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We consider convex solutions of nonlinear elliptic equations which Received 10 November 2020
satisfy the structure condition of Bian and Guan. We prove a weak Accepted 15 February 2021
Harnack inequality for the eigenvalues of the Hessian of these solu-
tions. This can be viewed as a quantitative version of the constant
rank theorem.
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1. Introduction

Constant rank theorems in PDE have a long history, starting with work of Caffarelli
and Friedman [1], Yau (see [2]) and then developed further by Korevaar and Lewis [3],
Caffarelli et al. [4], Bian and Guan [5, 6] and others [7-13]. These results assert that a
convex solution u of a certain class of elliptic or parabolic equations has Hessian D*u of
constant rank.

Constant rank theorems, also known as the “microscopic convexity principle”, have
been used to establish “macroscopic” convexity properties of solutions to PDEs on con-
vex domains, now a vast area of research (see [1, 14-34] and the references therein).

One method for establishing a constant rank theorem is to compute with an expres-
sion involving the elementary symmetric polynomials oy of the eigenvalues

/’Ll S e S /ln
of the Hessian D?u. Bian and Guan [5] considered solutions of nonlinear elliptic equa-
tions
F(Dzu,Du, u,x) =0,

under a convexity condition for F (see (1.4) below) and proved a constant rank theorem
using a differential inequality for the quantity o, + 2%2. The authors [13] gave a new

O’
proof of the Bian and Guan result using the simple linear expression
Aot 20+ e+ U, (1.1)

and a method of induction. This approach exploited the concavity of the sums of the
lowest eigenvalues.
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In this paper we will also assume the Bian and Guan structure conditions. Building
on the method of [13] and making use again of the expression (1.1) we directly prove a
weak Harnack inequality for each of the eigenvalues A;. This states that the L? norm for
some g >0 is bounded above by the infimum. We view this Harnack inequality as a
quantitative version of the constant rank theorem of Bian and Guan, which follows as
an immediate consequence.

Another difference between the current paper and [13] is that we compute differential
inequalities directly, holding almost everywhere, for sums of the eigenvalues 4;. In par-
ticular we avoid here the device of approximation by polynomials.

We now state our results precisely. Let B = B;(0) be the unit ball in R"” and let F be
a real-valued function

F=F(A,p,u,x) € C*(Sym, (R) x R" x R x B),

where Sym, (R) is the vector space of symmetric n x n matrices with real entries. We
assume that F satisfies the condition of 00-Guan [5] that for each p € R”,

(A,u,x) € Sym, (R) x R x B—~F(A™",p,u,x) is locally convex, (1.2)

where Sym (R) is the subset of Sym, (R) that are strictly positive definite. Suppose that
u € C*(B) is a convex solution of

F(D*u, Du,u,x) = 0, (1.3)
subject to the ellipticity condition that for all £ € R",
AV EP < FU(D*u, Du,u, x)E@ < A|¢]>, on B, (1.4)

for a positive constant A > 0, where FY is the derivative of F with respect to the (i, j)th
entry A;; of A. Our main result is as follows.

Theorem 1.1. Let u be as above and let 0 < 2y < --- < A, be the eigenvalues of D*u.
Then there exist positive constants Co,q depending only on n, A, [|ul|c g and |||
such that for each { =1, ..., n,

Aellaa, ) < Co };}/{ 0>
where By, = By,(0) is the ball in R" centered at 0 of radius 1/2.
This implies in particular the constant rank theorem of Bian and Guan [5]:
Corollary 1.1. The Hessian D*u has constant rank in B.
Indeed, applying Theorem 1.1 on appropriately scaled balls, the sets
{x € Bjrank(D*u(x)) <k}, k=0,1,2,..,n,

are open in B. On the other hand the sets {x € B|rank(D*u(x)) > k} are open in B by
continuity of the eigenvalues of D?u. A consequence is that the sets

{x € B|rank(D*u(x)) = k}

are open and closed in B, giving the corollary.
We now give an outline of the paper. In Section 2 we recall some definitions and
known results about semi-concave functions and in particular we provide a proof of the
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semi-concavity of the sum of the first k eigenvalues of D?u for u in C*. We also give a
version of the weak Harnack inequality for subsolutions of elliptic equations.

In Section 3, under the assumption that u is in C*, we prove that the key differential
inequality

k
FQup < CQ+ Y b(k);, for Q= Qe =k + 201+ + ki, (1.5)
i=1
holds almost everywhere, where C and b*/ are bounded. This improves on the analo-
gous result in [13] where the inequality is proved for approximating polynomials. We
note that the method of Section 3 includes proofs of a first variation formula for 4;
(Lemma 3.2) and a second variation inequality (Lemma 3.3), which hold
almost everywhere.

In Section 4 we complete the proof of Theorem 1.1. We cannot directly apply the
weak Harnack inequality to Q satisfying (1.5) because its right hand side includes deriv-
atives of 4y, ..., 4t. We get around this difficulty by considering a new quantity

¢
R= (Qc+28)'%, for &> 0.
k=1
By exploiting the concavity of the square root function, R is shown to satisfy the differ-
ential inequality

F*R,, < CR,

almost everywhere. We apply the weak Harnack inequality to R and then let ¢ — 0 to
obtain Theorem 1.1.

2. Preliminaries

In this section we collect some elementary and well-known results which we will need
in the sequel.

2.1. Semi-concave functions

Let U be a bounded convex subset of R”. A real-valued function f on U is semi-concave
if there exists a constant M such that g = f — M|x|* is concave. We call M the semi-
concavity constant for f on U. Observe that every function in C*(U) is automatically
semi-concave.

Equivalently, a continuous function f is semi-concave if for some M’

f®) ;—f(y) _f(x—;y> < M'|x—yf’, for all x,y € U. (2.1)

It is a classical result that a concave function f is Lipschitz continuous and hence dif-
ferentiable almost everywhere (we write its derivative as Df(x) if it exists at x).
Moreover, by a theorem of Alexandrov, the second derivative of f exists almost every-
where in the sense that there is a second order Taylor expansion at almost every x (see
for example [35, Theorem 2.6.4]). This holds too then for semi-concave functions f on
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U. More explicitly, at almost every x € U, the derivative Df (x) = (fi(x), ..., fa(x)) exists
and there is a symmetric matrix which we write as D*f(x) = (f;(x)) such that

1
FO) =f) + i) = 2); + 2 f5(0) 0 = 2y = )+ olly = 21°),as [y —x[ =0,
(2.2)
where as usual we are summing repeated indices from 1 to .

The following proposition is well-known (see for example [36]), but we include a
brief proof for the reader’s convenience.

Proposition 2.1. Let u € C*(U), for a bounded convex set U C R". Denote by J,(x) <
<o+ < Jn(x) the eigenvalues of the Hessian D*u(x). Then for each k =1,...,n the map
U — R given by

x—A(x) + -+ A(x)
is semi-concave.

Proof. We claim the following: the map ¢ : Sym (R) — R given by
0(A) = 4(A) + - + 4(A)

is increasing and concave on Sym, (R), and is Lipschitz continuous with Lipschitz con-
stant depending only on # and k. To see the claim, note that given fixed unit vectors
Vis..., Vi € R", the function

k
A > AVIVI,
oa=1

is linear, increasing and has bounded Lipschitz constant depending only on # and k.
Here we are writing V, = (V,.., V}/) and A = (A;);,_,. But we can define

k
a(A) = inf{ZA,-jV;VﬁVl, oy Vi are orthonormal}.
a=1

The map ¢ is clearly increasing, and it is concave since the infimum of concave func-
tions is concave. Moreover, it is an elementary fact that for any normed vector space
X1 ), if i:X—R, for s€S, is a family of functions which are uniformly
Lipschitz continuous:

i) =0 < Cllx =yl xyeX

then f := min,gf;, assuming the minimum is attained at each point and is finite, is
also Lipschitz continuous with the same constant C. The claim follows.
For x,y € U, using concavity of o,

oD LoD (17, (512
2 2

)

But then since u is in C*(U) we have that Dju is semi-concave for every i, j and
hence
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Diju(x) + Diju(y) Dyu (x —;—y

5 )SMlx—ylz-

Then, increasing M if necessary, we have the following inequality of symmetric matri-
ces:

D2u(x) + D?
ul) EDUO) oy (YY) < i - ypra.
2 2

Since ¢ is increasing and Lipschitz continuous,

o(D*u(x) + o(Duly)) (Dzu (m»

2 2

SG(DZ ( +y>+M|x 5 Id) <Dzu<xzﬂ>>

< Clx —yl,

completing the proof of the proposition. O
We end the subsection with an elementary proposition.

Proposition 2.2. Let U be a bounded convex set in R" and V an open interval in R.
Suppose that f : U — V is semiconcave and h : V. — R is increasing, Lipschitz continuous
and concave. Then ho f : U — R is semiconcave.

Proof. We have for x,y € U,

h(f(x)) + h(F () h<f<m)>

2 2

<h <JM> - h(f (Q)) (h concave)

< h(f (x—;—y) + M|x —y| > (f <¥>> (f semiconcave, h increasing)
< Clx — % (h Lipschitz)

as required. O

2.2. The weak Harnack inequality

We state a weak Harnack inequality for semi-concave functions. It follows by approxi-
mation from the classical weak Harnack inequality for functions in W?" (see [37,
Theorem 9.22]). Similar statements, with slightly different hypotheses, can be found in
[38] and [13].

Proposition 2.3. Consider the operator Lv = a’Dyv + b'Div + cv with bounded coeffi-
cients on the unit ball B C R" and with a” satisfying the uniform ellipticity condition
A71|§|2 < aifﬁiéj < A|§|2 for all £ € R" for A > 0. Let v be a semi-concave nonnegative
function on B satisfying Lv < f almost everywhere in B for f € L"(B). Then on the half
size ball B,
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1 1/q )
<@J ,vq> < C(ug{fv—k [[f]
or positive constants C and g depending only on n, A, bounds for b’ and ¢ and the
p q aep g oniy
radius of the ball B.

Ln(B)), (2.3)

Proof. We include a brief proof for the sake of completeness. Let B be a ball such that
B' CC B CC B. Since v is semi-concave, it is Lipschitz continuous and twice differenti-
able almost everywhere. For ¢ > 0 let v, be a standard mollification of v. Then v, — v
uniformly and Dfv, — DFv for k=1, 2 almost everywhere on B as ¢ — 0 (the second
assertion is a direct consequence of the expansion (2.2)). Let § > 0 be given. Then by
Egorov’s Theorem there exists a set K5 C B such that |B \ K;| < § and D*v, — D*v uni-
formly on K for k=1, 2. Then we may choose ¢ > 0 sufficiently small so that

Lve=Lv+L(v,—v) <f+9, almost everywhere on Kj.
On the other hand, since v is semi-concave we have an upper bound for D?v, and
hence on B\ K;
Lvs S M)

for a constant M > 1 depending on the C° norm, semi-concavity constant and Lipschitz
bound of v as well as bounds on the coefficients of L. It follows that almost everywhere
on B we have

Lv, Sf +g,

for a function g € L**(B) with |[g|[,.3) < CM&"". Then we apply [37, Theorem 9.22]
to the smooth nonnegative function v, to obtain

1/q
(J /vZ) < Cigfvg + ClIf + gl < C(iggl/fv'g + ]2 s) +M51/n)’

for uniform positive constants C, g. Then let 6 — 0, so that in addition ¢ — 0 and we
obtain (2.3). O

We emphasize that the constants C, q in the above proposition are independent of
the semi-concavity constant of v.

3. A Differential inequality

As in the introduction, let u solve the equation (1.3) subject to the conditions (1.2) and
(1.4). In this section, we make the following:

Additional assumption: u € C*(B).

Let 0 <A <---</, be the eigenvalues of D*u. By Proposition 2.1, the map
x—A +---+ Jx is semi-concave on compact convex subsets of B. It follows that
1> ..., An are twice differentiable almost everywhere on B. The goal of this section is the
following differential inequality.
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Lemma 3.1. For 1 < k < n, define
Q:=Q:= ;uk+2;hk_1 + .- —l—k/ll.
Then

k
F*Qu < CQ+ Z bi’j(ii)j, almost everywhere on B, (3.1)
i1
where C is a uniform constant and the b* are uniformly bounded functions on B.

In the above, “uniform” means that the constants depend only on n, A, |[ul|c 5 and
||E||c2- In particular, the constants do not depend on a C* bound for u.

To establish the lemma, we prove two rather general results about the first and
second derivatives of the eigenvalues A;, which will hold almost everywhere. In the case
when the eigenvalues 4; are all distinct, there are well-known formulae for their first
and second derivatives (see for example [39]). To deal with eigenvalues with multiplicity
we adapt an approach of Brendle-Choi-Daskalopoulos [40, Lemma 5] where similar
statements to Lemmas 3.2 and 3.3 below are proved for ;. Crucially, these lemmas
only hold at a point where the eigenvalues are twice differentiable.

Fix an x, at which the A; are twice differentiable, and choose coordinates at x, such
that D*u is diagonal with entries u; = 4;. Moreover, we suppose that N of the /s are
distinct at x,, and define 1 < p; < -+ < uy = n by

==y < gy = = gy, < Ay = = Dy =
We also define gy =0 so that the multiplicities of the eigenvalues of D*u at x,
are [y — Hos Uy — Hys oo Uy — Hy—1-
Lemma 3.2. For each j = 1,2, ..., N we have at x,,
ui = (A1, ) i0ke> for 14+ py <k €< p. (3.2)

fori=1,2,..,n.

Proof. We prove this by induction on j. We first prove the case j= 1, which states that
ugsi = (1) 0k, for 1 <kl <p, 1<i<n. (3.3)

Let V = (V!,..., V") be a constant unit vector field defined in a neighborhood of x,.
Then by definition of 4;, the function h defined by

b= u VEVE — 24,
has h(x) >0 for x near x,. Choose V with V*(xg) =0 for k> y; so that we have
h(xo) = 0 and h has a local minimum at x,. Moreover, h is twice differentiable at x.
Then at x,,

0= hi = Z ukginVé — Z (il)iékngVz,

k)kSH] k,[ﬁ,ﬂ]

using the fact that V is a unit vector. Then (3.3) follows since we are free to choose
Vk(xo) for k < p,.

For the inductive step, assume (3.2) holds for 1 <j <p. Let V,..., Vﬂp be the con-
stant unit vector fields in the 0/0xi,...,0/0x, directions. That is, writing V, in
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component form as V, = (V},.., V"), we have Vi = Ogo- Next let W = Vit be an
arbitrary constant unit vector field in the span of the directions 0/9x14, ..., 0/0xy, .-
Consider the quantity

1+;4P

Z“kkavé Z( — K- 1)/L1+x /11+up

I+p,

_Zukav’ Z > i Ok VEVE = Ay,

=1 1y <a<py

p
kystl kyartl
= Z (uk/; — }v1+#j715k1g)Va V(X + uWW* — Mgy
j=1 14p <oy

Now note that h(xg) = 0 and h(x) > 0 for x near x,. Since h achieves a minimum at x,
we have

p
0=hi(xo) = > (ki — (g, )iOk) VAV + s WW' = (i),
=

1+uj <oz<‘uj
= (ugti — Ske(Fa,))) WEWY,

where for the last line we used the inductive hypothesis and the fact that W is a unit
vector. Since W is an arbitrary unit vector in the span of 6/8x1+#p,...,8/8xup+l, we
have proved (3.2) for j = p + 1 and the result follows by induction. O

As above, pick coordinates at x, such that D*u is diagonal with entries u; = 4;. Fix
m between 1 and n. Define p € {m,m+1,...,n} to be the largest integer such that
Jp = Am at Xo, SO that

0 < oe Sy = g1 = =2y < dpy1 < v < .

Then we have the following lemma on the second derivatives of the 4,. We emphasize
that this only holds at the point x, where the 4; are twice differentiable.

Lemma 3.3. As symmetric n X n matrices we have at x,,

m

Z )boz ab < Z Ugpap + 2 Z Z uqmu‘ﬂb (3.4)

o=1 o=1 q>p “‘X o /L‘Z

Proof. Let Vi,...,V, be smooth mutually orthogonal unit vector fields defined in a
neighborhood of x, with V,(xy) the unit vector in the 0/0x, direction. In particular,
writing V,, = (V},..., VI) we have Vi = §,, at x,.

We consider the quantity

m m
2 : ksl § :

= Uy Vc< Va — la,
a=1 =1

which has h(xy) = 0 and h(x) > 0 for x near x,. In particular h achieves a minimum at
X0, and moreover, h is twice differentiable at x,.
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We prescribe the first and second derivatives of the V,, at x, as follows. For 1 < a <
m, and 1 <a <mn,
0, qgsp

0,V = { _Uga
— > > p.
* ;wx _ )'q q p

Forl<o,f<mand 1<ab<mn,

! Ya au/)’qb 1 uaqb”ﬁ%
8a3bV“ = —— q L A
B 2 IPZP (ia - )\,q)(iﬁ — /lq) 2; ()Vot — Aq)(iﬁ _ /“q)

noting that when o = f§ we have

Ungalogb
Qa0 = =y
PZP (Vo — 2q)°

We take 0,0, Vd = 0 with q>m.
We first check these definitions are consistent with the V;, being orthonormal vectors.
Compute at x,, for o, f = 1,...,m,

Ba (Z ngg) =Y @VHVE+ > Via, Vi =0,
q q

q
since 9,V and 8aVZ vanish when ¢ < m < p. And
9a0 (Z ngg> = (@VH(@VE) + D 0V 0aV}) + 020, VE + 0,0,V
q q>p q>p

UngaUpgb UggbUBga
= : + :
; (Ut — 2) (g — 2 ; (Ut — 2) (s — 2

. Z UogaUpgb . Z UogbUBga
(22 = 2g)(2p = 2q) (22 = 2g)(2p = 2q)

q>p q>p

=0,

as required.
Since h has a minimum at x, we have the inequality of matrices:

m

0<hg = Z{umab — () gy + 201000 VEYVE + 2031, (9, VE) VI

a=1

+ 2u (0 VE) (O, VE) + Zuktz(aaabe)Vf}

4 Ugua U, u u )
Z{umb — () +4Z%’f”+zzzqﬁ_ 2)%{2%}
o q o — Aq

= (dy — Ag)’

o=1 q>p q9>p
UgoaUoygh
1 qoatoq
= E Ugab — (M) gy + 2 E a0
=1 qap T q

giving (3.4). O
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We can now complete the proof of Lemma 3.1, making crucial use of the convexity
condition. Following [5], we observe that the convexity condition (1.2) can be written
as: for every symmetric matrix (Xg,) € Sym, (R), vector (Z;) € R" and Y € R,

0 < F" XX, + 2F" A" X X, + F* 2,7,

_ opabu _ ypab,x, U, Xg U, U2 (3.5)
2FUUX Y — 2R X 7, + 2PN YZ, + FRUY2,

where we are evaluating the derivatives of F at (A, p,u,x) for a positive definite matrix
A. We are writing A” for the (i, j)th entry of the inverse matrix of A. We remark that
we do not require the condition (1.2) to hold for the entire space Sym!(R) x R x B,
but only for a certain subset which depends on the solution u.

Proof of Lemma 3.1. Observe that

We will compute at a point x, at which the /; are twice differentiable and D*u is diag-
onal with entries u;; = 4;. From Lemma 3.3 we have

Fﬂanb _ ZZFab

m=1 o=
< ZZP Uyaab + ZZZ Z pab Haratqrb ”qw“q«b
m=1a= vy eyl /1 _ /L

where we are writing p,, for the largest integer p,, € {m,m + 1, ...,n} with the property
that 4, = A, at xo. Differentiating the equation

F(D*u, Du,u,x) = 0,
twice in the x, direction gives
0 = FPUgp + FPUpyy + Fluy,
+ POy e, + PPy, + F“’“ui 4 Fo%a

+ 2Fab’pyuubocuro¢ + 2Fab’uuubacuzx + 2Fab’ o Ugba
+ 2FPe "y oy + 2FP0 %y, 4+ 2F 1y,

(3.6)

Hence,

k m
UgoaUgab
Faanb < Zz :{ z F“b iqom qj . Z Fah, rsuabaum . F"’”ui _ 0%
-

m=1a0=1 qQ>Pm ay by 15 $>py

-2 Foouy oy, — 2 g T — 2F“’x“u“}

a, b>py a, b>py
+CQ+ Zb"’f(/li)j + > P,
i=1 1<a<f<p

for uniformly bounded b*/,¢"*#. Here we are using Lemma 3.2 which implies that if
1 < o < py then at xo,
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Ugyj = (jvi)j,

for some 1 < i < k with 4; = 4,. But

Z e a’ﬁuaﬁj <C Z (;L[f N /Lac) +2 Z Fab Unpallafb

1<a<p<p; 1<a¢<[i</)k 1<a< f<pps Iuig A= 2
Foby, u b
<CQ+ 22 > “q“ = (3.7)
o=1 p,<q<py
k—1 m

<c+2Y Y Y B j‘f_“ ‘Z“h

m=1o=1 p,, <q<px

where for the first line we note that if 1 < o < 8 < p; with 1, = Ag then by Lemma 3.2
we have u, = 0.
We now apply the convexity assumption (3.5), taking for each fixed o,

| —tapy  if a,b > py _J1 ifa=ua _
Xap = { 0 otherwise, Za = 0 otherwise, Y=t (3.8)

This gives for each o = 1,...,m,

UgaaUgb
0< Z Fub,rsuabaurw +2 Z Fub qan™q “—I—Fx“’x*

A
a, by 1y 5>p a, by 4> py q (3.9)
+2 F“b”‘uaboﬂ,toC +2 b Uapy + 2F“ %, + F 42,
o
a, b>py a, b>py
Observe that
L& b “qazx Ugba L b Yquallqob uqacb
SHIPIWELELNE D ot a0
m=1 o=1 g, b)q>Pk m=1 a=1 q>py
Combining all of the above gives
k
FQu < CQ+ > b (%), (3.11)
i=1
as required. 0O

4, Proof of Theorem 1.1

We will first assume that u € C*(B) and then remove this assumption by approxima-
tion. The quantity Qx = A +244—1 + --- + k4; is semi-concave and from Lemma 3.1
we have almost everywhere

k
F(Qu)p < CQu+ > b (4),,

i=1

for b"/ bounded. For ¢ > 0 and a fixed ¢ € {1,2,...,n}, consider
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1/2

(Qk + ¢)

MN

k=1

Then by Proposition 2.2, since the map x+— (x + 8)1/ ? is increasing, Lipschitz continu-
ous and concave for x > 0, we see that R is semiconcave (but note that its constant of
semi-concavity will depend on ¢). R is twice differentiable almost everywhere. At such a
point, we compute

4 l
FPRy, == " (Qu+2) P F(Qu)y, Z Qe +2) P F Q) (Qu),
k=1 k=
14

N | —

1 ¢
5 (Qc+e) ' (CQ +Zb’f ) — o> (Qc+) 7 DQif
k=1

=1

< R4 €Yt e Z Q+2) P,
k=1 k=1

for uniform constants C,c > 0 (the constant C may differ from line to line). We claim
that

4
> (Q+e) 1/ZZ|D/L,| <CZ Qc + &) *|DQls (4.1)

k=1 i=1

for a universal constant C. We do this by induction on ¢. The case ¢ =1 is trivial.
Assume it holds for / — 1. We need to show that

¢ ¢

(Q+2) 7> D4 < €Y (Qe+2) 72 |DQl.
i=1 k=1

But using Qy—; < Qy, the inductive hypothesis and the definition of Q, we have

! (-1
(Q+8) " IDA] < (Qeet +2) 72 DA+ (Qr +2) 2 |Diy|

i=1 i=1

{— (—1
Z Qi+ &) A DQi + (Q + &)~ 1/2<|1>Qp|+c§:|ml|>

k= i=1
l—

,_‘,_.

<C (Qk+s) 21DQi| + (Qr + &) *|DQ|
k

-1
+(Qe1 +2) 20 DA
i=1

14
<CY (Qe+e) D
k=1

This completes the proof of (4.1).
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It follows that, for constants C,c > 0 independent of &,

14 14
F®Ry, < CR+CY (Qe+2) " ?IDQu| — ¢ (Qu + &) |DQi?

k=1 k=1
< CR,

using the bound

(Qc+¢) 7’ IDQy < = (Qw+®3ﬂmQ|'+ 5(Q+e)',

which holds for any 6 > 0.
Since R is semi-concave, the weak Harnack inequality (Proposition 2.3 above) implies
that for a uniform g >0 and C,

IR[l a5, ,) < ClnfR (4.2)

In particular, the constant C is independent of ¢. Hence we can let ¢ — 0 to obtain the
same estimate for ;_, Q,lc/ ?. Write

S— (Z Q1/2> .

Now observe that for a C depending only on n we have
1
— A <8 < Cly.
cMSPS M

We have

1811235, < Cinf s,

and squaring both sides gives
||S||Lq/2(31/2) < C]igfll/fs

and hence

||},é| |Lq/2(31/2) S CJIBIII/E /1[.

This completes the proof of the theorem in the case that u € C*(B).

For u € C*(B) as in the statement of the theorem, the elliptic equation satisfied by u
implies that u € Wflo’f(B) for all p. Fix p>n and a ball B with B,;, CC B CC B. Then
we can find a sequence of smooth convex functions 4 in a neighborhood of B such
that u) — u in W*P(B) as s — oo. This also implies that u’) — u in C3(B). We wish
to apply Lemma 3.1 to each u®). Although u® does not solve F(D?u, Du,u,x) =0 we
see from (3.6) and F € C? that & := u¥) satisfies
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~ab . ~Da ~ ~U.~
OZF‘Z uubmc"'Fp uazm"'Fuuam

zabrs. . FParPo~  ~ FUU~)  FXe Xy
+F UgbyUrsy + F UgoUpy + F u, + F

(4.3)
~ab,py .~ ~ab,u. . ~ab, x, ~
+ 2Fa P UgpoyUry + 2Fa uuabuua + 2Fa * Ugbo

+ 2P ity + 2F7 gy + 2F iy, — £,

where f() — 0 in L?(B) as s — oo. Here we are using F to indicate that we are evaluat-
ing the derivatives of F at u. Carrying out the rest of the proof of Lemma 3.1 with this
extra term f) gives almost everywhere on B,

k
F*Qu < CQ+ D64 (0); + 1Y,
i=1

modifying f© if necessary, and evaluating ;, Q etc. with respect to i. Then R satisfies
almost everywhere on B,

e abe 1
FR,, < CR +53‘1/2f(5>.

Applying Proposition 2.3 we obtain

||R||M<Bl/2> < cgl/fiz 4 Ce ||V 11(B)

and letting s — oo gives

[IRllzo(s,.,) < CInfR,

for a constant C independent of ¢. The rest of the proof goes through as above, and this
completes the proof of Theorem 1.1.
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