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ABSTRACT
We consider convex solutions of nonlinear elliptic equations which
satisfy the structure condition of Bian and Guan. We prove a weak
Harnack inequality for the eigenvalues of the Hessian of these solu-
tions. This can be viewed as a quantitative version of the constant
rank theorem.
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1. Introduction

Constant rank theorems in PDE have a long history, starting with work of Caffarelli
and Friedman [1], Yau (see [2]) and then developed further by Korevaar and Lewis [3],
Caffarelli et al. [4], Bian and Guan [5, 6] and others [7–13]. These results assert that a
convex solution u of a certain class of elliptic or parabolic equations has Hessian D2u of
constant rank.
Constant rank theorems, also known as the “microscopic convexity principle”, have

been used to establish “macroscopic” convexity properties of solutions to PDEs on con-
vex domains, now a vast area of research (see [1, 14–34] and the references therein).
One method for establishing a constant rank theorem is to compute with an expres-

sion involving the elementary symmetric polynomials rk of the eigenvalues

k1 � � � � � kn

of the Hessian D2u: Bian and Guan [5] considered solutions of nonlinear elliptic equa-
tions

FðD2u,Du, u, xÞ ¼ 0,

under a convexity condition for F (see (1.4) below) and proved a constant rank theorem
using a differential inequality for the quantity r‘þ1 þ r‘þ2

r‘þ1
: The authors [13] gave a new

proof of the Bian and Guan result using the simple linear expression

k‘ þ 2k‘�1 þ � � � þ ‘k1, (1.1)

and a method of induction. This approach exploited the concavity of the sums of the
lowest eigenvalues.
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In this paper we will also assume the Bian and Guan structure conditions. Building
on the method of [13] and making use again of the expression (1.1) we directly prove a
weak Harnack inequality for each of the eigenvalues ki. This states that the Lq norm for
some q> 0 is bounded above by the infimum. We view this Harnack inequality as a
quantitative version of the constant rank theorem of Bian and Guan, which follows as
an immediate consequence.
Another difference between the current paper and [13] is that we compute differential

inequalities directly, holding almost everywhere, for sums of the eigenvalues ki. In par-
ticular we avoid here the device of approximation by polynomials.
We now state our results precisely. Let B ¼ B1ð0Þ be the unit ball in R

n and let F be
a real-valued function

F ¼ FðA, p, u, xÞ 2 C2ðSymnðRÞ � R
n � R� BÞ,

where SymnðRÞ is the vector space of symmetric n� n matrices with real entries. We
assume that F satisfies the condition of 00-Guan [5] that for each p 2 R

n,

ðA, u, xÞ 2 Symþ
n ðRÞ � R� B 7! FðA�1, p, u, xÞ is locally convex, (1.2)

where Symþ
n ðRÞ is the subset of SymnðRÞ that are strictly positive definite. Suppose that

u 2 C3ðBÞ is a convex solution of

FðD2u,Du, u, xÞ ¼ 0, (1.3)

subject to the ellipticity condition that for all n 2 R
n,

K�1jnj2 � FijðD2u,Du, u, xÞninj � Kjnj2, on B, (1.4)

for a positive constant K > 0, where Fij is the derivative of F with respect to the (i, j)th
entry Aij of A. Our main result is as follows.

Theorem 1.1. Let u be as above and let 0 � k1 � � � � � kn be the eigenvalues of D2u.
Then there exist positive constants C0, q depending only on n, K, jjujjC3ðBÞ and jjFjjC2

such that for each ‘ ¼ 1, :::, n,

jjk‘jjLqðB1=2Þ � C0 inf
B1=2

k‘,

where B1=2 ¼ B1=2ð0Þ is the ball in R
n centered at 0 of radius 1/2.

This implies in particular the constant rank theorem of Bian and Guan [5]:

Corollary 1.1. The Hessian D2u has constant rank in B.

Indeed, applying Theorem 1.1 on appropriately scaled balls, the sets

fx 2 BjrankðD2uðxÞÞ � kg, k ¼ 0, 1, 2, :::, n,

are open in B. On the other hand the sets fx 2 BjrankðD2uðxÞÞ � kg are open in B by
continuity of the eigenvalues of D2u: A consequence is that the sets

fx 2 BjrankðD2uðxÞÞ ¼ kg
are open and closed in B, giving the corollary.
We now give an outline of the paper. In Section 2 we recall some definitions and

known results about semi-concave functions and in particular we provide a proof of the

1586 G. SZÉKELYHIDI AND B. WEINKOVE



semi-concavity of the sum of the first k eigenvalues of D2u for u in C4. We also give a
version of the weak Harnack inequality for subsolutions of elliptic equations.
In Section 3, under the assumption that u is in C4, we prove that the key differential

inequality

FabQab � CQþ
Xk
i¼1

bi, jðkiÞj, for Q ¼ Qk ¼ kk þ 2kk�1 þ � � � þ kk1, (1.5)

holds almost everywhere, where C and bi, j are bounded. This improves on the analo-
gous result in [13] where the inequality is proved for approximating polynomials. We
note that the method of Section 3 includes proofs of a first variation formula for ki
(Lemma 3.2) and a second variation inequality (Lemma 3.3), which hold
almost everywhere.
In Section 4 we complete the proof of Theorem 1.1. We cannot directly apply the

weak Harnack inequality to Q satisfying (1.5) because its right hand side includes deriv-
atives of k1, :::, kk: We get around this difficulty by considering a new quantity

R ¼
X‘
k¼1

ðQk þ eÞ1=2, for e > 0:

By exploiting the concavity of the square root function, R is shown to satisfy the differ-
ential inequality

FabRab � CR,

almost everywhere. We apply the weak Harnack inequality to R and then let e ! 0 to
obtain Theorem 1.1.

2. Preliminaries

In this section we collect some elementary and well-known results which we will need
in the sequel.

2.1. Semi-concave functions

Let U be a bounded convex subset of Rn: A real-valued function f on U is semi-concave
if there exists a constant M such that g ¼ f �Mjxj2 is concave. We call M the semi-
concavity constant for f on U. Observe that every function in C2ð�UÞ is automatically
semi-concave.
Equivalently, a continuous function f is semi-concave if for some M0

f ðxÞ þ f ðyÞ
2

� f
xþ y
2

� �
� M0jx� yj2, for all x, y 2 U: (2.1)

It is a classical result that a concave function f is Lipschitz continuous and hence dif-
ferentiable almost everywhere (we write its derivative as Df(x) if it exists at x).
Moreover, by a theorem of Alexandrov, the second derivative of f exists almost every-
where in the sense that there is a second order Taylor expansion at almost every x (see
for example [35, Theorem 2.6.4]). This holds too then for semi-concave functions f on
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U. More explicitly, at almost every x 2 U, the derivative Df ðxÞ ¼ ðf1ðxÞ, :::, fnðxÞÞ exists
and there is a symmetric matrix which we write as D2f ðxÞ ¼ ðfijðxÞÞ such that

f ðyÞ ¼ f ðxÞ þ fiðxÞðy� xÞi þ
1
2
fijðxÞðy� xÞiðy� xÞj þ oðjy � xj2Þ, as jy � xj ! 0,

(2.2)

where as usual we are summing repeated indices from 1 to n.
The following proposition is well-known (see for example [36]), but we include a

brief proof for the reader’s convenience.

Proposition 2.1. Let u 2 C4ð�UÞ, for a bounded convex set U � R
n. Denote by k1ðxÞ �

� � � � knðxÞ the eigenvalues of the Hessian D2uðxÞ. Then for each k ¼ 1, :::, n the map
�U ! R given by

x 7! k1ðxÞ þ � � � þ kkðxÞ
is semi-concave.

Proof. We claim the following: the map r : SymnðRÞ ! R given by

rðAÞ ¼ k1ðAÞ þ � � � þ kkðAÞ
is increasing and concave on SymnðRÞ, and is Lipschitz continuous with Lipschitz con-
stant depending only on n and k. To see the claim, note that given fixed unit vectors
V1, :::,Vk 2 R

n, the function

A 7!
Xk
a¼1

AijV
i
aV

j
a,

is linear, increasing and has bounded Lipschitz constant depending only on n and k.
Here we are writing Va ¼ ðV1

a , :::,V
n
a Þ and A ¼ ðAijÞni, j¼1: But we can define

rðAÞ ¼ inf
Xk
a¼1

AijV
i
aV

j
ajV1, :::,Vk are orthonormal

( )
:

The map r is clearly increasing, and it is concave since the infimum of concave func-
tions is concave. Moreover, it is an elementary fact that for any normed vector space
ðX, jj � jjÞ, if fs : X ! R, for s 2 S, is a family of functions which are uniformly
Lipschitz continuous:

jfsðxÞ � fsðyÞj � Cjjx � yjj, x, y 2 X

then f :¼ mins2Sfs, assuming the minimum is attained at each point and is finite, is
also Lipschitz continuous with the same constant C. The claim follows.
For x, y 2 �U , using concavity of r,

rðD2uðxÞÞ þ rðD2uðyÞÞ
2

� r D2u
xþ y
2

� �� �

� r
D2uðxÞ þ D2uðyÞ

2

� �
� r D2u

xþ y
2

� �� �
:

But then since u is in C4ð�UÞ we have that Diju is semi-concave for every i, j and
hence
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DijuðxÞ þ DijuðyÞ
2

� Diju
xþ y
2

� �
� Mjx� yj2:

Then, increasing M if necessary, we have the following inequality of symmetric matri-
ces:

D2uðxÞ þ D2uðyÞ
2

� D2u
xþ y
2

� �
� Mjx� yj2Id:

Since r is increasing and Lipschitz continuous,

rðD2uðxÞÞ þ rðD2uðyÞÞ
2

� r D2u
xþ y
2

� �� �

� r D2u
x þ y
2

� �
þMjx� yj2Id

� �
� r D2u

xþ y
2

� �� �
� Cjx� yj2,

completing the proof of the proposition. w

We end the subsection with an elementary proposition.

Proposition 2.2. Let U be a bounded convex set in R
n and V an open interval in R.

Suppose that f : U ! V is semiconcave and h : V ! R is increasing, Lipschitz continuous
and concave. Then h � f : U ! R is semiconcave.

Proof. We have for x, y 2 U,

hðf ðxÞÞ þ hðf ðyÞÞ
2

� h f
xþ y
2

� �� �

� h
f ðxÞ þ f ðyÞ

2

� �
� h f

xþ y
2

� �� �
ðh concaveÞ

� h f
xþ y
2

� �
þMjx � yj2

� �
� h f

x þ y
2

� �� �
ðf semiconcave, h increasingÞ

� Cjx� yj2, ðh LipschitzÞ

as required. w

2.2. The weak Harnack inequality

We state a weak Harnack inequality for semi-concave functions. It follows by approxi-
mation from the classical weak Harnack inequality for functions in W2, n (see [37,
Theorem 9.22]). Similar statements, with slightly different hypotheses, can be found in
[38] and [13].

Proposition 2.3. Consider the operator Lv ¼ aijDijvþ biDivþ cv with bounded coeffi-
cients on the unit ball B � R

n and with aij satisfying the uniform ellipticity condition
K�1jnj2 � aijninj � Kjnj2 for all n 2 R

n for K > 0. Let v be a semi-concave nonnegative
function on B satisfying Lv � f almost everywhere in B for f 2 LnðBÞ. Then on the half
size ball B0,

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1589



1
jB0j
ð
B0
vq

� �1=q

� C inf
B0

vþ jjf jjLnðBÞ
� �

, (2.3)

for positive constants C and q depending only on n,K, bounds for bi and c and the
radius of the ball B.

Proof. We include a brief proof for the sake of completeness. Let ~B be a ball such that
B0 �� ~B �� B: Since v is semi-concave, it is Lipschitz continuous and twice differenti-
able almost everywhere. For e > 0 let ve be a standard mollification of v. Then ve ! v
uniformly and Dkve ! Dkv for k¼ 1, 2 almost everywhere on ~B as e ! 0 (the second
assertion is a direct consequence of the expansion (2.2)). Let d > 0 be given. Then by
Egorov’s Theorem there exists a set Kd � ~B such that j~B n Kdj � d and Dkve ! Dkv uni-
formly on Kd for k¼ 1, 2. Then we may choose e > 0 sufficiently small so that

Lve ¼ Lvþ Lðve � vÞ � f þ d, almost everywhere on Kd:

On the other hand, since v is semi-concave we have an upper bound for D2ve and
hence on ~B n Kd

Lve � M,

for a constant M � 1 depending on the C0 norm, semi-concavity constant and Lipschitz
bound of v as well as bounds on the coefficients of L. It follows that almost everywhere
on ~B we have

Lve � f þ g,

for a function g 2 L1ð~BÞ with jjgjjLnð~BÞ � CMd1=n: Then we apply [37, Theorem 9.22]
to the smooth nonnegative function ve to obtainð

B0
vqe

� �1=q

� C inf
B0

ve þ Cjjf þ gjjLnð~BÞ � C inf
B0

ve þ jjf jjLnðBÞ þMd1=n
� �

,

for uniform positive constants C, q. Then let d ! 0, so that in addition e ! 0 and we
obtain (2.3). w

We emphasize that the constants C, q in the above proposition are independent of
the semi-concavity constant of v.

3. A Differential inequality

As in the introduction, let u solve the equation (1.3) subject to the conditions (1.2) and
(1.4). In this section, we make the following:
Additional assumption: u 2 C4ðBÞ:
Let 0 � k1 � � � � � kn be the eigenvalues of D2u: By Proposition 2.1, the map

x 7! k1 þ � � � þ kk is semi-concave on compact convex subsets of B. It follows that
k1, :::, kn are twice differentiable almost everywhere on B. The goal of this section is the
following differential inequality.
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Lemma 3.1. For 1 � k � n, define

Q :¼ Qk :¼ kk þ 2kk�1 þ � � � þ kk1:

Then

FabQab � CQþ
Xk
i¼1

bi, jðkiÞj, almost everywhere on B, (3.1)

where C is a uniform constant and the bi, j are uniformly bounded functions on B.
In the above, “uniform” means that the constants depend only on n, K, jjujjC3ðBÞ and

jjFjjC2 : In particular, the constants do not depend on a C4 bound for u.
To establish the lemma, we prove two rather general results about the first and

second derivatives of the eigenvalues ki, which will hold almost everywhere. In the case
when the eigenvalues ki are all distinct, there are well-known formulae for their first
and second derivatives (see for example [39]). To deal with eigenvalues with multiplicity
we adapt an approach of Brendle-Choi-Daskalopoulos [40, Lemma 5] where similar
statements to Lemmas 3.2 and 3.3 below are proved for k1. Crucially, these lemmas
only hold at a point where the eigenvalues are twice differentiable.
Fix an x0 at which the ki are twice differentiable, and choose coordinates at x0 such

that D2u is diagonal with entries uii ¼ ki: Moreover, we suppose that N of the ki’s are
distinct at x0, and define 1 � l1 < � � � < lN ¼ n by

k1 ¼ � � � ¼ kl1 < k1þl1 ¼ � � � ¼ kl2 < k1þl2 ¼ � � � � � � ¼ klN ¼ kn:

We also define l0 ¼ 0 so that the multiplicities of the eigenvalues of D2u at x0
are l1 � l0, l2 � l1, :::, lN � lN�1:

Lemma 3.2. For each j ¼ 1, 2, :::,N we have at x0,

uk‘i ¼ ðk1þlj�1
Þidk‘, for 1þ lj�1 � k, ‘ � lj: (3.2)

for i ¼ 1, 2, :::, n:

Proof. We prove this by induction on j. We first prove the case j¼ 1, which states that

uk‘i ¼ ðk1Þidk‘, for 1 � k, ‘ � l1, 1 � i � n: (3.3)

Let V ¼ ðV1, :::,VnÞ be a constant unit vector field defined in a neighborhood of x0.
Then by definition of k1, the function h defined by

h :¼ uk‘V
kV‘ � k1,

has hðxÞ � 0 for x near x0. Choose V with Vkðx0Þ ¼ 0 for k > l1 so that we have
hðx0Þ ¼ 0 and h has a local minimum at x0. Moreover, h is twice differentiable at x0.
Then at x0,

0 ¼ hi ¼
X

k, ‘�l1

uk‘iV
kV‘ �

X
k, ‘�l1

ðk1Þidk‘VkV‘,

using the fact that V is a unit vector. Then (3.3) follows since we are free to choose
Vkðx0Þ for k � l1:
For the inductive step, assume (3.2) holds for 1 � j � p: Let V1, :::,Vlp be the con-

stant unit vector fields in the @=@x1, :::, @=@xlp directions. That is, writing Va in
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component form as Va ¼ ðV1
a , :::,V

n
a Þ, we have Vq

a ¼ dqa: Next let W ¼ V1þlp be an
arbitrary constant unit vector field in the span of the directions @=@x1þlp , :::, @=@xlpþ1

:

Consider the quantity

h ¼
X1þlp

a¼1

uk‘V
k
aV

‘
a �

Xp
j¼1

ðlj � lj�1Þk1þlj�1
� k1þlp

¼
X1þlp

a¼1

uk‘V
k
aV

‘
a �

Xp
j¼1

X
1þlj�1�a�lj

k1þlj�1
dk‘V

k
aV

‘
a � k1þlp

¼
Xp
j¼1

X
1þlj�1�a�lj

ðuk‘ � k1þlj�1
dk‘ÞVk

aV
‘
a þ uk‘W

kW‘ � k1þlp :

Now note that hðx0Þ ¼ 0 and hðxÞ � 0 for x near x0. Since h achieves a minimum at x0
we have

0 ¼ hiðx0Þ ¼
Xp
j¼1

X
1þlj�1�a�lj

ðuk‘i � ðk1þlj�1
Þidk‘ÞVk

aV
‘
a þ uk‘iW

kW‘ � ðk1þlpÞi

¼ ðuk‘i � dk‘ðk1þlpÞiÞWkW‘,

where for the last line we used the inductive hypothesis and the fact that W is a unit
vector. Since W is an arbitrary unit vector in the span of @=@x1þlp , :::, @=@xlpþ1

, we
have proved (3.2) for j ¼ pþ 1 and the result follows by induction. w

As above, pick coordinates at x0 such that D2u is diagonal with entries uii ¼ ki: Fix
m between 1 and n. Define q 2 fm,mþ 1, :::, ng to be the largest integer such that
kq ¼ km at x0, so that

0 � k1 � � � � � km ¼ kmþ1 ¼ � � � ¼ kq < kqþ1 � � � � � kn:

Then we have the following lemma on the second derivatives of the ka: We emphasize
that this only holds at the point x0 where the ki are twice differentiable.

Lemma 3.3. As symmetric n� n matrices we have at x0,Xm
a¼1

ðkaÞab �
Xm
a¼1

uaaab þ 2
Xm
a¼1

X
q>q

uqaauqab
ka � kq

: (3.4)

Proof. Let V1, :::,Vm be smooth mutually orthogonal unit vector fields defined in a
neighborhood of x0 with Vaðx0Þ the unit vector in the @=@xa direction. In particular,
writing Va ¼ ðV1

a , :::,V
n
a Þ we have Vq

a ¼ dqa at x0.
We consider the quantity

hðxÞ ¼
Xm
a¼1

uk‘V
k
aV

‘
a �

Xm
a¼1

ka,

which has hðx0Þ ¼ 0 and hðxÞ � 0 for x near x0. In particular h achieves a minimum at
x0, and moreover, h is twice differentiable at x0.
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We prescribe the first and second derivatives of the Va at x0 as follows. For 1 � a �
m, and 1 � a � n,

@aV
q
a ¼

0, q � q
uaqa

ka � kq
, q > q:

8<
:

For 1 � a, b � m and 1 � a, b � n,

@a@bV
a
b ¼ � 1

2

X
q>q

uaqaubqb
ðka � kqÞðkb � kqÞ �

1
2

X
q>q

uaqbubqa
ðka � kqÞðkb � kqÞ

noting that when a ¼ b we have

@a@bV
a
a ¼ �

X
q>q

uaqauaqb
ðka � kqÞ2

:

We take @a@bV
q
a ¼ 0 with q>m.

We first check these definitions are consistent with the Va being orthonormal vectors.
Compute at x0, for a, b ¼ 1, :::,m,

@a
X
q

Vq
aV

q
b

� �
¼
X
q

ð@aVq
aÞVq

b þ
X
q

Vq
a@aV

q
b ¼ 0,

since @aV
q
a and @aV

q
b vanish when q � m � q: And

@a@b
X
q

Vq
aV

q
b

� �
¼
X
q>q

ð@aVq
aÞð@bVq

bÞ þ
X
q>q

ð@bVq
aÞð@aVq

bÞ þ @a@bV
b
a þ @a@bV

a
b

¼
X
q>q

uaqaubqb
ðka � kqÞðkb � kqÞ þ

X
q>q

uaqbubqa
ðka � kqÞðkb � kqÞ

�
X
q>q

uaqaubqb
ðka � kqÞðkb � kqÞ �

X
q>q

uaqbubqa
ðka � kqÞðkb � kqÞ

¼ 0,

as required.
Since h has a minimum at x0 we have the inequality of matrices:

0 � hab ¼
Xm
a¼1

�
uaaab � ðkaÞab þ 2uk‘að@bVk

aÞV‘
a þ 2uk‘bð@aVk

aÞV‘
a

þ 2uk‘ð@aVk
aÞð@bV‘

aÞ þ 2uk‘ð@a@bVk
aÞV‘

a

�

¼
Xm
a¼1

uaaab � ðkaÞab þ 4
X
q>q

uqaauaqb
ka � kq

þ 2
X
q>q

kq
uaqauaqb
ðka � kqÞ2

� 2ka
X
q>q

uaqauaqb
ðka � kqÞ2

( )

¼
Xm
a¼1

uaaab � ðkaÞab þ 2
X
q>q

uqaauaqb
ka � kq

( )
,

giving (3.4). w
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We can now complete the proof of Lemma 3.1, making crucial use of the convexity
condition. Following [5], we observe that the convexity condition (1.2) can be written
as: for every symmetric matrix ðXabÞ 2 SymnðRÞ, vector ðZaÞ 2 R

n and Y 2 R,

0 � Fab, rsXabXrs þ 2FarAbsXabXrs þ Fxa, xbZaZb

� 2Fab, uXabY � 2Fab, xrXabZr þ 2Fu, xaYZa þ Fu, uY2,
(3.5)

where we are evaluating the derivatives of F at ðA, p, u, xÞ for a positive definite matrix
A. We are writing Aij for the (i, j)th entry of the inverse matrix of A. We remark that
we do not require the condition (1.2) to hold for the entire space Symþ

n ðRÞ � R� B,
but only for a certain subset which depends on the solution u.

Proof of Lemma 3.1. Observe that

Q ¼
Xk
m¼1

Xm
a¼1

ka:

We will compute at a point x0 at which the ki are twice differentiable and D2u is diag-
onal with entries uii ¼ ki: From Lemma 3.3 we have

FabQab ¼
Xk
m¼1

Xm
a¼1

FabðkaÞab

�
Xk
m¼1

Xm
a¼1

Fabuaaab þ 2
Xk
m¼1

Xm
a¼1

X
q>qm

Fab
uqaauqab
ka � kq

,

where we are writing qm for the largest integer qm 2 fm,mþ 1, :::, ng with the property
that kqm ¼ km at x0. Differentiating the equation

FðD2u,Du, u, xÞ ¼ 0,

twice in the xa direction gives

0 ¼ Fabuabaa þ Fpauaaa þ Fuuaa

þ Fab, rsuabaursa þ Fpa, pbuaauba þ Fu, uu2a þ Fxa, xa

þ 2Fab, pruabaura þ 2Fab, uuabaua þ 2Fab, xauaba
þ 2Fpa , uuaaua þ 2Fpa , xauaa þ 2Fu, xaua:

(3.6)

Hence,

FabQab �
Xk
m¼1

Xm
a¼1

�
2
X
q>qm

Fab
uqaauqab
ka � kq

�
X

a, b, r, s>qk

Fab, rsuabaursa � Fu, uu2a � Fxa, xa

� 2
X

a, b>qk

Fab, uuabaua � 2
X

a, b>qk

Fab, xauaba � 2Fu, xaua

�

þ CQþ
Xk
i¼1

bi, jðkiÞj þ
X

1�a<b�qk

cj, a, buabj,

for uniformly bounded bi, j, cj, a,b: Here we are using Lemma 3.2 which implies that if
1 � a � qk then at x0,
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uaaj ¼ ðkiÞj,
for some 1 � i � k with ki ¼ ka: ButX

1�a<b�qk

cj, a,buabj � C
X

1�a<b�qk

ðkb � kaÞ þ 2
X

1�a<b�qk, ka 6¼kb

Fab
uabauabb
kb � ka

� CQþ 2
Xk�1

a¼1

X
qa<q�qk

Fabuaqauaqb
kq � ka

� CQþ 2
Xk�1

m¼1

Xm
a¼1

X
qm<q�qk

Fab uqaauqab
kq � ka

,

(3.7)

where for the first line we note that if 1 � a < b � qk with ka ¼ kb then by Lemma 3.2
we have uabj ¼ 0:
We now apply the convexity assumption (3.5), taking for each fixed a,

Xab ¼ �uaba if a, b > qk
0 otherwise,

Za ¼ 1 if a ¼ a
0 otherwise,

Y ¼ ua:

��
(3.8)

This gives for each a ¼ 1, :::,m,

0 �
X

a, b, r, s>qk

Fab, rsuabaursa þ 2
X

a, b, q>qk

Fab
uqaauqba

kq
þ Fxa, xa

þ2
X

a, b>qk

Fab, uuabaua þ 2
X

a, b>qk

Fab, xauaba þ 2Fu, xaua þ Fu, uu2a:
(3.9)

Observe that

2
Xk
m¼1

Xm
a¼1

X
a, b, q>qk

Fab uqaauqba
kq

� 2
Xk
m¼1

Xm
a¼1

X
q>qk

Fab uqaauqab
kq � ka

: (3.10)

Combining all of the above gives

FabQab � CQþ
Xk
i¼1

bi, jðkiÞj, (3.11)

as required. w

4. Proof of Theorem 1.1

We will first assume that u 2 C4ðBÞ and then remove this assumption by approxima-
tion. The quantity Qk ¼ kk þ 2kk�1 þ � � � þ kk1 is semi-concave and from Lemma 3.1
we have almost everywhere

FabðQkÞab � CQk þ
Xk
i¼1

bi, jðkiÞj,

for bi, j bounded. For e > 0 and a fixed ‘ 2 f1, 2, :::, ng, consider
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R ¼
X‘
k¼1

ðQk þ eÞ1=2:

Then by Proposition 2.2, since the map x 7! ðxþ eÞ1=2 is increasing, Lipschitz continu-
ous and concave for x � 0, we see that R is semiconcave (but note that its constant of
semi-concavity will depend on e). R is twice differentiable almost everywhere. At such a
point, we compute

FabRab ¼ 1
2

X‘
k¼1

ðQk þ eÞ�1=2FabðQkÞab �
1
4

X‘
k¼1

ðQk þ eÞ�3=2FabðQkÞaðQkÞb

� 1
2

X‘
k¼1

ðQk þ eÞ�1=2
�
CQk þ

Xk
i¼1

bi, jðkiÞj
�
� c
X‘
k¼1

ðQk þ eÞ�3=2jDQkj2

� CRþ C
X‘
k¼1

ðQk þ eÞ�1=2
Xk
i¼1

jDkij � c
X‘
k¼1

ðQk þ eÞ�3=2 DQkj2,
��

for uniform constants C, c > 0 (the constant C may differ from line to line). We claim
that

X‘
k¼1

ðQk þ eÞ�1=2
Xk
i¼1

jDkij � C
X‘
k¼1

ðQk þ eÞ�1=2 DQkj,j (4.1)

for a universal constant C. We do this by induction on ‘: The case ‘ ¼ 1 is trivial.
Assume it holds for ‘� 1: We need to show that

ðQ‘ þ eÞ�1=2
X‘
i¼1

jDkij � C
X‘
k¼1

ðQk þ eÞ�1=2 DQkj:j

But using Q‘�1 � Q‘, the inductive hypothesis and the definition of Q‘ we have

ðQ‘ þ eÞ�1=2
X‘
i¼1

jDkij � ðQ‘�1 þ eÞ�1=2
X‘�1

i¼1

jDkij þ ðQ‘ þ eÞ�1=2jDk‘j

� C
X‘�1

k¼1

ðQk þ eÞ�1=2jDQkj þ ðQ‘ þ eÞ�1=2 jDQ‘j þ C
X‘�1

i¼1

jDkij
 !

� C
X‘�1

k¼1

ðQk þ eÞ�1=2jDQkj þ ðQ‘ þ eÞ�1=2jDQ‘j

þ ðQ‘�1 þ eÞ�1=2C
X‘�1

i¼1

jDkij

� C
X‘
k¼1

ðQk þ eÞ�1=2 DQkj:j

This completes the proof of (4.1).
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It follows that, for constants C, c > 0 independent of e,

FabRab � CRþ C
X‘
k¼1

ðQk þ eÞ�1=2jDQkj � c
X‘
k¼1

ðQk þ eÞ�3=2jDQkj2

� CR,

using the bound

ðQk þ eÞ�1=2jDQkj � d
2
ðQk þ eÞ�3=2jDQkj2 þ 1

2d
ðQk þ eÞ1=2,

which holds for any d > 0:
Since R is semi-concave, the weak Harnack inequality (Proposition 2.3 above) implies

that for a uniform q> 0 and C,

jjRjjLqðB1=2Þ � C inf
B1=2

R: (4.2)

In particular, the constant C is independent of e. Hence we can let e ! 0 to obtain the
same estimate for

P‘
k¼1 Q

1=2
k : Write

S ¼
X‘
k¼1

Q1=2
k

 !2

:

Now observe that for a C depending only on n we have

1
C
k‘ � S � Ck‘:

We have

jjSjj1=2Lq=2ðB1=2Þ � C inf
B1=2

S1=2,

and squaring both sides gives

jjSjjLq=2ðB1=2Þ � C inf
B1=2

S

and hence

jjk‘jjLq=2ðB1=2Þ � C inf
B1=2

k‘:

This completes the proof of the theorem in the case that u 2 C4ðBÞ:
For u 2 C3ðBÞ as in the statement of the theorem, the elliptic equation satisfied by u

implies that u 2 W4, p
loc ðBÞ for all p. Fix p> n and a ball ~B with B1=2 �� ~B �� B: Then

we can find a sequence of smooth convex functions uðsÞ in a neighborhood of ~B such
that uðsÞ ! u in W4, pð~BÞ as s ! 1: This also implies that uðsÞ ! u in C3ð~BÞ: We wish
to apply Lemma 3.1 to each uðsÞ: Although uðsÞ does not solve FðD2u,Du, u, xÞ ¼ 0 we
see from (3.6) and F 2 C2 that ~u :¼ uðsÞ satisfies
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0 ¼ ~F
ab
~uabaa þ ~F

pa~uaaa þ ~F
u
~uaa

þ ~F
ab, rs

~uaba~ursa þ ~F
pa, pb~uaa~uba þ ~F

u, u
~u2
a þ ~F

xa, xa

þ 2~F
ab, pr~uaba~ura þ 2~F

ab, u
~uaba~ua þ 2~F

ab, xa~uaba

þ 2~F
pa, u~uaa~ua þ 2~F

pa, xa~uaa þ 2~F
u, xa~ua � f ðsÞ,

(4.3)

where f ðsÞ ! 0 in Lpð~BÞ as s ! 1: Here we are using ~F to indicate that we are evaluat-
ing the derivatives of F at ~u: Carrying out the rest of the proof of Lemma 3.1 with this
extra term f ðsÞ gives almost everywhere on ~B,

~F
ab ~Qab � C~Q þ

Xk
i¼1

bi, jð~kiÞj þ f ðsÞ,

modifying f ðsÞ if necessary, and evaluating ~ki, ~Q etc. with respect to ~u: Then ~R satisfies
almost everywhere on ~B,

~F
ab~Rab � C~R þ 1

2
e�1=2f ðsÞ:

Applying Proposition 2.3 we obtain

jj~RjjLqðB1=2Þ � C inf
B1=2

~R þ Ce�1=2jjf ðsÞjjLnð~BÞ

and letting s ! 1 gives

jjRjjLqðB1=2Þ � C inf
B1=2

R,

for a constant C independent of e. The rest of the proof goes through as above, and this
completes the proof of Theorem 1.1.
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