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Abstract

Poly- and perfluoroalkyl substances (PFAS) are known as “forever chemicals” due
to their ubiquitous persistence in the environment, and their negative human health
effects. Among them, short-chain PFAS are of increasing concern due to their high
solubility and mobility in water, while possessing persistency and toxicity nature like
their longer-chain analogs. The most common method for PFAS removal from
water is by sorption with activated carbons or ion exchange resins, but these adsor-
bents only exhibit limited removal efficiency against short-chain PFAS, and they
require frequent replacement leading to high operational cost. Here we review and
discuss the potential of using bio-adsorbents, which can be derived from common
biomass feedstocks, as low-cost alternatives to traditional adsorbents, while these
materials can also possess good removal efficiency against short-chain PFAS. We
further provide the perspective on the designs of low-cost, activated bio-adsorbent
systems that can be implemented for effective removal of short-chain PFAS.
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1 | INTRODUCTION

The ever-increasing presence and emerging regulations
of poly- and per-fluoroalkyl substances (PFAS) in drink-
ing water systems have resulted in the development of a
multitude of technologies to remove them from contami-
nated water. Currently, the adsorptive removal method
using granular activated carbon (GAC) seems to be the
most practical and cost-effective approach for removal of
PFAS, especially perfluorooctanoic acid (PFOA) and per-
fluorooctane sulfonate (PFOS) (Ross et al., 2018). How-
ever, recent studies indicate that GAC is not an effective
sorptive material in removing short-chain PFAS, such as
perfluorobutanoic acid (PFBA) and perfluorobutane sul-
fonate (PFBS), as these compounds are more hydrophilic
and water soluble (Ateia, Maroli, et al., 2019; Ross
et al., 2018) than long-chain PFAS. Removal of short-
chain PFAS will have to rely on the functional groups
and surface charge of adsorbents to enhance electrostatic
attraction. Although, ion-exchange (IX) resins are effec-
tive for this purpose, they are expensive and not sustain-
able as they are often discarded after one-time use
(Kucharzyk et al., 2017; Ross et al., 2018). Adsorbents
based on cheap, sustainable, and biodegradable mate-
rials, such as woodchips or other biomass feedstocks that
can be functionalized for removal of short-chain PFAS
are thus attractive alternatives to GAC and IX resins for
PFAS removal from the cost perspective (Omo-Okoro
et al., 2018). In this paper, we summarize the existing
works of PFAS treatment technologies using varying bio-
adsorbents and offer our perspectives as how to design
new bio-adsorbent systems for PFAS removal, specifically
for short-chain PFAS removal.

2 | THE SHIFT FROM LONG-
CHAIN PFAS REMOVAL TO SHORT-
CHAIN PFAS REMOVAL

PFAS have been used in many applications, such as
aqueous film-forming foams (AFFFs), nonstick cook-
ware, carpets, food packaging, and many more. With
different carbon chain lengths and functional groups,
a variety of PFAS compounds (more than 4000)
can be found in our daily life (Barisci & Suri, 2021;
Z. Wang et al, 2017). Concerns were first raised
regarding the long-chain perfluorocarboxylic acids
(PFCA, C,F,,,,COOH, n>7) and perfluorosulfonic
acids (PFSA, C,F,,.1SOsH, n>6) due to their bio-
accumulative nature, long-range transport ability, and
especially their persistence in the environment (Buck
et al., 2011; Joerss et al., 2019). As a result, PFOS was
added to Annex B (restriction of production) of the

Article Impact Statement

According to the National Ground Water Associ-
ation (NGWA), recent data estimate that 95% of
the US population has been exposed to poly- and
perfluoroalkyl substances with measurable con-
centrations in their blood (NGWA, 2021).

Stockholm Convention on Persistent Organic Pollutants
in 2009 (Joerss et al., 2019). Later, PFOA was added to
Annex A in 2019. Perfluorohexane sulfonate (PFHxS)
and its related compounds have also been proposed to be
added to the Convention and they are currently under
review. As of May 2020, 12 US states have developed
their own regulatory PFAS limits in drinking water. Out
of them, nine states have guidelines for PFOA and PFOS
limitations, which were stricter than the 70 ppt level pro-
posed by the EPA health advisory. In addition, six states
have included short-chain PFAS compounds, such as
PFBA and perfluorohexanoic acid (PFHxA), in their
guidelines (Post, 2020).

Due to the concerns over environmental and human
health effects of long-chain PFAS, several manufacturing
companies in the United States and Europe decided to
phase out long-chain PFAS and replace them with short-
chain PFAS (e.g., n < 6 for carboxylic acids and n < 5 for
sulfonic acids). For example, PFOS was replaced by
PFBS, and 6:2 chlorinated polyfluoroalkyl ether sulfonate
(6:2 CI-PFAES)/8:2 CI-PFAES (F-53B); PFOA was rep-
laced by hexafluoropropylene oxide dimer acid [HFPO-
DA] (GenX) and 3H-perfluoro-3-[(3-methoxy-propoxy)
propanoic acid] (ADONA). However, our knowledge of
the replacement compounds remains limited in terms of
their environmental impacts. One recent publication
tested the bioaccumulation of PFAS in mice, which were
exposed to AFFF having both long-chain and short-chain
PFAS (McDonough et al., 2020). According to the sample
analysis results, C6 and C7 perfluoroalkyl sulfonates and
C8 PFCA were found to be enriched in the mouse serum.
Even though the results also indicated that short-chain
PFAS were relatively easy to be excreted due to their
higher concentration detected in urine (McDonough
et al., 2020), other studies suggested the large dose of
short-chain PFAS in the body can induce similar toxic
effects as long-chain compounds (Chang et al., 2008).
Several reports indicated that the short-chain compounds
are also highly persistent and exhibit bioaccumulation
potential to damage the liver and kidneys in humans
(Bjornsdotter et al., 2019; Buck et al., 2011; Ian Cousins
et al., 2016). A recent study focusing on the occurrence
and impact of short-chain compounds found that
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short-chain PFAS can be found in land/solid waste,
groundwater, and surface water as well as seawater (Li
et al., 2020). Short-chain PFAS were also detected in the
polar ice and snow, where the study found that the PFBA
concentration varied widely from 1.15 to 6280 ng/L, the
PFBS concentration from 0.01 to 4520 ng/L, and the con-
centration of short-chain compounds was in the pg/L
level (Li et al., 2020).

Compared to the long-chain PFAS compounds, a
large quantity of short-chain PFAS compounds is needed
in products, such as fire-fighting foams, to achieve simi-
lar performance (Bjornsdotter et al, 2019; Li
et al., 2020). The short-chain PFAS are highly mobile in
the aquatic environment due to their enhanced hydro-
philicity and greater mobility. Furthermore, because of
the enhanced hydrophilicity (or reduced hydrophobic-
ity), they exhibit relatively poor adsorption by conven-
tional adsorbents and organic matter (Bjornsdotter
et al.,, 2019; Ian Cousins et al., 2016). These factors,
along with those short-chain PFAS formed caused by the
decomposition of long-chain PFAS and other precursors
(Li et al., 2020), can result in high concentrations of
short-chain PFAS in the environment. This notion is
clearly illustrated in Figure 1, which compares the ratios
of the sum of short-chain PFCA and PFSA (C4 + Cé6)
concentrations to the sum of long-chain PFOS and
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PFOA (C8) concentrations. The prevalence of short-
chain PFAS (C4 + C6) can exceed 30 times the levels of
PFOS + PFOA (C8). As these short-chain PFAS com-
pounds become more prevalent, it is essential for us to
develop deeper understanding of the health and environ-
mental impacts of these materials and more efficient
techniques to remove or remediate these compounds.

3 | SHORT-CHAIN VERSUS LONG-
CHAIN PFAS PROPERTIES
GOVERNING SORPTION
MECHANISMS

In general, depending on the length of carbon-fluorine
chain, PFAS could be classified as long-chain and short-
chain PFAS. Fluorine atoms having high electronegativ-
ity and low polarizability render PFAS major properties.
Longer chain length with more fluorine substituted PFAS
has more chemical and thermal stability (Rahman
et al., 2014). In fact, most PFAS with hydrophilic func-
tional group are surfactants and have been shown to
aggregate at the air-water interfaces and form micellar or
hemi-micellar structure, therefore, leading to complex
behavior in the environmental systems (Rahman

et al., 2014).

Treated water, U.S. **

Source water, U.S. **

Arctic ocean, Site B11 *

Arctic ocean, Site B6 *

Tangxun lake, China

Volkerak-Zoom, Netherlands *
Hollands Diep, Netherlands *
Nederrijn, Waal, Ijssel, Netherlands
River Mochne, Germany

River Ruhr, Germany

Rhine downstream Leverkusen, Germany
Rhine upstream Leverkusen, Germany

Yellow river, China **

FIGURE 1

e
10 15 20 25 30 35
Sum (C4 + C6) / Sum (C8)

Ratios of the sum of PFCAs and PFSAs (C4 + C6) to PFOS + PFOA (C8) detected in sites across the globe (Boone et al.,

2019; Cai et al., 2012; Moller et al., 2010; Zhao et al., 2016; Zhou, Liang, Shi, Xu, & Cai, 2013). Sum C4 represents the sum of concentrations
of PFBA and PFBS. Sum C6 represents the sum of concentrations of PFHxA and PFHxS. Sum C8 represents the sum of concentrations of

PFOA and PFOS. Data represents mean concentrations, unless specified. *Mean concentration not specified. **Median concentration.
PFBA, perfluorobutanoic acid; PFBS, perfluorobutane sulfonate; PFCA, perfluorocarboxylic acids/perfluoroalkyl carboxylate;
PFHxA, perfluorohexanoic acid; PFHxS, perfluorohexane sulfonate; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonate;

PFSA, perfluoroalkane sulfonate
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Both long-chain and short-chain PFAS are typically
present in anionic (acid) or neutral (alcohol and sulfon-
amides) form in water at pH between 3 and 11 because of
the low pK, values (when PFAS containing acid func-
tional group such as PFCA and PFSA) (Buck et al., 2011;
Goss, 2008). The physical and chemical properties of
long-chain PFAS have been better studied compared to
short-chain PFAS (ITRC, 2020). As a result, a great deal
of the physiochemical properties of short-chain PFAS are
mainly based on empirical modeling (Lampic &
Parnis, 2020). The volatility of PFAS usually decreases
with decreasing chain length (Prevedouros et al., 2006)
because short-chain PFAS tend to have lower vapor pres-
sure than long-chain PFAS (Gagliano et al., 2020). The
decrease in the chain length tends to increase the aque-
ous solubility of PFAS containing the same functional
group, resulting in increased mobility of short-chain
PFAS. In terms of PFAS with similar carbon chain
length, PFCA exhibit higher water solubility and higher
vapor pressure as compared to PFSA (Gagliano
et al., 2020). Charged functional groups within PFAS usu-
ally improve the water solubility and reduce hydrophobic
interactions with particulates (without considering het-
eroatom or other interactions) (Bhhatarai &
Gramatica, 2011; Gagliano et al., 2020). Water soluble
short-chain can travel a longer distance in aqueous envi-
ronments from the source of contamination compared to
long-chain PFAS (Ateia, Maroli, et al., 2019). Due to their
high mobility, persistence, and poorer sorption, it has
become more challenging to control the spread of short-
chain PFAS in water systems (Ateia, Maroli, et al., 2019;
Li et al., 2020).

Interactions between absorbents and PFAS can
include van der Waals forces, hydrophobic interactions,
hydrogen bonding, ion and ligand exchanges, and elec-
trostatic interactions (Du et al., 2014). Among them, van
der Waals forces are universal between all molecules that
could be negligible in the presence of stronger interac-
tions, whereas hydrogen bonding and ligand exchanges
are limited by specific chemical groups. Therefore, the
sorption mechanisms of PFAS are mainly due to hydro-
phobic and electrostatic interactions. For example, many
studies demonstrated the presence of hydrophobic inter-
actions between the carbon-fluorine tail of PFAS and the
nonpolar carbon surface of adsorbents. However, owing
to their low pK, values (Gagliano et al., 2020; Kim
et al., 2015), PFAS are generally present in an anionic
form in solution and can also be removed by positively
charged adsorbents through electrostatic interactions. In
this case, the adsorption process can be influenced by the
pH level, presence of inorganic ions, and other ions that
can compete with the adsorption sites (Banks et al., 2020;
Gagliano et al., 2020). Theoretically, hydrophobic

interactions play a dominant role between long-chain
PFAS and sorbents, while electrostatic interactions are
the dominant factor affecting the short-chain PFAS
removal.

4 | CHALLENGES WITH SHORT-
CHAIN PFAS REMOVAL USING
EXISTING TREATMENT METHODS

Currently, activated carbons (ACs) and IX resins are two
common technologies that have been proven effective in
removing PFAS from water. Reverse osmosis has also
been used to remove PFAS from different sources and it
is also highly effective (the removal efficiency >99%) but
energy intensive (Appleman et al, 2014; Rahman
et al., 2014). For the adsorption approach, a recent study
has tested 44 different inorganic and organic sorbents to
remove 17 PFAS with different chain lengths and func-
tional groups (Sorengird et al., 2020), where the result
indicated that ACs exhibited the best overall removal
result (>99.9% on average). Other effective sorbents,
including magnesium chloride-fortified biochar, chitosan,
bentonite, also indicated 17-25 times higher sorption
capacity than sand (Sorengérd et al., 2020). As ACs have
a nonpolar surface, they are much more effective in
removing long-chain PFAS than short-chain PFAS.

There are many reasons for this difference. First,
short-chain PFAS have faster adsorption kinetic in the
diffusion process due to their smaller size and weaker ste-
ric effect (Yu et al., 2009; Q. Zhang et al., 2011). However,
they have lower K, values (organic carbon-water parti-
tion coefficient) and hence sorption potential becomes
lower for short-chain PFAS (e.g., PFBA, PFBS, PFHXA,
6:2 FTOH, Gen) than that for long-chain PFAS (e.g.,
PFOA and PFOS) (Rahman et al., 2014). Second, the AC
surface usually contains negative charges that can cause
electrostatic repulsion for anionic PFAS (Zhi &
Liu, 2015). Hence, GAC optimized for removal of long-
chain compounds would not be effective against the
short-chain PFAS for the same length of time (Kucharzyk
et al., 2017). In a study that analyzed the breakthrough
time for GAC treatment against various PFAS over a
5-year period, PFOS exhibited the highest breakthrough
time, whereas PFBA had the lowest (about 2 months)
(Appleman et al., 2014). Interestingly, PFHXA and PFOA
appeared to have a similar breakthrough time in the lead
GAC contactor, but short-chain PFHxXA reached full
breakthrough in a shorter time (Appleman et al., 2014;
Eschauzier et al., 2012). In another GAC treatment setup
with coal-based parallel GAC chambers, short-chain
PFCA showed only partial removal, but the removal
increased with increasing chain length of PFAS
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(Belkouteb et al., 2020). This is also seen in real-world treat-
ment. When the city of Oakdale, Minnesota used GAC fil-
ters at a pilot plant to remove PFAS, PFBA had the lowest
breakthrough time of around 2 weeks, whereas PFOA and
PFOS showed breakthrough times of 286 and 550 days,
respectively (“Perfluorochemical contamination in Lake
Elmo and Oakdale, Washington county, Minnesota,”, 2008;
Rahman et al., 2014). Short-chain PFAS, under similar con-
ditions, appeared to exhibit lower adsorption efficiency and
faster breakthrough time compared to long-chain PFAS.
This could be attributed to the decreased affinity of short-
chain PFAS to organic carbon surface and to competitive
adsorption between long- and short-chain PFAS (Appleman
et al., 2014; Eschauzier et al., 2012; Rahman et al., 2014).
However, even if suitable GAC technology could be
implemented to adsorb short-chain PFAS, there would be
problems after the sorption process. This is because the
short-chain PFAS adsorbed onto the GAC surface cannot
be decomposed by the conventional methods and thus will
require incineration (e.g., at temperatures between 600 and
1000°C) to breakdown PFAS (Li et al., 2020; Sonmez
Baghirzade et al., 2021). In addition, the reactivation of
spent carbons can result in the increased cost in full-scale
production. The conventional regeneration methods
include two different pathways: (i) chemical regeneration
using a large amount of sodium salts or organic solvents
for desorption of PFAS (Du et al, 2015; Woodard
et al, 2017), and (ii) thermal regeneration (Gagliano
et al., 2020) at high temperatures using inert gas stream,
such as N, or CO,, for GAC to be reactivated (Watanabe
et al., 2016; F. Xiao et al.,, 2020). Both have their own
strengths and weaknesses. In one major weakness, besides
the increased capital and operational cost for the post-
treatment step and waste disposal, the use of organic sol-
vent is not suitable for drinking water treatment because of
possible remaining residues, whereas the thermal regenera-
tion process can result in the release of volatile organic
fluorine and/or decomposed short-chain compounds
(Sonmez Baghirzade et al., 2021; Watanabe et al., 2016).
Similar challenges also exist in the adoption of poly-
meric adsorbents for PFAS treatment. In a study of using
anion-exchange resins for PFAS removal for full-scale
water treatments, they are found to be efficient to remove
long-chain PFAS such as PFOA, but relatively less effi-
cient for short-chain PFAS removal (Appleman
et al., 2014). Functionalized IX resins exhibited enhanced
performance for short-chain PFAS removal (Du
et al., 2015; Li et al., 2020). For example, under the simi-
lar conditions, functionalized IX resins with polyamine
showed much higher PFAS removal efficiency than their
nonfunctionalized counterparts (Du et al.,, 2015). This
was attributed to the combined hydrophobic and electro-
static interactions between PFAS and the resin (Du

et al., 2015; Li et al., 2020). However, polymeric resins
also have their limitations. Their systems are generally
more costly, and the regeneration of certain resins may
not be effective as some common regeneration method
cannot desorb all PFAS from the resin surface (Li
et al., 2020). In addition, some studies have also showed
that short-chain PFAS are harder to remove from the
resin surface than long-chain PFAS (Du et al., 2015; Li
et al., 2020). That is because organic solvents such as
methanol can only diminish the hydrophobic interaction
to release adsorbed PFAS, while short-chain PFAS has
strong electrostatic interaction with ionic sites on the
resin, which is less affected by regenerant. At a higher
concentration of PFAS or at higher pH conditions, long-
chain PFAS are more favorable to anion-exchange resins
and can even replace short-chain PFAS in the coexisting
solution (Shi et al., 2019). Besides the regeneration and
cost issues, considerations should also be given to the
breakthrough and disposal/recycling problems of the
used resins (Rahman et al., 2014). The incomplete incin-
eration of the used IX resin will release the majority of
PFAS back to the atmosphere (Stoiber et al., 2020).

In addition to the phase separation methods, other
destructive techniques have also been demonstrated to
degrade PFAS. These techniques include electrochemical
oxidation (Chaplin, 2020; Nzeribe et al., 2019), plasma
(Hayashi et al., 2015; Nzeribe et al, 2019; Singh
et al., 2019), electron beam (Londhe et al., 2021), and acti-
vated persulfate (Nzeribe et al., 2019), all exhibiting prom-
ising potential to degrade long-chain PFAS, such as PFOA
and PFOS. When the degradation of short-chain PFAS has
been studied, the degradation efficiencies were poor, com-
pared to their long-chain counterparts (Barisci &
Suri, 2020, 2021; Lewis et al., 2020; Londhe et al., 2021;
Nzeribe et al., 2019; Wang, Nickelsen, et al., 2020). How-
ever, these techniques are generally energy-intensive and
not cost-effective except for the remediation of some
heavily contaminated solutions. (Nzeribe et al., 2019).
Recent trends have suggested the use of such destructive
techniques in combination with a pre-concentration step
could help offset the overall cost of treatment.

Thus far, the sorption route might be the most easiest
and common approach to remove PFAS (Sonmez
Baghirzade et al., 2021). As the performance of the adsor-
bent is varying against PFAS with different chain length,
the proper selection of the sorptive materials becomes
very critical. Some synthetic materials have already been
designed for short-chain PFAS removal, such as covalent
triazine-based framework (CTF) (B. Wang et al., 2016)
and single wall carbon nanotube (Deng, Zhang,
et al., 2012). We argue the most suitable adsorbent sys-
tems should have the following three features: (i) they
are cheap and abundant in our surrounding, (ii) they can
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be easily functionalized with environmentally friendly
chemistries, and (iii) they can remove both short-chain
PFAS and long-chain PFAS effectively from water. These
features point to the system of bio-adsorbent as alterna-
tives to existing adsorbents and are discussed below.

5 | BIO-ADSORBENTS FOR PFAS
REMOVAL

Bio-adsorbents based on underutilized biomass feedstocks,
such as biomass waste from nonwoody plants and agricul-
tural residues, have been shown to offer the feature of low-
cost, and they can serve as alternatives for commercial ACs
or polymer resins (Kucharzyk et al, 2017; Omo-Okoro
et al., 2018). We argue that with the advent of new and
environmentally friendly methods to extract bio-adsorbents
at the microscale or nanoscale from sustainable feedstock
materials, these sportive nanomaterials with high surface
area can play an important role for PFAS removal, espe-
cially for removal of short-chain PFAS compounds.
Figure 2 illustrates the potential advantages of bio-adsor-
bents, and two examples to produce bio-adsorbents at the
nanoscale. These examples include nanochitin and
nanocellulose (nanocrystals, nanofibers, and nanoparticles)
extracted from different raw biomass feedstocks using
chemical and/or mechanical treatments such as (2,2,6,6-
Tetramethylpiperidin-1-yl)oxyl (TEMPO) catalyzed oxidation

Diverse
shapes with
expanded
applications

Feasible
regeneration

Bio-adsorbent
advantages

Potential
good affinity
for Short-
chain PFAS

Attainable
nanosized
structure

FIGURE 2
adsorbents (Abouzeid et al., 2019; Voisin et al., 2017)

or mechanical grind methods (Abouzeid et al., 2019; Jin
et al., 2021). A multitude of advantages can exist when using
nanoscale bio-adsorbents, including cheap raw materials
(especially underutilized biomass feedstocks), multiple func-
tionalization possibilities, high efficiency, and even reusabil-
ity (Abouzeid et al, 2019; Voisin et al, 2017). These
advantages make bio-adsorbents very competitive for varying
water treatments, especially for PFAS removal, if they are
properly modified/functionalized. There are abundant under-
utilized biomass feedstocks, including agricultural residues,
forest waste, and marine waste that can be used to extract
polysaccharide-based sorptive materials, such as cellulose,
hemicellulose, chitin, and chitosan (Omo-Okoro et al., 2018).
These materials can be easily modified by chemical or physi-
cal pathways for PFAS adsorption. Chemical modification
can enhance or change the content of functional groups on
the bio-adsorbents to improve the adsorption efficiency. In
polysaccharides, the typical functional groups include car-
boxyl, aldehyde, and hydroxyl groups, whereas in chitin and
chitosan, the typical functional groups include amino, amide,
and acetamido groups (Sud et al, 2008). Those surface
groups on cellulose or chitin are chemically active, which
could be converted to certain cationic or anionic functional
groups by esterification, oxidation, quaternization, etc.
(Mourya & Inamdar, 2008; Voisin et al., 2017) The physical
modification pathways, such as defibrillation or physical
cross-linking, can also improve the adsorption properties of
the bio-adsorbents by increasing porosity, particle size, and

R Y

crab shrimp tree

Chemical or mechanical treatment
(grinding, acid hydrolysis, oxidation)

cotton

0=( OH
NH & OH
HO HO (o] QO HO o
o HO ] o)
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OH
= ' oh

nanochitin

nanocellulose

(a) Potential advantages of bio-adsorbents and (b) two examples process to produce nanochitin and nanocellulose bio-
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surface area. Therefore, to design suitable bio-adsorbents
with high efficiency, both physical and chemical features
need to be considered.

In addition to bio-adsorbents, there are carbonaceous
materials that can also be derived from biomass feedstocks
by sequential pyrolysis and activation steps, such as
bamboo-derived activated biochar or AC, exhibiting fast
and high adsorption capacities for PFOA (476 mg/g) and
PFOS (1160 mg/g) removal (Chen et al, 2011; Deng
et al., 2015), while their adsorption capacities for PFHpA
and PFHxA removal reached only 65.53 and 18.84 mg/g,
respectively (Du et al., 2015). This behavior has been illus-
trated earlier in Section 4. In the case of grape leaf litter-
based AC, the large surface area and high carbon content
also enabled the effective PFAS removal (removal efficiency
90%-95% for PFOA, and 88%-94% for PFOS) by hydropho-
bic interactions (Fagbayigbo et al., 2017). However, we note
that the activation process can be energy intensive. Without
activation, the raw biomass feedstock or as-produced
biochar can only have limited efficacy for PFAS removal by
physio-sorption. In this paper, we deliberately avoid to fur-
ther discuss the use of biochar or physically modified bio-
adsorbent materials for PFAS removal as there are several
excellent reviews (Banks et al., 2020; Du et al., 2014).
Instead, we decide to focus on chemically modified bio-
adsorbents through direct functionalization of biomass.

Interestingly, although plenty of PFAS remediation
technologies have been demonstrated (Ross et al., 2018),
only a small number of publications were reported using
bio-adsorbents for PFAS removal (Banks et al., 2020; Du
et al., 2014; Kucharzyk et al., 2017; D. Zhang et al., 2019).
In contrast, biomass-derived adsorbents have relatively
more broadly demonstrated for other types of water purifi-
cation applications, such as the removal of metal ions and
organic dyes, and antibiotics (Bhatnagar & Sillanpaa, 2009;
Voisin et al., 2017) mediation. Table 1 provides a summary
of most relevant studies that employed bio-adsorbents for
PFAS removal with objective assessments, where the rele-
vant parameters used in these studies are summarized in
Table 2. One exemplary work demonstrated the use of rice
husk, which is an abundant and underutilized agricultural
byproduct, the authors synthesized aminated bio-adsorbent
by using atom transfer radical polymerization (ATRP) that
can remove PFBA, PFOA, and PFOS (Deng et al., 2013).
The authors argued that both electrostatic and hydrophobic
interactions synergistically increase the adsorption of PFAS
on the bio-adsorbent. X-ray photoelectron spectroscopy
(XPS) was used to confirm that PFAS were adsorbed by
protonated amine groups thru electrostatic interactions
(Deng et al., 2013). According to the adsorption isotherm
studies, hemi-micelles and micelles were likely to form for
long-chain PFAS, which might be the reason of the higher
amount of PFOA (2.49 mmol/g or 1031 mg/g) and PFOS

@ Wkrer sciEnce- 222

(2.65 mmol/g or 1325 mg/g) adsorbed, whereas PFBA only
exhibited the adsorption capacity of 1.70 mmol/g
(or 363.86 mg/g) at pH = 5. (Deng et al., 2013). We noticed
that this PFBA removal result is quite competitive or even
better when comparing with AC Calgon (i.e., 0.24 mmol/g
or 51.34 mg/g for PFBA removal) (B. Wang et al., 2016) and
Calgon F600 GAC (15.3 mg/g for PFBA) (Zhao et al., 2011).
A similar study was conducted to design the quaternized
cotton by using the ATRP modification method (Deng,
Zheng, et al., 2012). As quaternary ammonium cation has
better pH toleration in a wide range of pH (2.0-11.0), where
the modified compound is a promising bio-adsorbent for
PFAS removal under different water conditions. In the
study, the spectra before and after the PFAS sorption in
Fourier-transform infrared spectroscopy (FTIR) and XPS
measurement illustrated the anion exchange due to the
presence of quaternary ammonium cations. Meanwhile, a
large amount of ammonium groups could contribute to the
high sorption capacity against PFOS (3.3 mmol/g or
1650 mg/g) and PFOA (3.1 mmol/g or 1284 mg/g) removal
at pH = 5. However, there were two considerations that
made it difficult for large scale production and usage of
these two bio-adsorbents: (i) the multistep synthesis in
these two systems would increase the modification cost,
and (ii) the regeneration efficiency has never been tested on
these materials. Furthermore, as short-chain PFAS were
not the focus of these studies; only PFBA was tested in
aminated rice husk and the result was less effective than
long-chain PFAS. Here we included the removal data about
common ACs and exchange resins for short-chain PFAS as
benchmark: for PFBA and PFBS adsorption, ACs have the
Qmax between 15.3 and 128.1 mg/g and IX resins has the
Qmax between 19.1 and 10504 mg/g; for PFHXA and
PFHpA adsorption, Qu., for ACs are 18.84-235.54 mg/g
and for IX resins are 37.7-1089.8 mg/g (Gagliano
et al.,, 2020; Li et al., 2020). Besides, the previously men-
tioned CTF (Qmax = 92-377 mg/g) (B. Wang et al., 2016)
and single wall carbon nanotube (Qu.x = 6.4-67.6 mg/g)
(Deng, Zhang, et al., 2012) could also be references for
PFBA, PFBS, and PFHXA removal.

6 | VARYING BIOMASS BUILDING
BLOCKS SUITABLE TO PRODUCE
BIO-ADSORBENTS

6.1 | Cellulose

Cellulose is an inexpensive and abundant natural poly-
mer. Functionalized cellulose fibers at the micro- or
nano-scale are proven effective adsorbent materials to

remove a wide range of contaminants in water (Mo
et al., 2019; Yao et al., 2016). As for PFAS removal, only a
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few studies based on cellulose-derived adsorbents have
been demonstrated. For example, poly(ethylenimine)-
functionalized cellulose microcrystal (PEI-f-CMC) was
demonstrated by Ateia et al. (2018). They test the removal
of 22 PFAS compounds, including carboxylic and
sulfonated PFAS and PFAS precursors. As PEI-f-CMC
contained many positively charged amine groups, the
electrostatic interaction was thought to be the primary
factor responsible for the PFAS adsorption. Under real
polluted water conditions with PFAS concentration
<1000 ng/L, the PEI-f-CMC material exhibited rapid and
efficient adsorption of PFOA with an equilibrium time of
~20 min. The removal efficiency was positively corre-
lated with the chain length from C4 to C12. For C8 and
longer chain PFAS as well as PFAS precursors, the
removal percentage was larger than 90% by PEI-f-CMC,
but for short-chain PFAS, it exhibited lower removal effi-
ciency (5%-60% from C4 to C6) (Ateia et al., 2018).
Although this study only provided the isotherm study
and calculated the adsorption capacity for PFOA, while
the result in the batch study for short-chain PFAS is not
ideal, this bio-adsorbent system still has illustrated one
successful feature, that is, PEI-f-CMC was found to be
insusceptible to natural organic matter (NOM) in water
and exhibited good regeneration ability by washing with
methanol. At the time of this manuscript preparation,
there has been no further publication found using
cellulose-based adsorbents for PFAS removal, but this
PEI-f-CMC material and the work about aminated rice
husk (Qmax = 364 mg/g for PFBA removal) (Deng
et al., 2013) have demonstrated an effective pathway to
create new cellulose scaffolds with suitable func-
tionalization for short-chain PFAS removal.

6.2 | Chitin

Chitin is the second most abundant natural polymer in
the world, which also has a polysaccharide structure as
cellulose, but differs in the substitution groups at the C2
position. The main source of chitin comes from marine
crustaceans, such as shrimp and crab shells. Its deriva-
tive, chitosan contains amino groups, which can be used
as an inexpensive bio-adsorbent without complex modifi-
cation that can remove heavy metals and dyes from con-
taminated water (Bhatnagar & Sillanpaa, 2009; Liang
et al., 2018). For example, Yu et al. designed and demon-
strated chitosan-based molecularly imprinted polymer
(MIP), which could remove PFOS by electrostatic interac-
tion (Yu et al., 2008). In the sorption experiment, the
adsorbed amount of PFOS (560 pmol/g or 280 mg/g) by
MIP was significantly higher than that of nonimprinted
polymer (258 pmol/g or 129 mg/g). Furthermore, the

study indicated MIP has good selectivity to remove PFOS
even in the presence of other anionic pollutants. Such
chitosan-based adsorbents could also be recycled by rins-
ing with NaOH/acetone solution without significant loss
of the adsorption capacity, where five regeneration cycles
were demonstrated (Yu et al., 2008). In another study,
crosslinked chitosan bead was developed, containing
porous structures with a large amount of amino groups
(Q. Zhang et al., 2011). The authors proposed that the
diffusion-controlled process was dominated by the multi-
layer sorption mechanism based on the isotherm fitting
using the Freundlich model and the double-exponential
kinetic model. In the kinetic study, the removal of PFBS
and PFHxS with different chain lengths was also com-
pared with that of PFOS. The results indicated that long-
chain PFAS required a longer equilibrium time as they
were rearranged to form micelle first, whereas short-
chain PFAS exhibited fast adsorption kinetics because of
the small size (Q. Zhang et al., 2011). The adsorption
capacity was found to reach 5.5 mmol/g (2751 mg/g) for
PFOS at an equilibrium concentration of 0.33 mmol/L,
where the possible formation of bilayer sorption and
micelles at high PFOS concentrations was due to both
hydrophobic and electrostatic interactions (Q. Zhang
et al., 2011). Unfortunately, the authors did not carry out
the isotherm study for short-chain PFAS removal. In
addition, such chitosan-based adsorbents possessed the
shortcomings of pH sensitivity and ionic strength depen-
dence during adsorption. In the optimal adsorption con-
ditions, the initial PFAS concentration was usually too
high to be practical under the environmentally relevant
conditions. As discussed above, although there is no spe-
cific data about short-chain PFAS removal efficiency by
chitin-based adsorbent, the chitin/chitosan has the great
potential of short-chain PFAS remediation since many
amine-functionalized materials, including high-efficiency
IX resin (IRA910), was demonstrated to have good affin-
ity for PFAS (Ateia, Alsbaiee, et al., 2019), where the
abundant amino groups on chitin/chitosan backbone
could serve as adsorption sites for short-chain PFAS
through electrostatic interaction.

6.3 | Cyclodextrins

Cyclodextrins (CDs) are a family of cyclic oligosaccha-
rides, consisting of a macrocyclic ring of glucose subunits
joined by a-1,4 glycosidic bonds. They are natural indus-
trial products made from starch with typically three types
of CDs (a-CD, p-CD, y-CD) produced, containing 6, 7,
8 glucopyranose units, respectively (Schneiderman &
Stalcup, 2000). Their unique cone-shaped structures with
the inner hollow cavity can result in good host-guest
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interactions, due to hydrophobic interactions, for suitable
molecules. Meanwhile, the limited size of the interior
cavity could exclude the trapping of larger natural
organic molecules. Due to the many hydroxide groups on
the outer surface of CD, it can also bond with target mol-
ecules and provide active sites for cross-linking.
Currently, many modified CD-based sorbents have
been designed to adsorb pollutants such as heavy metals
or dyes for water treatment through host-guest inclusion
and electrostatic interactions (Q. Liu et al., 2020; Wu
et al., 2018). With more attention to PFAS in water,
CD-based MIPs for PFAS adsorption have been recently
reviewed (Karoyo & Wilson, 2015). Ling et al. (2017) first
synthesized a kind of porous p-cyclodextrin polymers
(P-CDP) and benchmarked their removal efficiency for
83 organic pollutants in water, including PFBA and
PFOA and compared with the performance of coconut-
shell based ACs. The results indicated that ACs exhibited
slower but more uniform uptake than P-CDP, but P-CDP
exhibited faster but more selective adsorption for
positively charged and relatively larger molecules
(Ling et al., 2017). However, P-CDP only exhibited
moderate affinity for PFOA and PFBA. To improve
its selectivity for PFAS, the authors replaced the
linker of tetrafluoroterephthalonitrile (TFN) with deca-
fluorobiphenyl (DFB), which has a higher affinity
for fluorine atoms (L. Xiao et al., 2017). The modified
DFB-CDP resulted in more than 10-fold increased affinity
(K, = 2.2:10° M in Langmuir model) for PFOA binding
compared to the equal mass concentration of AC and 2.5
times higher than that in PAC, easily drop concentration
of PFOA from 1 pg/L to <10 ng/L (L. Xiao et al., 2017).
However, the use of highly fluorinated compound to
attract PFAS is not an ideal solution as for environmental
treatment and the introduction of another organofluorine
into the treatment system is less than desirable.
Cross-linker tuning and molecular design for §-CD
based polymers were also demonstrated to enhance the
PFAS removal efficiency (L. Xiao et al., 2019). Besides
using perfluorinated aromatic cross-linker, reduction of
nitrile groups on TFN into primary amine groups to con-
vert negative surface charge into positive charge was also
found to enhance the interactions between p-CD based
polymers and anionic micropollutants (Klemes
et al.,, 2019). With this reduced polymer, anionic PFAS
with C4-C10 were indiscriminately removed at high effi-
ciency (80%-95% after 30 min), which outperformed
GAC and PAC, especially for short-chain PFAS (PFBA
removal >80%, while GAC and PAC have the removal of
40%-50%) (Klemes et al., 2019). To better understand the
effect of the amino groups on the interactions between
B-CD polymer and anionic PFAS, Yang et al. (2020)
selected two different tripodal crosslinkers containing
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amino or amido groups, respectively. They found that the
CDP1 with amino groups outperformed the amide-
functionalized polymer CDP2 with amido groups for the
removal testing of 10 anionic PFAS (C4-C10). It was con-
firmed that the high loading of amino groups in CDP1
was mainly responsible for the superior removal PFAS
performance, while amido groups in CDP2 cannot be
protonated, underscoring the importance of electrostatic
interactions to sequester PFAS (Yang et al., 2020). As the
result, CDP1 exhibited the highest affinity and adsorption
capacity among CD-based sorbents for GenX (222 mg/g)
and PFOA (457 mg/g). All these studies confirmed the
feasibility of using modified CD-based adsorbents for
PFAS remediation, however, there are still concerns
regarding the use of highly fluorinated cross-linkers and
the modification cost of these CD-based polymer.

For CD compounds, the selection of appropriate
cross-linking agents plays an important role in creating
adsorbents with adequate functionality and structural
integrity. Clearly, the different compositions in the
linkers to connect f-CD can affect the PFAS adsorption
performance of 3-CD polymers. For example, Karoyo and
Wilson (2013) synthesized polyurethane-based macromo-
lecular imprinted materials (MIM) incorporating p-CD
and hexamethylene diisocyanate (HDI) cross-linker at
different ratios. The MIM system outperformed GAC
regarding the PFOA adsorption capacity, which exhibited
monolayer sorption versus multilayer sorption at high
equilibrium concentrations of adsorbates, respectively.
Two driving forces were thought to be responsible for the
PFOA adsorption to the MIMs framework: hydrophobic
interactions occurred within the f-CD inclusion sites and
dipolar interactions occurred at the interstitial domains
with -NH and -OH groups (Karoyo & Wilson, 2013). The
copolymer sorbent system having the molar ratios
between HDI and $-CD of 1:1 seemed to be preferable for
the PFOA sorption over the system with higher cross-link
density. This may be because the larger cross-linking
density attenuates the interactions from the inclusion site
in B-CD, where the inclusion sites have a better affinity
to PFOA in the absence of steric effect (Karoyo &
Wilson, 2013; Karoyo & Wilson, 2016). Similar results
were found in the study of Xiao et al. (2017), indicating
that densely cross-linked polymers exhibited inferior
adsorption performance.

Further studies have been carried out to elucidate the
mechanisms and selectivity of CD-based adsorbents
regarding PFAS removal. For example, a great deal of
research has been conducted on the CD-based polymer to
remove anionic, zwitterionic, and nonionic PFAS (Ching
et al., 2020; Wang, Ching, et al., 2020). Compared to ACs
and IX resins, CDP exhibited relatively high selectivity
for certain charged PFAS. For example, DEXSORB
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(a commercial CD adsorbent from Cyclopure, Inc., Enci-
nitas, CA) with negative charges was effective to remove
zwitterionic PFAS (Am-CPr-FASA), while DEXSORB+
and amine-CDP (Klemes et al., 2019) containing positive
charges was effective to remove anionic PFAS (PFCA and
PFSA) (Wang, Ching, et al., 2020). This review empha-
sized the advantages of functionalized-CDP, including
rapid adsorption kinetic and high selectivity for PFAS,
and this kind of CDP can be combined with other adsor-
bents such as AC and exchange resin to achieve broad
adsorption. In addition, four different commercially
available positively-charged p-CD derivative products
were found to be effective to remove six short-chain
PFAS with varying molecular structures (i.e., branched
and linear) due to the enhanced host-guest complexation
(Weiss-Errico & O'Shea, 2019). These authors performed
the Fluorine-19 nuclear magnetic resonance spectroscopy
(**F NMR) titration experiment and estimated the associ-
ation constants for various charged p-CD derivatives with
different short-chain PFAS. They concluded that the pri-
mary driving force of the host-guest complexation is the
van der Waals force between the interior cavity of CD
and C-F chains, where the secondary driving force per-
tains to the hydrogen bonding between the hydroxyl
groups at the perimeter of p-CD and the carboxylate
groups of PFAS (Weiss-Errico & O'Shea, 2019). When the
hydroxyl groups are replaced by positively charged amine
groups, enhanced complexation of $-CD/PFAS can be
formed due to electrostatic attraction, while negatively
charged adsorbents can result in poor adsorption effi-
ciency due to electrostatic repulsion (Weiss-Errico &
O'Shea, 2019). In this study, it was also found that the
cavity of CD possesses a favorable size for the —-CF,CF,
CF,- segment, such that the introduction of positively
charged groups on CD is effective for the removal of
short-chain PFAS without the -CF,CF,CF,- subunit
(Hept-am-B-CD has 20 times increase about the associa-
tion constant for PFMOPrA when compared with native
B-CD) due to weaker influence of van der Waals forces
(Weiss-Errico & O'Shea, 2019). This result indicated the
potential of using positively charged CD derivatives for
short-chain or ultrashort-chain PFAS removal.

To summarize this section, varying functionalization
schemes to modify bio-adsorbents with desired chemical
structures, leading to the creation of optimal hydrophobic
and electrostatic interactions can be the optimal path to tai-
lor the adsorption performance. Since most bio-adsorbents
contain hydrophilic polysaccharide backbones, excepts CD
and its hydrophobic cross-linker, and likely charged groups,
the use of electrostatic interactions should be considered a
major path to address short-chain PFAS removal. In terms
of the ideal adsorption conditions, since most used amino
groups (as in chitosan) is protonated at low pH (pK, = 6.5),

where PFAS with the low pK, value is also present as an
anion, the lower pH value (3-4) usually results in higher
removal efficiency than higher pH value. In addition,
higher PFAS concentration usually can result in higher
adsorption capacity with a longer equilibrium time (espe-
cially for long-chain PFAS when they can form micelles)
(Q. Zhang et al., 2011). However, the environmentally rel-
evant concentration (pg/L-ng/L) for the remediation pro-
cess should be concerned and also be carefully addressed
in the future research. As a result, the adsorption capacity
from various papers may not be compared directly due to
huge difference of PFAS adsorption condition (e.g., initial
concentration range). Based on the existing data of above
summarized bio-adsorbents, the short-chain PFAS adsorp-
tion capacity is 363.9 mg/g for PFBA (Deng et al., 2013)
and 222 mg/g for GenX (Yang et al., 2020), and the aver-
age removal range for long-chain PFAS is from 457 to
2751 mg/g. Unfortunately, we cannot provide more data
about bio-adsorbents for short-chain PFAS due to limited
number of relevant publications. Generally, the existing
deficiencies in existing bio-adsorbents’ demonstrations
include the missing data about kinetic and isotherm stud-
ies for short-chain PFAS and the lack of column experi-
ments. In addition, the antifouling and regeneration
studies of demonstrated bio-adsorbents for PFAS removal
are still very limited.

7 | PERSPECTIVES ON THE
DESIGN OF NEW BIO-ADSORBENTS
FOR SHORT-CHAIN PFAS REMOVAL

As discussed above, there are several unique features in the
chosen bio-adsorbent examples, making them ideal plat-
forms for further development of cost-effective and sustain-
able sorptive materials for removal of both long-chain and
short-chain PFAS. These features include: (1) low-cost
feedstocks from a broad range of underutilized sources
(e.g., wood trims, agriculture residues, grass, and shrubs
from lignocellulose plants), (2) natural polysaccharide scaf-
folds (building blocks) are biodegradable and can be easily
modified to offer functional sites to enhance the adsorption
of short-chain PFAS via electrostatic interactions, (3) the
polysaccharide modification schemes can include both pos-
itive and negative charged surface enhancement to tailor
the interactions with different short-chain PFAS, and
(4) the nanoscale polysaccharide scaffold can offer the spe-
cific surface area significantly higher than those of GACs
and approaching the level of hydrogels. It has been shown
that some ionic polymer hydrogels with a large density of
positively charged groups can remove both long-chain and
short-chain PFAS effectively within several minutes,
including PFBS and GenX (Qua.x = 278 mg/g) (Ateia,
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Arifuzzaman, et al., 2019; Kumarasamy et al., 2020). These
ionic polymer hydrogels can be used as benchmarks for us
to design the modification of nanoscale polysaccharide
scaffolds (building blocks) for short-chain PFAS removal.

Cost-effectiveness is the major concern for industry
when developing a novel method to scale up. As for the
utilization of bio-adsorbents, compared to the conven-
tional adsorption system, it is estimated that the bio-
sorption process could lower 20% of capital costs, 36% of
operational costs, and 28% of total treatment costs (Ata
et al., 2012). There is a rough estimation for carbox-
ycellulose nanofibers costing $1.4 per g and the energy
consumption is about 1.49 kWh/g (Sharma et al., 2017).
When looking into the price of typical bio-adsorbents,
the coconut shell charcoal, rice husk, lignin, chitosan,
spheroidal cellulose, and cork waste cost 0.34, 0.025, 0.06,
2.2-15.43, 1.07, and 0.48 (USD/kg), respectively (Tran
et al., 2015), which were much cheaper than commercial-
ized AC (20 USD/kg) (Rafatullah et al., 2010). Mean-
while, the thermal regeneration of spent GAC could even
increase the cost (Sonmez Baghirzade et al., 2021). All
these evidences support the low-cost bio-adsorbents
being alternatives for conventional AC adsorbents for
PFAS removal.

7.1 | Functionalization of bio-adsorbents

In Figure 3, a general strategy to functionalize the vary-
ing nanoscale polysaccharide scaffolds is illustrated to
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design new bio-adsorbents for removal of short-chain
PFAS. In this figure, we argue that both chitin
(or chitosan—with positively changed amino groups) and
cellulose (generally with negatively charged groups such
as carboxylate or sulfonate groups) based nanoscale scaf-
folds can both be modified to attach a high loading of
positively charged functional groups, such as quaternary
ammonium group or cationic metal nanoparticles thru
electrostatic interactions and metal complexation, to
enhance their removal capability against short-chain
PFAS. We do not include the class of CD materials here
as they are generally more costly to produce and do not
really offer the low-cost potential. Cellulose or chitin
nanofibrils could be easily obtained through chemical
treatments or defibrillation processes after adding surface
charges. We note that the low-cost and sustainable
extraction methods to fabricate nanoscale polysaccharide
scaffolds have been rapidly developed such as nitro-
oxidation (Sharma et al., 2017) and more will follow
(Phanthong et al., 2018). They are also not included here
because the development is out of scope to this work.
Some likely functionalization schemes that can be
adopted to modify nanoscale polysaccharide scaffolds are
as follows. We have to admit that functionalization could
eventually increase the total cost. To lower the cost of
existing bio-adsorbents, it is ideal to use cheaper feed-
stocks, simpler synthesis steps, and greener chemicals
during the modification.

Since many amine-functionalized adsorbents, including
carbohydrate-based sorbents, synthetic-based sorbents, and
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Functionalization of the varying nanoscale polysaccharide scaffolds to enhance the removal of short-chain poly- and
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IX sorbents were received attention and they showed good
affinity for PFAS adsorption (Ateia, Alsbaiee, et al., 2019),
chitosan-based nanomaterials should be considered one of
the top bio-adsorbents for anionic short-chain PFAS
removal because of their abundant amino groups on back-
bone without complex functionalization. Several studies
using chitin or chitosan nanofibers to remove metal ions or
dyes in water treatments have been demonstrated
(Bhatnagar & Sillanpaa, 2009; D. Liu et al,, 2013), where
these systems can be further modified for the goal of short-
chain PFAS removal. The easiest way to obtain amino
groups in chitin nanofibers is through deacetylation (Fan
et al, 2010), where the amount of amino groups can
directly impact the adsorption efficiency for anionic PFAS.
However, highly deacetylated chitin or chitosan materials
may not be suitable as adsorbent materials because of their
good solubility in water. So how to balance the degree of
deacetylation will be a key in modification. Another issue
for amine-functionalized sorbents is their poor pH tolerance
during adsorption. To overcome this concern, we can adopt
the approach in a study to prepare chitosan with
quaternized ammonium groups (Rosa et al., 2008), which
were found to have good pH stability for treating PFAS
(Deng, Zheng, et al., 2012). Furthermore, a large number of
cationization reagents and grafting methods that can pro-
vide positively charged groups have been reported
(Mourya & Inamdar, 2008), and they have not been fully
explored for the modification for chitin/chitosan-based
nanomaterials for the purpose of short-chain PFAS

removal. Some of those grafting approaches may also be
useful for the modification of cellulose-based nanomaterials
(or nanocellulose) (Abouzeid et al., 2019).

Another approach to modify the polysaccharide nano-
scale scaffold, especially nanocellulose with negatively
charged surface (e.g., carboxylate groups on cellulose
nanofibers (CNF) (Sharma et al., 2017), or sulfonate groups
on cellulose nanocrystals (CNC) (Song et al., 2019) is by the
surface coupling with positively charged (i) metal ions and
(ii) metal oxide nanoparticles thru metal complexation
and/or electrostatic interactions. This approach may also
work for chitin and chitosan for difference reasons. For (i),
it is known that some multivalent metal ions can bind to
oxygen atoms of the hydroxyl groups, which are readily
available on the surface of both chitin/chitosan and cellu-
lose scaffolds. These metal complexes can serve as active
sites for adsorption of charged short-chain PFAS. In the
case of chitosan, it has also been shown that the N atom on
the NH, group can also act as an electron donor for metal
ion chelation. Many examples of multivalent metals incor-
porated to chitosan exist, such as Fe(IIT) loaded carboxyl-
ated chitosan beads and chitosan-Zr nanocomposite
(Natrayasamy & Meenakshi, 2008; Prasad et al., 2014).
These materials offer electrostatic and metal complex sites,
suitable for short-chain PFAS adsorption, and these adsorp-
tion sites should also have good pH stability. For (ii), the
metal nanoparticles incorporation in polysaccharide scaf-
fold has also been demonstrated (Gong et al., 2016). In this
study, magnetite nanoparticles were incorporated in a
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(I) Chemical structures of exemplary bio-adsorbents: cyclodextrin polymer (Ling et al., 2017), cross-linked chitosan

(Q. Zhang et al., 2011), and quaternized cellulose (Deng, Zheng, et al., 2012); (II) some possible formats for the use of bio-adsorbents to
remove short-chain PFAS: (a) membranes in adsorption-filtration, (b) powders/granules in packed column, (c) gels or beads as coagulants
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starch scaffold, where the anchored magnetite nanoparticles
offered inner-sphere surface complexation (based on the
FTIR results) to remove PFOA. The presence of carboxylate
or sulfonate groups on nanocellulose to anchor metal oxide
nanoparticle may offer unique advantages over chitin/
chitosan nanomaterials, as the strong ionic interactions
between nanocellulose-metal oxide may reduce the release
of nanoparticles as secondary contaminants.

7.2 | Varying formats of bio-adsorbent
for removal of short-chain PFAS

In Figure 4, we outline three major formats for the use of
bio-adsorbents short-chain PFAS removal: (a) membranes
in filtration; (b) powders/granules in packed column; and
(c) gels and beads as coagulants. Perhaps the most straight-
forward method to implement bio-adsorbents in real-life
water treatments is by column filtration. The laboratory
experiments, such as rapid small scale column tests
(RSSCT) can be carried out to evaluate the performance of
bio-adsorbent, where RSSCT are representative of full-scale
water treatments (Ateia, Alsbaiee, et al., 2019). For example,
a column adsorption study was demonstrated by packed
column containing CD incorporated in the microcrystalline
cellulose substrate. Such a system exhibited good PFAS
removal efficiency, good stability, and promising regenera-
tion ability (Alzate-Sanchez et al., 2019). In principle, bio-
adsorbents can also be combined with microfiltration or
ultrafiltration membranes and provide dual adsorption/
filtration functions. The dense coating of bio-adsorbents as
barrier layers will no doubt decrease the pore size of the
membrane and reduce the permeation flux, but the inclu-
sion of loosely structured layer with sufficient adsorption
functionality without the sacrifice of membrane flux can
offer the opportunities to simultaneously remove multi-
scale contaminants (e.g., larger scale contaminants by filtra-
tion, and short-chain PFAS by adsorption) (Ma et al., 2011).
In fact, bio-adsorbents can be used in many other formats,
such as gel, powder, bead, sponge, fiber, and so on, which
has been illustrated before (Miretzky & Cirelli, 2011). Mean-
while, since highly charged nanocellulose has been demon-
strated to be applied in coagulation-flocculation treatment
(Morantes et al., 2019), cationic, or metal nanoparticles
deposited bio-adsorbents can also be used as coagulants and
flocculants for anionic PFAS and even be combined with
existing treatment materials, such as GAC and ion
exchange resins, to achieve more effective and comprehen-
sive PFAS removal. We sense there can be good synergy in
the combined usage of bio-adsorbents and GAC materials,
and these advantages are worthy of being explored further.

8 | CONCLUDING REMARKS

In this paper, we point out the emerging concerns of
short-chain PFAS and the difficulty to remove them by
conventional methods. To solve this problem, we argue
nanoscale bio-adsorbents derived from raw biomass can
be an ideal scaffold to remove short-chain PFAS com-
pounds, where the scaffold needs to be property modi-
fied/functionalized to enhance the removal capability
and efficiency through electrostatic interactions. The
clear advantages of nanoscale materials are their larger
surface to volume ratio and higher concentration of func-
tional groups. The most important feature of these bio-
adsorbents is their cost-effectiveness as they can be
derived from diverse biomass feedstocks through chemi-
cal means without the use of high energy-consuming pro-
cesses, such as acid hydrolysis or oxidation. To think
about the future path of bio-adsorbents, the idea is to
take green chemistry by simplifying the synthetic steps
and reducing the chemical use. The usage of under-
utilized biomass feedstocks, such as wood trims and agri-
culture residues can offer additional incentives. We
further argue the nanoscale bio-adsorbents based on
polysaccharide scaffold can offer a diverse range of func-
tional groups, enabling further modification schemes to
enhance the surface charge and offer more electrostatic
interactions to adsorb negatively charged short-chain
PFAS. These modification schemes include the conver-
sion of existing functional groups, metal complexation
and electrostatic coupling with metal nanoparticles. As
for the thermal regeneration process, high temperature
can close the pores of AC and thus trap PFAS from being
released (Sonmez Baghirzade et al., 2021), but this can be
avoided in biomaterials. As the polysaccharide scaffolds
are biodegradable and not stable at high temperatures
(such as AC), the disposal cost of PFAS-adsorbed mate-
rials will be significantly lowered compared to traditional
sorbents (e.g., by avoiding the incomplete incineration of
used bio-adsorbents).
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