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Abstract. We consider the Calabi—Yau metrics on C" constructed recently by Yang
Li, Conlon—Rochon, and the author, that have tangent cone C x A; at infinity for
the (n — 1)-dimensional Stenzel cone A;. We show that up to scaling and isometry
this Calabi—Yau metric on C" is unique. We also discuss possible generalizations to
other manifolds and tangent cones.

1 Introduction

On a compact Kahler manifold with vanishing first Chern class, Yau’s solution of the
Calabi conjecture [Yau78] shows that any Kahler class admits a unique Calabi—Yau,
i.e. Ricci-flat Kahler, metric. In the non-compact setting there are many construc-
tions of complete Calabi—Yau manifolds with different asymptotic behaviors, for
example, Cheng—Yau [CY80], Tian-Yau [TY90, TY91] to name but a few, and even
fixing the Kahler class these metrics are typically not unique. To recover uniqueness,
in general one needs to put conditions on the asymptotics of the metric. Our goal
in this paper is to prove such a uniqueness result for certain Calabi—Yau metrics on
cr.

A coarse measure of the asymptotic behavior of a complete Calabi—Yau metric,
or indeed of any complete metric with non-negative Ricci curvature, is provided by
the rate of growth of the volumes of balls as a function of the radius. This must be
at least linear (see Calabi [Cal75] and Yau [Yau76]), and at most that of Euclidean
space. More refined information is given by the tangent cone at infinity which is
obtained as the pointed Gromov-Hausdorff limit of a sequence of rescalings of the
manifold by factors converging to zero. Note that in general the tangent cone may
depend on the sequence of scalings. When the volume growth is maximal, then any
tangent cone is a metric cone (see Cheeger—Colding [CC97]), and if in addition the
curvature decays quadratically at infinity then the tangent cone has smooth link and
is unique (see Colding—Minicozzi [CM14]).

On C? a Calabi-Yau metric with maximal volume growth has tangent cone
necessarily given by Euclidean space and is therefore the Euclidean metric (see
Tian [Tia06, Theorem 5.2]). However, the Taub-NUT metric on C? is a non-flat
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Kéhler metric with the same volume form as the Euclidean metric (see LeBrun
[LeB93]) which does not have maximal volume growth. It turns out that in higher
dimensions even under the maximal volume growth condition the Euclidean metric
is not the only possibility, contrary to a conjecture of Tian [Tia06, Remark 5.3],
and non-Euclidean tangent cones can appear. For instance, for n > 3, C™ admits a
complete Calabi—Yau metric wy with tangent cone C x A1 at infinity. Here A; is the
(n — 1)-dimensional A; singularity z? + - - -+ 22 = 0 equipped with the Stenzel cone
metric (see Li [Lil7], Conlon-Rochon [CR17] and the author’s work [Szel7]). These
metrics all have the same volume form as the Euclidean metric, and in fact there
are infinitely many other metrics with the same volume form exhibiting different
tangent cones at infinity. Note that the examples of this kind known so far all have
tangent cones with a singular link.

It is therefore natural to try to classify Calabi—Yau metrics with a prescribed tan-
gent cone at infinity. Classification results have previously been obtained by Kron-
heimer [Kro89] in the case of surfaces, and Conlon-Hein [CH14] in higher dimensions
in the asymptotically conical setting, i.e. when the metric converges at a polyno-
mial rate to a Ricci-flat Kéhler cone with smooth link. For instance in [CH14]| the
asymptotically conical Calabi—Yau manifolds with tangent cone A; are classified.
Compared to these the main novelty in our work is that we are able to deal with
tangent cones that do not have isolated singularities. Our main result is the following
uniqueness statement for the metric wy on C™.

Theorem 1.1. Suppose that w is a complete Calabi—Yau metric on C" with tangent
cone Cx A1 at infinity. Then there is a biholomorphism F' : C" — C™ and a constant
a > 0 such that w = aF*wy.

We emphasize that for a Calabi—Yau manifold with maximal volume growth the
tangent cone at infinity has a natural complex structure on the regular set (which
extends in general to the singular set by the main results in [DS15, LS]). When we say
that the tangent cone is C x A; we are requiring that the complex structures agree
as well as the metric structures, since in principle there may be different complex
structures on a given metric cone. It is also worth noting that since a Kahler metric
on C" is necessarily d0-exact, the work of Donaldson—Sun [DS15] can be applied (see
Section 3.1) to see that the tangent cone is independent of the sequence of scalings,
even when it has a singular link.

The proof of Theorem 1.1 can likely be extended to classify Calabi—Yau metrics on
C" with other tangent cones, as well as d9-exact Calabi-Yau metrics on more general
manifolds. We will discuss this in Section 5. The proof relies on two main ingredients.
On the one hand, given a dd-exact Calabi-Yau metric (X,w) with tangent cone
C(Y), the work of Donaldson—Sun [DS15] gives an algebraic description of the ring
of polynomial growth holomorphic functions on (X,w) in terms of the coordinate
ring of C(Y). When C(Y) = C x A; and X = C", then we can use this description
to obtain an embedding X — C"! as the hypersurface z + 2% + - -+ + 22 = 0, such

n—1

that the functions z, z; have degrees 1, =5 respectively. This is the basic input that
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allows us to compare the unknown metric (X,w) with the reference metric (C",wyp),
which is constructed by viewing C® C C"*! as the same hypersurface. We discuss
this in Section 3.

While we end up proceeding in a different way, heuristically the idea is that using
such an embedding we can hope to find a biholomorphism £ : C™ — X such that
F*w = wy + v/—100¢ satisfies the Monge-Ampere equation

(wo + V—199p)" = Wi, (1.1)

and in addition ¢ has subquadratic growth in the sense that 72 sup B lel — 0
as 7 — oo. Here B(0,r) C C" is the geodesic ball with respect to the metric
wp. In practice we are not able to do this, but if we could, we would then like to
show that F*w = wyp, in analogy with the uniqueness result of Conlon-Hein [CH13,
Theorem 3.1] in the setting of asymptotically conical spaces. Instead, in the proof of
Theorem 1.1 we can only find a sequence of suitable biholomorphisms F' on larger
and larger open balls. The technical heart of the proof is then Proposition 4.1,
which roughly speaking says that if on some large R-ball we have a solution of (1.1)
such that R~2¢p is small, then for suitable A < 1, on the AR-ball we can find an
“equivalent” potential ¢’ such that (AR)™2¢’ is even smaller. Such decay estimates
are fairly standard in settings where the tangent cones that appear have smooth
cross section. However, in our setting we need to analyze L°-small solutions of the
Monge—Ampere equation on spaces that are close in the Gromov—Hausdorff sense to
the singular tangent cone C x A;. Here we use the results of Donaldson—-Sun [DS12]
and the author with Liu [LS18] in order to construct suitable barrier functions.
Iterating the decay property Proposition 4.1 and letting R — oo then leads to
Theorem 1.1.

Finally let us mention some related works for minimal hypersurfaces. Regarding
the uniqueness of minimal hypersurfaces with prescribed tangent cone at infinity,
Simon-Solomon [SS86] and Mazet [Maz17] showed that minimal hypersurfaces in
C"*! that are asymptotic to certain Simons cones are essentially unique. At the
same time, the works by Simon [Sim94, Sim93], and more recently Colombo—Edelen—
Spolaor [CES17], address the behavior of minimal submanifolds that are near to a
cone with non-isolated singularities, which is also a key point in our case. While the
details are very different, there are certainly similarities between our approach and
theirs.

2 The Reference Metric

In this section we give some preliminary results about the Calabi—Yau metrics on
C" constructed in [Lil7, CR17, Szel7]. We follow the approach from [Szel7]. We
suppose that f(z1,...,2,) is a polynomial such that V5 = f~1(0) € C" has an
isolated normal singularity at the origin. We assume that V[, admits a Calabi—Yau
cone metric wy, = /—199r?, whose homothetic action is diagonal with weights
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(wi,...,wy), and f is homogeneous of degree d > 2 under this action. The basic
example we are concerned with is f = 23 + -+ + 22, in which case w; = Z—:;, and

we let 72 = ]w|2:7j In general it follows from Conlon—Hein [CH13] (see also [Szel7,
Section 2]) that the smoothing V' C C™ given by the equation 1 + f(z) = 0 admits
a Calabi-Yau metric wy, = v/—1900¢(x) with tangent cone V; at infinity.

We then consider the hypersurface X C C x C™ given by z + f(z) = 0, which is
biholomorphic to C”. The main result of [Szel7| is that there exists a Calabi-Yau
metric wg on C" with tangent cone Xy = C x Vj at infinity which is uniformly
equivalent to the metric

w = V=100 (|22 + n(Ro™)r? + 72(Rp~*) |22/ p(:71/" - )

outside a compact set. Here v;(s) are suitable cutoff functions such that v; +~2 = 1,
~1 is supported where s > 0 while 5 is supported where s < 2; the function R is
such that /—100R? defines a cone metric on C” with the same homothetic action
as Vp; the function p? := |2|> + R% a € (1/d,1) and z~"/? . z is defined using the
homothetic action, choosing a branch of log. The form w defines a metric when
restricted to X outside of a compact set, and the Calabi-Yau metric wg that is
constructed is asymptotic to w at infinity, in the sense that |wy — w|, — 0. The

volume form of wy is v—lnzﬁ A Q for

dz Ndxg N -+ N\dxy,

Q B a’hf

(2.1)

For more details see [Szel7].

From [Szel7, Proposition 9] we have the following. For large D, we can consider
a new embedding X — C"*! given by the functions 2’ = D71z, 2} = D~%iz,;. The
image has equation

Dz + Df (') =0,

i.e. D179 + f(2') = 0, recalling that f has degree d under the homothetic action.
We equip this hypersurface X’ with the scaled down metric D~2wq. Here and below,
let us denote by W(e) a function converging to zero as ¢ — 0. This function may
change from line to line. From [Szel7, Proposition 9], we see that there is a constant
6 < W(D™1) satisfying the following. Viewing Xo C C"*! as f~1(0), we define
the map G : Bx/(0,1) — Xy using the nearest point projection on the set where
|#'| > 6, and projection onto the z-axis where |2/| < @. Then G is a U(D™!)-
Gromov—Hausdorff approximation to Bx,(0,1). One useful consequence of this is
that the distance from the origin in (X, wp) is uniformly equivalent to the function
p. We will need the following.

PROPOSITION 2.1. (a) The holomorphic functions z, z; on (X, wgy) have polynomial
growth with degrees d(z) = 1,d(x;) = w;.
(b) Consider the special case f = 23 +---+x2. Then the vector fields 220, + x;0,
and a0y, for skew-symmetric (aji) all have at most linear growth.

i
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Proof. The statement in (a) is immediate from the fact that the distance function
is uniformly equivalent to p.

For part (b), we can work using the description of the metric w in regions I-V
in the proof of [Szel7, Proposition 5] (note that w is uniformly equivalent to wyp). In
each region we choose new coordinates in which we have a good model for the form
w and so we can bound our vector fields. Let us consider regions I, III and V, the
others being very similar.

Region I. Here R > kp for some fixed small k > 0, and we assume p € (D/2,2D)
for D, which will then be uniformly equivalent to the distance from the origin. We
change coordinates to 2 = D™ 'z and & = D! - z, and we let # = D~ !r. In these
coordinates X has equation

DY 4 f(&) =0, (2.2)
and in the proof of [Szel7, Proposition 5] the scaled down metric D~2w on this
hypersurface is compared to the product metric

V—109(|2|* + ) (2.3)

on the hypersurface with equation f(z) = 0 (i.e. the product Xj). Since |Z| < 2 and
7 € (Kk/2,4k), as well as d > 1, as D — oo then in these coordinates the hypersurface
(2.2) converges smoothly to X(. Because of this we can compute the norms of our
vector fields with respect to the metric (2.3). For this we have

Zaz = 282, :Ejaxk = i‘jaik~

The norms of these vector fields are uniformly bounded for the metric in (2.3), which
is uniformly equivalent to D~2w (under identifying the two hypersurfaces), and so

1202w, |20z, |0 < CD

for a constant C.

Region ITI. Here R € (K/2,2K), and K € (p“,2p“). We suppose p € (D/2,2D),
so |z| is comparable to D. We choose a fixed zp such that |z —zg| < K, and we change
variables as follows:

F=K Y 2-2%), =K'z =K
In these coordinates X is given by the equation
K™Kz +z) + f(&) =0,
and we compare again to the product metric
V—100(|z? + 7#)

on the hypersurface f(#) = 0. We have |Z| < 1, R € (1/2,2), and K% — 0 as
K — o0, since K¢ >> D. This means that as K, D — oo, we can measure the norms
of our vector fields on Xy with the product metric. We have

20, = (K% + Zo)Kﬁlag, :L’jaxk = 92']8@
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It follows that
202|200 < CK™'D, |20y, |20 < C.

Since D is comparable to the distance from the origin, and K < D, this implies the
estimate we want.

Region V. Here R < 2k 'p'/%, p e (D/2,2D), so |z| is comparable to D. We
choose a fixed point zg with |z — 2| < DY 50 we also have |zg| ~ D. We scale our
metric down by a factor of |zo\1/ 4 and change coordinates by

Ezzgl/d(z—zo), iszzal/d-x, 7 = |z0| /%

We have |Z|,7 < C for a uniform C. The equation of X is
TRt (@) =0,
and as D — oo, this converges to hypersurface with equation

1+ f(z) =0,

|72/d

and the metric |z w converges to

ﬁ85<|§|2 + <p(:z)). (2.4)

We have

20, = 29 /(2 U + 20)0z,  wj0n, = 7505,
The norms of these vector fields are uniformly bounded with respect to (2.4), and
so scaling back up, we have

20, |0 < |20/Y2C| 20|~V 20| < CD, |2, |0 < Cl20|4 < DY,
which gives the required bound. O

2.1 Subquadratic harmonic functions on C x A;. Let us consider the
tangent cone C(Y) = C x A; embedded in Cx C" as the hypersurface 23+ - - +12 =

0, and equipped with the Stenzel cone metric /—199(|z|? + \x!2%) We need to
understand the harmonic functions on C'(Y') with at most quadratic growth. In Hein—
Sun [HS16] a general result is given on Calabi—Yau cones with isolated singularities,
saying that the strictly subquadratic harmonic functions are all pluriharmonic (this
was first used crucially in Conlon—Hein [CH13]), while the space of exactly quadratic
growth harmonic functions decomposes as the sum of pluriharmonic functions and
harmonic functions that arise from isometries of the link. See also Chiu [Chil9] for
results in the case of more singular cones. We have the following.

LEMMA 2.2. The space H<g of real harmonic functions on C(Y) with at most
quadratic growth are given by linear combinations of the following:

(1) the real and imaginary parts of 1, z, 2%, x;,
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(2) the function (n — 1)|z[2 — |z|*+-1,
2
(3) the functions |x|™ »—*a;,x;Z), where (a;i) € v/—1o(n,R) is a purely imaginary
complex orthogonal matrix.

Proof. A general approach to this result is to extend Hein—Sun [HS16, Theorem
2.14] to singular tangent cones. This can be done along the lines of the work in
Chiu [Chil9], using cutoff functions to justify the required integration by parts near
the singular set.

Alternatively we can follow the approach from [Szel7, Corollary 12| using the
Fourier transform in the C-direction to analyze harmonic functions on the product
C x Aj. The conclusion from this approach is that any harmonic function f of at
most quadratic growth can be written as

f=fotzh+ifi+2f+ 20+ fu
for functions fy, f1, f1, f2, f3, f17 on the cone A;. We have
Af = Nfot+ 2 fr+ 20 fi + 2N fo + 20 fo + [2PA fir + fir,
where A’ is the Laplacian on A;. It follows from Af = 0 that

Afi=Af=ANf=ANf=NANf;=0,
fii + A fo=0.

In addition since f has at most quadratic growth, f1, f1, f2, f3 are all subquadratic
harmonic functions, so by [HS16, Theorem 2.14] they are pluriharmonic. Since the
non-constant holomorphic functions on A; have faster than linear growth, these
functions must all be constant. The function fi7 is harmonic, and |z|?f;1 has at
most quadratic growth. It follows that f;7 = ¢ is constant. Then

C+A,f0 :Ov

so fl=(n—1)fo —clz 2 s harmonic, and has at most quadratic growth. Using
[HS16, Theorem 2.14] again we have that f) is a linear combination of real and
imaginary parts of 1, x;, and functions u such that V' = Vu is a real holomorphic
vector field on A; commuting with 79, such that JV(r) = 0. We then have V =
Re(a;,x;0,,) for aj, a purely imaginary skew-symmetric matrix. Using the identity
V—100u = Ly,\/—100r? = \/—190V (r?), up to adding a pluriharmonic function
to u, we have

n—2

2 271—2 __2 _
u=V(r?) = V(a=) = LS  ager

The result follows from this. O
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The functions in (1) are all the pluriharmonic functions of at most quadratic
growth, while (2) and (3) correspond to automorphisms of C(Y) commuting with

the homothetic scaling, which has weights (1, Z—:;, e Z—:;) on (z,21,...,x,). As

in the proof the functions \m|7%ajkxj:f:k correspond to the vector fields V, =
1= Re(a;k2;0s, ), in the sense that

n—2 __2 _
Va(l2|? + [2]*277) = ||~ ajpa; @y

These vector fields preserve the hypersurfaces cz + 22 + - - -+ 22 = 0 for all ¢ as well
as the volume form €. ,

Similarly, the function (n — 1)|z|2> — |z|*»—1 corresponds to the real holomorphic
vector field W = Re((n — 1)20, — 2=L2,0,,), i.e.

on=2 gn=2
W(|2? + [a*=1) = (n = 1)z — |z[*=.

This vector field W preserves C(Y) C C"! however it does not preserve the hy-
persurfaces ¢z + a3 + -+ 4+ 22 = 0. Instead we let

V =Re <z82 + ;xﬁm>

which does preserve all of these hypersurfaces. The vector field V' satisfies
n
LVQ - 59,
and

1 gn=2
2(n—1)

n-2 1 n-2 1
V(21 + J2*2) = S (12 + Ja 1) = S 12 —
2 2
which is a scalar multiple of the function in (2). We conclude the following.

LEMMA 2.3. Suppose that h is a harmonic function on C(Y') with at most quadratic
growth, and write h = hyp, + hqut, where hyy, is in the span of the type (1) functions
in Lemma 2.2 and is pluriharmonic, while hg,, is in the span of the type (2) and (3)
functions.

We can find a real holomorphic vector field V' preserving the hypersurfaces cz +
22+ .-+ 122 =0, and a constant 3 such that Ly = nfS), and

V(12 4 |z>1) = B(1212 + J2*=1) = haut.

In addition we have |3| < C|lh| and V = apz0; + a0, with |agl,|ajr| < C||h]]
for a constant C, where ||h|| denotes the L?> norm on B(0,1) C C(Y).



1160 G. SZEKELYHIDI GAFA

3 Special Embeddings

In this section (X, n) is a complete Calabi—Yau manifold such that X is biholomor-
phic to C™, and X has tangent cone C(Y) = C x A; at infinity. Let us fix a basepoint
p € X and denote by B; the ball B(p,2!) with the metric 2727, so that B; is a unit
ball in the scaled down metric. By assumption, the sequence B; converges to the unit
ball B(0,1) C C(Y) in the Gromov—Hausdorff sense. We will view C(Y) C C"! as
defined by the equation x% +---+22 =0 in terms of the coordinates z,z; on C"*!,
The cone C(Y) is equipped with the Ricci-flat Stenzel metric given by

V=109(|2? + |2221),

which has volume form v/—1" Q A Q in terms of the Q from (2.1). The main result
of this section is the following.

ProproSITION 3.1. There is a sequence of holomorphic embeddings
Fi: X — Ccntt

with the following properties:
(1) the image F;(X) is given by the equation

aiz+ai+-+ar=0

for some a; > 0,
(2) the volume form n™ satisfies

o-2nipn — (/1" QA Q),

(3) ai/aiy1 — 2772 asi — oo,

(4) on the ball B; the map F; gives a W(i~')-Gromov—Hausdorff approximation to
the embedding B(0,1) — C"*'. More precisely, we have a ¥ (i~!)-Gromov—
Hausdorff approximation g : B; — B(0,1) such that |F; — g| < ¥(i~1) on B;.
Recall that here B(0,1) C C™*! is the unit ball of C(Y) under our embedding,
and W(i~') denotes a function converging to zero as i — oo.

The main input for this result is the work of Donaldson-Sun [DS15] on the
algebro-geometric study of tangent cones, and we first review the results that we
use.

3.1 Donaldson—Sun theory. In [DS12, DS15], Donaldson—Sun consider non-
collapsed Gromov—Hausdorfl limits of compact polarized Kéahler manifolds with
bounded Ricci curvature. We observe that for many of the arguments compactness
is not required (see also Liu [Liul7, Liul6] for related work in the non-compact set-
ting). More precisely, suppose that (M;, L;,w;, p;) is a sequence of complete pointed
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n-dimensional Kéhler manifolds with line bundles L; — M; equipped with Hermi-
tian metrics with curvature —y/—1w;. In addition suppose that we have the Ein-
stein condition Ric(w;) = Aw; with |A\;] < 1, and the non-collapsing condition
Vol(B(p;, 1)) > k > 0 for all 4, for a fixed x > 0. If in addition we were to as-
sume that the manifolds were compact, then the sequence would be in the class
K(n, k) considered in [DS15].

Let us suppose that (Z, p) is the pointed Gromov—Hausdorff limit of the sequence
(M;,wi, p;). Note that, up to choosing a subsequence, such a limit exists by Gromov
compactness. Then [DS15, Theorems 1.1, 1.2, 1.3] hold, i.e. Z has the structure of a
normal complex analytic space, and tangent cones to Z have the structure of affine
varieties and are unique. To see this note that the basic construction in [DS12] that
is used in the arguments is to “graft” a holomorphic function from a tangent cone to
Z onto M using cutoff functions for sufficiently large i, and then use the Hérmander
L?-estimate to perturb the resulting approximately holomorphic section of (a power
of) L; to a holomorphic section s. The grafting is a local construction, and the
Hormander estimate holds on complete Ké&hler manifolds (see e.g. [Dem, Theorem
4.5]). Finally one uses Moser iteration and Bochner—Weitzenbock type formulas to
bound the L>-norms of s and Vs in terms of the L?-norm of s (see [DS12, Proposi-
tion 2.1]). Since under the non-collapsing condition and Ricci curvature lower bound
we can control the Sobolev constant on geodesic balls (see e.g. Anderson [And92,
Theorem 4.1]), the same estimates hold in our setting.

We need to use the results in [DS15, Section 3.4] where the assumptions are
that the limit space (Z,p) is a scaled limit of a sequence in K(n, k) with scaling
factors tending to infinity. We claim, however, that the same results hold true for
a complete, exact Calabi-Yau manifold (M,w) with maximal volume growth. In
other words, assuming that w = /—180¢ for a global Kéhler potential 1 and
Vol(B(p,7)) > rr®® for some p € M, k > 0 and all r > 0. The basic reason is that
in this case the tangent cone at infinity is still the Gromov—Hausdorff limit of a
sequence of polarized Kéhler manifolds as above: for any sequence \; — 0, we can
consider the sequence (M;,w;, L;, p;), where M; = M,w; = )\%w,pi = p, and L; is
the trivial bundle equipped with the metric e Y, Up to choosing a subsequence,
this sequence converges in the Gromov-Hausdorff sense to a tangent cone at infinity
C(Y) of (M,w). Using this, the arguments in [DS15, Section 2.2] can be applied
to the limit space C(Y') (instead of (Z,p) in the statements of the propositions
there) without any changes. In particular [DS15, Proposition 2.9] holds, showing
that holomorphic functions on a ball in C(Y") can be approximated by holomorphic
functions on suitable balls in M;. This is a crucial ingredient in [DS15, Proposition
3.26], which leads to the algebro-geometric description of the tangent cone C'(Y') in
terms of the ring of polynomial growth holomorphic functions on (M, w).

Let us briefly recall the results that we need from [DS15, Section 3.4], where
for us M plays the role of Z there. If R(M) denotes the ring of polynomial growth
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holomorphic functions on M, then R(M) has a filtration
C=IhchLcC---CR(M).

Here I} is the space of polynomial growth holomorphic functions on M with degree
at most di, where 0 = dy < d; < --- are the possible growth rates. For a holomorphic
function f on X, the growth rate d(f) is defined by

d(f) = lim (logr)~" sup log|f],
e B(p,r)

and f has polynomial growth if d(f) < oo. It follows from [DS15, Proposition 3.26]
that these growth rates are the same as the possible growth rates on the tangent
cone C(Y) and the dimensions dim I} are equal to the corresponding dimensions on
C(Y). Let us write Ry, for the functions of degree di on C(Y'), and pp = dim Ry, .

By [DS15, Proposition 3.26] we can find decompositions I, = I_1 @ Ji, where
dim Jr = pux and Ji admits an adapted sequence of bases. This means that, for fixed
k, we have a sequence of bases {GY,..., Gf%} for Jj satisfying

(1) |GL||lB, = 1 for all a, and for a # b we have lim; . fBi GLG! = 0. Here | - || 5,
denotes the L2-norm on B;, and as above, B; is the ball B(p,2') scaled down
to unit size.

(2) GiFl = 11;,GL + p!, for scalars pu;,, and pb € C(GY, ...
as i — 00.

(3) pia — 2% as i — oo.

Z—l) with sz B; — 0

Suppose now that the coordinate ring R(C'(Y)) is generated by <y, Ra,- It follows
then that R(M) is generated by @, Ji and the adapted bases of Jj for k <
ko define embeddings F; : M — C/. Furthermore, under the Gromov—Hausdorff
convergence B; — B(0,1) C C(Y), the components of the maps F; converge to an
L?-orthonormal basis of Rq, @ --- @ Rg,  on B(0,1) and these define an embedding
B(0,1) — CV.

3.2 Proof of Proposition 3.1. We now specialize to the setting of Proposi-
tion 3.1. It will be helpful to write down the homogeneous holomorphic functions of
low degree on C(Y) = C x A;. Note that they are all spanned by polynomials in
z, x5, and d(z) = 1,d(z;) = Z—:% We treat three cases separately:

e n — 3. In this case we have

= (1),
= (2),
= (2%, z),
R3 = (23, 2zy),
Ry = (2, 22w, wiwy), (3.1)

where in Ry one term is redundant because of the equation 23 + - - + 22 = 0.
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e n = 4. Here we have

Ry = (1),
Ry = (2),
R3/0 = (i),
Ry = (2%),
Ry = (22i),
Ry = <z3,xlxj>,
where again one term in R3 is redundant.
o n >4
Ry = (1),
Ry = (2),
Rucy = (i),
Ry = (%),
Rans = (za;),
Rany = (xix;),

where again one term in Rz.-2 is redundant.

For simpicity we focus on the case n = 3. The discussion in the other cases
is completely analogous. The ring R(C(Y)) is generated by R; @ Ry, and so by
the results of Donaldson-Sun [DS15] discussed above, R(X) is generated by Iy =
Jo®J1 P Js. This space of holomorphic functions on X with at most quadratic growth
has dim I> = 6 and admits a sequence of adapted bases {G%, ..., G&}. The growth
rates of the functions are d(G%) = 0,d(G%) = 1, and d(G;) =2 for j =3,4,5,6, and
for each 7 we obtain an embedding

F:X—CS

with components G; On the balls B; these maps converge in the Gromov—-Hausdorff
sense to an embedding Fy, : B(0,1) — C°. The map F., is given by functions on
C(Y) with the degrees specified above that are orthonormal on B(0,1). Up to a
unitary transformation commuting with the homothetic scaling (which has degrees
(0,1,2,2,2,2)) we can assume that Fo, = (1,2, 2% 21,29, 23). We can modify our
sequence of adapted bases by the same unitary transformation, so that we still have
F; — F as i — oo.

Since Iy consists of just the constants, the first component of F; is constant. In
addition, we have [|(G%)? — G%||B, — 0 by the convergence of F; to Fi, while also
(GY)? — G € L. It follows that G4 = (G%)? + >, ¢iaGl, where |giq| < W(i™h).
Therefore dropping the first and third components of F;, we still obtain embeddings
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Fl: X — C*. Let us now fix i, and abusing notation, let us denote by z, z1, 9, x3
the pullbacks under F} to X of the coordinate functions on C*. By construction we
have d(z) = 1,d(x;) = 2. The 20 functions

2 3 4 2
1,2,2% %, 27, 2w, 27, 27 x5, Xk,

are all in the space I of at most quartic growth functions on X, but by the earlier
discussion dim I; = 19. Therefore we have one linear dependency between them,
which determines the equation f; in C* defining F/(X). Because of the Gromov—
Hausdorff convergence of the F! to the embedding of B(0, 1) satisfying 23 +x3+x3 =
0, the equation f;(z,x1,x2,23) = 0 has to be a perturbation of this equation. We
can apply a linear transformation in w1, z2, 23 that is W(i~!)-close to the identity
to transform the quadratic expression in the x; that appears in f; to the quadric
a;% + x% + x% Next we can complete the square in the z;, applying changes of
coordinates of the form z; — x; + ajz2 + bjz + ¢; with small a;,b;, ¢cj, to eliminate
all terms of the form z;, zz;, zQ:xj in f;. We have now reduced our equation to one
of the form

ﬁ(z) + :L‘% + x% + a:?), =0, (3.2)

where fi(z) is a quartic polynomial in z with coefficients of order W(i~!). Since X
is biholomorphic to C3, f; must actually be linear, so f;(z) = d;z + e; for |di, |e;] <
U(i~!) with d; # 0. We can assume that d; > 0 by multiplying z by a unit complex
number.

So far we have only performed coordinate changes W (i~!)-close to the identity,
and so the new maps F/ : X — C* that we obtain still converge on B;, in the
Gromov—Hausdorff sense, to our standard embedding B(0,1) — C*. The image
F!(X) satisfies the equation

e+ diz 4+ a3+ a5+ 22 =0.

We want to perform a further coordinate change z — 2z + di_lei so that the equation
reduces to d;z + 23 + 23 + 3 = 0. However, this may not be a small coordinate
change since we do not yet have information about the relative sizes of d;,e;. For
this we need the following.

LEMMA 3.2. Suppose that we have polynomial growth holomorphic functions w, y1,
y2,y3 on X such that d(w) =1 and d(y;) = 2, and

cw+y%+y%+y§:0

for some ¢ # 0. Then there exists a point o € X such that w(o) = y;(0) = 0, and
moreover this point is independent of the choice of functions w,y; as above.

Proof. In the above discussion we have already constructed functions z, x; satisfying

dz+ ] +a3+23=0.
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Let us denote by o € X the point where z(0) = z;(0) = 0. In terms of these functions,
because of the degree restrictions, we must have

w=az+b,
y = Ax 4+ cz? +dz +e.

Here x = (z1,%2,23),y = (y1,Y2,¥3), ¢,d,e are vectors, and A is a matrix. By
scaling we can assume that ¢ = ¢/ = 1 to simplify notation. We have

O=w+yly=az4+b+ (Ax+cz+dz+e)l (Ax +cz? +dz +e). (3.3)

By examining the dimensions of the spaces Ry, in (3.1) we see that, up to scalar
multiples, there is only one linear equation satisfied by the functions

2 3 4 2
1,2,2% x5,2°, 225,27, 2°x 5, X2k,

namely z +x! x = 0. Therefore if we also have w+y’y = 0, then from (3.3) we first
find that AT A is a multiple of the identity, and in particular A is invertible. It then
follows that we have ¢ = d = e =0, and in turn b = 0. Therefore w(o) = y;(0) =0,
and conversely o is the unique point where w, y; all vanish. O

Let us return to the proof of Proposition 3.1 and the map F/ : X — C* whose
image satisfies the equation

di(z +d; te;) + 2% + a3 + 23 = 0.

By Lemma 3.2, we have z(0) = —d;lei. However, since F; converges to the embed-
ding B(0,1) — C*, we also have F;(0) — 0. For this, note that under the rescaled
metric in the ball B; (centered at p) the point o is contained in a ball of radius C2~*
around p, where C' = dist,(p, 0). In particular we have d;lei — 0, and so we can
perform a final small coordinate change to reduce to the case e; = 0.

Next we consider the volume forms. The pullback (F!")*(€2) defines a polynomial
growth, nowhere vanishing holomorphic volume form on X. By the Calabi—Yau
condition on 7,

F{*(V=1Q A Q) = |gi*n?,

where g; is a nowhere vanishing polynomial growth holomorphic function on X.
This means that g; can be written as a polynomial in z1, 9, x3, and therefore it is
constant since it has no zeros. By the volume convergence under Gromov—Hausdorff
convergence [Col97], remembering that we are using the scaled down metric 272y
in the convergence, we find that |g;|?2% — 1 as i — oo. Scaling 2 by a factor
U (i~!)-close to 1, we can arrange that |g;|> = 270

Finally we address the claim that a;/a;+1 — 8. Let us denote the components of
our maps F!' by z;, xi1,2;2,x;3, so that

2 2 2
a; z; + .'1:'7;71 + xiz + xi73 =0
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with a; > 0. From the proof of Lemma 3.2 we know that

Zi4+1 = CiZi,

@it1Ci
Xit1 = — Aixi,

Qj

for a constant ¢; and a complex orthogonal matrix A;. Using that d(z;) = 1,d(z; ;) =
2, and that the z;, z; ; have normalized L?-norm approximately equal to 1 on B; we

have ¢; — 27! and y/ai_lazurlci — 272 as i — oo. It follows that ai_lazurl — 273,
The cases n = 4 and n > 4 can be treated in an almost identical way, except that
in both cases we have dim Iy = 5, so we do not have to worry about the function
22. In addition in the equation analogous to (3.2), the degree of ﬁ is at most cubic
when n = 4, and at most quadratic when n > 4. We leave the details to the reader.

4 Decay of the Kahler Potential

In this section, we let w = c?wy be a scaled down copy of the reference Calabi-
Yau metric on C”, and we denote by o € (C",w) the origin. For a given € > 0 we
will assume that ¢ < 1 is sufficiently small so that dgg(B(o,e 1), B(0,e71)) < e,
where 0 € C(Y') is the origin in the cone C(Y) = C x A;. Since C(Y') is the tan-
gent cone at infinity, this condition is equivalent to the Gromov—Hausdorff distance
dar(B(o,1), B(0,1)) being sufficiently small. As in Section 2 we have an embedding

n—1
F,:C" — C"*! using the functions cz, cn—2z;, with image given by the equation

In addition the maps Fi. on B(o, 1) converge in the Gromov—Hausdorff sense to the
standard embedding B(0,1) — C"*! of the unit ball in C(Y) as ¢ — 0.
The main technical result of the paper is the following.

PROPOSITION 4.1. There are \g,« such that if A < A\g and € is sufficiently small
(depending on \), then we have the following. Suppose that ¢ above is small enough
so that dgy(B(o,e™ 1), B(0,e71)) < ¢, and we have a smooth function u on B(o, 1)
satistying suppg, 1) [u| < € and

(w+V—=190u)" = w™.

Then we can find a constant 3, an automorphism g of C" fixing the origin o, and a
smooth function u' on B(o,1/2) satisfying

(1) Bg*(w + V/=100u) = w + /—190u/,

(2) (Bg*w)" = w",
(3) supp (o, [0/] < NF¥supp(y 1) [ul.
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In this work in property (3) the constant A2 would suffice, however we expect that
the result has other applications that need the better constant A\>*®. The strategy
of the proof is to show that once € is sufficiently small, the function wu is close to a
harmonic function on C'(Y). We then modify u by subtracting a pluriharmonic func-
tion and applying an automorphism to get a function ' with faster than quadratic
decay using Lemma 2.3. The main difficulty is to control the behavior of v near the
singular set of C'(Y'). We will achieve this by using the maximum principle with a
suitable barrier function in order to show that if u concentrates near the singular
set, then u decays rapidly when passing from B(o, 1) to B(o,1/2). Note that much
of the argument works in more general settings than what we are considering. The
one place where we will use the fairly explicit form of the reference metric wg on C"
is when we need to control the action of the automorphisms on the Kéhler potential
of w near the singular set using Proposition 2.1.

To begin, we note that on any compact set away from the singular set of C'(Y)
we can apply the small perturbation result of Savin [Sav07] to get regularity of |ul
once € is sufficiently small. For 6 > 0 we define the set Ny to be the #-neighborhood
of the singular set under the Gromov—Hausdorff approximation:

Ny = {(z,x) | 2"/%|z|""1 < 6},

where we note that on C(Y) the function 2|x|2% is the distance squared from the
singular set with respect to the Ricci-flat cone metric.

LEMMA 4.2. Let & > 0. There exist C;, > 0 depending on 6 with the following
property. If, in the setting of Proposition 4.1, € is sufficiently small (depending on
0), then on B(o,1 — 0)\ Ny we have

[ulcr(Bo—0)\Ny) < Ck sup |ul.
(0,1)
Proof. Note that by the Cheeger—Colding theory [CC97] and Anderson’s epsilon
regularity result [And90], we can bound the harmonic radius of w on B(o,1—0)\ Ny
once e is sufficiently small. Then for any 6 > 0, if supp, 1 |u| is sufficiently small, we
can apply Savin’s result [Sav07] in harmonic coordinates to obtain |u|cs(p(o,1-6/2)) <
6. We have the equation

(w+V=100u)" = ",

which we can write as

[nw”l + (Z) WP AN=100u + -+ (\/—715'521)"*1 AV—190u = 0. (4.1)
If § is sufficiently small (so that /—100u is small), then we can view this as a
uniformly elliptic homogeneous equation for u with C“ coefficients (the expression in
square brackets determining the coefficients of the equation). The Schauder estimates
imply that on B(o,1 — 30/4) we have the bound |u|c2« < Cysupp,q) |u[. We can
bootstrap this estimate to obtain the required higher order bounds. O
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We will apply this result in the following form several times.

LEMMA 4.3. Suppose that we have a sequence of functions wu; as in Proposition 4.1
such that e; — 0. Let v; = (supp(,, 1) |u;|)~tu;. Then there is a (possibly vanishing)
bounded harmonic function h on B(0,1) C C(Y) such that under the Gromov—
Hausdorff convergence, for a subsequence, we have v; — h in C°° uniformly on
B(o;,1 — 0)\Ny for any 6 > 0.

Proof. By Lemma 4.2, for any given ¢ > 0 the functions v; satisfy uniform C
bounds on B(o0;,1 — 6)\ Ny for sufficiently large i, and they are all bounded by 1 on
B(0;,1). By a diagonal argument we can find a subsequence such that v; — h for
a function h on B(0,1) C C(Y), with the convergence taking place in C* on any
B(0;,1 — )\ Ng.

To see that h is harmonic, note that just like the equation (4.1), v; satisfies

[nw?‘l + <Z> wi"_Q AV—100u; + - - - + (v-l@gui)"_z AV—=100v; = 0.
By Lemma 4.2, on B(0;,1 — 8)\Ng we have u; — 0 in C°°, and so passing to the
limit in these equations we get that h is harmonic on B(0,1 — é)\Ny. This holds for
any 6, and so h is harmonic on the regular part of B(0,1). In addition A is bounded,
so it is harmonic in a weak sense across the singular set too. O

4.1 Construction of a barrier function. @ We suppose that we are in the
setting of Proposition 4.1. The following provides the barrier function used in the
maximum principle argument below.

PROPOSITION 4.4. There is a constant D > 0 with the following property. Let 0 > 0.
There is a constant Cy > 0 such that if € is sufficiently small (depending on ), then
there is a smooth real-valued function v on B(o, 1) satisfying the following properties:

(1) |00v],, < Cy on B(o,1—0/2).

(2) v(q) > D~'0~1/2 whenever ¢ € Ny N dB(o,1 — ).

(3) v > D7' on B(o,1), and v < D on B(o0,1/2).

(4) On B(o,1 — 6/2) the function v satisfies the differential inequality

Zﬂi + tmaz < 0,

1

where the u; are the eigenvalues of \V/—100v relative to w, and maz 1S the
largest eigenvalue.

Proof. Let (z,0) be a point in the singular set of C(Y) with |z| = 1, and let ¢ €
B(o,2) be within € of (z,0) under the Gromov-Hausdorff approximation. Using that
C(Y) is a cone also when centered at (z,0), once € is sufficiently small we can apply
[LS18, Proposition 3.1] to find a good Kéahler potential ¢ for w on B(g,3) in the
sense that we have w = /=190, while also

o — d(g,)?/2 < ¥(e) (4.2)
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on B(q,3). By adding a constant of order ¥(e) we can assume that ¢ > 0. We
have Ap = n (using the complex Laplacian), and from the Cheeger—Colding esti-
mate [CC96] together with the Cheng—Yau gradient estimate [CY75] we have

2
[ vtoep - o <o)
B(q:2)

where we emphasize that we are taking the (1,0)-part of the derivative of ¢. At the
same time from the Bochner formula (computing in normal coordinates),

AVY0I? = (pigr) 5 = 0P + 0395 2 1,

since ¢;; = w;5. So

A1V - ¢) = 0,
and the mean value inequality implies that

V00 < o+ T(e).

Let us now consider the function ¢=3/4. We have
= _ 3 _ - 21 _ _
V=100~ 3/* = —5¢ /=100 + 6% WA /2100 A dep.

Fix y € B(o,1). We can choose orthonormal coordinates for w at y such that dp =
p1dz! and /=100y is the identity matrix. By the estimate above, we have lp1]? <
© + U(e). The eigenvalues of /—100p~3/* therefore satisfy

3 74 3 g 21 g1y
-z <y < —= = U
2P Sms e e (o +¥(e)),

3 _
M27~-'7,Ufn:_1¢ 7/4'
The maximum eigenvalue is necessarily p; and so

Zui + Hmaz = 211 + (0 — 1)po < 2p1 + 249

< 34 2o, o)

- 8
3 21
_ 1149 Ly '
¥ ( Pt (6))
As long as ¢ > T¥(e) we obtain
> i + fimaz < 0. (4.3)
In particular by (4.2) this holds if y € B(o, 1—6) and € is sufficiently small (depending

on 0).
We also have ¢ > 6%/4 on B(o,1—0) once e is sufficiently small, and so from the
bounds for the eigenvalues we have |/ =199 ~3/%| < Cy on B(o,1 — 60) (where Cy is
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of order #~7/2, although we do not need this). On B(o,1/2) we have ¢ > 1/10 once
¢ is sufficiently small, and this leads to an upper bound ¢=3/* < 10%/* on B(o,1/2).
At the same time ¢ < 1 on B(o,1) for sufficiently small ¢, and so ¢ =%/ > 1 on
B(o,1).

Note that once e is sufficiently small, we have ¢ < 1662 on B(q, 46), and so

03 > 16734973/ on B(q,46).

This means gD*S/ 4 is large near ¢, but we want a function that is large at all points
in NgNdB(o,1—0). To achieve this, we define v to be an average of functions ¢ ~—3/*
constructed for different points in S* x {0} € C x A;. For a given 6 > 0, we pick
Z1,...,2K on the unit circle, and ¢; € B(o,2) which are e-close to (z;,0) € C(Y)
under our Gromov-Hausdorff approximation, so that the 46-balls B(g;,46) cover
Ny N dB(o,1 — 0). For sufficiently small ¢ we can achieve this with K < c6~! for
/4

a uniform c. We consider the functions ¢, 3% constructed as above, based at the

points g;, and define
1 /
—3/4
v=— E w; .
i=1

Then v satisfies the required properties:

(1) |v/=100v|., < Cp, since we are taking an average of functions that satisfy this
estimate.

(2) If ¢ € NgyNB(o,1—6), then by assumption, there is a ¢; such that ¢ € B(qg;, 46).
It follows that

v(q) > l(,01-_3/4(q) > 19167349732 = ¢~11673/4971/2,

which gives the required lower bound.
(3) We have 902-_3/4 > 1 on B(o,1) for all i, so v satisfies the same estimate. Simi-

larly, goz-_3/4 < 10%* on B(o0,1/2), and so v satisfies the same.

(4) Each goi_g/ * satisfies the required differential inequality (4.3) on B(o,1 —6/2),
and the expression ZZ i + [bmaz 1S convex on the space of Hermitian matrices.
Therefore v satisfies the same differential inequality. O

Note that this result can easily be generalized to other cones of the form C(Y) =
CF x O(Y"), where Y’ has an isolated singularity, but we have crucially used that all
singular points in C(Y) can be taken to be a vertex of C(Y'). We still expect that
with some additional work a similar barrier function can be constructed for more
general cones.

We now use the maximum principle to obtain the following important decay

property.
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PROPOSITION 4.5. There is a constant C > 0 with the following property. Let A >
10. There exists 0 > 0 depending on A such that, if in the setting of Proposition 4.1
€ Is sufficiently small (depending on A,0) and

sup  Ju| <7 <e,
B(0,1)\ Ny

sup fu] < Ar,
B(o,1)

then we have

sup |u|l < CT.
B(o,1/2)

Note that C does not depend on A, 0.
We first need the following lemma.

LEMMA 4.6. Suppose that u; > —1 are constants for i = 1,...,n such that

n

[T+ p) =1

=1

Then there is a g > 0 depending only on n such that if u; < g for all i, then

n
Z i + tmaz > 07
=1

while if p; > —dg for all i, then
n
Z Wi + min < 0.
i=1

Here pimaz, imin are the largest and smallest of the p;, respectively.

Note that the stronger inequality ), y; > 0 follows directly from the inequality
between arithmetic and geometric means without assuming any upper bound on the
1, but we prefer to state the above in a way that the lower and upper bounds are
symmetric.

Proof. Suppose that piyme: = § < dg. For all j we have
1
Hi;&j(l + pi)

We can choose §g so that if 0 < § < §p, then

1+ pj = > (1406)~ (Y,

(1406)""D > 1 —ng,
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so we find that p; > —nd for all j. Then if 6 <1 we have
n n
=[]0+ ) <1+ p + Cud®
i=1 i=1
for a constant C, depending only on n, since the remaining terms are all at least
quadratic in the p;. It follows that

n
ZH@' + tmaz = _Cn62 + 4.
=1

Finally, if § is sufficiently small, then C,,6%> < 6. The argument for the second state-
ment is completely analogous. O

Proof of Proposition 4.5. Let us choose §# = A~2 and assume e is sufficiently small
to apply Proposition 4.4. Let A > 0 satisfy

T = A_lD_l,
so that

sup [ul < A'D,
B(o,l)\Ng

sup |u| < Ar = A"'D71o712,

B(o,1)
In terms of v given by Proposition 4.4, set © = A~!v, so that © > u on 0B(0,1 — )
by properties (2) and (3). We assume in addition that e is sufficiently small (and so
7 is sufficiently small) so that A=1Cy < & for the &y from Lemma 4.6. O

Claim. © > u on B(o,1 —0).
Proof of Claim. If this were not the case, then setting
to=inf{t >0 : 04+t >wuon Blo,1 —0)},

the graph of ¥ + tg will lie above the graph of u, and the two graphs will touch at
a point g € B(o,1 — ). At ¢ we must have \/—199u(q) < v/—199%(q). In orthonor-
mal coordinates at ¢ we have /—1999(q) < A~'Cyld by property (1) in Propo-
sition 4.4, and so the eigenvalues y; of /—190u(q) are bounded above by A~1Cy.
Since A~'Cy < &y, Lemma 4.6 implies that > ; + fimaez > 0, but this contradicts
property (4) in Proposition 4.4, since v/—199u(q) < /—109%(q). This proves the
claim.

Using the claim, it follows from property (3) that

sup u<A~'D=D?r
B(0,1/2)

which gives the required upper bound for u.

The lower bound for u is proved similarly, the only difference being that we
compare u to the function —A~'v instead and we use the second statement in
Lemma 4.6. O
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4.2 Proof of Proposition 4.1. We prove Proposition 4.1 by contradiction.
Let us suppose that we have a sequence u; as in the statement of the proposition
on balls B(o;,1) with corresponding constants ¢; — 0 such that the conclusion of
the proposition fails. Here o; € (C",w;) is the origin. We will show that along
a subsequence, for sufficiently large i we can find f;, g;, u; satisfying the required
properties, giving a contradiction.

Step 1. Let us write k; = supp(,, 1) |ui| — 0. By Lemma 4.3 we have a harmonic

function i on B(0,1) € C(Y') such that, after choosing a subsequence, ; 'u; — h
in C°° uniformly on B(o;,1 — )\ Ny for any 6 > 0. Note that we have |h| < 1, and
it is possible that h = 0. Let us write h = h=? + h>2 for the decomposition of h
into pieces with at most quadratic and faster than quadratic growth. In addition we
decompose h=? = hpn + haut, where hyy, is pluriharmonic, and hgq is in the span of
the functions of type (2) and (3) in Lemma 2.2. From Lemma 2.3 we obtain a real
holomorphic vector field V on C"*! preserving the hypersurfaces

az+ai+- -+l =0,

and a constant 3 such that Ly Q = nBQ, and at the same time on C(Y) Cc C* we
have

gn=1 on=1
V(|22 + |z|°2) = B(|2]> + |z]""—2) = haut-
We define the automorphism g; = exp(x;V) on C"*! and the constants 3; = x;[3.
For any 6 > 0, the spaces B(o0;,1)\Ny converge smoothly to B(0,1)\ /Ny inside
C"*+1, and for sufficiently large i we can use the nearest point projection to identify
them. On B(o0;,1) we have Kéhler potentials ¢; for w; which converge smoothly to

|22+ |z 205 asi — oo, uniformly on B(0;, 1)\ Ny for any 6 > 0. It follows from this
that
sup  |kiVgi — Bigi — Kihaut| < kUi 0),
B(0:,1)\ Ny
and so we also have
sup e_ﬁigf%‘ — @i — Kihgut| < Hiqj(i_l "9)
B(0i,1)\Ne

Here W(i~1|6) denotes a function which for fixed 6 converges to zero as i — 0o.
At the same time, using Proposition 2.1, we have a uniform bound |V],, < C on
B(o;, 1), since this ball is a ball centered at the origin in our reference metric (C", wy)
scaled down to unit size. Together with the uniform gradient bound for ¢; (since
Ay, i = n), this implies

sup e_ﬁigfgpi — ;| < Ck;.
B(o;,1)

To deal with h,, note that hyy, is in the span of the real and imaginary parts of
1,2, 22, x;, and so hpn, also defines a pluriharmonic function hyp; on B(o;,1) for all
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i under the embeddings into C"*!. For any 6 > 0 we have

sup
B(0:,1)\ Ny

i — hpn| < WG [6),

where as above, we are using the nearest point projection on B(o0;, 1)\ Ny for suffi-
ciently large i to view hy, as a function on B(o;,1). We also clearly have

sup |hpni| < C.
B(Oi,l)

We can now define
up = i = wihpni — (€77 gl i — i)
By the construction we have
wi +V—100u; = e Pigtw; + V/—100u,, (4.4)
and e # g;w; has the same volume form as w;. By the estimates above, we have

sup  |ul — rh72| < UG 0)ky,
B(Di,l)\Ng

and also

sup |uj| < Ck;.
B(Oi,l)

Letting 6 — 0, we find that
[w; = kil ™2 (| L2(B(o,,1)) < (i~ )Ai,
where near the singular set we use a Gromov-Hausdorff approximation to view h>?2
as a function on B(0;,1).
Since h>? has faster than quadratic growth, there exists an o > 0 (depending
only on the cone C(Y)) such that

1072 5oy < N P2R72| 0,1y

Here and below, for any ball B we define

11 = (vorc [ \f\2>1/2

to be the L?-norm normalized by the volume of the ball B. We therefore have
1kih™ 2| By < CA* 2%k,

while also

1572 5oy = Nuill Bonn) — 18R = il Bo, 0
> U}l 5o ) — Callkih™ = uill Bo, 1)

> [[4ill Bon) — CAR( ki
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for a constant C) depending on A\. Combining these, we get
[uill Bo,ay < (CA*F2* + Cr W (™)) Az,
Once i is sufficiently large (depending on \), we get
U]l Boy.n) < 2CA* 2%,

Step 2. Let us apply the construction in Step 1 to 8\ instead of A, and let us scale
the balls B(o;,8\) up to unit size. We denote the origins of the scaled up balls by
o, and also let w} = (8)\)"2e Pigfw;. Letting U/ = (8\) 2w}, on B(o}, 1) we have

(Wl + /100U = W™,

and for fixed A, as i — oo, the metrics w} on C™ satisfy the same assumptions as w
in the statement of Proposition 4.1 for arbitrarily small e. By Step 1, (replacing C
by a larger constant if necessary), we have

sup |U!| < CA 2k,
B(o},1)

1U1B(or.1) < CA* ;. (4.5)

By Lemma 4.3 we have a harmonic function H on B(0,1) C C(Y) such that, after

choosing a subsequence,
/!
L — H
7 )
SuPpB(e;,1) ‘UJ
the convergence being in C'*° uniformly on B(o},3/4)\Np for any 6 > 0. There are
two cases to consider:

e Suppose that H # 0. Then by the L*>-bound for harmonic functions on C(Y)
we have

sup |H| < CHH”B(OJ)'
B(0,1/2)

It follows that for any 6 > 0, once ¢ is sufficiently large, we have

Ssu o’ U,
PB( i,1/2)\N9,‘ ’L’ <2 sup ’H’
SUPB(o,1) U} B(0,1/2)
< 2C|H| 0,1
Uil B(or,1)

<40 ———
SupPpg(o;,1) ‘Uz/|

)

and so using (4.5) we have

sup U] < 4C%A%;.
B(0f,1/2)\No
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e Suppose that H = 0. Then for any 6 > 0 we have

sup U] < NP2 sup |U!| < CA*k;,
B(Oivl/z)\N9 B(OL]_)

once 7 is sufficiently large.

In either case, applying Proposition 4.5 to B(o},1/2), we can choose § > 0 depending
on A such that for sufficiently large i we have

sup |U!| < C'\*k;
B(0;,1/4)

for a constant C’ depending only on C(Y). After rescaling, we get the bound
SUD (o, 20 |Uf] < 64C"N*T2%,;, and from (4.4) we have

B (g7 1) (wi + V—100u;) = w; + /—100 (651 (ggl)*u;) .

Letting u = % (g;')*u} we have

sup |uf| < 100C/ N>,
B(oi,))

as long as g; '(B(0;,\)) C B(o;,2)), and e% < 3/2. Both of these estimates will
hold once 7 is sufficiently large (depending on A). Finally we just need to ensure that
)\ is sufficiently small so that 100C’\2T2¢ < 2+, 0

4.3 Proof of Theorem 1.1. We now prove the main result, Theorem 1.1.
Suppose that we have a Calabi—Yau metric (X', n) with X’ biholomorphic to C™ and
with tangent cone C x A; at infinity. Let us write (X, wp) for our reference metric
on C" discussed in Section 2. We have the origin o € X, and using Lemma 3.2 we
also have a distinguished basepoint o’ € X’. By the discussion in Section 2 we have
embeddings F; : X — C""! such that F;(0) = 0, and the image F;(X) has the
equation
aiz +ri4 -+ a2 =0,

where a; = 277/("=2) At the same time using Proposition 3.1 we have embeddings
F!: X" — C""! such that F/(0') = 0, and the image F/(X') satisfies the equation

a;z+x%+-'-+$i:0

with a; > 0. In addition the unit balls for the scaled down metrics 2721y, 272y
converge in the Gromov-Hausdorff sense to the unit ball B(0,1) C C(Y), and the
maps Fj, F converge to the standard embedding B(0,1) C C"™ as i — oo.

We need to find suitable j(7) such that after a further scaling by a bounded factor,
the images Fj{(i) (X') satisfy the same equations as Fy(X). Since a;/a;1; = 2/ (2

and a/al,; — 2"/ (=2 for all sufficiently large i we can find j(i) such that

-1 7 /
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for a dimensional constant C,,, and j(i) — oo as i — co. Let us compose F;(i) with

n—2

an automorphism g; of C"™! of the form (z,x) — (c;z, ¢/ %) for ¢; > 0, where
x = (21,...,25). Then g; o FJf(i) (X') satisfies the equation

= 2 2 _
¢ ajpzt i+ ta, =0,

so we can choose ¢; € (C;1,C,) so that g; o F]f(i) (X') satisfies the same equation
as Fj(X). The balls B,(o/,c; '277®) with the scaled metrics n; = ¢; 227210y still
converge to the unit ball B(0,1) C C(Y'), and on these balls the maps g; o ij(i) (X7")
still converge to the standard embedding of B(0,1) into C"*! as i — oo. Moreover
the volume form of 7; is the pullback of \/—71712(2 A © under g; o F]f(l.).

Let us write w; = 272wy and B; for the unit ball around o with the metric w;.
Similarly let B] be the unit ball around o’ with the metric 7;. We have biholomor-
phisms ®; : X — X' defined by

(I)i = (gZ (¢] F;(Z))il (¢] E
which satisfy ®;(0) = o’ and ®}(n}) = w!*. We claim that on the ball B; we have
|y, (0, ) = dus, (0, )] < V(Y. (4.6)

For this let € B; and 2/ = ®;(x). By the construction and Proposition 3.1 we have
¥ (i~1)-Gromov-Hausdorff approximations G : B; — B(0,1) and G’ : B! — B(0,1)
satisfying G(0) = 0, G'(¢') = 0 such that viewing B(0,1) € C"*! under the standard
embedding, we have |G(x) — Fj(z)| < ¥(i~!) and |G'(z') — g; 0 FJ{(Z.)(J,")| < W(i™h).
Note that Fj(z) = g; o ij(i)(m’) by assumption, and so |G(z) — G'(z')| < W(i™1).
At the same time, under the cone metric on B(0, 1), the distance from 0 is Holder
continuous with respect to the Euclidean distance (it is given up to a factor by

\$|ﬁ), and so this means
|d(0,1)(0, G(2)) — dp(,1)(0,G"(2))| < (™).
Since G, G' are Gromov—Hausdorff approximations, we get
\dy, (0,2) — dy, (o, 2")| < W(i™h)

as claimed.

The balls B;, B! are both ¥(i~!)-Gromov-Hausdorff close to the unit ball in
C(Y). For sufficiently large ¢ we can then use [LS18, Proposition 3.1] to find K&hler
potentials ¢;, ¢} for w;,n; respectively, such that

i — du, (0,-)% /2] < W(iTH),
Il — dy (0, )2/2] < W(EY).
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Using (4.6) this means that on By, (0,1) we can write
(I):(m) =w; + Vv —185%,

with suppg, (o1 [uil < w(i~t).

We will next apply Proposition 4.1. We can assume that the A in the proposition
is of the form A = 27 for an integer m. We can also choose iy > 0 such that the
assumptions of Proposition 4.1 hold for w; and u; on By, (0,1) for all ¢ > iy. Let us
fix a large k£ > 0 and apply the proposition for ¢ = ig + km. We have

sup [Uigkm| < €k,
B (0,1)

Wig+km \D>

where limy_.o € = 0. We find a (4, g and uj, such that

BrGe@iMio+km = Wiptkm + V —100uj, (4.7)

on By, .. (0,1/2) together with the estimate
sup [up] < AFHeg.
Bw710+k,m (0,N\)
Note that By, .,,.(0,\) = Bu, 1. (0,1). Scaling (4.7) up by a factor of A2 we
have
A2 Brgi @ iokm = Wig+(k—1)ym T V —109A2uy,,
and supp (0,1) IA2u)| < A% < €, where we dropped the A* factor. Note

ig+(k—1)m
that by conostruction the volume forms of A =24, 91 PuNig+km and w4 (x—1)m are equal,
and so we can apply Proposition 4.1 again, iterating the above argument. After k
steps we obtain a constant Ay, a biholomorphism Gy : X — X' satisfying G (o) = o/,
and a function U}, such that

Gz (Akn) = Wi, TV —185Uk (4.8)
on By, (0,1), together with the estimate

sup |Uk| < e,
Bu,, (0,1)

such that
(wiy + V —185Uk)n = OJZ).

Here we have absorbed the additional scaling between n and 7 into the constant
Ap. Note that fixing ig we can let k — oo, and once ¢ is sufficiently small, we can
apply Savin’s small perturbation result [Sav07] to find that on By, (0,1/2) we have
Uk — 0 in C. Since G (0) = o, we find, using (4.8), that for sufficiently large k,

Bua,(0,1/4) C Gi(Bu, (0,1/2)) C Ba,y (0, 1),
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and moreover G (Agn) — wj, in C* on By, (0,1/2). If Ay — 0, then this is a
contradiction since 7 is not flat, and so the curvature of By,,(0’,1/4) blows up as
Ap — 0. Similarly A — oo leads to a contradiction since wyg is not flat. Choosing a
subsequence we can assume A, — Ay, > 0. It follows that we can then take a limit
G — Goo On By, (0,1/4) Which gives a holomorphic isometry

Goo : By, (0,1/4) = By (0, 1/4).

We can repeat the same argument for any ¢ > iy and extract a global holomorphic
isometry between (X, wg) and (X', An) for a suitable A. 0

5 Further Directions

The approach that we used to prove Theorem 1.1 can be applied in more general
situations. One natural generalization would be to study the uniqueness of all of
the metrics constructed in the author’s work [Szel7], or by Conlon-Rochon [CR17],
given their tangent cones. The places where we used the specific choice C x A; for
the tangent cone were in Lemma 2.3 in order to understand the quadratic growth
harmonic functions, and in Proposition 3.1 which allowed us to construct embeddings
of a given Calabi—Yau space as a specific hypersurface. When we consider more
general tangent cones, then these results need to be suitably modified. We expect
that in general the Calabi—Yau metric with a given tangent cone is not unique,
however we hope that our methods can be used to describe the moduli space of such
metrics.

To illustrate this, let us consider the next simplest example, namely the metric
wo on C3 with tangent cone C x Aj at infinity, constructed by viewing C3 ¢ C* as
the hypersurface

24zt + i+ =0. (5.1)

This metric has the property that we have holomorphic functions z, x1, x2,y whose
degrees satisfy d(z) = 1,d(x1) = 3,d(z2) = 3,d(y) = 2, and which satisfy (5.1).
Suppose now that (X, n) is another Calabi—Yau metric with the same tangent cone,
and we try to argue as in Proposition 3.1. The same arguments show that we can
embed X into C* as a hypersurface given by a linear equation in monomials of total
degree at most 6. Moreover this equation is a small perturbation of the equation
2?2 4+ 23 + y> = 0 defining the tangent cone. As in Proposition 3.1 we can perform
simplifications, but we cannot always reduce to the equation (5.1). Instead we may
end up with an equation of the form

az+by+a2+224+94°=0

for small constants a, b, with a # 0. Note that this defines a hypersurface biholomor-
phic to C?. When b # 0, then we cannot make the change of coordinate 2’ = z4+a by
to reduce to an equation of the form (5.1), since y has faster growth than z. Indeed,
we expect that one can construct a one-parameter family of inequivalent Calabi—Yau
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metrics on C? with tangent cone C x Ay using the methods from [Li17, CR17, Szel7],
viewing C? ¢ C* as the hypersurface

z+by+ a3 +a5+y° =0.
More precisely we expect the following.

Conjecture 5.1. Up to scaling and isometry there is a one parameter family of
Calabi—Yau metrics on C* with tangent cone C x Ay at infinity.

In view of the gluing construction by Li [Li18] of collapsing Calabi—Yau metrics
on threefolds (see the discussion in [Lil8, Section 4.2]), such metrics could arise as
a suitable blowup limit of a collapsing family of CY metrics on a threefold that has
a fibration locally of the form (x1,z2,y) — 2% + 23 + 3.

A different generalization would be to consider Calabi—Yau metrics on more
general spaces than C". The crucial prerequisite for applying the Donaldson—-Sun
theory in Section 3, as well as [LS18, Proposition 3.1], was that the metric wq is
d0-exact, and we expect that our methods can be extended to classifying such exact
Calabi—Yau metrics. For instance the smoothing Q™ C C" of the n-dimensional A
singularity,

Laf+--ahyy =0,

is expected to admit a Calabi—Yau metric with tangent cone C x A; in terms of the
(n — 1)-dimensional A; singularity (see e.g. [Lil8, Section 4.2]), and the methods
used in Theorem 1.1 could lead to a uniqueness result for this metric.

More generally, from the argument in Proposition 3.1 we can read off which
manifolds can admit a d0-exact Calabi-Yau metric with a given tangent cone. For
instance the following is a natural conjecture to make.

Conjecture 5.2. Let n > 4. The only 00-exact Calabi—Yau manifolds of dimension
n with tangent cone C x Ay are C x Q"~1, C™ and Q™. Moreover up to scaling and
isometry each of these manifolds admits a unique such Calabi—Yau metric.

The three cases correspond to the function f; in the equation analogous to (3.2)
having degree 0, 1 or 2. When n < 4 then there would be more possibilities. For both
Conjectures 5.1 and 5.2 we expect that the proof of Theorem 1.1 can be extended to
prove the classification results, once the corresponding existence results are shown
using the techniques of [Lil7, CR17, Szel7].

Note that some of the results of Donaldson—Sun [DS15] can also be extended to
the case when the metric is not exact, under the assumption that the tangent cone
is smooth away from the vertex (see Liu [Liul7]). This is closer to the setting of
asymptotically conical Calabi—Yau metrics considered by Conlon—-Hein [CH14] who
also obtained classification results for Calabi—Yau metrics with prescribed tangent
cone. At the moment there is little that we can say in this direction about gen-
eral Calabi—Yau manifolds with tangent cones that have non-isolated singularities,
beyond the result in [LS] that each tangent cone is a normal affine variety.
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