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1 Introduction

Interacting quantum fermionic systems can behave as perfect fluids. Prominent exam-
ples are superconductors, the superfluid 3He, the fractional quantum Hall effect, and one-
dimensional electronic systems, e.g., the Luttinger liquid. Recently the possibility that
a quark-gluon plasma arising in collisions of heavy ions may turn into a fluid came to
light. The fundamental particles in quark-gluon plasma, 3He and some other examples are
the Dirac fermions. A characteristic feature of quantum field theories (QFT) with Dirac
fermions is quantum anomalies that are mainly insensitive to interactions. Therefore, if
the interaction turns Dirac fermions into a fluid, anomalies must also be an inherent part
of the hydrodynamics. This argument set off a search for relativistic hydrodynamics mod-
els consistent with the anomalies (see, refs. [1–3], and references therein). In a recent
paper, [4], the effect of the axial-current anomaly had been identified in the foundational
description of fluid dynamics — the conventional classical Euler equation for barotropic
flow (relativistic and non-relativistic alike).

If the Dirac fermions retain the chiral imbalance (the numbers of left and right moving
particles are not equal), a fermionic system exhibits a significant anomaly-driven physical
effect: an electric current runs across the system at the thermodynamic equilibrium. We
show that this and other anomaly-based properties are readily apparent in Beltrami flows
of the perfect classical fluid. We recall that the Beltrami flows are stationary flows with an
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extensive helicity (i.e., proportional to the volume of the system). Superfluid 3He-A may
serve as a platform for the experimental realization of the effects discussed in this work,
where there is experimental evidence of the axial current anomaly [5], and of the realization
of the Beltrami flow [6].

Chiral anomaly in Dirac fermions. We briefly review the chiral anomaly in the
fermionic quantum field theories before turning to fluid dynamics. Dirac fermions, whose
Hamiltonian density is

H = ψ†Lσ(i∇ +A)ψL − ψ†Rσ(i∇ +A)ψR (1.1)

in a time-independent magnetic field B = ∇×A possess two conserved charges. They are
the electric charge Q and the axial charge referred to as the chirality QA

Q =
∫
ρdx = NL +NR, QA =

∫
ρAdx = NL −NR . (1.2)

The charge densities are the sum ρ = ψ†LψL + ψ†RψR and the difference ρA = ψ†LψL − ψ†RψR
of the left and the right occupation numbers of chiral (Weyl) components of the Dirac
multiplet (ψL, ψR). They are temporal components of the 4-vector current j = (j0, j) and
4-axial current jA = (j0

A, jA).
As a system with two conserved charges, Dirac fermions could be brought in contact

with a reservoir which maintains the chemical potential µ coupled to the particle density ρ
and the chiral chemical potential µA coupled to the chirality density ρA. Such a system may
reside in thermodynamic equilibrium with the reservoir. Then microstates are described
by a grand canonical ensemble with the Gibbs distribution e−H /T with

H = H −
∫

(µρ+ µAρA) dx , (1.3)

where H is the energy of the isolated system. At zero temperature T = 0, the case we
consider, the equilibrium state is the ground state of H where the chemical potentials µ
and µA determine the charges Q and QA. The chemical potential µ may be treated as
a temporal component of the external electromagnetic 4-vector potential A = (µ,A) and
the chiral chemical potential µA as a temporal component of the external axial 4-vector
potential AA = (µA,AA) commonly considered in the Dirac QFT. In the main part of the
paper we focus on the case AA = 0. The general case is briefly considered in section 9.

In the familiar case, when the chemical potential is coupled to the particle number,
the equilibrium state assumes no flow. The situation is fundamentally different when the
reservoir maintains the chiral chemical potential µA, which in its turn causes a chiral imbal-
ance. In this case, the equilibrium state carries an electric transport current proportional
to and directed along the magnetic field

jtrans = kµAB . (1.4)

This result had a tangled history and met interpretational difficulties. Physics applica-
tions started perhaps from the work of Vilenkin [7]. Recently (1.4) had been explored in

– 2 –



J
H
E
P
0
6
(
2
0
2
2
)
0
3
8

heavy-ion collisions [8] among other fields. A clear interpretation of eq. (1.4) as a ballistic
transport at equilibrium is presented in ref. [9] (see, also [10]). In one spatial dimension
the analog of eq. (1.4) is the Landauer formula jtrans = kµA [11, 12] for the experimen-
tally observed Landauer-Sharvin effect of the resistance of ballistic transport. There µA

is a voltage drop across the bulk and the constant k is the conductance quantized in fun-
damental units e2/h. The effect of the transport current at equilibrium also discussed in
connection with non-centro-symmetric semiconductors and cosmology. For some references
and applications of the effects of the chiral imbalance in various domains of physics, see
refs. [13–15].

The effect of the flux at equilibrium has roots in the axial-current anomaly obtained
by Adler [16] and Bell and Jackiw [17] in 1969 (see also ref. [18]). That is, under a physics
requirement that the vector current is conserved in an isolated system, the divergence of
the axial current is given by the formula1

∂ ·jA = kE ·B, k = 2 . (1.5)

The coefficient k is the value of the triangle diagram with one axial and two vector vertices.
In units of the magnetic flux quantum Φ0 = hc/e, the coefficient k is equal 2, the number of
Weyl components in the Dirac multiplet. Then, if the system is coupled to the reservoirs,
the same triangular diagram which entered (1.5), determines that a gradient of the chiral
chemical potential causes the vector current to diverge

∂ ·j = kEA ·B , EA := ∇µA . (1.6)

Eq. (1.4) is a particular stationary solution of the chiral anomaly equation (1.6). We
comment that eq. (1.4) is valid for µA = const even though the r.h.s. of (1.6) vanishes.

Helicity and Beltrami flow of a perfect fluid. Now we turn to the electrically charged
barotropic flows of a perfect fluid. The fluid’s Hamiltonian is

H =
∫ (1

2mρv
2 + ε[ρ]

)
dx . (1.7)

Here ρ,v are the fluid density and velocity, m is the mass of fluid particles. In barotropic
flow the energy density ε is a function of ρ.

Like Dirac fermions, barotropic flows in three dimensions possess two conserved
charges. One is the particle number Q =

∫
ρdx. The second conserved charge is the

fluid helicity
H = h−2

∫
mv ·ω dx . (1.8)

Here, ω = ∇×mv is the fluid vorticity, and h is a normalization constant of the dimension
of energy× time which makes helicity dimensionless. The root of the helicity conservation
can be traced to its topological nature: helicity as a linkage of vortex lines [19]. Another
related root is the degeneracy of the Poisson structure of the Euler hydrodynamics. The

1Throughout the paper we use a dot to denote the contraction of adjacent indices, i.e., ∂ ·j denotes
∂αj

α = ρ̇+ ∇· j.
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latter gives helicity the meaning of the Casimir invariant (see, e.g., [20]). It is conserved
regardless of the choice of the Hamiltonian.

For the reasons described above, the fluid could be coupled with two reservoirs as
in (1.3). One maintains the particle density (the electric charge), the second maintains the
helicity

H =
∫ [1

2mρv
2 + ε[ρ]− µρ− µAmv ·ω

]
dx . (1.9)

In the next section we explain how to add the electromagnetic field to the chiral coupling.
Then we will show that the formulas for anomalies (1.5), (1.6), (1.4) hold to the Euler
fluid. Furthermore, if the normalization constant h in (1.8) is identified with the Planck
constant, the formulas become identical. With this in mind, we will use the units of h and
Φ0, setting h = Φ0 = 1 in (1.9) and below.

We focus on the electric transport current flown in the equilibrium state (1.4). From
the fluid perspectives the Gibbs equilibrium state is a stationary (or steady) flow. We
will argue that the chiral reservoir yields a stationary flow broadly known as a Beltrami
flow [21]. We recall that the (generalized) Beltrami flow is defined by the condition that
velocity and vorticity are collinear at every point

curl v = κv . (1.10)

Beltrami flows carry an extensive helicity described by the parameter κ, which, as we will
show, is determined by µA. Then we show that the Beltrami flow conducts the electric
current given by the formulas identical to the formulas (1.4), (1.6) of the fermionic QFT.

Axial current anomaly in fluid dynamics and chiral coupling. In magnetic field
the definition of helicity amounts to replacing the momentum mv in (1.8) by the canonical
momentum

mv → π := mv +A , (1.11)

where A is the vector potential so that B = ∇×A. Under this definition the helicity

H =
∫
π ·∇×π dx (1.12)

remains conserved [22, 23] (see, also the section VI.2.C of [21]). However, the helicity H is
no longer an additive quantity, as its density π ·∇×π is not a local Eulerian field (at a given
fluid momentum mv helicity density explicitly depends on the vector potential A). This
creates the difficulty of coupling helicity to the reservoir. The problem had been addressed
in [4]. There we argued that in magnetic field the analog of the axial charge is the fluid
chirality QA =

∫
ρAdx, not the helicity. The chirality density ρA is a local Eulerian field

ρA = mv ·(ω + 2B) , (1.13)

and, therefore is an additive quantity which at B = 0 is equal to the helicity density. The
magnetic field modifies the angular velocity of a charged parcel by the Larmor frequency
B/m. This effectively changes vorticity as ω → ω + 2B. It is not difficult to find the
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relation between chirality and helicity. Their difference depends only on external fields and
is equal twice magnetic helicity

QA = H− 2
∫
A·B dx . (1.14)

Based on this arguments we conclude that the chirality density ρA given by (1.13), not the
helicity density (1.12) enters to the augmented energy (1.3). However, there is a caveat.
There are certain space-time configurations of the electromagnetic field which may change
the magnetic helicity, and therefore change the fluid chirality (1.14). It follows from (1.14)
that

d

dt
QA = 2

∫
E ·B dx . (1.15)

The local form of this equation

∂tρA + ∇· jA = 2E ·B (1.16)

is the axial-current anomaly (1.5) [see (6.2) below for the explicit formula for the axial
flux jA]. Like in the case of fermions the chiral reservoir is coupled to a charge whose
conservation is subject to the anomaly. This is the source of the effects we study.

Before we come to the main part of the paper, a few comments are in order.
Perhaps the most interesting and relevant case for applications occurs at µ, µA = const.

In this case, H = H−µQ−µAQA and one may think that the reservoir contacts the system
at its boundaries. Still, we assume that the chemical potentials may vary in space as that
clarifies computational and structural aspects of hydrodynamics and the anomalies. In this
setting, the system is in contact with the reservoir at any point in the bulk.

Similarities between anomalies in QFT and the fluid dynamics also hold in neutral
rotating systems. In this case, the angular velocity is identified with the Larmor frequency
B/m and the electric field with the gradient of an electrochemical potential or external
forces.

From the perspective of fluid dynamics, fluid motion subject to the chiral reservoir is
an interesting problem. To the best of our knowledge, the hydrodynamics in such a setting
has not been addressed so far. We develop it below within the Hamiltonian description of
the fluid dynamics. We choose to describe a non-relativistic fluid. As in the case of Dirac
fermions, the chemical potential µA is the temporal components of a general axial potential
AA = (µA, AA). In the main part of this paper, we set AA = 0. In the last section, we
extend our results for a general axial potential AA = (µA, AA) and present the formulas in
a covariant form readily applicable to relativistic fluid dynamics.

2 The Hamiltonian and the Poisson algebra

First, we express the fluid chirality density (1.13) in terms of the canonical momentum
π (1.11)

ρA = (π −A)·(∇× π +B) (2.1)
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and use it in the augmented Hamiltonian (1.3)

H [ρ,π] =
∫ [

ρ

2m(π−A)2+ ε[ρ]− µρ− µAρA

]
dx . (2.2)

The canonical momentum and the fluid density generate the Lie-Poisson algebra

{ρ(x), ρ(x′)} = 0 ,
{ρ(x), π(x′)} = ∇x′δ(x−x′) , (2.3)
{π(x)× π(x′)} = (2/ρ)(∇×π) δ(x−x′) .

Here in the last line the left hand side in components reads {π(x)×π(x′)}i = εijk{πj(x)×
πk(x′)}. Throughout the paper we routinely drop the argument x when it does not com-
promise the meaning. The brackets (2.3) yield the bracket for the chirality density

{ρA(x), ρ(x′)} = (∇×π +B) ·∇x′δ(x−x′) . (2.4)

For completeness we write down the remaining brackets also following from (2.3)

{π(x), ρA(x′)}= −ρ−1(∇×π)×(mv×∇x′)δ(x−x′) , (2.5)

{ρA(x), ρA(x′)} = −
[
∇×

(
ρ−1(∇×π)·mv

)
mv

]
·∇x′δ(x−x′) . (2.6)

The form of the brackets (2.4), (2.5), (2.6) reflects that the fluid chirality QA =
∫
ρAdx is the

Casimir function of the Poisson algebra, i.e., Poisson-commute with all hydrodynamic fields.

Magnetic field as a central extension. We notice that the magnetic field prevents
the r.h.s. of (2.4) from being expressed solely in terms of the canonical momentum π. The
magnetic field acts as a central extension of the Poisson algebra. In section 7 we show that
the central extension in the Poisson structure is essentially equivalent to the formulation
of the effect of the anomaly in terms of the divergence of the currents (1.5), (1.6). Now we
comment on how the axial anomaly in the form of (1.15) follows from the bracket (2.4).
First we write the Hamiltonian equation Q̇A = {QA,H } and notice that the only contribu-
tion comes from the term −

∫
µρdx in (2.2). Other terms are divergence and are eliminated

by the integration. Then with the help of (2.4) we compute

Q̇A = −{QA,

∫
µρdx} = 2

∫
∇µ·B dx . (2.7)

This yields (1.15) after identifying ∇µ with the electric field E.
We remark that if magnetic field possess monopoles with a charge qmon = −

∫
∇·B dx,

then (2.7) yields the central extension of the Poisson algebra of the charges

{Q, QA} = 2qmon . (2.8)

The same formula holds for Dirac fermions (see, e.g., refs. [18, 24]). It follows from the
current algebra of Faddeev [25] (see, also [9]), where the magnetic field also yields the
central extension of the algebra of fermionic currents.
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Conjugate fields. We will use the fields conjugate to the density, the momentum, and
to the external electromagnetic vector potential. The field conjugate to the density reads

π0 := −δH /δρ|π = −Φ + µ , (2.9)

where the Bernoulli function Φ and the enthalpy w are given by

Φ = 1
2mv

2 + w[ρ] , w = dε/dρ . (2.10)

The field conjugate to the momentum is the particle current

J = δH /δπ|ρ , (2.11)

whose meaning we will discuss shortly.
Our primary interest is the electric (or vector) current which we define as a linear

response to the electromagnetic vector potentialA (at a fixed fluid momentum π) evaluated
at zero electromagnetic field2

j = −(δH /δA|π)|A=0 . (2.12)

We further clarify the definition of the electric current in section 6 where we discuss the
Lorentz force.

We remark that in an isolated Galilean invariant fluid, the fluid momentum per particle,
the electric current and the vector flow field v are proportional to the fluid velocity v. The
chiral reservoir makes these three vector fields (1.11), (2.12), (2.11) different.

3 Flow vector field and the continuity equation

Frozen-in fields are fluid substances whose Lie derivatives along a flow vector field vanish.
We denote the flow vector field as U . The physical meaning of U is the true fluid velocity,
which is not necessarily equals to v serving as a notation for the fluid momentum p = mv.
The particle current J = ρU , defined by eq. (2.11), is the subject of the continuity
equation. Indeed, consider the Hamiltonian equation

ρ̇(x) = {ρ(x), H } =
∫
{ρ(x),π}δH

δπ
, (3.1)

where the integration goes over the omitted argument. Then with the help of Poisson
algebra and (2.11) we obtain that the particle 4-current J = (ρ,J ) is divergence-free

∂ ·J ≡ ρ̇+ ∇·J = 0 . (3.2)

We see that the flow along the vector field U advects the fluid mass. Later we will see that
vorticity is also advected along U .

2We comment that the electric current in [9] is defined as J .

– 7 –



J
H
E
P
0
6
(
2
0
2
2
)
0
3
8

The explicit form of the particle current follows from eqs. (1.3), (1.7), (1.11) and its
definition (2.11)

J = ρv − 2µA(ω +B)−EA ×mv (3.3)
= ρv − µA(ω + 2B)−∇×(µAmv) , (3.4)

where we denote EA = ∇µA. In the important case, when µA is constant across the
fluid, the term

∫
µAρAdx = µAQA in (1.3) is the Casimir invariant that does not affect the

equations of motion. In this case

J |µA=const = ρv − 2µA(ω +B) , (3.5)

so that J differs from ρv by a divergence-free term.

4 Vector current and its anomaly

Applying the definition (2.12) to the Hamiltonian (2.2) we obtain the explicit expression
of the vector current in terms of the Eulerian fields ρ,v3

j = ρv +EA×mv . (4.1)

If µA is uniform EA = 0 and the vector current does not deviate from ρv. Otherwise, the
vector current (4.1) receives a component normal to velocity, a feature reminiscent of the
Hall effect.

From (4.1) and (3.3) we obtain the relation between the particle current and the vector
current

J = j − 2∇×(µAmv)− 2µAB . (4.2)

Then, the continuity equation (3.2), written in terms of the vector current yields the chiral
anomaly (1.6)

ρ̇+ ∇ · j = 2∇µA ·B . (4.3)

Hence, from the perspective of the fluid dynamics, the chiral anomaly (1.6) is yet another
form of the continuity equation emphasizing the difference between the vector current j
and the particle current J given by (4.2).

The reader should not be surprised that the electric current conducted by the flow
is not conserved (4.3). The chiral reservoir represented by a non-uniform chiral chemical
potential is able to supply an electric charge locally into the system bulk. The fluid is
mere a subsystem of a complete system which includes the reservoir. For example, one
could think about the reservoir as a species of charged particles that do not participate in
the flow before they enter or are removed from the flow as required by a given chemical
potential.

3We assume that the definition (2.12) remains intact even if the system is in the magnetic field. In
more general situations, the electric current may contain additional divergence-free micro-currents (aka
non-minimal terms) triggered by the magnetic field.
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5 Euler equation

We now proceed with the Euler equation. We compute

π̇(x)={π(x),H }=
∫ [
{π(x), ρ}δH

δρ
+ {π(x),π}δH

δπ

]
, (5.1)

where the integration goes over the omitted argument. With the help of the Poisson
brackets (2.3) and the definitions (2.9), (2.11) we obtain the Euler equation

π̇ −∇π0 = U × (∇× π) . (5.2)

If there is no chiral coupling, the flow vector field U equals v and (5.2) becomes the familiar
Euler equation for the barotropic flow of a charged fluidmv̇+∇(m2 v

2+w)−v×ω = E+v×B.
The form (5.2) of the Euler equation is the basis of the geometric interpretation of

the Euler hydrodynamics. It is instructive to write the Euler equation in the space-time
covariant form. Let us introduce a space-time 4-momentum

πα = (π0,π) (5.3)

and the canonical vorticity 2-form

Ωαβ = ∂απβ − ∂βπα . (5.4)

The flow vector field U relates the components of the vorticity so that (5.2) can be written
as Ω0i = U jΩji. This means that the flow advects the vorticity along the vector field U
(the Helmholtz law).

In the space-time notations J = (ρ,J ), the Euler equation receives the compact form

J αΩαβ = 0 . (5.5)

known in relativistic hydrodynamics as the Carter-Lichnerowicz equation [26–28].

6 Momentum-energy equations and the Lorentz force

An insight about forces the reservoir exerts on the fluid comes from the equations for
the fluid momentum ρv and the energy density E = 1

2mρv
2 + ε. We obtain them by

transforming the Euler equation (5.2) with the help of (3.2), (3.3)∂t(ρv) + ∂i(viρv) + ∇P = ρE + j ×B + ρAEA ,

∂tE + ∇·jE = E · j +EA · jA ,
(6.1)

where P = ρw − ε, is the pressure and jE = (w +mv2/2)ρv is the energy flux of the fluid
and

jA = Φ(ω + 2B) −mv×
(
(ω +B)× U

)
+E ×mv . (6.2)

In the next section, we show that (6.2) is the axial current of (1.16). The l.h.s. of these
equations are the space-time divergence of the momentum and the energy flux of the
isolated fluid, the r.h.s. are forces exerted by the reservoirs and electromagnetic field.

The highlights of these equations are (i) EA acts on the fluid axial current (ρA, jA)
similarly to the action of the electric field E acts on the vector current (ρ, j), and (ii) the
vector current j (4.1) defining the Lorentz force is the electric current defined by (2.12).

– 9 –
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7 Axial-current and its anomaly

In a similar manner we derive the axial anomaly equation (1.16). With the help of the
brackets (2.4), (2.5) we compute ∂tρA = {ρA, H }. Proceeding similarly to (5.1) and using
the notations (2.9), (2.11) we obtain

∂tρA(x) =
∫ (
{ρA(x),π} ·J − {ρA(x), ρ}π0

)
, (7.1)

[the integration goes over the omitted argument]. Then with the help of (2.4) and (2.5), we
obtain the axial anomaly equation (1.16) and the hydrodynamic expression for the axial
current. The latter is given by (6.2) and enters the evolution equation (6.1) for the energy
density.

Finally, with the help of the Euler equation (5.2) and using the notation

pα := πα −Aα =
(
−w[ρ]− 1

2mv
2,mv

)
, (7.2)

we write the chirality 4-current jA = (ρA, jA) in a space-time covariant form previously
obtained in [4]

jαA = εαβγδpβ(∂γpδ + Fγδ) , (7.3)

where Fαβ = ∂αAβ − ∂βAα is the electromagnetic field tensor.

8 Beltrami flow

Now we are equipped to discuss stationary flows. We assume the external fields are either
time-independent, or depend on time adiabatically. The stationary (or steady) flows give
extrema to H . The variation of H with respect to the fluid density is the Bernoulli
function (2.9). The variation with respect to the momentum is the flow vector field (2.11).
In the stationary flow, whose density and velocity we denote by ρ̄, v̄, both these variations
should be zero. This gives the conditionsπ0 = 0 : w[ρ̄] + 1

2mv̄
2 = µ,

J = 0 : ρv̄ = 2µA(ω̄ +B) +EA ×mv̄ .
(8.1)

The first line is the Bernoulli condition. The second defines the generalized Beltrami flow
in the magnetic field. Together they determine ρ̄, ρ̄A as functions of µ, µA. For example, at
B = 0 we have the relation µAρ̄A = (µ− w[ρ̄])ρ̄.

We recall (see eq. 1.10) that in the absence of magnetic field, the velocity of the
generalized Beltrami flow is an eigenfunction of the curl operator

curl v̄ = κv̄ . (8.2)

In our case curl v = 1√
µA

∇(
√
µA × v) and κ = ρ/2mµA. Extension by the magnetic field

amounts to the shift by the Larmor frequency curl v → curl v +B/m.
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Locally the Beltrami flow describes a helix along a vortex line. The pitch of the helix of
the order 1/κ (see, e.g., [29]). A particularly interesting case is the Beltrami flow proper,
when κ = const. In this case, the Beltrami flow is incompressible as div v̄ = 0, where
div v = 1√

µA
∇ · (

√
µA v). An important feature of the streamlines of the incompressible

Beltrami flow is that they are not integral, and some are known to be chaotic [21]. A similar
situation occurs in some compressible (generalized) Beltrami flows [30] (see also [31] for
conditions when compressible solutions exist). We do not elaborate on this aspect further
but remark that a possibility of chaotic advection of particles (Lagrangian turbulence) in
the context of fermionic QFT seems to be an unexplored aspect of anomalies. The Beltrami
flow appears as a hydrodynamic realization of the ground state of the Dirac fermions with
a chiral imbalance.

Transport current of the Beltrami flow. Let us evaluate the vector and the axial
current on the Beltrami flow. This way we obtain the currents at the equilibrium. Com-
bining (4.1), (6.2), (8.1) we obtain

j̄ = 2µAB + 2∇×(µAmv̄) , j̄A = 2µB + ∇×(µmv̄) . (8.3)

If the chemical potentials are constant the vector and the axial currents are4

j̄ = 2µA(B + ω) , j̄A = 2µ
(
B + 1

2ω
)
, µ, µA = const . (8.4)

We notice that both currents (8.3) consist of the transport part and the micro-current as

j̄ = jtrans + jmicro, j̄A = jA trans + jA micro (8.5)

The transport currents
jtrans = 2µAB , jA trans = 2µB . (8.6)

transfer hydrodynamics substances along magnetic lines propagating across the entire sys-
tem. The microscopic currents are the curl jmicro = 2∇×(µAmv̄) , jA micro = ∇×(µmv̄) .
At constant chemical potentials the micro-currents are

jmicro = 2µAω , jA micro = µω . (8.7)

They describe a stationary movement of electric and axial charges localized on vortex lines.
As we remarked in the section 7 one can trace the origin of the transport current to

the central extension of the Poisson algebra (2.4). The expressions (8.3)–(8.4) are the main
results of this work. We have shown that the equilibrium state of the fluid coupled to the
chiral reservoir (i) is a Beltrami flow and that (ii) the Beltrami flow transports both electric
and the chirality charges in a way identical to the anomaly-driven flows of Dirac fermions.

4Formulas similar to (8.4) appear in various hydrodynamic models (other than Euler hydrodynamics)
aimed to be consistent with the chiral anomaly. There the term proportional to the magnetic field and
the term proportional to the vorticity in the vector current is dubbed by the ‘chiral magnetic effect’ and
the ‘chiral vortical effect’, respectively (see, e.g., [32] and references therein). Similar terms in the axial
current are sometimes referred to as the ‘chiral separation effect’ and the ‘chiral vortical separation effect’,
respectively [13]. The coefficients vary across the literature.
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9 Flows in external axial potential

We conclude the paper by extending the coupling to the chiral reservoir from µA to a full
axial 4-potential µA → AA

α = (µA,AA). The extended coupling brings various currents to
space-time-covariant forms and further clarifies the parallels between the fluid dynamics
and Dirac fermions in the axial field. The results can be obtained by means of covariant
extensions of the formulas of the main text. We present the main expressions here and
publish a detailed derivation separately.

The covariant extension is based on the main property of the Euler hydrodynamics:
the fluid momentum pα = πα − Aα, and the particle current J α, are R4-covector and
vector, respectively, regardless of the space-time structure, Galilean or Minkowski. For
that reason the formulas below are equally valid in the relativistic case.

We start from the currents. The axial current (7.3) does not depend on the axial
potential and has already appeared in the space-time covariant form. In turn, the vector
current does not depend on the vector potential. The particle 4-current is the covariant
extension of (4.2). Together the currents read

jα = ρuα +?FαβA pβ ,

jαA = εαβγδpβ(∂γpδ + Fγδ),
J α = jα + 2 ?FαβAA

β + 2εαβγδ∂γ(AA
βpδ).

(9.1)

In these formulas we denote the 4-velocity uα = (1,v), or uα = (1,v/c)/
√

1− v2/c2 in the
relativistic case. Also, Fαβ = ∂αAβ − ∂βAα is the field tensor, ?Fαβ = 1

2ε
αβγδFγδ is the

dual field tensor, and we use similar notations for the axial field tensors.
As we mentioned in the section 5, the covariant form of the Euler equation appears as

the Carter-Lichnerowicz equation (5.5). We repeat it hereJ α(∂απβ − ∂βπα) = 0,
∂αJ α = 0 .

The covariant form of the divergence of the stress tensor extends the equation (6.1) and
the divergence of the vector current extends the formula (4.3). Together they are given by

∂βT
β
α = Fαβ j

β + FA
αβ j

β
A ,

∂ ·j = F ·?FA = 2(EA ·B +BA ·E) ,
∂ ·jA = 1

2F ·
?F = 2E ·B .

(9.2)

The equations (9.1) and (9.2) retain their form for the relativistic fluid. For the non-
relativistic fluid the components of the momentum-stress-energy tensor in (9.2) are: the
energy density −T 0

0 = 1
2mρv

2 + ε[ρ], the energy flux −T i0 = ρvi(1
2mv

2 + w), the mo-
mentum density T 0

i = mρvi, and the momentum flux T ji = mρviv
j + Pδji . For a rela-

tivistic fluid T βα = ρ pαu
β + Pδβα, and the entries in (9.1) are the relativistic 4-velocity

uα = (1,v/c)/
√

1− v2/c2 and the relativistic 4-momentum pα = (mc+ c−1w)uα.
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We comment that starting from the eqs. (9.2) and given momentum-stress-energy
tensor, one could derive the expressions for the currents (9.1) as a consistency of (9.2).
This approach had been explored in [1].5

10 Summary

Summing up, we have shown that anomaly-based properties of QFT with Dirac fermions
coupled to the axial vector potential are identical to the kinematic properties of the Euler
fluid coupled to the reservoir, which maintains the fluid helicity. The result is captured by
eqs. (9.1), (9.2). From the perspective of fluid dynamics, the equation for the stress tensor
(the first equation in (9.2)) is the complete equation of motion. Once the stress tensor
and the currents are expressed through the fluid density and the velocity as in (9.1), the
divergence of the currents (the last two equations in (9.2)) follow. Now let us look on (9.2)
from the perspective of Dirac fermions. The first equation in (9.2) is valid for the classical
Dirac equation, or quantum alike. However, the divergences of the currents (the last two
equations) are of a quantum nature. They require a short-distance regularization which
preserves the gauge invariance. That regularization yields the anomaly in the divergence
of the currents. Once the divergence is determined, the equations must be completed by
relations expressing the stress tensor and the axial current in terms of the vector current.
We have shown that the Euler fluid provides such relation in the form of eqs. (9.1). Another
result of the paper is a close parallel between the Beltrami flow in fluid dynamics and the
ground state of the Dirac fermions. The Beltrami flow stands out as a fascinating property
of fluid dynamics. In turn, the quantum anomalies might be understood from the properties
of the ground state of the Dirac fermions (perturbed by the external fields). A close parallel
between these objects of seemingly unrelated fields seems noteworthy. Interpretation and
consequences of the chaotic nature of the Beltrami flow in the quantum field theory are
especially interesting.

Equations of motions (9.2) and the hydrodynamic expressions for the vector and the
axial currents (9.1) are gauge invariant with respect to both the vector A → A + ∂ϕ and
the axial AA → AA + ∂ϕA gauge transformations. However, the particle current J given
by the third line of (9.1) and the Beltrami flow defined by the condition J = 0 are not
invariant under the axial gauge transformation. As a result, the quantities evaluated on the
stationary flow (8.1) do not generally possess the axial gauge symmetry. Despite the axial
gauge symmetry of equations of motion, the symmetry does not hold at the equilibrium
state (or the ground state in QFT). This is the essence of the anomaly: the (axial) symmetry
of equations of motions is not a symmetry of their solutions. This property gives rise to the
main effect we discussed in the paper. The equilibrium state (the Beltrami flow) possesses
a non-vanishing mass flux described in section 5.2. Even if the axial vector potential is a
pure gauge, so that the axial field is a gradient AA

β = (2π)−1∂βΘ, and for that reason drops
out of the equations of motions (9.2), the particle current J , hence the state of equilibrium

5We comment on the formal relation between eqs. (9.1), (9.2) and the formulas of refs. [1, 33]. Equations
∂βT

β
α = Fαβ j

β
[1] and ∂µj

µ
[1] = CE ·B of [1, 33] follow from (9.2) in a particular background when the vector

and the axial potentials are set proportional AA = CA/6. Under this condition j[1] of ref. [1] is a particular
linear combination j + (C/6)jA of the currents given by (9.1).
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J = 0 depends on Θ. As a result, the equilibrium state transports the mass/charge
with an adiabatic change of the theta-angle as jtrans = (1/π)BΘ̇. The amount of charge
crossing the surface element dσ when Θ changes by 2π is 2Bdσ, i.e., twice the magnetic
flux threading the surface.
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