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SUMMARY
The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inade-
quate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding
with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events
accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19
epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other
U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana.
By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans
before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an under-
standing of how superspreading during large-scale events played a key role during the early outbreak in
the U.S. and can greatly accelerate epidemics.
INTRODUCTION

In December 2019, SARS-CoV-2 was first identified in cases of

unknown pneumonia in Wuhan, China (Wu et al., 2020; Zhou

et al., 2020). Initially, community transmission was confined to
C

China, but in late February 2020, large-scale outbreaks were

increasingly detected in Europe, the Middle East, and elsewhere

(World Health Organization, 2020a, 2020b). Although SARS-

CoV-2 was first detected in the United States (U.S.) in January

2020 (Centers for Disease Control, 2020a), the majority of early
ell 184, 4939–4952, September 16, 2021 ª 2021 Elsevier Inc. 4939
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COVID-19 cases were associated with travel from high-risk

countries or close contact with travelers (Centers for Disease

Control, 2020b).

By late February, widespread community transmission of

SARS-CoV-2 in theU.S. was identified inWashington state (Wor-

obeyet al., 2020),NewYorkCity (Mauranoet al., 2020), andSanta

Clara County in California (Deng et al., 2020), but it is estimated

that local transmission in the U.S. started earlier and was more

widespread than recognized at the time (Davis et al., 2020; Per-

kins et al., 2020). Elsewhere, outside of these early virus ‘‘hot-

spots’’ in the U.S., transmission of SARS-CoV-2 occurredmostly

silently due to lack of testing until the secondweek ofMarch (Jor-

den et al., 2020; Davis et al., 2020; Lu et al., 2020). In contrast to

the emergence of inherently more transmissible virus variants in

the fall of 2020 and beyond (Davies et al., 2021; Faria et al.,

2021), in the early phase of the epidemic transmissionwasmainly

driven by favorable epidemiological circumstances. It seems

likely that large-scale events in this period dramatically acceler-

ated early SARS-CoV-2 transmission and that subsequent inter-

state seeding amplified the COVID-19 epidemic in the U.S.

More than onemillion people from all over the U.S. were drawn

to the Mardi Gras parades in New Orleans starting on February

14th and culminating on February 25th, 2020 (Mardi Gras day,

or ‘‘Fat Tuesday’’). The timing and the scale of this event, as

well as the absence of any meaningful mitigation efforts (in

agreement with official guidelines at the time), provides a unique

opportunity to investigate how large-scale events can accelerate

SARS-CoV-2 transmission and amplify local outbreaks during

the ongoing pandemic. To investigate this, we sequenced

SARS-CoV-2 from cases in New Orleans and other locations in
4940 Cell 184, 4939–4952, September 16, 2021
Louisiana and compared them with SARS-CoV-2 genomes

from the U.S. and globally to reconstruct the timing, origin, and

emergence of the virus in Louisiana. By integrating genomic,

epidemiological, and mobility data, we show that SARS-CoV-2

overdispersion during Mardi Gras greatly accelerated the early

outbreak in New Orleans, comparable to the emergence of

more transmissible SARS-CoV-2 variants in the winter of 2020,

and seeded the virus to other parts of Louisiana and nearby

states. Our findings suggest that large-scale events in the begin-

ning of 2020 may have contributed significantly to SARS-CoV-2

transmission early in the COVID-19 epidemic in the U.S., which is

in contrast to epidemicwaves later in the epidemic that were also

fueled by inherently more transmissible lineages. Without wide-

spread availability of vaccination and testing, large gatherings

of people without strict control efforts will continue to amplify

the COVID-19 pandemic.

RESULTS

SARS-CoV-2 was likely introduced into Louisiana via
domestic travel
To understand the early emergence of SARS-CoV-2 in Louisi-

ana, we investigated epidemiological, genomic, and travel data

of SARS-CoV-2 during the first wave of the epidemic (March

9th–May 15th). We found that SARS-CoV-2 in Louisiana dis-

played little genetic diversity compared to other states and

was likely introduced from a domestic source.

Using aggregated parish-level COVID-19 case data (Outbrea-

k.info, 2021a), we analyzed reported cases and deaths during

the first wave of the epidemic in Louisiana. The first reported
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Figure 1. SARS-CoV-2 epidemiology in Louisiana
(A) Epidemiological curve and number of sequenced samples in New Orleans, Shreveport and other parishes in Louisiana.

(B) Sampling location of sequenced SARS-CoV-2 samples in Louisiana: New Orleans metro area (blue), Shreveport metro area (green), and other parishes in

Louisiana (orange).

(C) Maximum clade credibility tree of whole genome SARS-CoV-2 sequences sampled from Louisiana, U.S., and outside the U.S. The black circles show the

strength of the posterior support for each node.

(D) Domestic and international air travel passenger volumes to Louisiana in February and March.

(E) Relative NextStrain clade prevalence per U.S. state up until May 15th (bottom). Number of sequences per U.S. state up until May 15th (top).

(F) Shannon evenness of NextStrain clades per U.S. state in relation to available SARS-CoV-2 sequences.
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case of COVID-19 in Louisiana was detected onMarch 9th, 2020,

and the epidemic rapidly increasedwith reported cases reaching

a peak on April 4th (Figure 1A). While COVID-19 cases were re-

ported throughout Louisiana during the first wave, the New Or-

leans-Metairie metropolitan statistical area (MSA; henceforth
referred to as New Orleans) accounted for more than 54.9% of

all deaths in the period up until May 1st (Figure S1) and was the

focal point of the epidemic in Louisiana.

Early SARS-CoV-2 epidemics in NewYork and theWest Coast

were seeded by international introductions from Europe and
Cell 184, 4939–4952, September 16, 2021 4941
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Asia, respectively (Worobey et al., 2020). However, the source of

many other local epidemics in the U.S., including the one in Loui-

siana, is unknown. To determine whether the emergence of

SARS-CoV-2 in Louisiana originated from a domestic or interna-

tional source, we sequenced 235 SARS-CoV-2 virus genomes

collected from COVID-19 patients in New Orleans, Shreveport

(Shreveport-Bossier City, LA MSA), and other parishes in Louisi-

ana (Figures 1A and 1B). We reconstructed phylogenetic trees

together with 1,263 whole-genome sequences that were repre-

sentative of the global SARS-CoV-2 sequence diversity between

January and May 2020. We found that the lineages responsible

for the first wave in Louisiana all closely resembled SARS-

CoV-2 sequences sampled within the U.S., suggesting that the

epidemic in Louisiana was seeded from a domestic source

(Figure 1C).

To further investigate the origin of the SARS-CoV-2 introduc-

tion into Louisiana, we investigated domestic and foreign air

travel into Louisiana and found that in February, 360,000 passen-

gers arrived from within the U.S., while only 40,000 international

travelers were reported (Figure 1D). In particular, we found that

travel from Europe and Asia, where the majority of SARS-CoV-

2 transmissions occurred in February, accounted for less than

5% of all travel movements to Louisiana (Figures 1D and S1).

Consistent with our phylogenetic analysis, the travel data

strongly suggest that the COVID-19 epidemic in Louisiana was

due to seeding from domestic sources of SARS-CoV-2, and, un-

like New York (Maurano et al., 2020) and Washington (Worobey

et al., 2020), not the result of importations from Europe, Asia, or

other foreign regions.

Early SARS-CoV-2 transmission in Louisiana
predominantly originated from a single introduction
Unrestricted domestic travel in the U.S. in February 2020 and

associated large travel volumes likely facilitated the emergence

of SARS-CoV-2 in Louisiana. To investigate how many times

SARS-CoV-2 was introduced into Louisiana, we first conducted

a high-level genomic analysis by comparing NextStrain clade

distributions of all available SARS-CoV-2 sequences from the

continental U.S. up until May 15th, 2020. We found that SARS-

CoV-2 sequences from Louisiana almost exclusively belonged

to a single clade, 20C (Figure 1E). In other U.S. states with

more than 10 sequences available, including neighboring states

of Louisiana, we observed the co-circulation ofmultiple clades at

more equal frequencies than in Louisiana (Figures 1E and 1F). In

fact, we found that the genetic diversity of SARS-CoV-2 in Loui-

siana strongly resembled outbreaks on cruise ships (Figures 1E

and 1F). These findings suggest that, like on the Diamond

Princess and Grand Princess cruise ships (Deng et al., 2020;

Sekizuka et al., 2020), SARS-CoV-2 in Louisiana most likely orig-

inated from a single source.

To further support these findings, we reconstructed a

maximum likelihood tree of our SARS-CoV-2 genomes from Lou-

isiana together with a representative selection of 1,399 clade

20C sequences collected across the U.S. (Figure 2A). We found

that within clade 20C, the majority of SARS-CoV-2 sequences in

Louisiana belonged to a single cluster (‘‘Louisiana clade’’; Fig-

ures 2A and 2B), which is characterized by a single defining

nucleotide mutation (C27964T; Figure 2A). Within the Louisiana
4942 Cell 184, 4939–4952, September 16, 2021
clade, we identified three additional subclades supported by sin-

gle nucleotide mutations, but the Louisiana clade was otherwise

strongly dominated by polytomies, consistent with rapid local

transmission (Figure 2A). Outside the main Louisiana clade, we

found ten singleton sequences, but these either resulted in

very limited or no onward transmission and likely did not

contribute substantially to the overall SARS-CoV-2 transmission

during the first wave (Figure 2A). The clustering of SARS-CoV-2

sequences within a single well-supported Louisiana clade

strongly suggests that a single introduction was responsible for

the vast majority of transmission events during the first wave of

the epidemic in Louisiana.

SARS-CoV-2 likely emerged in Louisiana prior to the
Mardi Gras festival
Both the timing and the onset of the COVID-19 epidemic in New

Orleans as well as media reports (Table S1) suggest that Mardi

Gras, which culminated in large parades on Mardi Gras day on

February 25th, 2020, may have played a role in the spread or

emergence of SARS-CoV-2 in Louisiana. It is unclear, however,

if SARS-CoV-2 was introduced during Mardi Gras or if local

transmission was already ongoing prior to the festival. To eval-

uate when SARS-CoV-2 started circulating in Louisiana, we

created time-aware phylogenies to estimate the median time

to the most recent common ancestor (TMRCA) for the Louisiana

clade, which indicates the likely start of sustained local transmis-

sion (Grubaugh et al., 2019a; Suchard et al., 2018).We found that

the posterior median TMRCA of the Louisiana clade was

February 13th (95% highest posterior density [HPD] interval:

January 24th, 2020–February 27th, 2020), suggesting that low

levels of local SARS-CoV-2 transmission within Louisiana were

likely already ongoing prior to Mardi Gras (Figure 2B).

To further investigate potential local transmission prior to

Mardi Gras, we determined the emergence of SARS-CoV-2 in

Louisiana by inferring the timing of the first introduction (location

transition), often called a Markov jump (Minin and Suchard,

2008), into New Orleans and Shreveport across our full model

posterior distribution that includes uncertainty on the tree and

model parameters. We estimated that SARS-CoV-2 lineages

belonging to the Louisiana clade emerged in New Orleans with

a median time of February 11th, 2020, which is two weeks before

Mardi Gras day (Pr[introduction < February 25th] = 97.9%), and,

in confirmation, two days before our TMRCA estimates of sus-

tained local transmission on February 13th (Figures 2B and 2C).

In Shreveport, we found that SARS-CoV-2 emerged noticeably

later than in New Orleans, after Mardi Gras on March 17th (Pr

[introduction > February 25th] = 95.5%; Figure 2C). Combined,

our phylodynamic analyses suggest that SARS-CoV-2 emerged

and spread locally in New Orleans a couple of weeks prior to

Mardi Gras day.

Favorable epidemiological circumstances resulted in
superspreading during Mardi Gras
Although we found that SARS-CoV-2 likely began spreading in

New Orleans mid-February 2020, the first official COVID-19

case was not reported until March 9th. This suggests that

SARS-CoV-2 was likely spreading undetected and unmitigated

during the large-scale gathering of people during Mardi Gras.
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To determinewhether the festival may have accelerated the early

COVID-19 epidemic in Louisiana, we modeled the number of

likely daily cases using reported deaths (Figure 3A) and

compared these with a forward simulation of case numbers us-

ing a negative binomial branching process model starting from

the onset of local transmission on February 13th, 2020 (Figures

2C, 3B, and S2). We found that the number of infections inferred

based on observed death counts was substantially higher than
the expected number of infections, suggesting superspreading

during Mardi Gras (Figure 3C). In addition, we show that super-

spreading during Mardi Gras likely resulted in increased trans-

mission in New Orleans in the immediate period after Mardi

Gras (Figure 3D) and that it was caused by favorable epidemio-

logical circumstances rather than virus genetics (Figure 3E).

To estimate daily COVID-19 case numbers in the absence of

reporting during February 2020, we reconstructed the number
Cell 184, 4939–4952, September 16, 2021 4943
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Figure 3. Acceleration of SARS-CoV-2 transmission during Mardi Gras

(A) Modeled incidence of SARS-CoV-2 in New Orleans based on registered COVID-19 deaths as inferred using Epidemia. The inset shows SARS-CoV-2 inci-

dence in February and the hashed area indicates the cumulative number of COVID-19 cases up until Mardi Gras day (February 25th, 2020).

(B) Forward simulation of the cumulative number of infections between the TMRCA (February 13th) and the end of Mardi Gras using a negative binomial branching

process model. The red dotted lines indicate the estimated median number of infections.

(C) Probability density curve of the number of COVID-19 cases required on Mardi Gras day to recapitulate the epi curve in New Orleans (random sampling of the

probability distributions of A and B, see Figure S2 for additional details). The red dotted line indicates the median number of cases. The hashed area is the

probability that no increased transmission occurred duringMardi Gras. The black lines indicate the probability of accelerated transmission by 100, 200, 300, 400,

and 500 COVID-19 cases.

(legend continued on next page)
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of likely infections based on the number of reported deaths using

a Bayesian regression model (Flaxman et al., 2020). Since our

model was not able to accommodate sudden increases in trans-

mission that are typically associated with superspreading events

(Flaxman et al., 2020), we estimated the number of cases be-

tween February 11th and Mardi Gras day on February 25th,

2020. We found that by Mardi Gras day, 793 (95% HPD: 400–

1,497) cumulative cases would have been required to align our

model with the estimated daily number of SARS-CoV-2 infec-

tions during the first wave of the COVID-19 epidemic in New

Orleans (Figure 3A). To estimate the likely number of infections

in New Orleans between February 13th (start of local transmis-

sion of the Louisiana clade; Figure 2B) and the end of Mardi

Gras (February 25th), assuming a constant reproduction number

and an epidemic initiated from a single individual, we simulated

the number of cases using a negative binomial branching pro-

cess model (Lloyd-Smith et al., 2005). We estimated a total of

42 (95% confidence interval [CI]: 5-491) infections occurred be-

tween February 13th and Mardi Gras day (Figure 3B), which is

substantially lower than the estimated 793 infections that would

have been required to recapitulate the number of cases seen

later in March (Figure 3A).

To estimate the number of likely SARS-CoV-2 infections dur-

ing Mardi Gras, we calculated the median difference between

our previously estimated number of infections up until Mardi

Gras day inferred from observed deaths (793; Figure 3A) and

the number of cases that were expected based on the start of

local transmission from a single individual on February 13th (42;

Figure 3B). We estimated that a median of 713 infections would

have been required during Mardi Gras to recapitulate our

modeled epidemiological curve (Figure 3C), with only a 0.9%

probability that no transmission occurred at all during the

festival. To better understand the magnitude of SARS-CoV-2

transmission duringMardi Gras, we randomly sampled the prob-

ability distribution of the inferred (from deaths) and simulated (via

branching process model started on February 13th) cases and

calculated the probability of various transmission scenarios

ranging from 100 to 500 additional infections during the festival.

We found that at least 100 infections occurred duringMardi Gras

with a 98.4% probability, and that at least 500 occurred with a

79.9% probability (Figure 3C). These findings suggest that

superspreading very likely occurred during the festival resulting

in hundreds of SARS-CoV-2 infections.

We hypothesized that superspreading during Mardi Gras

should have resulted in a more rapid increase of early COVID-

19 cases in NewOrleans compared to other U.S. cities. To inves-

tigate this,weusedaBayesian regressionmodel to estimatedaily

case numbers in NewOrleans and other large population centers

in theweeksafterMardiGras until the statewide stay-at-homeor-

der in Louisiana on March 23rd, 2020 (Flaxman et al., 2020). We

found that infection rates were substantially higher in New Or-

leans than in other large population centers, including cities
(D) SARS-CoV-2 incidence inferred from reported COVID-19 deaths between Mar

Shreveport, and 52 metro areas with a population of more than 1 million.

(E) Lineage growth rate and normalized genetic distance of Pango lineages acros

10-day interval after at least 5 sequences per week were reported. Variants of

pandemic wave are outlined in black.
with the next eight highest infection rates in theU.S. (Detroit, Bos-

ton, New York, Indianapolis, Chicago, Seattle, Buffalo, and Hart-

ford; Figures 3D and S3). Since all of these population centers

were located in the north or the west of the U.S., we also

compared New Orleans to regional population centers in the

South (Houston, Dallas, Birmingham, and Shreveport). We found

3.7- to 73-fold higher infection rates in New Orleans compared

with these regional cities, indicating that infection rates in New

Orleans were uniquely high in the Southern U.S. (Figures 3D

and S3). The increased rate of COVID-19 cases in New Orleans

in the weeks immediately after Mardi Gras suggests that super-

spreading occurred during the festival, and is in agreement with

our previous analyses (Figures 3A, 3B, and 3C).

To understand whether the first COVID-19 wave in Louisiana

was unique or representative of SARS-CoV-2 transmission

observed elsewhere in the U.S. during the early epidemic, we

compared the growth rate of individual lineages across counties

in the U.S. (Figure 3E). We found that SARS-CoV-2 lineages B.1

and B.1.595 in New Orleans (using the Pango naming scheme

[Rambaut et al., 2020]; both fall in the Louisiana clade; Figure 2A)

showed a unique combination of high lineage growth rate and

low genetic diversity, indicating a uniquely rapidly expanding vi-

rus population in Louisiana during the first wave (Figure 3E). In

fact, we found that except for New York, all other counties in

the U.S. had much slower growth rates during the first wave of

the pandemic than the Louisiana clade (Figure 3E), suggesting

that virus transmission in New Orleans was unusually high at

the beginning of the first wave.

To investigate to what extent rapid transmission during Mardi

Gras was the result of favorable epidemiological circumstances

or potential virus genetics, we also compared the growth rates of

SARS-CoV-2 lineages across the U.S. with variants of concern

that emerged in the winter of 2020 (Washington et al., 2021).

We found that the lineage growth rates in New Orleans were

only slightly lower compared to the emergence of B.1.1.7 in

the UK but were more than 50% higher than other variants of

concern, such as B.1.427, B.1.351, and B.1.526 (Figure 3E).

Since B.1.1.7 is inherently more transmissible than other

SARS-CoV-2 lineages (Davies et al., 2021), this suggests that

favorable epidemiological circumstances alone can be sufficient

to achieve growth rates similar to much more transmissible

SARS-CoV-2 variants.

SARS-CoV-2 in Louisiana was highly similar to SARS-
CoV-2 lineages circulating in Texas
Our analyses showed that SARS-CoV-2 was most likely intro-

duced into Louisiana via domestic travel (Figure 1C). To

more precisely determine the likely source of SARS-CoV-2 into

Louisiana, we performed Bayesian phylogeographic analyses

and analyzed mobility data from across the U.S. and found

that SARS-CoV-2 in Louisiana may have originated in Texas.

Prior to Mardi Gras, our analyses demonstrated that Texas is
di Gras day and the statewide stay at home order in Louisiana for NewOrleans,

s counties in the United States. Lineage growth rate was calculated based on a

concern are outlined in red, whereas lineages that emerged during the first
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more than twice as likely as the next most probable state to be

the source of SARS-CoV-2 lineages in New Orleans, while

SARS-CoV-2 in Shreveport likely originated from New Orleans

itself (Figures 4A and 4B).

Although these analyses point to Texas as a likely source of the

Louisiana clade, our phylogeographic inference is limited by

geographic and temporal sampling (Bloomquist et al., 2010).

Therefore, we also investigated movement between New Or-

leans, Shreveport, and other U.S. states by analyzing human

mobility patterns. To determine the number of travelers into Lou-

isiana from states in the U.S. that were represented in our phylo-

genetic analysis, we used weekly mobility data generated by

SafeGraph (SafeGraph, 2020). We found that travel movements

in the week of February 13th into Louisiana were strongly domi-

nated by Texas, which accounted for 13% of travel to New

Orleans, and 35%of travel to Shreveport (Figure 4C). These find-

ings suggest that Texas and other regions of Louisiana were the

main origins of travel into New Orleans and Shreveport during

February 2020.

To investigate the SARS-CoV-2 importation risk into New

Orleans during February 2020, we estimated the import risk
4946 Cell 184, 4939–4952, September 16, 2021
based on the number of incoming trav-

elers and the SARS-CoV-2 incidence

rate at likely U.S. states of origin. We

found that although the overall import

risk into New Orleans was small, during

the week of the likely initial introduction

(February 13th; Week 7; Figure 4D), Flor-

ida and Texas represented 29% and

24% of the total import risk, respectively,

whereas we estimated a lower proportion

of import risk from more distant states,

including California (3%), Washington

(20%), and New York (0.2%; Figure 4E).
These results are in agreement with the findings from our phylo-

genetic and mobility analyses, suggesting that the Louisiana

clade may have originated via an introduction of SARS-CoV-2

from Texas.

Exportation of SARS-CoV-2 from New Orleans may have
caused localized outbreaks in nearby states
Our observation that superspreading duringMardi Gras likely led

to increased transmission rates within NewOrleans prompted us

to investigate if this could also have resulted in spread to other

U.S. states. We analyzed SARS-CoV-2 exports from New Or-

leans using mobility and genomic data in the four weeks after

Mardi Gras until the stay-at-home order onMarch 23rd, which re-

sulted in a large decline of travel and incidence. We found that

the export from New Orleans was highest for nearby states

and regions, in particular other parts of Louisiana, Mississippi,

Alabama, and Texas (Figure 5).

To determine to what extent increased transmission following

superspreading during Mardi Gras could have resulted in SARS-

CoV-2 infections in other states, we analyzed location transitions

from New Orleans to regions in Louisiana and states across the
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U.S. We found that SARS-CoV-2 from New Orleans may have

primarily spread to nearby regions, in particular Texas and Loui-

siana (Figure 5A). In contrast, transmission in Shreveport, where

we did not observe increased transmission followingMardi Gras,

did not show large amounts of spread to other locations other

than New Orleans (Figure 5A). However, since we found that
location transitions from New Orleans following Mardi Gras

exclusively occurred within the Louisiana clade, we compared

the number of transitions to the number of genomes in the Loui-

siana clade for each location. We found that the majority of all

SARS-CoV-2 jumps into Mississippi and Alabama can be traced

back to New Orleans (Figure 5A), suggesting that SARS-CoV-2
Cell 184, 4939–4952, September 16, 2021 4947
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transmission in New Orleans may have resulted in regional

spreading of COVID-19.

To further investigate to what extent increased transmission in

New Orleans may have acted as a source for seeding SARS-

CoV-2 to other U.S. states, we estimated the export risk from

New Orleans by analyzing travel movements between New

Orleans and U.S. states. We found that the export risk from New

Orleans was highest to nearby regions and states, in particular to

other parts of Louisiana, Mississippi, and Texas (Figure 5B). In the

fourweeksbetween theendofMardiGrasand thestay-at-homeor-

der, theseaccounted for60%ofall exported risk fromNewOrleans,

increasing to70%ofall risk in the subsequentweekswhenair travel

was highly restricted (Figure 5B). In line with our phylogenetic ana-

lyses, we found that SARS-CoV-2 exports from Shreveport were

substantially lower than from New Orleans (Figure S4).

As export risk from New Orleans was strongly driven by travel

movements, our estimates were inherently biased toward states

with larger populations. Therefore, to determine the impact of

SARS-CoV-2 exports from New Orleans on local SARS-CoV-2

transmission in each U.S. state, we estimated the relative import

risk from New Orleans by calculating the percentage of total

SARS-CoV-2 import risk for each state that could be attributed

to New Orleans. We found that the relative import risk from New

Orleans was highest in neighboring U.S. states or regions (Fig-

ure 5C). In particular, for Mississippi and other parts of Louisiana,

we found that the majority of the SARS-CoV-2 imports may have

come from New Orleans (Figure 5C). Although the relative import

risk from New Orleans declined everywhere after the statewide

stay-at-home order, the decline was less pronounced for Missis-

sippi and Louisiana, which both consistently had the highest rela-

tive import risks fromNewOrleans throughout the entire first wave

of the COVID-19 epidemic in Louisiana (Videos S1 and S2). Taken

together, both our phylogenetic andmobility analysis suggest that

the early COVID-19 epidemic in New Orleans was amplified by

superspreading during Mardi Gras and may have helped seed

local outbreaks in neighboring U.S. states and regions.

Frequent reintroductions largely determine the lineage

prevalence in later epidemic waves

Since the superspreading we observed during Mardi Gras re-

sulted in the early dominance of a single SARS-CoV-2 lineage

(Figure 2A, the ‘‘Louisiana clade’’), we next investigated how first

wave events may influence the prevalence of lineages in later

epidemic waves. By reconstructing SARS-CoV-2 lineage dy-

namics during multiple consecutive COVID-19 waves, we found

that new waves are largely characterized by reintroductions of

new lineages and not by resurgence of lingering low-level trans-

mission of preexisting lineages.

The COVID-19 epidemic in Louisiana during 2020 and early

2021 had three distinct epidemic waves, each interrupted by

troughs of low transmission (Figure 6A). To investigate SARS-

CoV-2 lineage dynamics, we constructed a maximum likelihood

phylogenetic tree containing all available SARS-CoV-2 se-

quences (n = 3,196) from Louisiana spanning March 2020 to

March 2021and found that SARS-CoV-2was strongly temporally

clustered into different lineages (Figure 6A). To estimate the turn-

over of the Louisiana clade, which was dominant during the first

wave (Figure 2A) through all successive waves, we calculated

the prevalence of this clade in each epidemic phase. We found
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that the Louisiana clade rapidly declined between the first trough

and second epidemic wave, followed by a more gradual decline

in subsequent epidemic phases (Figure 6B), resulting in less than

5% of all COVID-19 cases by February 2021 (Figure 6B). These

findings suggest that the statewide stay-at-home order that

was in effect between March and May 2020 (Figure 5) resulted

in a rapid decline of the Louisiana clade that extinguished the first

wave, only to be later replaced by different lineages during later

waves via domestic reintroductions of SARS-CoV-2.

To investigate how often lineage replacement occurred in

Louisiana over the course of the pandemic, we determined the

lineage distribution during each epidemic phase (Figure 6C).

We found a frequent lineage turnover, and lineage B.1.2 and

B.1.596 (green) replaced the initially dominant B.1 lineages

(blue) after the second wave, after which B.1.1 and descending

lineages (red) largely replaced B.1.2 and B.1.596 after the third

wave (Figure 6C). We found that this frequent lineage turnover

followed a larger national trend in the U.S. with similar shifts in

lineage dominance observed in other U.S. states such as Texas,

California, Florida, and New York (Figure S5) (Outbreak.info,

2021b). The rapid replacement of the Louisiana clade after the

first wave suggests that reintroductions of SARS-CoV-2 largely

shape later epidemic waves, especially during periods of low

local transmission in between epidemic waves.

DISCUSSION

In this study, we show that domestic travel likely introduced

SARS-CoV-2 into Louisiana and that a single introduction directly

led to the vast majority of transmission during the first wave.

Furthermore, we present several lines of evidence showing that

it is likely that the Mardi Gras festival in NewOrleans was a super-

spreading event: (1) an unusual lack of genetic diversity of SARS-

CoV-2 in Louisiana, which is in sharp contrast with what has been

seen in other large U.S. cities and more similar to what has been

observed during cruise ship outbreaks; (2) although our analyses

suggest that SARS-CoV-2 was likely transmitting locally before

Mardi Gras, we found that it is unlikely that the observed epidemi-

ological curve in New Orleans could have been recapitulated

without superspreading during Mardi Gras; (3) infection rates in

New Orleans in the weeks immediately following Mardi Gras

were substantially higher than in other major cities throughout

the U.S.; and (4) the growth rate of lineages falling within the Loui-

siana clade was close to the highly transmissible B.1.1.7 variant,

suggesting highly favorable epidemiological circumstances.

The rapid nature of the early COVID-19 epidemic in NewOrleans

likely resulted in thousands of additional cases, which is supported

by seroprevalence studies showing exposure rates of close to ten

percent by May 15th, 2020 in New Orleans (Feehan et al., 2020).

Compared to neighboring states that did not experience the

same explosive first waves as Louisiana, the CDC’s Nationwide

Commercial Laboratory Seroprevalence Survey estimated that

the seroprevalence in Louisiana was 35%–134% higher than in

other states in the Southern U.S. (Centers for Disease Con-

trol, 2020c).

SARS-CoV-2 superspreading events can rapidly change the

course of local outbreaks. Previously, superspreading during a

biotech conference in Boston in early 2020 (Lemieux et al., 2021)
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Figure 6. Lineage and clade persistence of SARS-CoV-2 in Louisiana

(A) Maximum likelihood tree of SARS-CoV-2 showing sequences collected throughout three consecutive epidemic waves in Louisiana. Sequences from Loui-

siana are annotated according to their epidemic phase, as shown in the epicurve inset.

(B) Evolution of Louisiana clade prevalence over time. Sequences belonging to the Louisiana clade are indicated in (A) in blue.

(C) Pango lineage distribution of SARS-CoV-2 sequences from Louisiana per epidemic phase. The total number of sequences in each phase is shown next to

the graph.
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and a motorcycle rally in Sturgeon, South Dakota in August, 2020

(Dave et al., 2020) have been estimated to have resulted in more

than 250,000 SARS-CoV-2 infections. Althoughwe did not attempt

to estimate the exact magnitude of theMardi Gras superspreading

event, given the lack of genetic diversity of SARS-CoV-2 within

Louisiana, it seems likely that themajority of the�50,000confirmed

COVID-19 cases during the first wave (Outbreak.info, 2020) can be

traced back to Mardi Gras. However, we show here that subse-

quent epidemicwaves are not definedby previous ones, indicating

that effective non-pharmaceutical interventions can effectively

cancel the effect of previous superspreading events.
We used a combination of genomic and mobility data to inves-

tigate the import and export of SARS-CoV-2 into and out of

Louisiana. Our phylogenetic analyses show that SARS-CoV-2 in

Louisiana most likely originated from Texas (Figure 4). However,

most of the Louisiana clade consists of sequences from various

U.S. states that either share the basal node of the Louisiana clade

or belong to unresolved polytomies originating from this node.

This makes accurate phylogeographic inference challenging,

particularly in situations with rapid spread between different loca-

tions (Villabona-Arenas et al., 2020). Previous genomic epidemi-

ology studies investigating the emergence of SARS-CoV-2 in
Cell 184, 4939–4952, September 16, 2021 4949
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San Francisco (Deng et al., 2020), Boston (Lemieux et al., 2020),

and New York (Maurano et al., 2020) showed that determining

the source of introduction during the early stages of the COVID-

19 pandemic can be challenging. A particularly illustrative

example is the (re-)emergence of SARS-CoV-2 in Washington

state in January and February 2020. The first case in Washington

was linked to recent travel from China (Bedford et al., 2020), and

when six weeks later other, genetically similar cases were de-

tected, it was initially thought to be the result of community trans-

mission in the context of inadequate testing (Bedford et al., 2020).

Only after a reanalysis with related SARS-CoV-2 genomes from

nearby British Columbia, Canada could prolonged local transmis-

sion be excluded in favor of a more likely explanation of additional

virus introduction(s) into the state (Worobey et al., 2020). In this

study, we supplemented our phylogenetic analyses with large-

scale analyses of travel and mobility patterns to gain more confi-

dence in our finding that the SARS-CoV-2 in Louisiana may have

been introduced via travel from Texas. However, our estimates

remain unsure and much more extensive sequencing of SARS-

CoV-2 from early in the U.S. epidemic would be required to obtain

more conclusive answers.

We showed that lineage growth rates can vary considerably

depending on either epidemiological or virus genetic factors.

Soon after the first wave, we observed that newly imported lin-

eages replaced the lineages falling within the Louisiana clade

(Figure 6), indicating that these lineages are not inherently

more transmissible due to virus genetic factors. This shows

that epidemiological factors alone can increase the growth

rate of lineages that are not inherently more transmissible to a

level that is similar to those of highly transmissible variants,

like B.1.1.7 (Davies et al., 2021; Washington et al., 2021). How-

ever, epidemiological factors and genetic factors can also

amplify each other, as is the case in a recent outbreak in India,

where large-scale gatherings and the emergence of SARS-CoV-

2 variants resulted in the largest COVID-19 outbreak to date

(Outbreak.info, 2021a).

We used mobility data to determine human movement be-

tween U.S. states. Such movement, however, changed dramat-

ically over the course of the pandemic, particularly air travel

(Transport Security Agency, 2020). In addition, we found that

air travel, as expected, can be a poor indicator of short-distance

movement (Figure S6). To capture human movements of short

distances, we therefore used weekly SafeGraph mobility data,

which is based on cell phone tracking (SafeGraph, 2021). Cell

phone tracking data has been shown to capture human move-

ments on various distance scales (Chang et al., 2021; Kraemer

et al., 2020). To further increase the accuracy of our mobility

analysis and mitigate large swings in human movements due

to government intervention, we only analyzed travel until mid-

March, before Louisiana and many other states adopted stay-

at-home orders and travel substantially decreased.

Our phylogenetic analyses indicate that SARS-CoV-2 was

introduced into New Orleans multiple times but that only one

main clade (the ‘‘Louisiana clade’’) was eventually successful

in establishing widespread community transmission. We esti-

mated that the emergence of the Louisiana clade in NewOrleans

occurred in mid-February, just prior to Mardi Gras. However,

estimating an accurate introduction date with limited genetic
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diversity can be challenging (Grubaugh et al., 2019a). We

therefore investigated timing by estimating both the time of intro-

duction by analyzing location transitions and the start of local

transmission by determining the TMRCA of the Louisiana clade.

We found that both analyses suggest that the Louisiana clade

was likely present in New Orleans prior to Mardi Gras.

With the recent emergence of more transmissible SARS-CoV-

2 variants in the U.S. (Galloway et al., 2021) and elsewhere (Volz

et al., 2021), robust virus genomic surveillance systems and

analysis frameworks will be critical to provide insights into the

ongoing spread and evolution of SARS-CoV-2. We show that a

single introduction of SARS-CoV-2 can rapidly find its way

through an unprotected population and cause large-scale epi-

demics in the absence of adequate testing and control efforts.

Our study provides a key example of how a large-scale event

played an important role during the early epidemic in the U.S.

and how such events may continue to play a role in amplifying

local outbreaks if SARS-CoV-2 is left unchecked.

Limitations of the study
In this study we analyze genetic and epidemiological data to

show that Mardi Gras was most likely a superspreading event

in the early phase of the COVID-19 pandemic in the U.S. Our

phylodynamic and phylogeographic analyses are biased by

uneven collection and sequencing of SARS-CoV-2 samples in

New Orleans and Shreveport, Louisiana as well as other U.S.

states. Due to the lack of testing in February and early March

2020, we relied on modeling the number of cases based on the

number of COVID-19 deaths to estimate early COVID-19

prevalence in the U.S.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Omega BioTek MagBind Viral DNA/RNA Kit Omega Biotek Cat#M6246-03

QIAmp Viral RNA Mini Kit QIAGEN Cat#52904

Quick-RNA Viral Kit Zymo Research Cat#R1034

SuperScript IV VILO Master Mix ThermoFisher Scientific Cat#11756500

AMPure XP Beckman Coulter Cat#A63882

Maxima H Minus First Strand cDNA Synthesis Kit ThermoFisher Scientific Cat#K1652

Nextera Flex for Enrichment Library Preparation kit Illumina Cat#20025524

Nextera XT Illumina Cat#FC-131-1096

Illumina MiSeq with MiSeq reagent kit V3. Illumina Cat#MS-102-3003

Illumina NextSeq with 500/550 Mid Output Kit v2.5 Illumina Cat#20024908

KingFisher Flex Purification System ThermoFisher Scientific Cat#5400630

Q5 Hot Start High-Fidelity DNA Polymerase Kit NEB Cat #0493L

NEBNext Ultra II DNA Library Kit for Illumina NEB Cat#E7645L

Deposited data

SARS-CoV-2 reference genome NCBI NCBI: NC_045512.2

SARS-CoV-2 consensus sequences GISAID Table S2

SARS-CoV-2 raw data NCBI BioProject accession ID: PRJNA643574,

PRJNA681020, PRJNA643575, and PRJNA612578

BEAST XML and log files This paper https://github.com/andersen-lab/paper_2020_

new-orleans-hcov-genomics

Epidemiological data Outbreak.info https://outbreak.info/

Oligonucleotides

ARTIC Network n-CoV-19 V3 primers ARTIC Network https://github.com/artic-network/artic-ncov2019/

tree/master/primer_schemes/nCoV-2019/V3

Software and algorithms

Pangolin v2.0 Rambaut et al., 2020 https://github.com/cov-lineages/pangolin

NextClade v0.12.0 Hadfield et al., 2018 https://github.com/nextstrain/nextclade

IQtree2 Minh et al., 2020 https://github.com/iqtree/iqtree2

BEASTv1.10.5pre Suchard et al., 2018 https://github.com/beast-dev/beast-mcmc/tree/

v1.10.5pre_thorney_v0.1.0

BEAGLE Ayres et al., 2019 https://faculty.washington.edu/browning/beagle/

beagle.html#download

Baltic GitHub https://github.com/evogytis/baltic

Snakemake Köster and Rahmann, 2012 https://snakemake.readthedocs.io/en/stable/

BWA-mem Li, 2013 https://github.com/lh3/bwa

BreSeq v.0.34.1 Deatherage and Barrick, 2014 https://github.com/barricklab/breseq

iVar v1.2.2 Grubaugh et al., 2019b https://github.com/andersen-lab/ivar/releases/

tag/v1.2.2
RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagents may be directed to the lead contact Kristian Andersen (andersen@scripps.edu).
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Materials availability
This study did not generate new unique reagents, but raw data and code generated as part of this research can be found in the

supplemental files, as well as on public resources as specified in the Data and code availability section below.

Data and code availability
Genomes used in this analysis can be downloaded from GISAID.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethical Statement
Sample collection, RNA extraction, and viral sequencing was evaluated by the Institutional Review Boards (IRBs) at Tulane University

(IRB# 2020-396), Louisiana State University Health System (LSUHS) (IRB# STUDY00001445) and Ochsner Health (IRB# 2019.334).

All samples were de-identified before receipt by the study investigators.

METHOD DETAILS

Sample Collection and RNA extraction
Nasopharyngeal swabs from Tulane Medical Center were collected March-April 2020 from 1) hospitalized COVID-19 patients con-

senting to participate in viral isolation and sequencing studies and 2) left-over clinical samples from individuals presenting to the

Emergency Department (ED) with COVID-19 symptoms. Nasopharyngeal swabs from LSUHS andOchsner health were left-over clin-

ical samples from either outpatient or hospitalized individuals.

Viral RNA was extracted using the QIAmp Viral RNA Mini Kit (QIAGEN), Quick-RNA Viral Kit (Zymo Research) or Mag-Bind

Viral DNA/RNA kit (Omega Bio-tek) according to the manufacturer’s instructions. RNA extracts from samples collected at Tulane

Medical Center were screened for presence of SARS-CoV-2 Nucleocapsid gene according to the 2019-nCoV Real Time rRT-PCR

Panel protocol (Centers for Disease Control, 2020d) on the QuantStudio 3 (Applied Biosciences); only the N1 Primer/Probe Mix

was used(F: 5’-GACCCCAAAATCAGCGAAAT-3’, R: 5’-TCTGGTTACTGCCAGTTGAATCTG-3’, Probe: 5’- FAM-ACCCCGCAT/

ZEN/TACGTTTGGTGGACC-3IABkFQ-3’). Samples with a Ct < 30 (correlating to �500 copies of virus/mL) were selected for ampli-

con sequencing and viral RNA was shipped to Scripps Research Institute. RNA extracts from samples collected at LSUHS were

screened with an EUA diagnostic RT-qPCR at the LSUHS emerging viral threat laboratory and shipped for sequencing to the

Microbial Genome Sequencing Center (MiGS) in Pittsburgh, PA.

SARS-CoV-2 Amplicon Sequencing
SARS-CoV-2 was sequenced using PrimalSeq-Nextera XT. This protocol is based on the ARTIC PrimalSeq protocol and adapted for

Illumina Nextera XT library preparation (Quick et al., 2017). The ARTIC network nCoV-2019 V3 primer scheme uses two multiplexed

primer pools to create overlapping 400 bp amplicon fragments in two PCR reactions. Instead of ligating Illumina adapters, Nextera XT

is used to circumvent the 2x250 or 2x300 read length requirement. A detailed version of this protocol can be found here: https://

andersen-lab.com/secrets/protocols/. Briefly, SARS-CoV-2 RNA (2 mL) was reverse transcribed with SuperScript IV VILO

(ThermoFisher Scientific). The virus cDNA was amplified in two multiplexed PCR reactions (one reaction per ARTIC network primer

pool) using Q5DNAHigh-fidelity Polymerase (New England Biolabs). Following an AMPureXP bead (Beckman Coulter) purification of

the combined PCR products, the amplicons were diluted and libraries were prepared using Nextera XT (Illumina) or NEBNext Ultra II

DNA Library Prep Kits (New England Biolabs). The libraries were purified with AMPureXP beads and quantified using the Qubit High

Sensitivity DNA assay kit (Invitrogen) and Tapestation D5000 tape (Agilent). The individual libraries were normalized and pooled in

equimolar amounts at 2 nM. The 2 nM library pool was sequenced on an Illumina NextSeq using a 500/550 Mid Output Kit v2.5

(300 Cycles). A subset of samples from Ochsner Health were processed without tagmentation and sequenced on a Illumina MiSeq

using a MiSeq reagent kit V3 (600 cycles). Raw reads were deposited under BioProject accession ID’s PRJNA643575 and

PRJNA612578.

Consensus sequences were assembled using an inhouse Snakemake (Köster and Rahmann, 2012) pipeline with bwa-mem (Li,

2013) and iVar v1.2.2 (Grubaugh et al., 2019b; Li, 2013).

SARS-CoV-2 metagenomic Sequencing
For samples that were collected at Ochsner Health we used the followingmetagenomic sequencing protocol: RNA isolated fromVTM

was converted to double stranded cDNA and sequencing libraries prepared using TruSeq Stranded RNA Library Preparation Kit

(Illumina) according to the manufacturer’s instructions. The sequencing libraries were evaluated using high sensitivity D5000

ScreenTape in the 4200 TapeStation system (Agilent) and quantified using Library Quantitation Kit (Roche). The libraries normalized

and pooled, and subsequently sequenced using the NextSeq and 500/550 2x150 MID Output format (Illumina). Raw reads were

deposited under BioProject accession ID PRJNA643574.

For samples that were collected at LSUHS we used the following metagenomic sequencing protocol: For each sample, 13mL of

extracted RNA was reverse transcribed using the Maxima H-minus ds cDNA kits (ThermoFisher Scientific). Libraries were enriched
e2 Cell 184, 4939–4952.e1–e5, September 16, 2021
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using a Nextera Flex for Enrichment Library Preparation kit with a Respiratory Virus Oligo Set v1 (Illumina), with samples being pooled

in 12-plex enrichment reactions. The resulting pools were quantified and grouped in sets of no more than 48 samples and run on a

NextSeq 550 using a 150cyc High Output Flow Cell (Illumina). We used BreSeq v.0.34.1 (Deatherage and Barrick, 2014) to map reads

to Wuhan-Hu-1 SARS-CoV-2 (NC_045512) or 2019-nCoV WIV04 (EPI_ISL_402124) (Zhou et al., 2020) and call the consensus

sequence. All predicted mutations were reported for isolates exceeding mean 40x coverage. Raw reads were deposited under

BioProject accession ID PRJNA681020.

Phylogenetic Analysis
We used the global SARS-CoV-2 phylogeny provided by Rob Lanfear (Lanfear and Mansfield, 2020) as of Oct 21st from GISAID

(Table S2) and narrowed it down to 1,171 full-length genomes representing the genetic diversity from 19 different states in the

USA and 228 sequences from outside the USA. The number of genomes from each state are shown in Table S3. We also masked

sites in the alignment that were homoplastic as shown in Table S4. We used this dataset to estimate a starting tree using a HKY (Ha-

segawa et al., 1985) nucleotide substitution model, with a strict clock model using a non-informative continuous-time Markov chain

(CTMC) reference prior (Ferreira and Suchard, 2008) and an exponential population prior implemented in BEAST v1.10.5pre (Suchard

et al., 2018). We used the maximum clade credibility tree from this analysis as a starting tree to estimate the movement of the virus

between geographic locations under a flexible discrete-state phylogeographic framework (Lemey et al., 2009) using BEAST

v1.10.5pre (Suchard et al., 2018). We used a HKY nucleotide substitution model under an uncorrelated relaxed clock model

(Drummond et al., 2006), an exponential population prior and a symmetric discrete-state substitution model. We included a Markov

jump counting procedure (Minin and Suchard, 2008) to estimate the number of specific transitions between locations while simulta-

neously accounting for the large uncertainty in phylogenetic reconstruction. Specifically, to characterize the proportion of introduc-

tions from each discrete state into New Orleans and Shreveport, we first compute the relative number of the earliest Markov jump

from each discrete state to New Orleans or Shreveport along the phylogenetic tree for each posterior sample. We then summarize

these proportions over all samples to learn their posterior distributions. We simulated two independent MCMC chains for 100 million

steps each and discarded the first 10 million steps as burnin in each. Effective sample sizes for scientifically relevant model param-

eters were all above 200. The BEAST XML and log files are available at https://github.com/andersen-lab/paper_2020_new-orleans-

hcov-genomics.

Travel data
We calculated travel between counties using the weekly patterns data from SafeGraph (SafeGraph, 2020) a data company that ag-

gregates anonymized location data from numerous applications in order to provide insights about physical places, via the Placekey

(Placekey, 2020) Community. To enhance privacy, SafeGraph excludes census block group information if fewer than five devices

visited an establishment in a month from a given census block group. We estimated the true number of travelers for a given

week,w, between a source census block group (which is determined by monitoring the nighttime location over a period of 6 weeks),

cbgs and a destination census block group, cbgd (Vw,cbgs,cbgd) using the raw number of visitor counts for week, w, identified from

points of interest in cbgd from cbgs (Cw,cbgs,cbgd), the total number of visitors with a known source census block group in census

block group, cbgd, Nw;cbgs and the population of cbgd, Pcbgd, according to,

Vw;cbgs;cbgd =
Cw;cbgs;cbgd

Nw;cbgs

Pcbgd:

We also obtained monthly air travel passenger data between the 19 U.S. states from the International Air Transportation Associ-

ation. We used Apache Spark v2.4.6 and PySpark v2.4.6 to preprocess data from SafeGraph to estimate the travel between states.

Therewas a strong correlation in travel trends betweenmobility data and air travel passenger counts, but unlike SafeGraphmobility

data, air travel data was unable to capture travel over short distances (R2 = 0.80; Figure S6). The code used to estimate movement

between states using mobility data is available at https://github.com/andersen-lab/paper_2020_new-orleans-hcov-genomics.

Incidence
We used the R package Epidemia (Flaxman et al., 2020) to estimate the number of infections over time for each state andmetro area,

independently, using the number of deaths. Epidemia estimates a time-varying reproduction number,Rt from the observed number of

deaths, informed by an infection-to-death distribution and infection fatality rate (IFR) estimate. We assigned the IFR a normal prior

with a mean of 0.01 and a standard deviation of 0.0001. We assumed the same infection-to-death distribution as described in Flax-

man et al., 2020 (Flaxman et al., 2020), informed from data in Europe. Briefly, we assumed a gamma-distributed infection-to-onset

time period with mean 5.1 days and a coefficient of variation of 0.86, a gamma-distributed symptom onset-to-death time period with

a mean of 17.8 days and a coefficient of variation 0.45. Thus, the infection-to-death distribution was given by: p � Gamma (5.1,

0.86) + Gamma (17.8, 0.45). Epidemia allows users to model Rt as a log-linear function of a set of predictors. To estimate the effects

of a lockdown, we used a ‘‘lockdown’’ predictor for each location which is set to 0 if the date was before the institution of a lockdown

and set to 1 if the date was after. We used a normal prior with a mean of 0 and a standard deviation of 1 on the estimated parameters.

We observed a reduction of �80% in Rt with a lockdown which was consistent with previously estimated Rt reductions due to lock-

downs in Europe (Flaxman et al., 2020). We obtained the number of deaths for each location through the outbreak.info R package
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(R-outbreak.info, 2020), which aggregates epidemiological data from the COVID-19 data repository by the Center for Systems Sci-

ence and Engineering (CSSE) at Johns Hopkins University (Dong et al., 2020) and the COVID-19 data repository by the New York

Times (https://github.com/nytimes/covid-19-data). The code used to estimate the number of infections is available at https://

github.com/andersen-lab/paper_2020_new-orleans-hcov-genomics.

We created a predictor based on SafeGraph mobility data and used that to model the increase in Rt in New Orleans on Mardi Gras

(February 25th) using the Epidemia package. We analyzed the number of trips made during each week within New Orleans based on

the mobility data obtained from SafeGraph (SafeGraph, 2020) (Figure S7), but we found only a slight increase in mobility during the

week of Mardi Gras (Week 7), and hence, the SafeGraph mobility data was not representative for the increase in travel during Mardi

Gras which drew over one million visitors to New Orleans. In addition, Testing, delayed reporting, and the variation in time-to-death

among individual cases biases the accurate reporting of COVID-19 deaths. Due to these limitations, we did not include mobility as a

predictor to assess the increase in Rt using the framework provided by Epidemia. Instead, to quantify the number of infections that

would have occurred on February 25th, we relied on case estimates from two separate models (Figure S2): (1) the cumulative number

of infections until February 25th from daily deaths estimated using Epidemia (median: 713 (95% HPD: [174, 1426])), and (2) the cu-

mulative number of infections until February 25th starting with 1 index case on February 13th.

We calculated the number of infections that resulted from one index case on February 13th (Figure 2B) until February 25th based on

100,000 simulations of a negative binomial branching process model. Following Lloyd-Smith et al. (Lloyd-Smith et al., 2005), we

assumed that secondary infections from a single infection would follow a negative binomial distribution described byR0 and the over-

dispersion parameter, k. We estimated a median Rt of 2.77 (95% HPD: [2.44, 3.17]) in New Orleans based on the daily deaths using

Epidemia before February 25th (Figure S7). Based on this, we assumed an R0 of 2.77 and based on Althouse et al., 2020 (Althouse

et al., 2020), k of 0.16. In addition, we assumed that there was sustained local transmission in New Orleans that started with a single

introduction of the virus on February 13th (median TMRCA of Louisiana clade) and 3 generations between February 13th and February

25th. We variedR0 (2.77, 2.44, and 3.17) and the number of generations (2, 3, and 4 generations) independently (Figure S8), and found

that even with anR0 of 3.17 and 4 generations, themedian cumulative number of infections (162 (95%CI [8, 2213])) was still below the

median cumulative number of infections of 713 (95% HPD: [174, 1426]) as estimated from daily deaths using Epidemia. Hence,

showing that a majority of 713 infections probably occurred on February 25th (Mardi Gras day) itself. The code to run the branching

process model is available at https://github.com/andersen-lab/paper_2020_new-orleans-hcov-genomics.

Mean growth rate, prevalence and normalized genetic distance of lineages
In order to calculate themean growth rate over the first 10 days of the detection of a lineage we applied themethodology from Davies

et al. (Davies et al., 2021). We pulled the number of sequences per day for each lineage from every county in the U.S., with at least

1000 sequences from Jan, 2020 to March, 2021 from https://outbreak.info/ which is enabled by genomic data provided by GISAID

(GISAID - Initiative, 2021). In addition, we pulled the lineage counts for the B.1.1.7 and B.1.1.177 lineage in the United Kingdom, and

the B.1.351 lineage in South Africa.We took the 7-day rolling average of these counts for each lineage and estimated the time-varying

exponential growth rates of cases of each lineage, r(i, t), using a negative binomial state-space model correcting for day-of-week

effects whose dispersion parameter was optimized for each strain by marginal likelihood maximization. We defined the relativized

growth rate of a lineage i at time t as rði; tÞ = ðrði; tÞ � rðtÞ =srðtÞÞ, where rðtÞ is the average growth rate of all circulating strains at

time t and srðtÞ is the standard deviation of growth rates across all lineages at time t. We start estimating the growth rate of a lineage

starting with the first week with at least 5 sequences and we average the growth rate over the first 10 days from this initial date. We

selected awindow of 10 days since, based on the first week of at least 5 sequences of B.1 in NewOrleans onMarch 23rd and the peak

of the B.1 lineage on April 3rd. The prevalence of each lineage was estimated based on the fraction of sequences within this 10 day

window that were classified as the given lineage.

To estimate a normalized genetic distance for each lineage during the 10 day window, we used the global phylogeny provided by

Rob Lanfear (Lanfear and Mansfield, 2020) from GISAID and identified sequences from each lineage that were used to calculate the

mean growth rate as explained above. We then calculated the genetic distance of these sequences from the most recent common

ancestor (MRCA) for each lineage.We normalized this genetic sequence by the number of sequences to account for sampling biases,

according to Normalized genetic distance = ðtotal genetic distance from MRCA =number of sequencesÞ.

Import/export risk
We estimated the number of infectious individuals likely to travel for a given location (Figure S9), and used weekly travel between two

locations estimated using the same methodology as described above (see ‘‘Travel data’’ section), to determine the risk of import or

export of the virus for two locations. For any given location on a given day, i, we estimated the median number of infections, Ii, from

the daily reported deaths using Epidemia as previously described in the ‘‘Incidence’’ section. We assumed a gamma distributed in-

cubation period with shape 5.807 and rate 1.055 (mean = 5.504; standard deviation = 2.284) (Lauer et al., 2020) (Figure S10). We

estimated the number of cases that started showing symptoms using,

Ct =
Xt

i = 1

Iigðt� iÞ
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where gðt � iÞ is the probability distribution function of the incubation period and Ii is the estimated number of infections on a given

day, i.

We assumed that cases were infectious one day before symptom onset (Fauver et al., 2020) and a gamma distributed infectious

period with shape, 2.5 and rate, 0.35 (mean = 7.143; standard deviation = 4.518) (Jung et al., 2020) (Figure S10). As per Fauver et al.

(Fauver et al., 2020), we assumed that cases would not travel after receiving a positive clinical test. We pulled the number of

confirmed cases as reported by state and local health departments using the outbreak.info R package.We assumed a uniform ascer-

tainment period of 5 days for the reported cases and hence, excluded the reported cases on day, i + 5, from the cases that started

showing symptoms on day, i. We estimated the number of infectious cases that could travel on a given day, t, using

Tt�1 =
Xt

i = 1

ðCi �Ri + 5Þð1�gðt� iÞÞ

where gðt�iÞ is the cumulative distribution function of the infectious period andCi is the number of cases that start showing symp-

toms on a given day, i, and Ri is the number of reported cases on day, i. We show a schematic of how we estimated the number of

infectious cases likely to travel in Figure S10.

We estimated the number of infectious travelers coming into a destination, d, from a source, s, on a given day, t, using

It;s;d = Ns;dðTs;t

�
PsÞ

where Ps is the population at the source, Ts;t is the number of infectious cases likely to travel at the source andNs;d is the number of

travelers from the source to the destination.We used this estimate to compare importation and exportation risk. The code to estimate

the import and export risk is available at https://github.com/andersen-lab/paper_2020_new-orleans-hcov-genomics.
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Figure S1. Number of COVID-19 deaths and international arrivals in New Orleans in Louisiana, related to Figure 1

(A) Cumulative COVID-19 deaths during the first wave of the SARS-CoV-2 epidemic in Louisiana. (B) International arrivals for NewOrleans and othermajor airports

in the U.S. in January and February.
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Figure S2. Overview of forward and backward simulation to determine the number of infections on Mardi Gras day, related to Figure 3 and

STAR Methods

(A) Forward simulation of cases starting with a single introduction on February 13th using a negative binomial branching process model (B). Estimated number of

infections using the Epidemia model based on daily reported COVID-19 deaths (C). The number of infections on Mardi Gras day (February 25th) is determined by

estimating the difference between the forward and backward simulated infections on Mardi Gras day.
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Figure S3. Cumulative number of SARS-CoV-2 infections, related to Figure 3

Median estimates for the number of SARS-CoV-2 infections and their 95% HPD between February 25th and March 23rd in 52 metro areas with a population of

more than 1 million. New Orleans is indicated in blue, and regional metro areas closest to New Orleans are indicated in red.
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Mardi Gras and the stay-at-home-order are indicated by the dotted lines.
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Figure S5. Lineage prevalence during the epidemic in the United States, related to Figure 6

Lineage prevalence of B.1, B.1.2, and B.1.1.7 in the United States, Louisiana and other U.S states from March 2020 until April 2021.
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Figure S6. Correlation between travel datasets, related to STAR Methods

Air travel passenger volumes and SafeGraph mobility travel volumes from various U.S. states into New Orleans. Spearman rank correlation does not include

Shreveport and Other Louisiana, since air travel is not the dominant mode of transport to New Orleans for these locations.
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Figure S7. Estimates of mobility and epidemiological parameters, related to STAR Methods

(A) Mean number of trips over each epiweek made within New Orleans, Louisiana. (B) Daily Rt estimated from daily deaths using Epidemia.
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Figure S8. Sensitivity analysis for two parameters of the negative binomial branching process model, related to STAR Methods

The total number of generations (between February 13th and 25th) and the R0 were varied independently.
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Figure S9. Schematic showing when infectious cases would be likely to travel, related to STAR Methods

Infectious cases are unlikely to travel after receiving a positive clinical test.
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Figure S10. Underlying distributions to infer import and export risk, related to Figures 4 and 5 and STAR Methods

(A) Gamma distribution of the time to onset of symptoms used to infer the number of infectious travelers. (B) Gamma distribution of the infectious period used to

infer the number of infectious travelers. (C) Illustration of how the number of infectious travelers is derived from the number of cases. The number of infectious

travelersa is used to calculate SARS-CoV-2 import risk. The panel shows how a 100 cases at day 1 result in a distribution of the infectious travelers several days

later given heterogeneity in symptom onset and reporting, and assuming cases won’t travel after having received a positive SARS-CoV-2 test.
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