +

√−1∂∂Uk)n = ωn
i0 .

Here we have absorbed the additional scaling between η and ηk into the constant
Λk. Note that fixing i0 we can let k → ∞, and once εk is sufficiently small, we can
apply Savin’s small perturbation result [Sav07] to find that on Bωi0

(o, 1/2) we have
Uk → 0 in C∞. Since Gk(o) = o′, we find, using (4.8), that for sufficiently large k,

BΛkη(o′, 1/4) ⊂ Gk(Bωi0
(o, 1/2)) ⊂ BΛkη(o′, 1),
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and moreover G∗
k(Λkη) → ωi0 in C∞ on Bωi0

(o, 1/2). If Λk → 0, then this is a
contradiction since η is not flat, and so the curvature of BΛkη(o′, 1/4) blows up as
Λk → 0. Similarly Λk → ∞ leads to a contradiction since ω0 is not flat. Choosing a
subsequence we can assume Λk → Λ∞ > 0. It follows that we can then take a limit
Gk → G∞ on Bωi0 (o,1/4) which gives a holomorphic isometry

G∞ : Bωi0
(o, 1/4) → BΛ∞η(o′, 1/4).

We can repeat the same argument for any i > i0 and extract a global holomorphic
isometry between (X, ω0) and (X ′, Λη) for a suitable Λ. 
�

5 Further Directions

The approach that we used to prove Theorem 1.1 can be applied in more general
situations. One natural generalization would be to study the uniqueness of all of
the metrics constructed in the author’s work [Sze17], or by Conlon–Rochon [CR17],
given their tangent cones. The places where we used the specific choice C × A1 for
the tangent cone were in Lemma 2.3 in order to understand the quadratic growth
harmonic functions, and in Proposition 3.1 which allowed us to construct embeddings
of a given Calabi–Yau space as a specific hypersurface. When we consider more
general tangent cones, then these results need to be suitably modified. We expect
that in general the Calabi–Yau metric with a given tangent cone is not unique,
however we hope that our methods can be used to describe the moduli space of such
metrics.

To illustrate this, let us consider the next simplest example, namely the metric
ω0 on C3 with tangent cone C× A2 at infinity, constructed by viewing C3 ⊂ C4 as
the hypersurface

z + x2
1 + x2

2 + y3 = 0. (5.1)

This metric has the property that we have holomorphic functions z, x1, x2, y whose
degrees satisfy d(z) = 1, d(x1) = 3, d(x2) = 3, d(y) = 2, and which satisfy (5.1).
Suppose now that (X, η) is another Calabi–Yau metric with the same tangent cone,
and we try to argue as in Proposition 3.1. The same arguments show that we can
embed X into C4 as a hypersurface given by a linear equation in monomials of total
degree at most 6. Moreover this equation is a small perturbation of the equation
x2

1 + x2
2 + y3 = 0 defining the tangent cone. As in Proposition 3.1 we can perform

simplifications, but we cannot always reduce to the equation (5.1). Instead we may
end up with an equation of the form

az + by + x2
1 + x2

2 + y3 = 0

for small constants a, b, with a �= 0. Note that this defines a hypersurface biholomor-
phic to C3. When b �= 0, then we cannot make the change of coordinate z′ = z+a−1by
to reduce to an equation of the form (5.1), since y has faster growth than z. Indeed,
we expect that one can construct a one-parameter family of inequivalent Calabi–Yau
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metrics on C3 with tangent cone C×A2 using the methods from [Li17, CR17, Sze17],
viewing C3 ⊂ C4 as the hypersurface

z + by + x2
1 + x2

2 + y3 = 0.

More precisely we expect the following.

Conjecture 5.1. Up to scaling and isometry there is a one parameter family of
Calabi–Yau metrics on C3 with tangent cone C × A2 at infinity.

In view of the gluing construction by Li [Li18] of collapsing Calabi–Yau metrics
on threefolds (see the discussion in [Li18, Section 4.2]), such metrics could arise as
a suitable blowup limit of a collapsing family of CY metrics on a threefold that has
a fibration locally of the form (x1, x2, y) �→ x2

1 + x2
2 + y3.

A different generalization would be to consider Calabi–Yau metrics on more
general spaces than Cn. The crucial prerequisite for applying the Donaldson–Sun
theory in Section 3, as well as [LS18, Proposition 3.1], was that the metric ω0 is
∂∂̄-exact, and we expect that our methods can be extended to classifying such exact
Calabi–Yau metrics. For instance the smoothing Qn ⊂ Cn of the n-dimensional A1

singularity,
1 + x2

1 + · · ·x2
n+1 = 0,

is expected to admit a Calabi–Yau metric with tangent cone C× A1 in terms of the
(n − 1)-dimensional A1 singularity (see e.g. [Li18, Section 4.2]), and the methods
used in Theorem 1.1 could lead to a uniqueness result for this metric.

More generally, from the argument in Proposition 3.1 we can read off which
manifolds can admit a ∂∂̄-exact Calabi–Yau metric with a given tangent cone. For
instance the following is a natural conjecture to make.

Conjecture 5.2. Let n > 4. The only ∂∂̄-exact Calabi–Yau manifolds of dimension
n with tangent cone C× A1 are C× Qn−1, Cn and Qn. Moreover up to scaling and
isometry each of these manifolds admits a unique such Calabi–Yau metric.

The three cases correspond to the function f̃i in the equation analogous to (3.2)
having degree 0, 1 or 2. When n ≤ 4 then there would be more possibilities. For both
Conjectures 5.1 and 5.2 we expect that the proof of Theorem 1.1 can be extended to
prove the classification results, once the corresponding existence results are shown
using the techniques of [Li17, CR17, Sze17].

Note that some of the results of Donaldson–Sun [DS15] can also be extended to
the case when the metric is not exact, under the assumption that the tangent cone
is smooth away from the vertex (see Liu [Liu17]). This is closer to the setting of
asymptotically conical Calabi–Yau metrics considered by Conlon–Hein [CH14] who
also obtained classification results for Calabi–Yau metrics with prescribed tangent
cone. At the moment there is little that we can say in this direction about gen-
eral Calabi–Yau manifolds with tangent cones that have non-isolated singularities,
beyond the result in [LS] that each tangent cone is a normal affine variety.
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