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The set of equivalence classes of cobounded actions of a group on different hyperbolic
metric spaces carries a natural partial order. The resulting poset thus gives rise to a
notion of the “best” hyperbolic action of a group as the largest element of this poset,
if such an element exists. We call such an action a largest hyperbolic action. While
hyperbolic groups admit the largest hyperbolic actions, we give evidence in this paper
that this phenomenon is rare for non-hyperbolic groups. In particular, we prove that
many families of groups of geometric origin do not have the largest hyperbolic actions,
including for instance many 3-manifold groups and most mapping class groups. Our
proofs use the quasi-trees of metric spaces of Bestvina–Bromberg–Fujiwara, among other
tools. In addition, we give a complete characterization of the poset of hyperbolic actions
of Anosov mapping torus groups, and we show that mapping class groups of closed
surfaces of genus at least two have hyperbolic actions which are comparable only to the
trivial action.
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1. Introduction

A fruitful approach for proving algebraic, geometric and algorithmic facts about
groups is to study their (isometric) actions on metric spaces which exhibit large-
scale negative curvature — so-called Gromov hyperbolic metric spaces. Among
many other things, such actions may be used to study quotients of groups [10, 15],
bounded cohomology of groups [7], and isoperimetric functions of their Cayley
graphs.
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Owing to the importance of actions on hyperbolic metric spaces, it is natural
to try to find a “best” action of a given group on a hyperbolic metric space. We
will explain what we mean by this precisely below, but for now one may think of
a hyperbolic action G ! X as “best” when any hyperbolic action G ! Y may be
obtained from G ! X be applying some simple collapsing operations.

In fact, this goal is slightly too broad, as any countable group admits many
actions on hyperbolic metric spaces with a global fixed point on the boundary (the
parabolic actions) which are somewhat trivial and impossible to classify. Hence, we
restrict our attention to cobounded actions. Given a groupG, the equivalence classes
of cobounded actions of G on hyperbolic spaces form a poset H(G) (see Sec. 2.2 for
the precise definition). By a best hyperbolic action, we mean the largest element of
the poset H(G), if it exists (an element of a poset is largest if it is comparable to
and greater than any other element of the poset). When the group G is hyperbolic,
the poset H(G) always contains a largest element, which corresponds to the action
of G on its Cayley graph with respect to a finite generating set. In other words, if
G is hyperbolic then every cobounded hyperbolic action of G may be obtained (up
to equivalence) by equivariantly collapsing subspaces of its Cayley graph.

The purpose of this paper is to provide evidence that the existence of a largest
element in H(G) is rare when G is not hyperbolic.

Theorem 1.1. The poset H(G) does not contain a largest element when G is any
one of the following groups:

• the mapping class group of an orientable finite-type surface S which is not a
sphere minus ≤4 points or a torus minus ≤1 point,

• a non-free right-angled Artin group,
• the fundamental group of a flip graph manifold with at least two pieces in its JSJ

decomposition,
• the fundamental group of a finite-volume cusped hyperbolic 3-manifold,
• the fundamental group of the mapping torus of an Anosov homeomorphism of the

torus,
• a Baumslag–Solitar group,
• a finitely generated solvable group with abelianization of rank > 1.

We also prove a further structural theorem in the case of mapping class groups.

Theorem 1.2. Let S be an orientable closed surface of genus ≥2. Then H(Mod(S))
contains elements which are comparable only to the equivalence class of the trivial
action on a point.

In the case of Anosov mapping torus groups, we give a complete characterization
of the poset H(G).

Theorem 1.3. Let G be the fundamental group of the mapping torus of an
Anosov homeomorphism of the torus. Then H(G) consists of two incomparable
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Fig. 1. The poset H(G) when G is an Anosov mapping torus.

quasi-parabolic structures, which dominate a single lineal structure, which in turn
dominates a single elliptic structure. The quasi-parabolic structures correspond to
actions of G on the hyperbolic plane, H2. See Fig. 1.

1.1. About the proofs

Denote by # the partial order on hyperbolic actions of a group. We prove the
following simple lemma.

Lemma 1.4. Let G be a group. Let a, b ∈ G be elements which commute and let
G ! X, G ! Y be two actions on hyperbolic spaces such that

• a acts loxodromically and b acts elliptically in the action G ! X,
• b acts loxodromically in the action G ! Y .

Then there does not exist an action G ! Z with Z hyperbolic such that G ! X #
G ! Z and G ! Y # G ! Z.

The lemma applies to give the proof for most of the groups G mentioned Theo-
rem 1.1. A notable exception is when G is the mapping torus of an Anosov map of
the torus. Although the proof of Theorem 1.1 reduces to Lemma 1.4 in most cases,
the methods of proof in each case are quite different. Moreover, the difficulty of each
case varies immensely. For right-angled Artin groups, Baumslag–Solitar groups and
solvable groups, the proofs are algebraic and relatively straightforward. For map-
ping class groups and fundamental groups of flip graph manifolds, the proofs are
much more complicated and involve the quasi-trees of metric spaces of Bestvina–
Bromberg–Fujiwara [5]. In the case of mapping class groups, much of the relevant
work was done in [6], while in the case of flip graph manifolds we build up the rele-
vant quasi-trees and actions mostly from scratch. The application of the Bestvina–
Bromberg–Fujiwara machinery in this case may be of independent interest.

1.2. Organization

In Sec. 2, we give necessary background on hyperbolic structures on groups, quasi-
morphisms, and quasi-trees of metric spaces. After this, the remaining sections of
the paper may be read independently of each other.
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We introduce confining subsets and their connections with quasi-parabolic struc-
tures in Sec. 2.4. This material is used only in Sec. 7. We introduce the quasi-tree of
metric spaces machinery of Bestvina–Bromberg–Fujiwara in Sec. 2.5. This material
is used only in Secs. 4 and 5.

In Sec. 3, we prove Lemma 1.4 and give the proof of Theorem 1.1 for right-
angled Artin groups, Baumslag–Solitar groups and solvable groups. These are the
cases in which the application of Lemma 1.4 is most straightforward; the proofs are
all algebraic.

In Sec. 4, we apply the Bestvina–Bromberg–Fujiwara machinery and prove all of
our results on mapping class groups. In Sec. 5, we apply the Bestvina–Bromberg–
Fujiwara machinery to prove Theorem 1.1 for flip graph manifold groups. In Sec. 6,
we use Dehn filling to prove Theorem 1.1 for cusped hyperbolic 3-manifold groups.
In Sec. 7 we completely describe H(G) when G is an Anosov mapping torus group,
and thus prove Theorem 1.1 in this case as well.

2. Background

2.1. Actions on hyperbolic spaces

Given a metric space X , we denote by dX the distance function on X . A map
f : X → Y between metric spaces X and Y is a quasi-isometric embedding if there
is a constant C > 0 such that for all x, y ∈ X ,

1
C
dX(x, y)− C ≤ dY (f(x), f(y)) ≤ CdX(x, y) + C.

If, in addition, Y is contained in the R-neighborhood of the image f(X) for some
R > 0, then f is called a quasi-isometry. If f : X → Y satisfies only

dY (f(x), f(y)) ≤ CdX(x, y) + C,

then f is called C-coarsely Lipschitz. If a group G acts (by isometries) on X and
Y , then a map f : X → Y is coarsely G-equivariant if for every x ∈ X we have

sup
g∈G

dY (f(gx), gf(x)) < ∞.

We will assume that all actions in this paper are by isometries. The action of a
groupG on a metric spaceX is cobounded if for some (equivalently any) x ∈ X there
exists R > 0 such that X = BR(Gx), where Gx denotes the orbit of x under G.

Given an action G ! X with X hyperbolic, an element g ∈ G is elliptic if it
has bounded orbits; loxodromic if the map Z → X given by n (→ gnx0 for some
(equivalently, any) x0 ∈ X is a quasi-isometric embedding; and parabolic otherwise.

Any group action on a hyperbolic space falls into one of finitely many types
depending on the number of fixed points on the boundary and the types of isometries
defined by various group elements. This classification was described by Gromov
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in [11]. The action G ! X (where X is hyperbolic) is

• elliptic if G has a bounded orbit in X ;
• lineal if G fixes two points of ∂X ;
• parabolic if G fixes a unique point of ∂X and no element of G acts as a loxodromic
isometry of X ;

• quasi-parabolic if G fixes a unique point of ∂X and at least one element of G acts
as a loxodromic isometry and

• general type if G does not fix any point of ∂X and at least one element of G acts
as a loxodromic isometry.

2.2. Hyperbolic structures

In this section, we review the construction of the poset of hyperbolic structures of
a group from [1]. Fix a group G. For any (possibly infinite) generating set S of G,
let Γ(G,S) be the Cayley graph of G with respect to the generating set S, and let
‖ ·‖S denote the word norm on G with respect to S. Given two generating sets S, T
of a group G, we say T is dominated by S, written T # S, if

sup
g∈S

‖g‖T < ∞.

It is clear that # is a preorder on the set of generating sets of G and so induces
the equivalence relation S ∼ T if and only if T # S and S # T . Let [S] be the
equivalence class of a generating set. Then the preorder # induces a partial order
! on the set of all equivalence classes of generating sets of G via [S] ! [T ] if and
only if S # T .

Definition 2.1. Given a group G, the poset of hyperbolic structures on G is defined
to be

H(G) := {[S] |G = 〈S〉 and Γ(G,S) is hyperbolic},

equipped with the partial order !.

Notice that since hyperbolicity is a quasi-isometry invariant of geodesic met-
ric spaces, the above definition is independent of the choice of representative of
the equivalence class [S]. Every element [S] ∈ H(G) gives rise to a cobounded
action on a hyperbolic space, namely G ! Γ(G,S). Moreover, given a cobounded
action on a hyperbolic space G ! X , a standard Schwarz–Milnor argument (see [1,
Lemma 3.11]) provides a (possibly infinite) generating set S of G such that Γ(G,S)
is equivariantly quasi-isometric to X . We say that two actions G ! X and G ! Y
are equivalent if there exists a coarsely G-equivariant quasi-isometryX → Y . By [1,
Proposition 3.12], there is a one-to-one correspondence between equivalence classes
[S] ∈ H(G) and equivalence classes of cobounded actions G ! X with X hyper-
bolic. The partial order on cobounded actions is given by G ! X # G ! Y if there
exists a coarsely G-equivariant coarsely Lipschitz map Y → X . This descends to a
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partial order ! on equivalence classes [G ! X ]. Thus, the partial order captures
the informal relation of “collapsing equivariant families of subspaces”. It is not hard
to check that if G is hyperbolic then the equivalence class of the action of G on its
Cayley graph with respect to any finite generating set is largest.

We denote the set of equivalence classes of cobounded elliptic, lineal, quasi-
parabolic, and general-type actions by He,H!,Hqp and Hgt, respectively. Since
parabolic actions cannot be cobounded, we have for any group G,

H(G) = He(G) -H!(G) -Hqp(G) -Hgt(G).

A lineal action of a group G on a hyperbolic space X is orientable if no element
of G permutes the two limit points of G on ∂X . We denote the set of equivalence
classes of orientable lineal structures on G by H+

! (G).

2.3. Quasimorphisms

A map q : G → R is a quasimorphism if there exists a constant D ≥ 0 such that for
all g, h ∈ G, we have |q(gh) − q(g) − q(h)| ≤ D. We say that q has defect at most
D. If, in addition, the restriction of q to every cyclic subgroup is a homomorphism,
then q is called a homogeneous quasimorphism. Every quasimorphism q gives rise
to a homogeneous quasimorphism ρ defined by ρ(g) = limn→∞

q(gn)
n ; we call ρ the

homogenization of q. Every homogeneous quasimorphism is constant on conjugacy
classes. If q has defect at most D, then it is straightforward to check that |q(g) −
ρ(g)| ≤ D for all g ∈ G.

Let G ! X be an action on a hyperbolic space with a global fixed point ξ ∈ ∂X .
For any sequence x = (xn) in X converging to ξ and any fixed basepoint s ∈ X ,
we define the associated quasimorphism qx : G → R as follows. For all g ∈ G,

qx(g) = lim sup
n→∞

(dX(gs, xn)− dX(s, xn)).

Its homogenization ρx : G → R is the Busemann quasimorphism. It is known that
for any two sequences x,y converging to ξ, we have supg∈G |qx(g) − qy(g)| < ∞,
and thus we may drop the subscript x in ρx. If ρ is a homomorphism, then the
action G ! X is called regular.

In this paper, we will repeatedly make use of one particular construction of a
quasimorphism. Given an action of a group G on a hyperbolic metric space X and
g ∈ G which is loxodromic with respect to the action onX , there is a quasimorphism
q on G associated to g defined by Bestvina–Fujiwara in [7] which we call a Brooks
quasimorphism. In general the quasimorphism q may be badly behaved. For this
reason, one must usually impose further dynamical restrictions on the isometry g.

Definition 2.2. Let g ∈ G be loxodromic in the action on X with fixed points
{g±} ⊂ ∂X . We say that g is WWPD if the orbit of (g+, g−) under G is discrete
in the space ∂X × ∂X\∆, where ∆ is the diagonal ∆ = {(x, x) : x ∈ ∂X}. If g is
WWPD then we say that it is WWPD+ if, given h ∈ G such that h fixes the fixed
points g± of g as a set, we also have hg+ = g+ and hg− = g−.
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See [12] for this specific formulation of the WWPD property (there called
WWPD (2)) and for several other equivalent definitions of WWPD. The WWPD+

property is strong enough to define a well-behaved Brooks quasimorphism (see [6,
Corollary 3.2]).

Proposition 2.3. Let G ! X be an action of G on a hyperbolic metric space X
with a WWPD+ element g. Then there is a homogeneous quasimorphism q : G → R
such that the following hold:

(1) q(g) 0= 0; and
(2) q(h) = 0 for any element h ∈ G which acts elliptically on X.

Although the language used in [6, Corollary 3.2] is slightly different, Proposi-
tion 2.3 is an immediate corollary (and in fact, [6, Corollary 3.2] is stronger than
what we stated).

We will use the following lemma several times in this paper.

Lemma 2.4. ([1, Lemma 4.15]) Let q :G → R be a nonzero homogeneous quasi-
morphism. Then there is an action of G on a quasi-line X with the property that g
acts loxodromically on X if and only if q(g) 0= 0.

2.4. Confining subsets

Consider a group G = H "α Z, where α ∈ Aut(H) acts by α(h) = tht−1 for any
h ∈ H , where t is a generator of Z. Let Q be a symmetric subset ofH . The following
definition is from [9, Sec. 4].

Definition 2.5. The action of α is (strictly) confining H into Q if it satisfies the
following three conditions:

(a) α(Q) is (strictly) contained in Q;
(b) H =

⋃
k≥0 α−k(Q) and

(c) αk0(Q ·Q) ⊆ Q for some k0 ∈ Z≥0.

Remark 2.6. The definition of confining subset given in [9] does not require sym-
metry of the subset Q ⊂ H . However, according to [9, Theorem 4.1], to classify
regular quasi-parabolic structures on a group of the above form, it suffices to con-
sider only confining subsets which are symmetric.

Remark 2.7. By the discussion after the statement of [9, Theorem 4.1], if there
is a subset Q ⊆ H such that the action of α is confining H into Q but not strictly
confining, then [Q ∪ {t±1}] ∈ H+

! (G). If the action is strictly confining, then [Q ∪
{t±1}] ∈ Hqp(G).

In this paper, we will focus primarily on describing subsets Q of H into which
the action of α is (strictly) confining H . For brevity, we will refer to such Q as
(strictly) confining under the action of α.
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2.5. Quasi-trees of metric spaces

In this section, we review the construction of a projection complex and a quasi-tree
of metric spaces from [5]. We begin by giving a canonical example to keep in mind.
Let G = π1(Σ), where Σ is a closed, hyperbolic surface. Fix a simple closed geodesic
γ on Σ, and let Y be the set of lifts of γ to the universal cover H2. Then for any
Y, Z ∈ Y, the nearest-point projection πY (Z) of Y to Z is uniformly bounded.
Moreover, if X,Y, Z ∈ Y and the projections of πY (X) and πY (Z) are far apart in
Y , then the projections ofX and Y to Z are coarsely equal. After slightly perturbing
the projection distances dπ

Y (X,Z) = diam(πY (X) ∪ πY (Z)) to a distance dY , we
can build the projection complex PK(Y) for a fixed large constant K, which has
vertices Y ∈ Y and an edge betweenX,Z ∈ Y if dY (X,Z) is uniformly bounded for
every Y ∈ Y\{X,Z}. It is shown in [5] that PK(Y) is a quasi-tree with a G-action.
From this quasi-tree, the quasi-tree of metric spaces CK(Y) is formed by replacing
each vertex labeled by Y ∈ Y with the space Y .

We now give the general construction from [5]. There are two main differences
to keep in mind. First, the “projection” map which we will define does not have to
have a geometric interpretation as an actual nearest-point projection; it will simply
be a map satisfying certain axioms. Second, in general we have an index set Y, and
to each Y ∈ Y we associate a space C(Y ). In the example above, elements Y of the
index set were equated with the spaces C(Y ).

Fix a set Y, and for each Y ∈ Y, let C(Y ) be a geodesic metric space. Let

πY : Y\{Y } → 2C(Y )

be a function, which we call projection. When Y 0= X 0= Z, define a (pseudo-)
distance function dπ

Y by

dπ
Y (X,Z) = diam(πY (X) ∪ πY (Z)).

For the rest of this section, assume that there is a constant θ ≥ 0 such that the
following three conditions hold:

(P0) The diameter diamπX(Y ) is uniformly bounded by θ, independently ofX ∈ Y
and Y ∈ Y\{X}.

(P1) For any triple X,Y, Z ∈ Y of distinct elements, at most one of the three
numbers

dπ
X(Y, Z), dπ

Y (X,Z), dπ
Z(X,Y )

is greater than θ.
(P2) For any X,Y ∈ Y, the set

{Z ∈ Y\{X,Y } :dπ
Z(X,Y ) > θ}

is finite.

We will modify these distances by a bounded amount. We first need a definition.
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Definition 2.8. For X,Z ∈ Y with X 0= Z, let H(X,Z) be the set of pairs
(X ′, Z ′) ∈ Y × Y with X ′ 0= Z ′ such that one of the following four conditions
holds:

• both dπ
X(X ′, Z ′), dπ

Z(X ′, Z ′) > 2θ;
• X = X ′ and dπ

Z(X,Z ′) > 2θ;
• Z = Z ′ and dπ

X(X ′, Z) > 2θ;
• (X ′, Z ′) = (X,Z).

Define the modified distance functions

dY : (Y\{Y })× (Y\{Y }) → [0,∞)

by

dY (X,Z) =






0 if Y is contained in a pair in H(X,Z),

inf
(X′,Z′)∈H(X,Z)

dπ
Y (X

′, Z ′) else.

It is immediate from the definition that the modified distance functions satisfy
dY ≤ dπ

Y for all Y ∈ Y. Suppose (P0)–(P2) are satisfied by (Y, θ, {dπ
Y }), fix K ≥ Θ,

where Θ = Θ(θ) is the constant from [5, Theorem 3.3], and let YK(X,Z) = {Y ∈
Y : dY (X,Z) > K}. We construct a space PK(Y) as follows.

Definition 2.9. The projection complex PK(Y) is the following graph. The vertex
set of PK(Y) is Y. Two distinct vertices X and Z are connected with an edge if
YK(X,Z) = ∅. Denote the distance function for this graph by d(·, ·).

Theorem 2.10. ([5, Theorem 3.16]) For K sufficiently large, PK(Y) is a quasi-
tree.

We are now ready to give the construction of the quasi-tree of metric spaces.
Fix a constant L = L(K) as in [5, Lemma 4.2].

Definition 2.11. A quasi-tree of metric spaces is the path metric space CK(Y)
obtained by taking the disjoint union of the metric spaces C(Y ) for Y ∈ Y, and if
d(X,Z) = 1 in PK(Y), we attach an edge of length L from every point in πX(Z)
to every point in πZ(X).

Theorem 2.12. ([5, Theorem A]) Suppose Y is a collection of geodesic metric
spaces and for every X,Y ∈ Y with X 0= Y we are given a subset πX(Y ) ⊂ C(X)
such that (P0)−(P2) hold and K is sufficiently large. Then the spaces C(X) for
X ∈ Y are isometrically embedded in CK(Y). Moreover, for each distinct X,Y ∈ Y,
the nearest point projection of C(Y ) to C(X) in CK(Y) is a uniformly bounded set
uniformly close to πX(Y ).

The following is straightforward to verify.
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Theorem 2.13. Suppose that G is a group which acts on the set Y such that for
each X ∈ Y there is an isometry FX

g :C(X) → C(g(X)) and the isometries FX
g

satisfy:

• if g, h ∈ G and X ∈ Y, then F g(X)
h ◦ FX

g = FX
hg and

• if X,Y ∈ Y, then FY
g (πY (X)) = πg(Y )(g(X)).

Then there is an induced action of G on CK(Y) by isometries.

We will frequently denote the isometry FX
g simply by g.

The quasi-trees of metric spaces C(Y) have nice geometric properties when the
geodesic metric spaces C(Y ) have these properties uniformly. To state the next the-
orem, recall Manning’s bottleneck criterion [13, Theorem 4.6]: the geodesic metric
space X is a quasi-tree if and only if there exists ∆ ≥ 0 with the following property.
Let x, y ∈ X , let γ be a geodesic from x to y, and let z be the midpoint of γ.
Then any continuous path from x to y passes through the ∆-neighborhood of z.
The constant ∆ is called a bottleneck constant for X .

Theorem 2.14. ([5, Theorem 4.14]) Suppose that all C(Y ) for Y ∈ Y are quasi-
trees with a uniform bottleneck constant ∆. Then CK(Y) is a quasi-tree for K large
enough.

3. Main Lemma and First Applications

In this section, we prove our main lemma, Lemma 1.4, and give several relatively
straightforward applications. Recall the statement.

Lemma 1.4. Let G be a group. Let a, b ∈ G be elements which commute and let
G ! X, G ! Y be two actions on hyperbolic spaces such that

• a acts loxodromically and b acts elliptically in the action G ! X,
• b acts loxodromically in the action G ! Y .

Then there does not exist an action G ! Z with Z hyperbolic such that G ! X #
G ! Z and G ! Y # G ! Z.

Proof. Suppose that G ! X # G ! Z and G ! Y # G ! Z. Then a and b are
both loxodromic in the action G ! Z. Since a and b commute, their fixed points
on ∂Z are the same.

Let f : Z → X be a K-coarsely Lipschitz, coarsely G-equivariant map. Choose a
base point z ∈ Z. Then there exists D > 0 such that dX(f(gz), gf(z)) ≤ D for any
g ∈ G. The sequences {anz}n∈Z and {bnz}n∈Z are quasigeodesics with the same
pair of endpoints on ∂Z. Hence, they are E-Hausdorff close for some E > 0.

The set S = {bnf(z)}n∈Z is bounded since b acts elliptically on X . Hence, there
exists N large enough that dX(anf(z), S) > KE+K+2D for all n ≥ N . However,
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given any n ≥ N , there exists some m ∈ Z with dZ(bmz, anz) ≤ E. We then have

dX(bmf(z), anf(z)) ≤ dX(f(bmz), f(anz)) + 2D

≤ KdZ(bmz, anz) +K + 2D ≤ KE +K + 2D.

This is a contradiction.

3.1. Right-angled Artin groups

We first prove a more general theorem about groups which admit retracts onto
subgroups isomorphic to Z2 and then use this to prove Theorem 1.1 for the special
case of right-angled Artin groups.

Theorem 3.1. Let G be a group which admits a retract onto a subgroup isomorphic
to Z2. Then H(G) contains no largest element.

Proof. Let r : G → Z2 = 〈a, b〉 be a retract. We may define a projection p : 〈a, b〉 →
R by p(a) = 1 and p(b) = 0 and then define an action of G on R by translations via

g(x) = x+ p(r(g)) for g ∈ G and x ∈ R.

In this action, a is loxodromic while b is elliptic since p(r(a)) = 1 and p(r(b)) = 0.
Similarly, we define an action on R by translations where a acts elliptically and b
acts loxodromically. By Lemma 1.4 this completes the proof.

Recall that given a finite simplicial graph Γ, the right-angled Artin group A(Γ)
is defined by the presentation

A(Γ) = 〈v ∈ V (Γ) : [v, w] = 1 if v and w are joined by an edge in Γ〉,

where V (Γ) denotes the set of vertices of Γ. The group Γ is free if and only if Γ has
no edges.

Corollary 3.2. Let G be a right-angled Artin group which is not free. Then H(G)
contains no largest element.

Proof. Let a and b be generators of G corresponding to any two vertices of the
defining graph Γ which are joined by an edge. Then there is a retract r : G → Z2 =
〈a, b〉 defined by fixing a and b and sending all other generators to the identity in
〈a, b〉. Applying Theorem 3.1 completes the proof.

3.2. Baumslag–Solitar groups

Let m,n ∈ Z\{0}. The Baumslag–Solitar group is defined as BS(m,n) = 〈a, b :
bamb−1 = an〉.

We will use the following in our proof of Theorem 1.1 for Baumslag–Solitar
groups.
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Lemma 3.3. Let G be a finitely generated group, and let a ∈ G be distorted (that
is, the inclusion of the subgroup 〈a〉 generated by a in G is not a quasi-isometric
embedding). Then in any cobounded action G ! X with X hyperbolic, the element
a is not loxodromic.

Proof. Using the Schwarz–Milnor Lemma [1, Lemma 3.11] we may suppose with-
out loss of generality that X is the Cayley graph of G with respect to a generating
set T .

Let S be a finite generating set for G. Then for any C > 0 there exists n > 0
such that the word length ‖an‖S < Cn. Consequently, we may write an = g1 . . . gk,
where g1, . . . , gk ∈ S and k ≤ Cn. Write M = max{‖h‖T :h ∈ S}, which exists
because S is finite. Therefore, we also have

‖an‖T ≤ ‖g1‖T + · · ·+ ‖gk‖T < kM ≤ CMn.

Consequently, for any D > 0 there exists n > 0 such that ‖an‖T < Dn. We have
that ‖an‖T is the distance from 1 to an · 1 in the Cayley graph Γ(G, T ), and therefore
these distances do not grow linearly with n. This proves that a is not loxodromic,
as claimed.

Lemma 3.4. Let n ∈ Z\{0}. Then BS(1, n) is solvable.

Proof. One checks that the subgroup normally generated by a, denoted 〈〈a〉〉, is
generated by the conjugates brab−r for r ∈ Z. Furthermore, 〈〈a〉〉 is isomorphic
to Z[ 1

|n| ] via the homomorphism 〈〈a〉〉 → Z[ 1
|n| ] defined on the generating set by

brab−r (→ |n|r. We then see that BS(1, n) admits an isomorphism

BS(1, n) = 〈〈a〉〉 " 〈b〉 ∼= Z
[
1
|n|

]
" Z,

where the generator t of Z acts on Z[ 1
|n| ] by t :x (→ nx. Clearly, then BS(1, n) is

solvable, as claimed.

Theorem 3.5. Let m,n ∈ Z\{0}. Then H(BS(m,n)) contains no largest element.

Proof. Note that BS(m,n) ∼= BS(n,m) via the map a (→ a, b (→ b−1. Hence,
we may suppose without loss of generality that |m| ≤ |n|. Moreover, we have
BS(m,n) ∼= BS(−m,−n) via the map a (→ a−1, b (→ b. Therefore, we may sup-
pose without loss of generality that m ≥ 1. By these remarks it suffices to consider
three cases. In all that follows, set G = BS(m,n) with m,n depending on the
particular case, as described.

(1) m = |n|.
In this case, we show that there are cobounded hyperbolic actions G ! X
with a acting loxodromically and b acting elliptically and G ! Y with a acting
elliptically and b acting loxodromically. Then we apply Lemma 1.4.
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The action G ! Y is the lineal action corresponding to the homomorphism
G → Z defined by a (→ 0, b (→ 1. We let Z act on R by translation and thus
define an action of G on R.

If n = m, then the action G ! X is the lineal action corresponding to
the homomorphism G → Z defined by a (→ 1, b (→ 0. We again let Z act on
R by translation. If n = −m, then the action G ! X is the lineal action
corresponding to the homomorphism G → D∞ = 〈t, r : rtr−1 = t−1〉 defined by
a (→ t, b (→ r. Here, we let D∞ act on R by t(x) = x + 1 and r(x) = −x for
x ∈ R.

(2) 1 = m < |n|.
In this case, we consider two cobounded hyperbolic actionsG ! H2 andG ! T ,
where T is the Bass–Serre tree of the HNN extension G ∼= 〈a〉∗〈a〉=〈an〉 (this
corresponds to the expression of G as a one edge graph of groups with vertex
group 〈a〉).

We consider the upper half plane model of H2 with orientation-preserving
isometry group PSL(2,R) acting by Möbius transformations. If n > 0, then
G ! H2 is given by

a (→
(
1 1

0 1

)
, b (→

(√
n 0

0 1/
√
n

)
.

If n < 0, then G ! H2 is given by

a (→
(
1 1

0 1

)
, b (→ ψ ◦

(√
|n| 0

0 1/
√
|n|

)
,

where ψ is the orientation-reversing isometry of H2 consisting of reflection
across the positive imaginary axis (i.e. ψ(z) = −z for z ∈ H2).

Note that in the action G ! H2 every conjugate of b has a common attract-
ing fixed point, but that the various conjugates of b have different repelling fixed
points. In contrast, in the action G ! T every conjugate of b has a common
repelling fixed point, but the various conjugates have different attracting fixed
points. Hence, if there is a hyperbolic action G ! Z larger than both G ! H2

and G ! T , then the action G ! Z is general type — every conjugate of b acts
loxodromically, but there are different conjugates of b with disjoint fixed point
sets on ∂Z. By the Ping-Pong Lemma, G contains a free group. However, this
is a contradiction, as G is solvable.

(3) 1 < m < |n|.
In this case, we consider two cobounded hyperbolic actions G ! H2 and G !
T , where T is the Bass–Serre tree corresponding to the HNN extension G ∼=
〈a〉∗〈am〉=〈an〉.

The action G ! H2 is given by

a (→
(
1 1

0 1

)
, b (→

(√
n/m 0

0
√
m/n

)
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if n > 0 and by

a (→
(
1 1

0 1

)
, b (→ ψ ◦

(√
|n|/m 0

0
√
m/|n|

)

if n < 0, where ψ is the orientation-reversing isometry z (→ −z defined earlier.
Note that the action on T is general type. To see this, in the action of G note

that a fixes a vertex v along the axis of b. At v there are |n| outgoing edges and
m incoming edges and a freely permutes the outgoing edges and freely permutes
the incoming edges. Consequently aba−1 has an axis which passes through v
and enters v through a different incoming edge than the axis of b and exits v
through a different outgoing edge than the axis of b. Consequently b and aba−1

have disjoint fixed point sets on ∂T .
We suppose again that there is a hyperbolic action G ! Z which dominates

both of these. Since G ! T is general type, G ! Z must be general type. As
a acts parabolically in the action G ! H2, it must act parabolically or loxo-
dromically in the action G ! Z. Since 〈a〉 is distorted in G, a must in fact act
parabolically in G ! Z by Lemma 3.3. Moreover, the equation bamb−1 = an

implies that b fixes the single fixed point of a on ∂Z. Thus, every element of G
fixes this point, and we obtain a contradiction to G ! Z being general type.

Remark 3.6. When 1 = m < n, the poset of hyperbolic structures of BS(1, n)
has been completely described in [2], and Theorem 3.5 follows in this case (see [2,
Corollary 1.2]).

3.3. Solvable groups

Theorem 3.7. Let G be a finitely generated solvable group with abelianization of
rank at least two. Then H(G) contains no largest element.

Proof. The abelianization G/[G,G] is isomorphic to Zn × F , where F is a finite
abelian group and n ≥ 2. Let f : G → Zn × F be the abelianization map and
p1 : Zn × F → Z and p2 : Zn × F → Z be the projections to the first and second
factors of Zn, respectively.

We may choose a, b ∈ G with p1(f(a)) = 1 and p1(f(b)) = 0 and p2(f(a)) = 0
and p2(f(b)) = 1. We obtain actions G ! R by

g : x (→ x+ p1(f(g)) and g : x (→ x+ p2(f(g))

for g ∈ G and x ∈ R. We denote these actions byG ! X1 andG ! X2, respectively.
Suppose there exists G ! Z with G ! X1 # G ! Z and G ! X2 # G ! Z.

Note that a is loxodromic and b is elliptic in G ! X1 and a is elliptic and b
is loxodromic in G ! X2. Thus in the action G ! Z both a and b must be
loxodromic. Since G is solvable, it contains no free subgroup. Moreover, by the
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Ping-Pong Lemma, any high enough powers of independent loxodromic elements
of G in the action G ! Z generate a free subgroup of G. Hence, a and b are not
independent in this action.

Up to replacing one of a or b by its inverse, we may suppose that a and b have the
same attracting fixed point p ∈ ∂Z. Fix a basepoint z ∈ Z. Then {anz}n∈Z≥0 and
{bnz}n∈Z≥0 are quasigeodesic rays with the same endpoint p ∈ ∂Z. Hence, there
exists E > 0 such that the rays are eventually E-close to each other. It follows that
there exists N > 0 such that for all n ≥ N , there existsm ∈ Z≥0 with d(anz, bmz) ≤
E. As in the proof of Lemma 1.4, this contradicts that G ! Z 7 G ! X1.

4. Mapping Class Groups

Let S be an orientable surface of genus g with n punctures. We define the complexity
of S to be ξ(S) = 3g − 3 + n. The mapping class group of S is the group Mod(S)
of orientation-preserving homeomorphisms of S up to isotopy.

4.1. Largest actions

The main result of this section is the following.

Theorem 4.1. Suppose that ξ(S) ≥ 2. Then H(Mod(S)) contains no largest ele-
ment.

Remark 4.2. The condition ξ(S) < 2 turns out to be equivalent to Mod(S) being
a hyperbolic group. So we actually have the following classification: H(Mod(S))
contains a largest element if and only if ξ(S) < 2.

In the next subsection, we will prove a finer theorem about the structureH(Mod(S))
when S is a closed surface of genus at least two, which will also imply Theorem 4.1
when S is closed. In this section, we prove Theorem 4.1 using Lemma 1.4.

Our main tool is the following lemma, which is a corollary of [6, Proposition 4.3].
We will first use this lemma to prove Theorem 4.1, and then we will give an outline
of the proof of the lemma in order to preview some of the machinery that will be
developed for flip graph manifold groups. Given an essential simple closed curve γ,
we denote by Tγ the Dehn twist about γ.

Lemma 4.3. Let α and β be two essential simple closed curves on S which
lie in different Mod(S)-orbits. There exist quasimorphisms q : Mod(S) → R and
q′ : Mod(S) → R such that

• q(Tα) 0= 0 and q(Tβ) = 0 and
• q′(Tα) = 0 and q′(Tβ) 0= 0.

Proof of Theorem 4.1 using Lemma 4.3. Suppose first that S is not the five-
times punctured sphere. Since ξ(S) ≥ 2, there exist simple closed curves α and β
in S which lie in different Mod(S) orbits. Namely, if S has genus zero, then we may
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take α to be a curve bounding a twice-punctured disk and β to be a curve bounding
a thrice-punctured disk. Otherwise we may choose α to be nonseparating and β to
be separating. Moreover, we may choose α and β to be disjoint, so that Tα and Tβ

commute.
By Lemmas 2.4 and 4.3 we obtain an action Mod(S) ! X , where X is a quasi-

line and Tα acts loxodromically and Tβ acts elliptically. Similarly we obtain an
action Mod(S) ! Y , where Y is a quasi-line and Tα acts elliptically while Tβ acts
loxodromically. Applying Lemma 1.4 completes the proof.

Now we suppose that S is the five-times punctured sphere. In this case, there
is only a single Mod(S)-orbit of essential simple closed curves. Choose α to be an
essential simple closed curve; it bounds a three-times punctured disk V . We will
choose ϕ to be a pseudo-Anosov on V so that Tα and ϕ commute. We will then
find homogeneous quasimorphisms q and q′ such that q(Tα) = 0, q(ϕ) 0= 0 and
q′(Tα) 0= 0, q′(ϕ) = 0. However we must be careful to choose ϕ to be chiral (see
[6]). Recall that ϕ is chiral if ϕn is not conjugate to ϕ−n in Mod(S) for any n 0= 0.

To choose ϕ we argue as follows. The mapping class group of the three-times
punctured disk V is the braid group B3 on three strands. There is a surjective
homomorphism F : Mod(V ) → SL(2,Z) with kernel generated by the Dehn twist
along ∂V = α, defined as follows. The group B3 is generated by two half twists σ
and τ , which satisfy the braid relation στσ = τστ . We define

F (σ) =

(
1 1

0 1

)
, F (τ) =

(
1 0

−1 1

)
.

We see that if F (ψ) is an Anosov matrix (i.e. a matrix with two distinct real
eigenvalues) then ψ is pseudo-Anosov. This holds since any reducible element η of
Mod(V ) is conjugate to the product of a power of a Dehn twist on ∂V and a power
of some half twist, and therefore F (η) is unipotent.

If ϕ ∈ Mod(V ) has the property that F (ϕ) is Anosov and F (ϕ)n is not conjugate
to F (ϕ)−n for any n 0= 0, then ϕ is pseudo-Anosov (possibly twisting along ∂V = α)
and ϕn is not conjugate to ϕ−n in Mod(V ) for any n 0= 0. Moreover, we see that
if g ∈ Mod(S) conjugates a nontrivial power ϕn to ϕ−n then g must fix V and
therefore restrict to an element of Mod(V ) which conjugates ϕn to ϕ−n. This is a
contradiction.

Matrices A ∈ SL(2,Z) with the property that An is not conjugate to A−n for any
n 0= 0 do exist. See [3] (in particular Example 2 and Lemma 9). Therefore, we may
choose ϕ ∈ Mod(V ) such that F (ϕ) is Anosov and F (ϕ)n is not conjugate to F (ϕ)−n

for any n 0= 0. It follows that ϕ is pseudo-Anosov and chiral. By [6, Proposition 4.3],
there exist homogeneous quasimorphisms q and q′ with q(Tα) = 0, q(ϕ) 0= 0 and
q′(Tα) 0= 0, q′(ϕ) = 0. Applying Lemmas 2.4 and 1.4 completes the proof.

In order to preview some of the machinery that will be developed for flip graph
manifold groups, we outline the proof of Lemma 4.3. Details may be found in [6].
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Outline of Proof of Lemma 4.3. In [5], Bestvina–Bromberg–Fujiwara construct
an action of a finite-index subgroup Γ < G on a quasi-tree C(X) in which Tα is
loxodromic [5, Theorem 5.9]. We briefly review the construction here.

The curve graph C(γ) of a simple closed curve γ, as defined in [5, Sec. 5], is
quasi-isometric to R and Tγ acts on it as a loxodromic isometry. We would like to
define a quasi-tree of metric spaces C(Y), where Y is the collection of all curves
in the Mod(S)-orbit of γ and if δ ∈ Y then C(δ) is the curve graph of δ. However,
this will not work, because such a collection Y contains disjoint elements, making
it impossible to define subsurface projections between the elements of Y.

Instead, we choose Y to be a subset of the curves in the Mod(S)-orbit of γ.
To do this, Bestvina–Bromberg–Fujiwara construct in [5, Lemma 5.6] a specific
coloring of the (isotopy classes of) subsurfaces of S with finitely many colors. This
coloring has the property that disjoint subsurfaces have distinct colors. By the proof
of [5, Lemma 5.7], Mod(S) permutes the set of colors of subsurfaces and thus there
is a finite index normal subgroup Γ ≤ Mod(S) that preserves the colors. Now we
may choose Y to be the set of curves in Mod(S) · γ with the same color as γ.

By machinery for mapping class groups developed in [4, 14], the axioms (P0)–
(P2) are satisfied for Y and subsurface projections πY between the elements of Y.
Hence, we obtain a quasi-tree of metric spaces CK(Y) whenever K is large enough.
Although Mod(S) does not act on CK(Y), the color-preserving subgroup Γ does
act on CK(Y).

Set γ = α, where α is as in the statement of Lemma 4.3, and set Y to be the
set of elements of Mod(S) · γ with the same color as γ, as above. We will use the
action of Γ on CK(Y) to define a quasimorphism Mod(S) → R. Let k be the index
of Γ in G. We have that

• T k
α ∈ Γ,

• T k
α acts loxodromically on CK(Y) and

• T k
α is WWPD in the action CK(Y).

The last point follows easily from the quasi-tree of metric spaces machinery. In
fact it is straightforward to check that T k

α is WWPD+. As in Proposition 2.3, we
define a homogeneous quasimorphism q0 : Γ → R such that q0(T k

α) 0= 0. Bestvina–
Bromberg–Fujiwara use the construction of q0 to show that q0(T k

β ) = 0.
Choose h1, . . . , hk to be coset representatives of Γ in Mod(S). We first modify

q0 by defining

q′0(g) =
k∑

i=1

q0(h−1
i ghi)

for g ∈ Γ. This modified q′0 satisfies q′0(hgh−1) = q′0(g) for any h ∈ Mod(S).
Furthermore, it extends to a homogeneous quasimorphism q : Mod(S) → R by
setting q(g) = 1

k q
′
0(gk) (see [8, Sec. 7]). Bestvina–Bromberg–Fujiwara also show

that q(Tα) 0= 0 and q(Tβ) = 0, as desired.
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The existence of q′ follows immediately from the existence of q, since we only
required α and β to lie in distinct mapping class group orbits.

4.2. Maximal lineal actions

In this section, we prove an extension of Theorem 4.1 in the case that S has no
punctures. Let Mod(S) be the mapping class group of a closed surface S, and
consider a proper, connected, essential subsurface V of S. Suppose moreover that
V is disjoint from some element of its mapping class group orbit; that is, there
is h ∈ Mod(S) such that hV and V have disjoint representatives in their isotopy
classes. We show that under a certain technical condition on V , if [Mod(S) ! X ]
is a hyperbolic structure and there exists ϕ ∈ Mod(S) supported on V that acts
loxodromically on X , then the structure must in fact be lineal.

Before stating this result precisely, we introduce some notation. Given two iso-
topy classes of essential subsurfaces A,B of S, we write A ⊥ B if A and B have
disjoint representatives and A 9 B if A has a representative contained in B. Let
g(T ) denote the genus of a finite type surface T , let b(T ) denote the number of
boundary components (or punctures), and let ξ(T ) = 3g(T ) − 3 + b(T ) denote
the complexity. We note that complexity is monotonic under inclusion; that is, if
A 9 B, then ξ(A) ≤ ξ(B).

We may write S\V = W1 -W2 - · · ·-Wn, where Wi is a closed subsurface with
b(Wi) boundary components, isotopic to b(Wi) of the boundary components of V .
Since there exists h ∈ Mod(S) with hV ⊥ V , we have hV 9 Wi for some i. Without
loss of generality we may assume hV 9 W1. Note that S\W1 is a connected surface
U1. We emphasize in the following two results that S is a closed surface.

Theorem 4.4. In the notation outlined above, suppose that g(W1) > g(U1), and
let [Mod(S) ! X ] ∈ H(Mod(S)). If there exists ϕ ∈ Mod(S) supported on V such
that ϕ acts loxodromically on X, then [Mod(S) ! X ] is lineal and maximal.

Proof. Consider the graph Γ = Γ(V ) with vertex set equal to the orbit Mod(S) ·V
and edges joining pairs hV and kV whenever hV ⊥ kV .

We first show that the graph Γ is connected. It suffices to show that for all
elements g ∈ G, for a fixed finite generating set G of Mod(S), there is a path from
V to gV in Γ. We consider the Humphries generators G, which are Dehn twists
along the blue curves in Fig. 2. Moreover, we suppose that g(U1) ≥ 2; the cases
g(U1) ≤ 1 are handled in a nearly identical manner.

We single out the Dehn twists gi around the middle curves as shown in Fig. 2. For
g ∈ G\{g1, . . . , gn} we have gU1 = U1. Since V 9 U1 and gV 9 gU1 = U1, whereas
hV 9 W1, we have V ⊥ hV and hV ⊥ gV . Thus, V, hV, gV constitutes a path from
V to gV in Γ. On the other hand, for a generator gi we have giU1 0= U1. In this case,
there is an element fU1 of the orbit of U1 with fU1 ⊥ U1 and fU1 ⊥ giU1. Hence,
we have V ⊥ fV and fV ⊥ giV , and thus V, fV, giV is a path in Γ. Therefore, Γ
is connected.
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Fig. 2. (Color online) Dehn twists on the blue curves on the left form the Humphries generating
set G of Mod(S). The figure on the right shows how U1 transforms after applying the generator gi.
The surface fU1 is bounded by the black curves and avoids the red curves, which are components
of ∂giU1.

We now show how this implies the theorem. Let ϕ act loxodromically on X with
fixed points ϕ± ∈ ∂X . It will be convenient to take a power of ϕ to assume without
loss of generality that ϕ fixes ∂V pointwise (up to isotopy). For h ∈ Mod(S),
the conjugate hϕh−1 is loxodromic with fixed points hϕ±. Consider a path V =
h0V, h1V, . . . , hrV = hV in Γ. For i between 0 and r we have

• hiV ⊥ hi+1V ,
• hiϕh

−1
i is supported on hiV and fixes ∂hiV pointwise and

• hi+1ϕh
−1
i+1 is supported on hi+1V and fixes ∂hi+1V pointwise.

Hence, hiϕh
−1
i and hi+1ϕh

−1
i+1 commute and therefore fix the same pair of points on

∂X . That is, hiϕ± = hi+1ϕ±. From this string of equalities, we find that hϕ± = ϕ±.
Thus all of Mod(S) fixes ϕ± ∈ ∂X , and since Mod(S) ! X is cobounded, we must
have that X is a quasi-line.

To see that [Mod(S) ! X ] is maximal, suppose that there exists [Mod(S) !
Y ] ∈ H(G) such that [Mod(S) ! X ] # [Mod(S) ! Y ]. Then ϕ acts loxodromically
on Y , and so the same argument shows that Y is a quasi-line. Since all lineal
structures are minimal [1, Corollary 4.12], we must in fact have [Mod(S) ! X ] =
[Mod(S) ! Y ].

The following lemma shows that the assumption that g(W1) > g(U1) in Theo-
rem 4.4 is not too restrictive.

Lemma 4.5. In the notation outlined above, we have g(W1) ≥ g(U1).

Proof. Since hV 9 W1, some connected component of S\hV must contain U1, and
this component must be one of the subsurfaces hW1, . . . , hWn. If U1 9 hW1, then
g(U1) ≤ g(hW1) = g(W1), and the proof is complete. Otherwise U1 9 hWi for some
i > 1. Without loss of generality we suppose that U1 9 hW2. We will show in this
case that in fact n = 2 and V is an annulus.

We consider the complexity ξ of the subsurfaces involved. We note that b(U1) =
b(W1). The genus of U1 is equal to g(V )+

∑
i≥2 g(Wi)+

∑
i≥2(b(Wi)−1) (here the
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last term comes from considering the contribution of the boundary components of
the subsurfaces Wi to the genus of U1). Thus, we have

ξ(U1) = 3g(V ) + 3
n∑

i=2

g(Wi) + 3
n∑

i=2

(b(Wi)− 1)− 3 + b(W1).

Once again, it is important to note that S is a closed surface in order for the above
calculation to make sense. On the other hand, ξ(hW2) = 3g(W2)−3+ b(W2). Since
U1 9 hW2, we have

3g(V ) + 3
n∑

i=2

g(Wi) + 3
n∑

i=2

(b(Wi)− 1)− 3 + b(W1)

= ξ(U1) ≤ ξ(hW2) = 3g(W2)− 3 + b(W2).

Subtracting 3g(W2)− 3 from both sides yields

3g(V ) + 3
n∑

i=3

g(Wi) + 3
n∑

i=2

(b(Wi)− 1) + b(W1) ≤ b(W2).

If b(W2) > 1, then 3(b(W2) − 1) > b(W2), and we have a contradiction. Hence,
b(W2) = 1, and the above inequality reduces to

3g(V ) + 3
n∑

i=3

g(Wi) + 3
n∑

i=3

(b(Wi)− 1) + b(W1) ≤ 1.

Since b(W1) ≥ 1 the only way for this inequality to hold is if

• g(V ) = 0,
• g(Wi) = 0 for i ≥ 3,
• b(Wi) = 1 for i ≥ 3 and
• b(W1) = 1.

Since none of the boundary components of V are homotopically trivial, we
cannot have g(Wi) = 0 and b(Wi) = 1 simultaneously. Hence, we find that in
fact n = 2 and V is an annulus with S\V = W1 - W2. Since hV 9 W1 it is
straightforward in this case to see that g(W1) ≥ g(W2) = g(U1).

We are now ready to prove Theorem 1.2. We recall its statement for the conve-
nience of the reader.

Theorem 1.2. Let S be an orientable closed surface of genus ≥2. Then H(Mod(S))
contains elements which are comparable only to the equivalence class of the trivial
action on a point.

Proof. Let α be a nonseparating curve. By the previous section, there exists a
cobounded action Mod(S) ! X , where X is a quasi-line and Tα acts loxodromi-
cally. Moreover, [Mod(S) ! X ] ∈ H(Mod(S)) is maximal by Theorem 4.4. Since
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Mod(S) ! X is lineal and lineal hyperbolic actions are also minimal by [1, Corol-
lary 4.12], this structure is comparable only to the equivalence class of the trivial
action.

Remark 4.6. Using quasimorphisms allows Theorem 4.4 to be applied for many
other mapping classes ϕ. As an example, if ϕ is a chiral pseudo-Anosov supported
on a subsurface V ⊂ S with g(V ) < g(S)/2 and with one boundary component,
then there exists a homogeneous quasimorphism q : Mod(S) → R not vanishing on
ϕ (see [6]). This quasimorphism then gives rise to a lineal action of Mod(S) in which
ϕ acts loxodromically. By Theorem 4.4, this action is maximal.

We now turn our attention to elements of H(Mod(S)) that are not lineal. For
the following theorem, we use Mod(V ) to denote the elements of Mod(S) supported
on V . This is technically larger than the mapping class group of V because it
includes elements which permute the components of ∂V . We denote by PMod(V )
the elements of Mod(S) supported on V that fix ∂V pointwise. For the convenience
of the reader, we recall the notation V, U1,W1, . . . ,Wn: V is a subsurface which is
disjoint from some surface in its Mod(S)-orbit. The complementary subsurfaces to
V are the subsurfaces W1, . . . ,Wn. Since V is disjoint from a surface in its Mod(S)-
orbit there is some translate of V contained in one of the subsurfaces W1, . . . ,Wn.
The numbering is chosen so that this translate is contained in W1. Finally, U1 is
the complementary subsurface to W1.

Theorem 4.7. Suppose that g(W1) > g(U1). If [Mod(S) ! X ] ∈ H(Mod(S))\
H!(Mod(S)), then either [Mod(S) ! X ] ∈ Hqp(Mod(S)) or the action Mod(V ) !
X is elliptic.

Proof. Since X is not a quasi-line, Theorem 4.4 implies that Mod(V ) contains no
loxodromics with respect to the action on X . By the classification of hyperbolic
actions, Mod(V ) ! X is parabolic or elliptic.

Suppose that Mod(V ) ! X is parabolic so that Mod(V ) fixes a single point
p ∈ ∂X . We will show that all of Mod(S) fixes p. By the classification of hyperbolic
actions, since Mod(S) ! X is cobounded, it must then be quasi-parabolic.

We first show that

Fix(PMod(V )) = Fix(Mod(V )) = {p}. (1)

Since PMod(V ) ≤ Mod(V ), we clearly have p ∈ Fix(PMod(V )). However if
|Fix(PMod(V ))| > 1 then PMod(V ) ! X is elliptic, since PMod(V ) ≤ Mod(V )
contains no loxodromics. In this case, since Mod(V ) contains an elliptic subgroup
of finite index, it must be elliptic itself. But we are supposing that Mod(V ) is
parabolic, and thus (1) follows.

From the proof of Theorem 4.4, we know that the graph Γ = Γ(V ) is connected.
Consider h ∈ Mod(S) and a path V = h0V, h1V, . . . , hrV = hV in Γ. We claim
that PMod(hiV ) fixes p for all i. To prove the claim, suppose for induction that
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PMod(hiV ) ·p = p. We want to show that PMod(hi+1) ·p = p as well. We have that
hiV ⊥ hi+1V ; every element of PMod(hiV ) fixes ∂hiV pointwise; and every ele-
ment of PMod(hi+1V ) fixes ∂hi+1V pointwise. Thus, every element of PMod(hiV )
commutes with every element of PMod(hi+1V ). In particular, if ϕ ∈ PMod(hi+1V )
then it fixes setwise the set Fix(ψ) for every ψ ∈ PMod(hiV ). Therefore, ϕ also
fixes setwise the set

⋂

ψ∈PMod(hiV )

Fix(ψ) = Fix(PMod(hiV )) = {p}.

Since ϕ ∈ PMod(hi+1V ) is arbitrary, this proves the claim.
The theorem now follows because

{p} = Fix(PMod(hiV )) = Fix(hi PMod(V )h−1
i ) = hi Fix(PMod(V )) = {hip}

and in particular hp = hnp = p.

5. Fundamental Groups of Flip Graph Manifolds

In this section, we prove that the fundamental groups of most flip graph manifolds
do not have the largest hyperbolic actions by applying Lemma 1.4. As for mapping
class groups in the previous section, we will construct two quasi-trees of metric
spaces. However, we need to divide this construction into two cases, depending on
the flip graph manifold (in particular, the structure of its underlying graph). In
the first case (Sec. 5.3), we use the action of the fundamental group of the flip
graph manifold on the quasi-trees of metric spaces to directly apply Lemma 1.4
and conclude. In the second case (Sec. 5.4), we are only able to obtain an action
of a finite-index subgroup of the fundamental group on the quasi-trees of metric
spaces, which is not sufficient to apply our main lemma. In this case, we will use
the quasi-trees of metric spaces to construct quasimorphisms, which will in turn
allow us to construct two lineal actions to which we can apply our main lemma.

5.1. Flip graph manifolds

We first recall the definition and some fundamental facts about flip graph man-
ifolds. A connected 3-manifold M is a flip graph manifold if it has the following
form. The manifold M is made up of finitely many pieces which are trivial cir-
cle bundles S × S1, where S is a surface with negative Euler characteristic and
with boundary (and no punctures). A boundary component c of the base S of a
piece defines a torus boundary component c × S1 of the piece, and these torus
boundary components are glued in pairs by orientation-reversing homeomorphisms
which interchange the boundary component and fiber directions of two distinct
torus boundary components.

The manifold M is homeomorphic to a graph of spaces where the vertex spaces
are the pieces of the decomposition and edge spaces correspond to boundary tori.
We denote by Γ the underlying graph. The universal cover M̃ is homeomorphic to
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a tree of spaces with an underlying tree which we denote Γ̃. In M̃ the vertex spaces
are universal covers of the pieces S × S1, which are homeomorphic to products of
closed convex subsets of the hyperbolic plane H2 with R. These vertex spaces have
boundary consisting of infinitely many copies of the plane R2 and these correspond
to the edge spaces of M̃ . For simplicity, we will refer to the vertex spaces of M̃ as
lifts of the pieces of M .

We endow M with a locally CAT(0) metric as follows. For a piece S × S1, the
base S admits a hyperbolic metric with geodesic boundary components of length
one. Further, we endow S1 with a Euclidean metric of length one by identifying
it with the unit interval [0, 1] with the endpoints identified. We endow the piece
S × S1 with the product /2 metric. We also require the identifications of torus
boundary components to be given by orientation-reversing isometries that have the
form (x, y) (→ (y, x) in appropriate coordinates.

The universal cover M̃ inherits a pullback metric. If X = S × S1, then its lifts
are each isometric to X̃ = S̃ × R, where S̃ has the pullback metric induced by
the chosen hyperbolic metric on S and R has the standard Euclidean metric. The
universal cover S̃ is isometric to a closed convex subset of H2 with infinitely many
geodesic boundary components. The vertex spaces S̃ × R are glued together along
copies of the Euclidean plane R2 where the identifications are given by orientation
reversing isometries (x, y) (→ (y, x) in appropriate coordinates.

For a piece X and a lift X̃ to M̃ , isometric to S̃×R, the relation (x, t) ∼X̃ (y, t)
for x, y ∈ S̃ gives rise to a quotient space /X̃ = X̃/ ∼X̃ that inherits a metric with
respect to which it is isometric to the real line. We denote by pX̃ : X̃ → /X̃ the
Lipschitz quotient map.

The fundamental group π1(M) acts by isometries on M̃ . If X is a piece of M ,
X̃ is a lift, and g ∈ π1(M), then gX̃ is another lift and the isometry

g|X̃ : X̃ → gX̃

respects the equivalence relations on X̃ and gX̃. In other words, if p, q ∈ X̃ and
p ∼X̃ q then gp ∼gX̃ gq. Hence, g induces a map /X̃ → /gX̃ . This map is an
isometry.

5.2. Projections

Let v be a vertex of Γ̃. Then the vertex space M̃v is bounded by infinitely many
Euclidean planes. If P and Q are two distinct such planes, we may consider the set
of points of Q which are closest to P . Denote this set by ρQ(P ). In other words, we
define

ρQ(P ) = {q ∈ Q :d(q, P ) ≤ d(q′, P ) for any q′ ∈ Q}.

Then ρQ(P ) is a geodesic line in Q. Parametrizing M̃v as Hv × R, where Hv is a
closed convex subset of H2, P and Q have the form α ×R and β ×R, respectively,
where α and β are boundary components of Hv. If a is the closest point on β to α,
then ρQ(P ) is parametrized as {a}× R. See Fig. 3.
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Fig. 3. The definition of the projection of one boundary plane onto another in a vertex space of
M̃ . The dotted line denotes a shortest geodesic from α to β (which is orthogonal to α and β at
its endpoints).

If P and Q are distinct boundary planes of M̃v, as above, w is adjacent to v
in Γ̃, and M̃w is glued to M̃v along Q, then the image pM̃w

(ρQ(P )) is a single
point of /M̃w

. If v and w are vertices of Γ̃ at distance at least two apart then we
define a projection from /M̃v

onto a point of /M̃w
as follows. Consider the unique

geodesic [v, w] oriented from v to w in Γ̃. Let u′, u, w be the last three vertices of
[v, w], occurring in that order. Then M̃u is glued to M̃u′ along a unique Euclidean
boundary plane P and to M̃w along a Euclidean boundary plane Q which is distinct
from P . We define the projection of /M̃v

to /M̃w
to be the point pM̃w

(ρQ(P )). We
denote this point by πM̃w

(M̃v). See Fig. 4.

Fig. 4. The projection of $M̃v
to $M̃w

is obtained by projecting the boundary plane P onto the

plane Q and then projecting the resulting line to the vertical direction of M̃w.
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We remark that the projection πM̃w
(M̃v) coarsely agrees with the composition

of the closest point projection of M̃v to M̃w, together with the quotient M̃w → /M̃w
.

However, we do not use this fact in the sequel and leave the proof to the interested
reader.

5.3. The case that Γ contains no loops

In this subsection, we assume that Γ contains no loops. In the next section, we
explain how this restriction may be removed.

Let X and Y be two adjacent vertex spaces of M . In M̃ we may choose lifts
X̃0 and Ỹ0 which are glued along a common Euclidean plane P . Writing X̃0 =
H0 ×R and Ỹ0 = H ′

0 ×R, where H0 and H ′
0 are closed convex subsets of H2, there

are boundary components α0 and β0 of H0 and H ′
0, respectively, such that P is

identified with the product α0×β0. Moreover, there are elements a and b of π1(M)
(corresponding to orthogonal simple closed geodesics in the boundary torus along
which X and Y are glued) such that

• a acts on X̃0 as ϕ× id in the product structure H0 ×R, where ϕ is a loxodromic
isometry of H0 with axis α0,

• b acts on Ỹ0 as ψ × id in the product structure H ′
0 ×R, where ψ is a loxodromic

isometry of H ′
0 with axis β0.

Consequently we see that a and b commute and fix both of the domains X̃0 and Ỹ0

setwise. In this section, we prove.

Theorem 5.1. There exists a hyperbolic space C(X) with an action of π1(M) by
isometries such that a acts elliptically on C(X) while b acts loxodromically. Similarly
there exists a space C(Y) with an action of π1(M) in which a acts loxodromically
and b acts elliptically.

The spaces C(X) and C(Y) are quasi-trees of metric spaces as described in Sec. 2.5.
The constructions are completely analogous, so we focus only on the case of C(X).

The set of domains X is the set of lifts of X to M̃ . In particular, our chosen
lift X̃0 is an element of X. Associated to a domain A ∈ X, there is an associated
hyperbolic space C(A) = /A. We define the projections πB(A) for A,B ∈ X as
above. These are well-defined because the vertices in Γ̃ corresponding to A and B
(i.e. the vertices v and w such that A = M̃v and B = M̃w) are distance at least two
apart in Γ̃. This follows from the fact that Γ has no loops, so that all edges of Γ̃
join vertices which project to distinct vertices in Γ after quotienting by the action
of π1(M). We define the distances

dπ
C(A,B) = d!C (πC(A),πC(B)),

where C ∈ X, A,B ∈ X\{C} and d!C denotes distance in the line /C . The main
technical result of this subsection is that these distances satisfy axioms (P0)–(P2)
from Sec. 2.5.
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Lemma 5.2. There exists θ > 0 large enough that the domains X, spaces C(A) for
A ∈ X, and projections πA satisfy the axioms (P0)−(P2).

Before proving the lemma, we show how it can be used to prove Theorem 5.1.

Proof of Theorem 5.1 using Lemma 5.2. For K large enough, the complex
C(X) = CK(X) is a quasi-tree by Theorem 2.14 and the lines C(A) are isometrically
embedded in CK(X) by Theorem 2.12.

The group π1(M) acts on the set X and permutes the associated lines C(A)
by isometries. Moreover, it is easy to see that π1(M) preserves the projections πA

(and hence also the distance functions dπ
A). Hence, we obtain an action of π1(M)

on C(X) by isometries. The elements a and b both fix C(X̃0). The element a fixes it
pointwise whereas b acts on it by translation. Since C(X̃0) is isometrically embedded,
this proves that a is elliptic and b is loxodromic, as desired.

By reversing the roles of X and Y , we obtain a complex C(Y) on which a is
loxodromic and b is elliptic.

It now remains only to prove Lemma 5.2.

Proof of Lemma 5.2. We will choose θ during the course of the proof.
Since πB(A) is a single point if A,B ∈ X are distinct, (P0) is trivially satisfied

for any θ > 0.
We check (P2) first and then (P1). Consider two distinct domains A,B ∈ X

corresponding to vertices v and w, respectively, in the underlying tree Γ̃. Consider
a third domain C ∈ X corresponding to a vertex u of Γ̃. Let [v, w] be the geodesic
from v to w in Γ̃. Let [u, u′] be the unique geodesic from u to [v, w], where u′ is
a vertex of [v, w]. If d(u, u′) ≥ 2 then we see immediately that πC(A) = πC(B) so
dπ
C(A,B) = 0. Otherwise there are two cases:

(i) u is a vertex of [v, w] or
(ii) u is joined by an edge to a vertex u′ of [v, w] (see Fig. 5).

Clearly, there are only finitely many domains C ∈ X corresponding to vertices
of type (i). We claim that if θ is large enough then there are also finitely many
domains C with dπ

C(A,B) > θ corresponding to vertices of type (ii). Choose ε large
enough that geodesic hexagons in H2 are ε-thin. Also choose R > 0 small enough
such that no two boundary components of the base S̃ of any vertex space S̃ ×R of

Fig. 5. The two possible cases of domains C (corresponding to the vertex u) with a large projection
distance between A and B (corresponding to v and w, respectively).
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M̃ are R-close. Given any number r > 0 there exists a number η(r) such that if two
geodesics in H2 are 2ε-close along segments of length greater than η(r) then they
are in fact r-close at some points. Hence, we see that no two boundary components
of S̃ are 2ε-close along segments of length greater than η(R). Set η = η(R) and
θ = 6ε + 2η. We claim that there are finitely many domains C corresponding to
vertices u of type (ii) with dπ

C(A,B) > θ.
If C corresponds to a vertex u of type (ii) (in other words C = M̃u), the vertex

space M̃u′ of M̃ contains three boundary planes P,Q and R such that

πC(A) = pM̃u
(ρR(P )) and πC(B) = pM̃u

(ρR(Q)),

(where C = M̃u is glued to M̃u′ along R). Parametrizing M̃u′ as H × R with H a
closed convex subset of H2, there are boundary components α,β and γ of H with
P = α × R, Q = β × R and R = γ × R. We see immediately that

dπ
C(A,B) = dγ(α,β),

where dγ(α,β) denotes the distance between the closest point on γ to α and the
closest point on γ to β. There are finitely many possibilities for the vertex u′ ∈ [v, w].
Thus, to show that there are finitely many domains C of type (ii) with dπ

C(A,B) > θ,
it suffices to show that there are finitely many boundary components γ of H with
dγ(α,β) > θ (note that α and β are uniquely determined by A and B).

Let [p, p′] be the shortest geodesic from α to γ (with p ∈ α and p′ ∈ γ) and let
[q, q′] be the shortest geodesic from β to γ (with q ∈ β and q′ ∈ γ). Also let [r, s]
be the shortest geodesic from α to β (with r ∈ α and s ∈ β). Orient [p, p′] from p
to p′, [q, q′] from q to q′ and [p′, q′] ⊂ γ from p′ to q′ (see Fig. 6). We claim that
dγ(α,β) > θ implies that γ contains a point which is ε-close to [r, s].

By the definition of [p, p′] as the shortest geodesic from α to γ, the only points on
[p, p′] which are ε-close to [p′, q′] ⊂ γ are the points in the final segment of length ε.

Fig. 6. Proofs of Axioms (P1) and (P2).
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A similar statement holds for [q, q′]. By the triangle inequality, the only points on
[p′, q′] which may be ε-close to [p, p′] are the points in the initial subsegment of
length 2ε. Similarly, the only points on [p′, q′] which may be ε-close to [q, q′] are
the points in the final subsegment of length 2ε. Therefore, any point in the middle
segment of [p′, q′] of length (d(p′, q′)− 4ε) is ε-close to a point of [r, p]∪ [r, s]∪ [s, q].
Note that [r, p] ⊂ α and [s, q] ⊂ β. Hence, only a segment of [p′, q′] of length at
most η may be ε-close to [r, p] and only a segment of [p′, q′] of length at most η may
be ε-close to [s, q]. Therefore, if d(p′, q′) = dγ(α,β) > θ = 4ε+ 2η then [p′, q′] must
have a point at distance at most ε from [r, s], as claimed.

Finally, note that there are finitely many boundary components ofH which meet
the ε-neighborhood of [r, s]. This proves that there are finitely many boundary
components γ of H with dγ(α,β) > θ. As noted before, there are finitely many
choices for the vertex u′, so this proves that there are finitely many domains C
with dπ

C(A,B) > θ.
Finally, we prove Axiom (P1). If dπ

C(A,B) > 0 then the vertex u corresponding
to C must have one of the types (i) or (ii) above. In other words, if v, w and u are
the vertices for A,B and C, respectively, and [v, w] is the geodesic between v and
w in Γ̃, then either (i) u lies on [v, w] or (ii) u is joined by an edge to a vertex
u′ ∈ [v, w]. In case (i) we have

dπ
A(B,C) = dπ

B(A,C) = 0

so that (P1) is trivially satisfied.
In case (ii) we again have that

dπ
A(B,C) = dπ

B(A,C) = 0

unless u′ is joined by an edge to v or to w. Suppose for instance that u′ is joined
by an edge to v. Then parametrizing M̃u′ as H ×R with H a closed convex subset
of H2, we see that there are boundary components α,β, γ of H with

dπ
C(A,B) = dγ(α,β) and dπ

A(B,C) = dα(β, γ).

We claim that if dγ(α,β) > θ then dα(β, γ) ≤ θ.
By the proof of Axiom (P2), if dγ(α,β) > θ, then we have the following property.

Let [r, s] be the shortest geodesic from α to β, [p, p′] be the shortest geodesic from
α to γ and [q, q′] the shortest geodesic from β to γ. Then we have that [p′, q′] ⊂ γ
has a point which is ε-close to [r, s].

Now assume that dα(β, γ) > θ. Consider points e ∈ [p′, q′] and f ∈ [r, s] such
that d(e, f) ≤ ε (see Fig. 6). Then the geodesic pentagon

[r, p] ∪ [p, p′] ∪ [p′, e] ∪ [e, f ] ∪ [f, r]

is ε-thin. Orient each of [r, p] ⊂ α, [r, f ] ⊂ [r, s] and [p, p′] to point from the first
point in the brackets to the second. By the definition of [r, s] as the shortest geodesic
from α to β, only points on the initial subsegment of [r, f ] of length ε can be ε-close
to α. Similarly, only points on the initial subsegment of [p, p′] of length ε can be
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ε-close to α. By the triangle inequality, only points in the initial subsegment of [r, p]
of length 2ε can be ε-close to [r, f ] and only points on the final subsegment of [r, p]
of length 2ε can be ε-close to [p, p′]. Thus, points on the middle subsegment of
[r, p] of length (d(r, p)− 4ε) are ε-close to [p′, e] ∪ [e, f ]. Since [e, f ] has length ≤ ε,
any point on the middle subsegment of [r, p] of length (d(r, p) − 4ε) is 2ε-close to
[p′, e] ⊂ γ. Since dα(β, γ) = d(r, p) > θ = 4ε + 2η, this implies that α is 2ε-close to
γ along a segment of length at least 2η. This contradicts the definition of η. Thus,
we must have dα(β, γ) ≤ θ.

Therefore,

dπ
C(A,B) > θ implies dπ

A(B,C) ≤ θ and dπ
B(A,C) ≤ θ,

as desired.

5.4. The case that Γ contains loops

Now we assume that Γ contains loops but M contains at least two distinct pieces
X and Y which are glued together (recall that we do not cover the case that Γ has
only one vertex). Thus, Γ contains an edge which is not a loop, between the vertex
corresponding to X and the vertex corresponding to Y . We again find elements a
and b of π1(M), corresponding to orthogonal loops in the torus along which X and
Y are glued such that a and b commute and a and b both fix a pair of lifts X̃0 and
Ỹ0 which are glued along a Euclidean plane in M̃ . We assume that a and b act on
X̃0 and Ỹ0 in the same way as in the last section. We again claim that there is a
hyperbolic space L on which π1(M) acts so that a is elliptic while b is loxodromic.
However, the construction in this case is more complicated, and the space L will
actually be a quasi-line.

If there is no loop in Γ based at the vertex corresponding to X then the tech-
niques in the previous section apply, so that we obtain a hyperbolic space acted on
by π1(M) with a elliptic and b loxodromic. Hence, we suppose here without loss
of generality that there is at least one loop in Γ based at the vertex corresponding
to X . In this case, taking X to be the set of all lifts of the vertex space X in M
leads to pairs of domains between which no projection is defined. Thus, we instead
use a coloring of the vertices of Γ̃ by two colors, black and white. As in the usual
definition of a coloring, we require that if two vertices are joined by an edge, then
they have different colors.

If A and B are distinct lifts of X to M̃ and both correspond to black vertices
of Γ̃ (that is A = M̃v and B = M̃w and v and w are both black) then the geodesic
[v, w] ⊂ Γ̃ contains at least one vertex in its interior. Thus, there is a well-defined
projection from /A to /B as before, with image a point. Hence, we take our set of
domains to be

X = {A : A is a lift of X and A = M̃v such that v ∈ Γ̃0 is black}.

We refer to the domains A ∈ X as simply black lifts of X . As in the previous
subsection, for any sufficiently large K we may define a quasi-tree CK(X).



2nd Reading
March 7, 2022 22:28 WSPC/243-JTA 2250006

30 C. R. Abbott & A. J. Rasmussen

Now, π1(M) acts by permutation on the set of colors of vertices and thus an
index two (normal) subgroup N of π1(M) preserves the coloring of Γ̃. We have
an action of N on CK(X), for a constant K which will be chosen in the course of
Lemma 5.4. Moreover, both a and b lie in N . We may choose the coloring of Γ such
that the chosen lift X̃0 corresponds to a black vertex. Then a and b both fix the
domain X̃0. We have that a acts on C(X̃0) = /X̃0

by fixing every point and b acts
on C(X̃0) as a translation. Hence, a is elliptic and b is loxodromic in the action of
N on C(X). Note that the action of N cannot be extended to an action of π1(M)
since elements of π1(M) send domains in X to domains which have no projections
defined to the domains of X. We wish to construct a homogeneous quasimorphism
q0 :N → R such that q0(b) 0= 0 and q0(a) = 0 by applying Proposition 2.3.

Lemma 5.3. The element b is WWPD+ in the action of π1(M) on CK(X).

Proof. The fact that b is WWPD follows from the quasi-tree of metric spaces
machinery. Any conjugate of b has a geodesic axis in CK(X). If this axis is not the
same as the axis of b, which is /X̃0

, then it is equal to /A for some A ∈ X\{X̃0}.
Then πX̃0

(A) is a point and the closest point projection of /A to /X̃0
in CK(X) is

a uniformly bounded diameter set at a uniformly bounded distance from πX̃0
(A)

(see Theorem 2.12). Thus, the projection of a translate of the axis of b to the axis
of b has uniformly bounded diameter.

To show that b is WWPD+, we must show that no element of N interchanges
the endpoints of /X̃0

. If an element of N fixes /X̃0
then it also fixes the domain

X̃0. The stabilizer of X̃0 is conjugate to π1(S)× Z, where X = S × S1. Clearly, no
element of this stabilizer interchanges the endpoints of /X̃0

.

Hence by Proposition 2.3 there is a homogeneous quasimorphism q0 : N → R
with q0(a) = 0 and q0(b) 0= 0. We will use this to define a quasimorphism π1(M) →
R by using a technique from the proof of [8, Lemma 7.2]. In order to apply this
technique, we must first modify q0 to a quasimorphism q′0 : N → R as follows.
Choose h to be a representative of the nontrivial coset of N in π1(M) and define

q′0(g) = q0(g) + q0(hgh−1).

Since N is normal, q′0 is indeed a map N → R. Moreover, q′0 extends to a homoge-
neous quasimorphism q : π1(M) → R defined by

q(g) =
1
2
q′0(g

2) for any g ∈ π1(M).

(In other words, q|N = q′0.) The fact that q is a quasimorphism is given in the proof
of [8, Lemma 7.2], and it is straightforward to check that it is homogeneous. Our
main tool in this section is the following.

Lemma 5.4. For K large enough, q(a) = 0 and q(b) 0= 0.
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Before giving the proof of this lemma, we will show how it proves our main
result.

Theorem 5.5. The group π1(M) admits no largest action.

Proof of Theorem 5.5 using Lemma 5.4. By Lemma 2.4, the quasimorphism
q gives rise to an action of π1(M) on a quasi-line L. In this action, a is elliptic
and b is loxodromic. Reversing the roles of a and b, we find an action of π1(M)
on a quasi-line L′ such that a is loxodromic and b is elliptic. Applying Lemma 1.4
completes the proof.

The remainder of this section is devoted to the proof of Lemma 5.4. Since h is
a representative of the nontrivial coset of N , it interchanges the colors of Γ̃. Hence,
hah−1 fixes a lift W of X which corresponds to a vertex v of Γ̃ which is white.
Parametrizing W = H1 × R, with H1 a closed convex subset of H2, we have that
a acts on W as ϕ × id, where ϕ is a loxodromic isometry of H1 with axis equal
to a boundary component β of H1. The lift W is glued to a lift Ỹ of Y . The lift
Ỹ may be written as H2 × R and W and Ỹ are glued along the Euclidean plane
β × R ⊂ ∂W which is identified with a component γ × R of ∂Ỹ , where γ ⊂ ∂H2.

The element hah−1 permutes the infinitely many lifts of X adjacent to W . Call
them B1, B2, . . . . Note that they are all black.

Lemma 5.6. The distances dπ
C(hamh−1B1, hanh−1B1) are bounded for any m,n ∈

Z and C a black lift of X not contained in {hamh−1B1, hanh−1B1}.

Fig. 7. The αi represent boundary components in H1, where W = H1 ×R. The αi also represent
the vertical directions in the Bi. Hence, we see that dπ

Bi
(Bj , Bk) = dαi(αj ,αk).
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Proof. We first handle the case that C ∈ {B1, B2, . . .}. For each i, there is a
boundary component αi of H1 such that Bi is glued to W along the boundary
plane αi × R.

We see that dπ
Bi
(Bj , Bk) = dαi(αj ,αk) for all i, j, k. In particular, dπ

Bi

(hamh−1B1, hanh−1B1) = dαi(hamh−1α1, hanh−1α1).
If αi is not equal to hakh−1α1 for any k then we see that there exists a unique

k such that αi lies between hakh−1α1 and hak+1h−1α1 (see Fig. 8). Denote by
παi(αj) the nearest point to αj on αi. Fixing an appropriate orientaton on αi, we
see that the projections παi(halh−1α1) of the halh−1α1 onto αi occur in the order

παi(ha
kh−1α1) < παi(ha

k−1h−1α1) < παi(ha
k−2h−1α1) < · · · < παi(β)

and

παi(ha
k+1h−1α1) > παi(ha

k+2h−1α1) > παi(ha
k+3h−1α1) > · · · > παi(β).

Hence, dαi(hamh−1α1, hanh−1α1) is bounded by dαi(hakh−1α1, hak+1h−1α1). This
projection distance is in turn bounded from above only in terms of the distance
d(hakh−1α1, hak+1h−1α1) from hakh−1α1 to hak+1h−1α1 in H2. Of course, we
have d(hakh−1α1, hak+1h−1α1) = d(α1, hah−1α1) is independent of k. Therefore,
dαi(hamh−1α1, hanh−1α1) is bounded above independently of i, m and n as long
as αi is not equal to any hakh−1α1.

Fig. 8. If αi is between hakh−1α1 and hak+1h−1α1 then dαi (ha
mh−1α1, hanh−1α1) is bounded

by dαi (ha
kh−1α1, hak+1h−1α1) (in this picture k = 0).
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If αi is equal to hakh−1α1 for some k with k /∈ {m,n}, then we see as
above that dhakh−1α1(ha

mh−1α1, hanh−1α1) is bounded by dhakh−1α1(ha
k−1h−1α1,

hak+1h−1α1). This is in turn bounded above in terms of d(hak−1α1h−1,
hak+1h−1α1) = d(α1, ha2h−1α1), which is clearly independent of k,m and n.

Finally if C /∈ {B1, B2, . . .} then we claim that dπ
C(hamh−1B1, hanh−1B1) = 0.

For in this case, let u be the (black) vertex of Γ̃ corresponding to hamh−1B1, let v
be the vertex corresponding to hanh−1B1, and let w be the vertex corresponding to
C. Consider the geodesic [v, w] from v to w in Γ̃. Up to exchanging the roles of v and
w, the geodesic [u, u′] from u to [v, w] has one of the two following properties: either
(i) u′ = v and [u, u′] has length two or (ii) u′ is the first vertex on [v, w] after v and
[u, u′] has length one. In the first case we have automatically that πC(hamh−1B1) =
πC(hanh−1B1). In the second case, we see that u′ is the vertex corresponding to
the chosen lift W . We again see that πC(hamh−1B1) = πC(hanh−1B1) unless [v, w]
has length two. In this case, the lift C is adjacent to W and therefore C = Bi for
some i, which is a contradiction.

Proof of Lemma 5.4. First we prove that q(a) = 0.
We have

q(a) = q′0(a) = q0(a) + q0(hah−1).

Since, a is elliptic, Proposition 2.3 implies that q0(a) = 0. We check that also
q0(hah−1) = 0, and this will prove that q(a) = 0, as desired.

As in [5, Sec. 3.2], we modify the distance functions dπ
C to distance functions

dC , which satisfy dC ≤ dπ
C . Choose K large enough that dπ

C(hamh−1B1, hanh−1B1)
is bounded by K for all m,n ∈ Z and for any C /∈ {hamh−1B1, hanh−1B1}; such
a K exists by Lemma 5.6. We build the quasi-tree of metric spaces CK(X) using
the spaces C(C) = /C , projections πC , and distances dC . Since for all m,n and
C /∈ {hamh−1B1, hanh−1B1}, we have

dC(hamh−1B1, ha
nh−1B1) ≤ dπ

C(ha
mh−1B1, ha

nh−1B1) ≤ K,

the space C(hamh−1B1) is joined by an edge to the space C(hanh−1B1) for
all m,n ∈ Z. Furthermore, this edge goes from πhamh−1B1(ha

nh−1B1) to
πhanh−1B1(hamh−1B1).

To see that hah−1 is elliptic, consider as a basepoint P = πB1(hah−1B1).
For i ∈ Z\{0}, let ei be the edge joining πB1(haih−1B1) to πhaih−1B1(B1). The
endpoints of the ei on C(B1) occur between those of e−1 and e1. Furthermore
the distance between the endpoints of e1 and e−1 on C(B1) is bounded by K.
Note that the endpoint of e1 on C(B1) is P . We now give an upper bound on
the distance from P to hakh−1P in CK(X), which is independent of k. We have
hakh−1P = πhakh−1B1(ha

k+1h−1B1) and this is the endpoint on C(hakh−1B1) of
the edge hakh−1e1. The endpoints of the edges hakh−1ei on C(hakh−1B1) occur
between the endpoints of hakh−1e−1 and hakh−1e1 and these are distance at most
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Fig. 9. The arrangements of various lines in the quasi-tree CK(X), showing that the orbit of the
point P is bounded.

K apart. Finally, the edge ek from C(B1) to C(hakh−1B1) is equal to hakh−1e−k,
which, by definition of CK(X), has length L. Thus, we have

d(P, hakh−1P ) ≤ d(P, ek) + length(ek) + d(ek, hakh−1P ) ≤ K + L+K.

See Fig. 9. This completes the proof that hah−1 is elliptic.
Finally, we show that q(b) = q′0(b) 0= 0. We have

q′0(b) = q0(b) + q0(hbh−1)

and q0(b) 0= 0. We will show that hbh−1 is elliptic in the action N ! CK(X). This
will show that q0(hbh−1) = 0 and thus q′0(b) = q0(b) 0= 0, as claimed. Note that
the conjugate hbh−1 fixes the lift W = hX̃0 of X which is white, on which it acts
as a vertical translation. That is, parametrizing W = H1 × R with H1 a closed
convex subset of H2, we have that hbh−1 acts as id × ϕ, where ϕ is a loxodromic
isometry of R. As before, let B1, B2, . . . be the other lifts of X to which W is glued.
These all correspond to black vertices of Γ̃ and are fixed by hbh−1. Parametrizing
Bi = H ′

i × R, with H ′
i a closed convex subset of H2, we see that the vertical

directions of Bi correspond to boundary components of H1. Thus, hbh−1 fixes each
/Bi pointwise, hence hbh−1 is elliptic, as claimed.

6. Fundamental Groups of Finite-Volume Cusped Hyperbolic
3-Manifolds

Let M be a finite-volume cusped hyperbolic 3-manifold. The cusps of M are all
homeomorphic to T 2 × [0,∞), where T 2 is the torus. We recall that Dehn filling
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one of the cusps of M consists of

• removing T 2 × (0,∞) to form the manifold M0 with a boundary component
homeomorphic to T 2,

• gluing in a copy of the solid torus D2 × S1 by identifying its boundary with the
boundary component of M0 by some homeomorphism to define the manifold M ′.

This homeomorphism identifies ∂D2 × {∗} (where ∗ is any point of S1) with a
simple closed curve on the torus boundary component of M0. The isotopy class
of this curve is called the slope of the Dehn filling, and it can be shown that the
resulting manifold M ′ is determined up to homeomorphism by this slope.

Since M has finite volume, it has finitely many cusps T1 × [0,∞), . . . , Tn ×
[0,∞). Thurston’s Hyperbolic Dehn Surgery Theorem states.

Theorem 6.1. ([16]) There exists a finite set Si of slopes on Ti such that if we
Dehn fill each cusp of M and the slope for Ti avoids Si for each i, then the resulting
manifold M ′ admits a hyperbolic metric.

The Dehn-filled manifold M ′ in this theorem is closed. If we choose the slope αi on
Ti for each i, then αi corresponds to a conjugacy class in π1(M). We have

π1(M ′) = π1(M)/〈〈α1, . . . ,αn〉〉,

where 〈〈S〉〉 denotes the normal closure of a subset S in π1(M). In particular, there
is a quotient π1(M) " π1(M ′). Any isotopy class of simple closed curve on Ti other
than αi corresponds to a conjugacy class in π1(M) which is not in the kernel of the
quotient map π1(M) → π1(M ′).

Consider the cusp T1 × [0,∞). By choosing as a basepoint x ∈ T1 × {0}, loops
in T1 × {0} based at x define a subgroup H ∼= Z2 of π1(M,x). A slope on T1 then
corresponds to a primitive element of Z2. Choose two primitive elements a and b of
H which do not lie in the finite set S1 ⊂ H . We are now ready to prove the main
result of this section.

Theorem 6.2. The poset H(π1(M)) contains no largest element.

Proof. We will show that there are cobounded actions π1(M) ! X and π1(M) !
Y with X and Y hyperbolic such that a acts loxodromically and b acts elliptically
on X and a acts elliptically and b acts loxodromically on Y . The result will then
follow by Lemma 1.4.

Let M ′ be the manifold obtained by Dehn filling T1 × [0,∞) with slope b and
filling T2 × [0,∞), . . . , Tn × [0,∞) with any slopes avoiding the sets S2, . . . , Sn.
The resulting manifold M ′ is closed and hyperbolic so π1(M ′) admits a cobounded
properly discontinuous action on H3. We obtain an action of π1(M) on H3 by
first taking the quotient π1(M) → π1(M ′) and then composing with the action of
π1(M ′) on H3. Of course b acts elliptically in this action since it lies in the kernel
of π1(M) → π1(M ′). On the other hand, a does not lie in this kernel. Since every
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nontrivial element of π1(M ′) acts loxodromically on H3, a acts loxodromically in
this action. This gives us our action π1(M) ! X . Reversing the roles of a and b
gives the construction of π1(M) ! Y .

Remark 6.3. The proof above applies without major changes whenever G is rela-
tively hyperbolic with a peripheral subgroup isomorphic to Z2 or, even more gener-
ally, when G is acylindrically hyperbolic with a hyperbolically embedded subgroup
isomorphic to Z2 using a more general version of Dehn filling (see [10] for definitions
and details). We omit the details.

7. Fundamental Groups of Anosov Mapping Tori

Fix an element ϕ ∈ SL(2,Z) that is Anosov; that is, ϕ has distinct irrational
eigenvalues λ > 1 and λ−1. The map ϕ is an element of the mapping class group of
the torus T 2, and the group G = Z2 "ϕ Z is the fundamental group of the mapping
torus of ϕ. Our goal in this section is to prove Theorem 1.3. To do so, we will follow
the following steps:

(1) Since G is solvable it admits only lineal and quasi-parabolic structures.
(2) We show that quasi-parabolic structures are equivalent to confining subsets of

Z2 under the action of ϕ or ϕ−1.
(3) We classify quasi-parabolic structures using the correspondence with confin-

ing subsets and the geometry of R2, showing that there are only two up to
equivalence.

(4) Finally, we classify the lineal structures.

We begin by considering the abelianization of G.

Lemma 7.1. The abelianization of G is virtually cyclic.

Proof. Writing ϕ =
(a b

c d

)
, the group G has the presentation

G = 〈x, y, t : [x, y] = 1, txt−1 = xayc, tyt−1 = xbyd〉.

The abelianization G′ is generated by x, y and t, respectively, subject to the rela-
tions

x = ax+ cy and y = bx+ dy.

Equivalently, we may consider this as the system of equations
(
a− 1 c
b d− 1

) (
x

y

)
=

(
0

0

)
.

We will perform row reduction on this matrix, using only the following elementary
row operations:

• adding an integer multiple of one row to another,
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• swapping rows and
• multiplying a row by an integer.

The result is a sequence of systems of equations which hold in G′. Since the matrix
(a − 1 c

b d− 1

)
has nonzero determinant, at the final stage we arrive at an equation

(
m 0

0 n

)(
x

y

)
=

(
0

0

)
,

where m,n ∈ Z\{0}. In other words, mx = 0 and ny = 0. Thus, we have G′ ∼=
〈t〉 × 〈x, y〉 and 〈x, y〉 is finite. This proves the statement.

As in the proof of Lemma 7.1, we denote by t the generator of the Z factor of
G = Z2 "ϕ Z.

Lemma 7.2. A hyperbolic structure [T ] is an element of Hqp(G) if and only if
there exists a symmetric subset Q ⊂ Z2 which is strictly confining under the action
of ϕ or ϕ−1 such that [T ] = [Q ∪ {t±1}].

The proof relies on Lemma 7.1 and is completely analogous to [2, Proposition 2.6],
which is in turn based on [9, Theorems 4.4 and 4.5], so we omit it.

We consider symmetric subsets Q ⊂ Z2 which are confining under the action of
ϕ. Denote by λ > 1 and λ−1 the eigenvalues of ϕ with corresponding eigenvectors
v+ and v−, respectively. We suppose that v+ and v− have been chosen to be unit
vectors. Given ε > 0, we define a symmetric subset of Z2 by

Qε = {av+ + bv− ∈ Z2 :a, b ∈ R, |b| ≤ ε}.

In other words, Qε is the intersection of a neighborhood of the line Rv+ in R2

with Z2.

Lemma 7.3. For any ε > 0, the set Qε is strictly ϕ-confining. Furthermore if
ε, δ > 0, then we have

[Qε ∪ {t±1}] = [Qδ ∪ {t±1}].

Proof. It is straightforward to check that Qε is confining using the fact that the
action of ϕ on Z2 stretches Qε in the direction of v+ and contracts it in the direction
of v−. To prove that it is strictly confining, note that ϕ(Qε) ⊂ Qε/λ, and so it
suffices to check that Qε\Qε/λ is non-empty. The set {av+ + bv− : a, b ∈ R, |b| ≤ ε}
is bounded by two lines Lu and Ll in R2 which are parallel to v+; see Fig. 10.
Similarly, {av+ + bv− : a, b ∈ R, |b| ≤ ε/λ} is bounded by two lines Mu and M l

which are parallel to v+. If the labels are chosen such that M l is between Ll and
Mu and Mu is between M l and Lu, then we may choose a line N parallel to v+

between Mu and Lu. The line N passes arbitrarily close to the integer lattice Z2

since it projects to a line on T 2 which is dense in T 2. If we choose a point p of Z2

which is sufficiently close to N , then p ∈ Qε\Qε/λ, as desired.
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Fig. 10. (Color online) Proof of Lemma 7.3. The intersections of the blue and red shaded regions
with Z2 are Qε and Qε/λ, respectively.

For the second statement, suppose without loss of generality that 0 < δ ≤ ε.
Then Qδ ⊂ Qε, and so [Qδ ∪{t±1}] # [Qε∪{t±1}]. Choose n ∈ N large enough that
ε/λn ≤ δ. Then we have ϕn(Qε) ⊂ Q2δ. In other words, tnQεt−n ⊂ Qδ, and thus
every element of Qε has word length at most 2n+1 with respect to the generating
set Qδ ∪ {t±1}. Therefore, [Qδ ∪ {t±1}] ! [Qε ∪ {t±1}], and the result follows.

We next show that for some (equivalently, any) ε > 0, the action of G on
Γ(G,Qε ∪ {t±1}) is equivalent to the action of G on H2 defined as follows. Let
π : Z2 → R be the homomorphism

π : av+ + bv− (→ b.

Consider the upper half-plane model of H2. The group Z2 admits a parabolic action
on H2 via

p · z = z + π(p) for p ∈ Z2 and z ∈ H2.

Let t act loxodromically on H2 by t · z = λ−1z. For p ∈ Z2 we have

ϕ(p) · z = z + π(ϕ(p)) = z + λ−1π(p).

Moreover,

tpt−1 · z = tp · λz = t · (λz + π(p)) = z + λ−1π(p).

Therefore, the actions of Z2 and 〈t〉 induce an action of G on H2.

Lemma 7.4. The action of G on H2 is equivalent to the action of G on Γ(G,Qε ∪
{t±1}) for some (hence any) ε > 0.
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Proof. We apply the Schwarz-Milnor Lemma [1, Lemma 3.11]. Choose as a base-
point i ∈ H2. We claim that the G-translates of the ball B = Blog(λ)(i) cover
H2. To see this, note that since Rv+ passes arbitrarily close to the integer lat-
tice Z2, the image π(Z2) is dense in R. Moreover, tn translates the horocycle
{z ∈ H2 : Im(z) = 1} to the horocycle {z ∈ H2 : Im(z) = λ−n} for any n ∈ Z. Thus,
for any n ∈ Z, the orbit of i is dense in the horocycle {z ∈ H2 : Im(z) = λ−n}.
These horocycles are spaced at distances exactly log(λ) apart. Hence, we easily see
that the balls of radius log(λ) based at points in the orbit of i cover H2.

By [1, Lemma 3.11], the action of G on H2 is equivalent to the action of G on
Γ(G,S), where

S = {g ∈ G : d(i, gi) ≤ 2 log(λ) + 1}.

Hence, it remains to show that [S] = [Qε ∪ {t±1}] for some ε.
Suppose that g ∈ S, so that g translates i a distance of at most 2 log(λ) + 1.

Writing g = ptn, where p ∈ Z2 and n ∈ Z, we have

gi = λ−ni+ π(p).

Hence, gi lies on the horocycle {z ∈ H2 : Im(z) = λ−n}. Since this horocycle has
distance |n| log(λ) from {z ∈ H2 : Im(z) = 1}, we must have

|n| log(λ) ≤ 2 log(λ) + 1

and therefore |n| ≤ 2 log(λ)+1
log(λ) . We also have

d(i, gi) = 2 arcsinh

(
1
2

√
π(p)2 + (λ−n − 1)2

λ−n

)
≥ 2 arcsinh

(
1
2

√
π(p)2

λ−n

)
.

Since arcsinh is an increasing function and |n| is bounded, this clearly defines an
upper bound on |π(p)|. Set ε to be this upper bound. Since |π(p)| ≤ ε, we have p ∈
Qε. Hence, the word length of g with respect to Qε ∪{t±1} is at most 1+ 2 log(λ)+1

log(λ) .
This proves [S] # [Qε ∪ {t±1}].

We now turn our attention to the other inequality. Given g ∈ Qε ∪ {t±1}, we
must consider two cases. If g = t±1 then d(i, gi) = log(λ), and therefore g ∈ S. On
the other hand, if g = p ∈ Qε then we have

d(i, pi) = 2 arcsinh
(
1
2
|π(p)|

)
≤ 2 arcsinh

(
1
2
ε

)
.

Letting n be large enough so that 2 arcsinh(12ε/λn) < 2 log(λ) + 1, we have

d(i,ϕn(p)i) = 2 arcsinh
(
1
2
|π(p)/λn|

)
≤ 2 arcsinh

(
1
2
ε/λn

)
< 2 log(λ) + 1.

Thus, ϕn(p) ∈ S. As we already showed that t±1 ⊂ S, it follows that p = t−nϕn(p)tn

has word length at most 2n+ 1 with respect to S. This proves [Qε ∪ {t±1}] # [S].
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For the proof of the next lemma, denote by ρ : Z2 → R the homomorphism
ρ : av+ + bv− (→ a.

Lemma 7.5. Let Q ⊂ Z2 be confining under the action of ϕ. Then for some (hence
any) ε > 2 we have

[Qε ∪ {t±1}] # [Q ∪ {t±1}].

Proof. Choose n large enough that ϕn(Q+Q) ⊂ Q and λn > 2; we fix this n for
the remainder of the proof. Fix u ∈ Q\{0} and set ε = |b|, where u = av+ + bv−.
After possibly replacing u by −u we may assume a > 0.

We define a sequence of subsets of Q as follows. First of all define P0 = {±u}∪
{0}. Having defined Pi, we define Pi+1 inductively by Pi+1 = Pi ∪ ϕn(Pi + Pi).
If we assume for induction that Pi ⊂ Q, we have ϕn(Pi + Pi) ⊂ ϕn(Q + Q) ⊂ Q
and therefore Pi+1 ⊂ Q. Thus, the union P =

⋃∞
i=0 Pi ⊂ Q. Moreover, P is closed

under the action of ϕn and we have ϕn(P + P ) ⊂ P .
Another induction argument shows that P is contained in Qε. It is clear that

P0 ⊂ Qε. If we suppose for induction that Pi ⊂ Qε and x, y ∈ Pi, then we have
x = cv+ + dv− and y = ev+ + fv−, where d and f both have absolute value at
most ε. Thus, ϕn(x + y) = λn(c + e)v+ + λ−n(d + f)v−. Since λn > 2, we have
|λ−n(d+ f)| < 1

2 (|d|+ |f |) < ε. Therefore, Pi+1 ⊂ Qε as well.
Set a = ρ(u) and for r ∈ N write rP for the words in P of length at most r.

Recall that a subset S ⊂ R is R-dense if for any x ∈ R there exists s ∈ S with
|x− s| ≤ R.

Claim 7.6. There exists r > 0 such that ρ(rP ) is (λna)-dense in R.

Before proving the claim, we show how it implies the lemma. Note that rP is
contained in Qrε. We now claim that every element of Qrε may be written as a
word in Q of bounded word length. To see this, consider an element g ∈ Qrε and
its projection ρ(g) to R. By Claim 7.6, there is an element h ∈ rP with |ρ(g) −
ρ(h)| ≤ λna. Furthermore, we have d(g, ρ(g)v+) ≤ rε‖v−‖ and d(h, ρ(h)v+) ≤
rε‖v−‖ (where d(·, ·) denotes distance in R2). Therefore,

d(g, h) ≤ d(g, ρ(g)v+) + d(ρ(g)v+, ρ(h)v+) + d(ρ(h)v+, h)

≤ rε‖v−‖+ λna+ rε‖v−‖ = 2rε‖v−‖+ λna.

Since Q generates Z2, we may choose N to be an upper bound on the word length
in Q of any element of S = Z2∩B2rε‖v−‖+λna(0) (where B2rε‖v−‖+λna(0) is the ball
of radius 2rε‖v−‖+ λna centered at 0 in R2). Then since d(g, h) ≤ 2rε‖v−‖+ λna,
there exists k ∈ S with h+ k = g. We have

‖g‖Q ≤ ‖h‖Q + ‖k‖Q ≤ r +N.
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Proof of Claim 7.6. Since a = ρ(u), we have λna = ρ(ϕn(u)). Choose r to be
the largest integer with rλna < λ2na; that is, r = ;λn<. Then

|ρ(rϕn(u))− ρ(ϕ2n(u))| = |rλna− λ2na| < λna.

We will show that the following hold for each i ∈ N:

• ρ(rP ) intersects each interval [λina,λ(i+1)na] in a (λna)-dense subset and
• ρ(rP ) contains the endpoints λina and λ(i+1)na.

Since ρ(rP ) is a symmetric subset of R, this will prove that ρ(rP ) is (λna)-dense
in R, as desired. The second claim is trivial since ρ(ϕin(u)) = λinρ(u) = λina for
any i. The first claim is proven by induction.

For the base case i = 1, note that for 1 ≤ j ≤ r we have jλna = ρ(jϕn(u)).
Since j ≤ r we have jϕn(u) ∈ rP . Since |λ2na − rλna| ≤ λna, this proves that
ρ(rP ) intersects [λna,λ2na] in a (λna)-dense set, as desired.

Now suppose for induction that we have a sequence v0, v1, . . . , vt of elements of
rP with ρ(v0) = λ(i−1)na, ρ(vt) = λina and |ρ(vj)− ρ(vj+1)| ≤ λna for each j. We
may apply ϕn to each element of the sequence. We have that ρ(ϕn(v0)) = λina,
ρ(ϕn(vt)) = λ(i+1)na, and for each i,

|ρ(ϕn(vj))− ρ(ϕn(vj+1))| = λn|ρ(vj)− ρ(vj+1)| ≤ λ2na.

Writing bj = ρ(vj) and bj+1 = ρ(vj+1), we have ρ(ϕn(vj)) = λnbj and ρ(ϕn

(vj+1)) = λnbj+1.
Since these numbers are distance at most λ2na apart, we have λnbj + (r + 1)

λna ≥ λnbj+1. Hence, if s is the largest integer such that λnbj + sλna < λnbj+1,
then s ≤ r and between λnbj and λnbj+1 there is a sequence of numbers

λnbj, λnbj + λna, λnbj + 2λna, . . . ,λnbj + sλna, λnbj+1

spaced at distances at most λna apart. Furthermore, for each k between 0 and s,
we have

λnbj + kλna = ρ(ϕn(vj)) + kρ(ϕn(u)) = ρ(ϕn(vj) + kϕn(u)) = ρ(ϕn(vj + ku)).

The element vj has word length at most r with respect to P and k ≤ s ≤ r. Write
vj as a word g1 + · · ·+ gr, where each g∗ lies in P (with some possibly equal to 0).
Then we have

ϕn(vj + ku) = ϕn(g1 + u) + ϕn(g2 + u)

+ · · ·+ ϕn(gk + u) + ϕn(gk+1) + · · ·+ ϕn(gr).

Since ϕn(P +P ) ⊂ P , each term in this sum lies in P . Therefore, ϕn(vj+ku) ∈ rP .
Hence, each number λnbj + kλna, where k ≤ s lies in ρ(rP ). This proves that
ρ(rP ) intersects [λnbj ,λnbj+1] in a set of numbers spaced at distances at most λna
apart and containing both the endpoints. Since 0 ≤ j < t was arbitrary, this proves
that ρ(rP ) intersects the entire interval [λina,λ(i+1)na] in a set of numbers spaced



2nd Reading
March 7, 2022 22:28 WSPC/243-JTA 2250006

42 C. R. Abbott & A. J. Rasmussen

at distances at most λna apart and containing both of the endpoints λina and
λ(i+1)na. This completes the inductive step, and the proof of the claim.

Lemma 7.7. Let Q ⊂ Z2 be confining under the action of ϕ. Suppose that {b ∈
R : av+ + bv− ∈ Q for some a ∈ R} = π(Q) is unbounded. Then [Q ∪ {t±1}] =
[Z2 ∪ {t±1}].

Proof. Let n be large enough that ϕn(Q+Q) ⊂ Q; we fix this n for the remainder
of the proof. Denote r = ;λn<. We claim that π(rQ) is 1-dense in R, where rQ
denotes the set of words of length at most r in the elements of Q. Before proving
the claim, we show how it proves the lemma. By Lemmas 7.5 and 7.3, there exists
an upper bound N on the word length of any element of Q1 with respect to Q
(here Q1 is the set Qε with ε = 1). Suppose that g = cv+ + dv− ∈ rQ. Then
g+Q1 = {av+ + bv− : |b− d| ≤ 1}. Since the set π(rQ) is 1-dense in R, this proves
that every element of Z2 lies in g+Q1 for some g ∈ rQ, and therefore every element
of Z2 has word length at most r +N with respect to Q.

Now we prove the claim. Let g = cv++dv− ∈ Q. Since Q is symmetric, we may
suppose without loss of generality that d > 0. Let k be the smallest integer with
λ−knd < 1. We claim that π(rQ) is (λ−knd)-dense in the interval [0,λ−kn/2d]. Since
λ−knd < 1, this will prove that π(rQ) is in fact 1-dense in the interval [0,λ−kn/2d].
Since dmay be taken to be arbitrarily large, the number λ−kn/2dmay be taken to be
arbitrarily large. This implies that π(rQ) is 1-dense in R>0. Since Q is symmetric,
π(rQ) will actually be 1-dense in all of R, and this will complete the proof.

Thus, we now show that π(rQ) is (λ−knd)-dense in the interval [0,λ−kn/2d].
The proof is similar to the proof of Claim 7.6 and proceeds by induction. For the
base case, note that all of the points

λ−knd = π(ϕkn(g)), 2λ−knd, . . . , rλ−knd

lie in π(rϕkn(Q)), and they form a (λ−knd)-dense subset of [0,λ−(k−1)nd] since

|λ−(k−1)nd− rλ−knd| ≤ |λ−(k−1)nd− (λn − 1)λ−knd| = λ−knd.

In particular, these points are (λ−knd)-dense in [λ−knd,λ−(k−1)nd].
For induction, suppose that for some 0 ≤ i ≤ k/2 − 1, we have a sequence of

points

b0 = λ−(k−i)nd < b1 < b2 < · · · < bs

in [λ−(k−i)nd,λ−(k−i−1)nd] which all lie in π(rϕ(k−2i)n(Q)) and are spaced at most
λ−knd apart. We wish to show that points of π(rϕ(k−2i−2)n(Q)) are (λ−knd)-dense
in [λ−(k−i−1)nd,λ−(k−i−2)nd].

We have that

λnb0 = λ−(k−i−1)nd, λnb1, . . . ,λ
nbs
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all lie in [λ−(k−i−1)nd,λ−(k−i−2)nd] and are points of π(rϕ(k−2i−1)n(Q)). Namely,
for each j, we may write bj = π(vj), where vj ∈ rϕ(k−2i)n(Q). We then have

λnbj = π(ϕ−n(vj)) ∈ π(ϕ−n(rϕ(k−2i)n(Q))) = π(rϕ(k−2i−1)n(Q)).

For each j < s, we have |λnbj+1 −λnbj| ≤ λn ·λ−knd = λ−(k−1)nd. We consider
the set of points

A = {λnbj,λ
nbj + λ−knd,λnbj + 2λ−knd, . . . ,λnbj + rλ−knd}.

We claim that A ⊂ π(rϕ(k−2i−2)n(Q)). We have that

λnbj + (r + 1)λ−knd ≥ λnbj + λ−(k−1)nd ≥ λnbj+1,

so by this claim we obtain a subset of [λnbj ,λnbj+1] consisting of points of
π(rϕ(k−2i−2)n(Q)) spaced at most λ−knd apart, by considering the points A ∩
[λnbj,λnbj+1].

Write vj = h1 + · · ·+ hr, where each h∗ ∈ ϕ(k−2i)n(Q) (some possibly equal to
0). Then for l ≤ r we have

λnbj + lλ−knd = π(ϕ−n(h1) + · · ·+ ϕ−n(hr) + ϕkn(g) + · · ·+ ϕkn(g)︸ ︷︷ ︸
l times

).

The expression inside π is equal to

ϕ−2n(ϕn(h1 + ϕ(k+1)n(g)) + · · ·+ ϕn(hl + ϕ(k+1)n(g)) + ϕn(hl+1) + · · ·+ ϕn(hr)).

Since ϕn(Q+Q) ⊂ Q, we also have ϕn(ϕ(k−2i)n(Q) + ϕ(k−2i)n(Q)) ⊂ ϕ(k−2i)n(Q),
and therefore

ϕn(h1 + ϕ(k+1)n(g)), . . . ,ϕn(hl + ϕ(k+1)n(g)) ∈ ϕ(k−2i)n(Q).

(Note that ϕ(Q) ⊂ Q implies that ϕ(k+1)n(g) ∈ ϕ(k−2i)n(Q)). Again using the
fact that ϕ(Q) ⊂ Q, we see that ϕn(hl+1), . . . ,ϕn(hr) ∈ ϕ(k−2i)n(Q). Thus, finally,
λnbj + lλ−knd ∈ π(rϕ(k−2i−2)n(Q)).

Similarly, we may find points of π(rϕ(k−2i−2)n(Q)) which form a (λ−knd)-dense
subset of [λnvs,λ−(k−i−2)nd]. Thus, points of π(rϕ(k−2i−2)n(Q)) form a (λ−knd)-
dense subset of [λ−(k−i−1)nd,λ−(k−i−2)nd]. This completes the induction step and
the proof of the lemma.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Since G is solvable, it has no free subgroups, and therefore
Hgt(G) = ∅. Thus, it remains to describe the quasi-parabolic and lineal hyperbolic
structures of G.

Note that the structure [Z2 ∪ {t±1}] is lineal, corresponding to the action of
G on R by translation. Namely, G admits a homomorphism f :G → Z defined by
taking the quotient by Z2, and the action on R is given by g · x = x+ f(g).

Suppose that [S] ∈ Hqp(G). By Lemma 7.2 there is Q ⊂ Z2 which is confining
under the action of ϕ or ϕ−1 such that [S] = [Q∪ {t±1}]. Suppose thatQ is confining
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under the action of ϕ. Then Lemma 7.5 implies that [Qε ∪ {t±1}] # [Q ∪ {t±1}]
(for any ε > 0). If [Q ∪ {t±1}] 0= [Qε ∪ {t±1}], then [Q ∪ {t±1}] = [Z2 ∪ {t±1}]
by Lemma 7.7. However, this contradicts that [Q ∪ {t±1}] = [S] ∈ Hqp(G). Hence,
[Q ∪ {t±1}] = [Qε ∪ {t±1}].

On the other hand, if Hqp(G) = [S] = [Q ∪ {t±1}], where Q is confining under
the action of ϕ−1, then the same arguments show that [Q∪ {t±1}] = [Q−

ε ∪ {t±1}],
where

Q−
ε = {av+ + bv− ∈ Z2 : |a| < ε}.

(Note that all of the arguments for confining subsets under ϕ depended only on the
fact that ϕ is an Anosov matrix; of course ϕ−1 is also an Anosov matrix).

The action G ! Γ(G,Q−
ε ∪ {t±1}) is equivalent to the following action of G on

H2: let Z2 act parabolically on H2 by p · z = z + ρ(p) and let t act loxodromically
on H2 by t · z = λz. By the argument in Lemma 7.4, this action of G on H2 is
equivalent to the action G ! Γ(G,Q−

ε ∪ {t±1}).
This can also be used to prove that [Qε ∪ {t±1}] is not comparable to [Q−

ε ∪
{t±1}]. Every conjugate of t in the action of G on Γ(G,Qε ∪ {t±1}) has a common
repelling fixed point, corresponding to ∞ in the upper half plane model of H2,
but the conjugates of t have many different attracting fixed points. On the other
hand, every conjugate of t in the action of G on Γ(G,Q−

ε ∪ {t±1}) has a common
attracting fixed point, but the conjugates have many different repelling fixed points.
This suffices to show that the two actions are incomparable.

We have shown that Hqp(G) consists of two incomparable elements, [Qε∪{t±1}]
and [Q−

ε ∪ {t±1}], corresponding to two different actions of G on H2.
Finally suppose that [S] ∈ H!(G). We claim that Z2 acts elliptically on Γ(G,S).

Towards a contradiction, suppose otherwise. Then the action of Z2 is cobounded,
and [1, Example 4.23] shows that the induced action of Z2 is lineal and fixes the two
points of ∂Γ(G,S). Denote by G0 the index ≤ 2 subgroup of G fixing the two points
of ∂Γ(G,S). Then Z2 ≤ G0. If t ∈ G0, then G0 = G. Otherwise, we have t2 ∈ G0 and
G0 = 〈Z2, t2〉. Notice that, in this case, the group G0 is isomorphic to Z2 "ϕ2 Z. In
particular, in either case Lemma 7.1 shows that the abelianization of G0 is virtually
cyclic, and therefore the commutator subgroup [G0, G0] intersects Z2 in a finite-
index subgroup. There is an associated Busemann homomorphism β : G0 → R and
β(g) 0= 0 if and only if g acts loxodromically on Γ(G,S) (see [9, Lemma 3.8]).
This homomorphism factors through the abelianization of G0, and in particular
ker(β) ∩ Z2 has finite index in Z2 by the above discussion. But since R is torsion
free, it must be the case that Z2 ≤ ker(β). Thus, Z2 acts elliptically on Γ(G,S).
This is a contradiction to our assumption that the action of Z2 on Γ(G,S) is not
elliptic. Thus, our claim that Z2 ! Γ(G,S) is elliptic is proven.

We have shown that [Z2 ∪ {t±1}] ! [S]. However, if two lineal structures are
comparable then they must in fact be the same [1, Corollary 4.12]. Thus, [S] =
[Z2 ∪ {t±1}] and |H!(G)| = 1. Note that we have [Z2 ∪ {t±1}] ! [Qε ∪ {t±1}] and
[Z2 ∪ {t±1}] ! [Q−

ε ∪ {t±1}], which completes the proof.
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