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We consider the problem of ranking n players from partial pairwise com-
parison data under the Bradley–Terry–Luce model. For the first time in the
literature, the minimax rate of this ranking problem is derived with respect
to the Kendall’s tau distance that measures the difference between two rank
vectors by counting the number of inversions. The minimax rate of ranking
exhibits a transition between an exponential rate and a polynomial rate de-
pending on the magnitude of the signal-to-noise ratio of the problem. To the
best of our knowledge, this phenomenon is unique to full ranking and has not
been seen in any other statistical estimation problem. To achieve the minimax
rate, we propose a divide-and-conquer ranking algorithm that first divides the
n players into groups of similar skills and then computes local MLE within
each group. The optimality of the proposed algorithm is established by a care-
ful approximate independence argument between the two steps.

1. Introduction. Given partially observed pairwise comparison data from n players, we
are interested in ranking the players according to their skills by aggregating the comparison
results. This high-dimensional statistical estimation problem has important applications in
many areas such as recommendation systems [1, 7], sports and gaming [2, 18, 24, 40, 41,
48], web search [17, 20], social choices [33, 36, 38, 39, 46], psychology [14, 35, 51], in-
formation retrieval [8, 32], etc. In this paper, we focus on arguably one of the most widely
used parametric models, the Bradley–Terry–Luce (BTL) model [4, 34]. That is, we observe
L games played between i and j , and the outcome is modeled by

(1) yijl
ind∼ Bernoulli

(
w∗

i

w∗
i + w∗

j

)
, l = 1, . . . ,L.

We only observe outcomes from a small subset of pairs. This subset E is modeled by
edges generated by an Erdős–Rényi random graph [21] with connection probability p on
the n players. More details of the model will be given in Section 2. With the observations
{yijl}(i,j)∈E,l∈[L], our goal is to optimally recover the ranks of the skill parameters w∗

i ’s.
The literature on ranking under the BTL model has been mainly focused on the so-called

top-k ranking problem. Let r∗ be the rank vector of the n players. In other words, r∗ is a
permutation such that r∗

i = j if w∗
i is the j th largest number among {w∗

i }i∈[n]. The goal
of top-k ranking is to recover the set {i ∈ [n] : r∗

i ≤ k} from the pairwise comparison data.
Theoretical properties of the top-k ranking problem have been studied by [11–13, 27, 28] and
references therein. Recently, it was shown by [12] that both the MLE and the spectral ranking
algorithm proposed by [42] can exactly recover the set of top-k players with high probability
under optimal sample complexity up to some constant factor. In terms of partial recovery, the
minimax rate of the problem under a normalized Hamming distance was derived by [9].

In this paper, we study the problem of full ranking, the estimation of the entire rank vector
r∗. To the best of our knowledge, theoretical analysis of full ranking under the BTL model has
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not been considered in the literature yet. We rigorously formulate the full ranking problem
from a decision-theoretic perspective, and derive the minimax rate with respect to a loss
function that measures the difference between two permutation vectors. To be specific, our
main result of the paper shows that

(2) inf
r̂∈Sn

sup
r∗∈Sn

EK
(̂
r, r∗) �

⎧⎪⎨⎪⎩
exp

(−�(Lpβ)
)

Lpβ > 1,

n ∧
√

1

Lpβ
Lpβ ≤ 1,

where Sn is the set of all rank vectors of size n, K(̂r, r∗) is the Kendall’s tau distance that
counts the number of inversions between two ranks, and β is the minimal gap between skill
parameters of different players. The precise definitions of these quantities will be given in
Section 2. The minimax rate (2) exhibits a transition between an exponential rate and a
polynomial rate. This is a unique phenomenon in the estimation of a full rank vector. In
contrast, under the same BTL model, the minimax rate of estimating the skill parameters is
always polynomial [12, 42], and the minimax rate of top-k ranking is always exponential [9].
Whether (2) is exponential or polynomial depends on the value of Lpβ that plays the role
of signal-to-noise ratio. When Lpβ > 1, the exponential minimax rate is a consequence of
the discreteness of a rank vector. On the other hand, when Lpβ ≤ 1, the discrete nature of
ranking is blurred by the noise, and thus estimating the rank vector is effectively estimating
a continuous parameter, which leads to a polynomial rate. A more detailed statement of the
minimax rate (2) with an explicit exponent in the regime of exponential rate will be given in
Section 3.

Achieving the minimax rate (2) is a nontrivial problem. To this end, we propose a divide-
and-conquer algorithm that first partitions the n players into several leagues and then com-
putes a local MLE using games in each league. Finally, a full rank vector is obtained by
aggregating local ranking results from all leagues. The divide-and-conquer technique is the
basis of efficient algorithms for all kinds of sorting problems [30, 31, 47]. Our adaption of this
classical technique in the optimal full ranking is motivated by both information-theoretic and
computational considerations. From an information-theoretic perspective, games between
players whose skill parameters are significantly different from each other have little effect
on the final ranking result. This phenomenon can be revealed by a simple local Fisher in-
formation calculation of each player. The league partition step groups players with similar
skill parameters together, thus maximizing information in the follow-up step of local MLE.
From a computational perspective, the local MLE computed within each league involves an
objective function whose Hessian matrix is well conditioned, a property that is crucial for
efficient convex optimization. The description and the analysis of our algorithm are given in
Section 4.

Before the end of the Introduction section, let us also remark that the more general problem
of permutation estimation has also been considered in various other settings in the literature
[5, 6, 15, 16, 22, 23, 37, 43, 44]. For instance, in the problem of noisy sorting [6, 37], one
assumes a data generating process that satisfies P(yij l = 1) > 1

2 + γ when r∗
i < r∗

j . In the

feature matching problem [15, 16], it is assumed that Xi − Yr∗
i

∼ N (0, σ 2
i ) for some per-

mutation r∗, and the goal is to match the two data sequences X and Y by recovering the
unknown permutation. An extension of this problem, called shuffled regression, assumes that
the response variable yi and regression function xT

r∗
i
β are linked by an unknown permutation.

Estimation of the unknown permutation in shuffled regression has been considered by [44].
The rest of the paper is organized as follows. We introduce the problem setting in Section 2.

The minimax rate of the full ranking is presented in Section 3. In Section 4, we introduce and
analyze a divide-and-conquer algorithm that achieves the minimax rate. Numerical studies of
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the algorithm and a real data example are given in Section 5 and Section 6, respectively. In
Section 7, we discuss a few extensions and future projects that are related to the paper. Due
to the limit on pages, we include the proof of the main theorem in Section 8 and the proofs
of all the other results in the Supplementary Material [10].

We close this section by introducing some notation that will be used in the paper. For
an integer d , we use [d] to denote the set {1,2, . . . , d}. Given two numbers a, b ∈ R, we
use a ∨ b = max(a, b) and a ∧ b = min(a, b). For any x ∈ R, 	x
 stands for the largest
integer that is no greater than x and �x� is the smallest integer that is no less than x. For two
positive sequences {an}, {bn}, an � bn or an = O(bn) means an ≤ Cbn for some constant
C > 0 independent of n, an = �(bn) means bn = O(an), and we use an � bn or an = �(bn)

when both an � bn and bn � an hold. We also write an = o(bn) when lim supn
an

bn
= 0. For

a set S, we use 1{S} to denote its indicator function and |S| to denote its cardinality. We
use the notation S = S1 
 S2 to denote a partition of S such that S1 ∩ S2 = ∅ and S =
S1 ∪ S2. For a vector v ∈ R

d , its norms are defined by ‖v‖1 = ∑d
i=1 |vi |, ‖v‖2 = ∑d

i=1 v2
i

and ‖v‖∞ = max1≤i≤d |vi |. For a matrix A ∈ R
n×m, we use ‖A‖op for its operator norm,

which is the largest singular value. The notation 1d means a d-dimensional column vector
of all ones. Given p,q ∈ (0,1), the Kullback–Leibler divergence is defined by D(p‖q) =
p log p

q
+ (1 − p) log 1−p

1−q
. For a natural number n, Sn is the set of permutations on [n].

The notation P and E are used for generic probability and expectation whose distribution is
determined from the context.

2. A decision-theoretic framework of full ranking.

2.1. The BTL model. Consider n players, each associated with a positive latent skill pa-
rameter w∗

i for i ∈ [n]. The games played among the n players are modeled by an Erdős–

Rényi random graph A ∼ G(n,p). To be specific, we have Aij
iid∼ Bernoulli(p) for all

1 ≤ i < j ≤ n. For any pair (i, j) such that Aij = 1, we observe the outcomes of L games
played between i and j , modeled by the Bradley–Terry–Luce (BTL) model (1). Our goal is
to estimate the ranks of the n players.

To formulate the problem of full ranking from a decision-theoretic perspective, we can
reparametrize the BTL model (1) by a sorted vector θ∗ and a rank vector r∗. A sorted vector
θ∗ satisfies θ∗

1 ≥ θ∗
2 ≥ · · · ≥ θ∗

n , and a rank vector r∗ is an element of the permutation set Sn.
We have

(3) yijl
ind∼ Bernoulli

(
ψ
(
θ∗
r∗
i
− θ∗

r∗
j

))
, l = 1, . . . ,L,

where ψ(·) is the sigmoid function ψ(t) = 1
1+e−t . In the original representation (1), we have

w∗
i = exp(θ∗

r∗
i
) for all i ∈ [n]. With (3), the full ranking problem is to estimate the rank vector

r∗ from the random comparison data.

2.2. Loss function for full ranking. To measure the difference between an estimator r̂ ∈
Sn and the true r∗ ∈ Sn, we introduce the Kendall’s tau distance, defined by

(4) K
(̂
r, r∗) = 1

n

∑
1≤i<j≤n

1{sign(̂ri−r̂j ) sign(r∗
i −r∗

j )<0},

where sign(x) represents the sign of x and nK(̂r, r∗) counts the number of inversions between
r̂ and r∗. Another distance is the normalized 	1 loss, defined as

(5) F
(̂
r, r∗) = 1

n

n∑
i=1

∣∣̂ri − r∗
i

∣∣,
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also known as the Spearman’s footrule. The two loss functions can be related by the following
inequality:

(6)
1

2
F
(̂
r, r∗) ≤ K

(̂
r, r∗) ≤ F

(̂
r, r∗).

See [19] for the derivation of (6). The inequality (6) establishes an equivalence between the
estimation of the vector r∗ and that of the matrix of pairwise relation I{r∗

i < r∗
j }, a key fact

that we will explore in constructing an optimal algorithm.
A problem that is closely related to full ranking is called top-k ranking. The goal of top-

k ranking is to identify the subset {i ∈ [n] : r∗
i ≤ k} from the random comparison data. In

[9], the minimax rate of top-k ranking was studied under the loss function of normalized
Hamming distance,

(7) Hk

(̂
r, r∗) = 1

2k

(
n∑

i=1

1{̂ri>k,r∗
i ≤k} +

n∑
i=1

1{̂ri≤k,r∗
i >k}

)
.

The comparison between (4) and (7) reveals the key difference between the two problems.
While top-k ranking only requires a correct classification of the two groups, the quality of
the full ranking depends on the accuracy of each individual |̂ri − r∗

i |. It is easy to see that
K(̂r, r) = 0 implies Hk(̂r, r

∗) = 0, but the opposite direction is not true.

2.3. Regularity of skill parameters. For the nuisance parameter θ∗ of the model (3), it is
necessary that the skill parameters of neighboring players θ∗

i and θ∗
i+1 are separated so that

the identification of the ranks is possible. We introduce a parameter space that serves for this
purpose. For any β > 0 and any C0 ≥ 1, define

�n(β,C0) =
{
θ ∈ R

n : θ1 ≥ · · · ≥ θn,1 ≤ |θi − θj |
β|i − j | ≤ C0 for any i �= j

}
.

In other words, neighboring θ∗
i and θ∗

i+1 are required to be separated by at least β . The mag-
nitude of β then characterizes the difficulty of full ranking. The number C0 characterizes the
regularity of the space of sorted vectors �n(β,C0). The special case �n(β,1) only consists
of fully regular θ ’s that can be written as θi = α − βi. Throughout the paper, we assume that
C0 ≥ 1 is an absolute constant, but allow β to be a function of the sample size n, with the
possibility that β → 0.

The assumption θ∗ ∈ �n(β,C0) implies that the numbers θ∗
1 , . . . , θ∗

n to be roughly evenly
spaced. This assumption, which can be certainly relaxed, allows us to obtain relatively clean
formulas of the minimax rate of full ranking. By restricting our focus to the space �n(β,C0),
we will develop a clear but nontrivial understanding of the full ranking problem in this paper.
The extension of our results beyond θ∗ ∈ �n(β,C0) will be briefly discussed in Section 7.

3. Minimax rates of full ranking. In this section, we present the minimax rate of full
ranking under the BTL model. To better understand the results, we first derive the minimax
rate of full ranking under a Gaussian pairwise comparison model in Section 3.1. This allows
us to highlight some of the unique and nontrivial features of the BTL model by comparing
the minimax rates of the two different distributions. Readers who are already familiar with
the BTL model can directly start with Section 3.2.

3.1. Results for a Gaussian model. Consider the same comparison scheme modeled by
the Erdős–Rényi random graph A ∼ G(n,p). For any pair (i, j) such that Aij = 1, we inde-
pendently observe

(8) yij ∼N
(
θ∗
r∗
i
− θ∗

r∗
j
, σ 2).
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The joint distribution of {Aij } and {yij }, under the above generating process, is denoted by
P(θ∗,σ 2,r∗). Estimation of the rank vector r∗ ∈ Sn under the Gaussian model (8) is much less
complicated than the same problem under (3), because of the separate parametrization of
mean and variance.

THEOREM 3.1. Assume θ∗ ∈ �n(β,C0) for some constant C0 ≥ 1 and np
logn

→ ∞. Then,
for any constant δ that can be arbitrarily small, we have

inf
r̂∈Sn

sup
r∗∈Sn

E(θ∗,σ 2,r∗)K
(̂
r, r∗)�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

n − 1

n−1∑
i=1

exp
(
−(1 + δ)np(θ∗

i − θ∗
i+1)

2

4σ 2

)
npβ2

σ 2 > 1,

n ∧
√

σ 2

npβ2

npβ2

σ 2 ≤ 1.

Moreover, let r̂ be the rank obtained by sorting the MLE θ̂ , and then

sup
r∗∈Sn

E(θ∗,σ 2,r∗)K
(̂
r, r∗)�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

n − 1

n−1∑
i=1

exp
(
−(1 − δ)np(θ∗

i − θ∗
i+1)

2

4σ 2

)
+ n−5 npβ2

σ 2 > 1,

n ∧
√

σ 2

npβ2

npβ2

σ 2 ≤ 1.

Both inequalities are up to constant factors only depending on C0 and δ.

Theorem 3.1 characterizes the statistical fundamental limit of full ranking under the Gaus-
sian comparison model. The result holds for each individual θ∗ ∈ �n(β,C0). It is interesting
to note that the minimax rate exhibits a transition between an exponential rate and a poly-
nomial rate. By scrutinizing the proof, the constant δ can be replaced by some sequence
δn = o(1). Therefore, consider a special example θ∗ ∈ �n(β,1), and the minimax rate (ig-
noring the n−5 term) can be simplified as

(9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
−(1 + o(1))npβ2

4σ 2

)
npβ2

σ 2 > 1,

n ∧
√

σ 2

npβ2

npβ2

σ 2 ≤ 1.

The behavior of (9) is illustrated in Figure 1. The quantity npβ2

σ 2 plays the role of the signal-

to-noise ratio of the ranking problem. In the high SNR regime npβ2

σ 2 > 1, the difficulty of the
ranking problem is dominated by whether the data can distinguish each r∗

i from its neighbor-
ing values. Therefore, ranking is essentially a hypothesis testing problem, which leads to an

exponential rate. In the low SNR regime npβ2

σ 2 ≤ 1, the discrete nature of ranking is absent
because of the noise level. The recovery of r∗ is equivalent to the estimation of a continu-
ous vector in R

n, which is essentially a parameter estimation problem. The polynomial rate

n ∧
√

σ 2

npβ2 is the usual minimax rate for estimating an n-dimensional parameter under the 	1

loss. It is also worthing noting that the rate (9) implies that the rank vector can be exactly

recovered when npβ2

σ 2 > C logn for any constant C > 4. This is because in this regime, we

have K(̂r, r∗) = o(n−1) with high probability by a direct application of Markov’s inequality.
According to the definition of K(̂r, r∗), we know K(̂r, r∗) = o(n−1) implies K(̂r, r∗) = 0.

The upper bound of Theorem 3.1 involves an extra n−5 term in the high SNR regime.
According to the proof, the number 5 in the exponent can actually be replaced by an arbitrarily
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FIG. 1. Illustration of the the minimax rate of full ranking.

large constant. The n−5 term does not contribute to the high-probability bound. By a direct

application of Markov’s inequality, when npβ2

σ 2 → ∞, we have

(10) K
(̂
r, r∗)� 1

n − 1

n−1∑
i=1

exp
(
−(1 − δ)np(θ∗

i − θ∗
i+1)

2

4σ 2

)
,

with probability 1 − o(1). Notice that the high-probability bound (10) does not involve the
n−5. This is because when K(̂r, r∗) is nonzero, it must be at least n−1 by the definition of the
loss function. Therefore, n−5 can always be absorbed into the other term of the upper bound.

We also remark that the condition np
logn

→ ∞ guarantees that the random graph A is con-

nected with high probability. It is well known that when p ≤ c
logn

n
for some sufficiently small

constant c > 0, the random graph has several disjoint components, which makes the compar-
isons between different components impossible. The condition np

logn
→ ∞ can be slightly

relaxed to np
logn

> C for some sufficiently large constant that depends on δ by carefully track-

ing the dependence among all constants in the proof, but we will just assume np
logn

→ ∞
throughout the paper to avoid this lengthy exercise of constants tracking.

An optimal estimator that achieves the minimax rate is the rank vector induced by the
MLE, which is defined by

(11) θ̂ ∈ arg min
θ

∑
1≤i<j≤n

Aij

(
yij − (θi − θj )

)2
.

We note that the parameter θ∗ in (8) is identifiable up to a global shift. We may put an
extra constraint 1T

n θ = 0 in the least-squares estimator above, so that θ̂ is uniquely defined.
However, this constraint is actually not essential, since even without it, the rank vector r̂

induced by θ̂ is still uniquely defined. To study the property of θ̂ , we introduce a diagonal
matrix D ∈ R

n×n whose entries are given by Dii = ∑
j∈[n]\{i} Aij . Then LA = D − A is the

graph Laplacian of A. A standard least-squares analysis of (11) leads to the fact that up to
some global shift,

(12) θ̂ ∼ N
(
θ∗, σ 2L†

A

)
,

where L†
A is the generalized inverse of LA. The covariance matrix of (12) is optimal by

achieving the intrinsic Cramér–Rao lower bound of the problem [3]. Without loss of gener-
ality, we can assume r∗

i = i for each i ∈ [n]. Then, by the definition of the loss function (4),
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we have

EK
(̂
r, r∗) = 1

n

∑
1≤i<j≤n

P(̂ri > r̂j ) = 1

n

∑
1≤i<j≤n

P(θ̂i > θ̂j ),

and each P(θ̂i > θ̂j ) can be accurately estimated by a Gaussian tail bound under the distri-
bution (12), which then leads to the upper bound result of Theorem 3.1. A detailed proof of
Theorem 3.1, including a lower bound analysis, is given in Appendix A in the Supplementary
Material.

3.2. Some intuitions for the BTL model. Before stating the minimax rate for the BTL
model, we discuss a few key differences that one can expect from the result. Without loss of
generality, we assume r∗

i = i for all i ∈ [n] throughout the discussion to simplify the notation.
Let us consider a problem of oracle estimation of the skill parameter of the first player θ∗

1 . To
be specific, we would like to estimate θ∗

1 by assuming that θ∗
2 , . . . , θ∗

n are known. The Fisher
information of this problem can be shown as

(13) I oracle(θ∗
1
) = Lp

n∑
j=2

ψ ′(θ∗
1 − θ∗

j

)
.

The formula (13) characterizes the individual contribution of each player to the overall in-
formation in estimating θ∗

1 . That is, the information from the games between 1 and j is

quantified by Lpψ ′(θ∗
1 − θ∗

j ). Since ψ ′(t) = et

(1+et )2 ≤ e−|t |, we have

ψ ′(θ∗
1 − θ∗

j

) ≤ exp
(−∣∣θ∗

1 − θ∗
j

∣∣).
In other words, ψ ′(θ∗

1 −θ∗
j ) is an exponentially small function of the skill difference |θ∗

1 −θ∗
j |.

This means for players whose skills are significantly different from θ∗
1 , their games with

Player 1 offers little information in the inference of θ∗
1 .

This phenomenon can be intuitively understood from the following simple example
illustrated in Figure 2. Consider four players with skill parameters (θ∗

1 , θ∗
2 , θ∗

3 , θ∗
4 ) =

(201,200,199,0), and we would like to compare the first two players. With the direct link
between 1 and 2 missing, the only way to compare Players 1 and 2 is through their perfor-
mances against Players 3 and 4. Since both θ∗

1 − θ∗
4 = 201 and θ∗

2 − θ∗
4 = 200 are very large

numbers, it is very likely that Player 4 will lose all games against Players 1 and 2. On the
other hand, we have θ∗

1 − θ∗
3 = 2 and θ∗

2 − θ∗
3 = 1, and thus Player 3 is likely to lose more

games against Player 1 than against Player 2. Therefore, we can conclude that Player 1 is
stronger than Player 2 based on their performances against Player 3, and the games against
Player 4 offer no information for this purpose. This example clearly illustrates that closer
opponents are more informative.

Mathematically, for any θ∗ ∈ �n(β,C0) and any M > 0, it can be easily shown that

(14) I oracle(θ∗
1
) ≤ (

1 + O
(
e−M))

Lp
∑

j≤M/β

ψ ′(θ∗
1 − θ∗

j

)
.

FIG. 2. A comparison graph of four players.
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Therefore, (13) and (14) imply that

(15) I oracle(θ∗
1
) = (

1 + O
(
e−M))

Lp
∑

j≤M/β

ψ ′(θ∗
1 − θ∗

j

)
.

There is no need to consider the games against players with j > M/β . Moreover, we also
observe from (15) that the parameter β plays two different roles in the BTL model:

1. The parameter β is the minimal gap between different players, and it quantifies the
signal strength of the BTL model.

2. The number 1/β quantifies the number of close opponents of each player, and thus p/β

can be understood as the effective sample size of the BTL model.

While the first role is also shared by the β in the Gaussian comparison model (8), the second
role dramatically distinguishes the BTL model from its Gaussian counterpart. The effective
sample size of the Gaussian model is np, compared with p/β of the BTL model. This critical
difference is a consequence of the nonlinearity of the logistic function. Increasing β magnifies
the signal but reduces the effective sample size at the same time. The precise role of β in full
ranking under the BTL model will be clarified by the formula of the minimax rate.

3.3. Results for the BTL model. To present the minimax rate of full ranking under the
BTL model, we first introduce some new quantities. For any i ∈ [n], define

(16) Vi

(
θ∗) = n∑

j∈[n]\{i} ψ ′(θ∗
i − θ∗

j )
.

The quantity (16) is interpreted as the variance function of the ith best player. With a slight
abuse of notation, the expectation associated with the BTL model is denoted as E(θ∗,r∗).

THEOREM 3.2. Assume θ∗ ∈ �n(β,C0) for some constant C0 ≥ 1 and p

(β∨n−1) logn
→

∞. Then, for any constant δ that can be arbitrarily small, we have

inf
r̂∈Sn

sup
r∗∈Sn

E(θ∗,r∗)K
(̂
r, r∗)�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

n − 1

n−1∑
i=1

exp
(
−(1 + δ)npL(θ∗

i − θ∗
i+1)

2

4Vi(θ∗)

)
Lpβ2

β ∨ n−1 > 1,

n ∧
√

β ∨ n−1

Lpβ2

Lpβ2

β ∨ n−1 ≤ 1.

Moreover, let r̂ be the rank computed by Algorithm 2, and then if additionally L
logn

→ ∞, we
have

sup
r∗∈Sn

E(θ∗,r∗)K
(̂
r, r∗)

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

n − 1

n−1∑
i=1

exp
(
−(1 − δ)npL(θ∗

i − θ∗
i+1)

2

4Vi(θ∗)

)
+ n−5 Lpβ2

β ∨ n−1 > 1,

n ∧
√

β ∨ n−1

Lpβ2

Lpβ2

β ∨ n−1 ≤ 1.

Both inequalities are up to constant factors only depending on C0 and δ.

Similar to Theorem 3.1, the result of Theorem 3.2 holds for each individual θ∗ ∈
�n(β,C0), and the minimax rate also exhibits a transition between an exponential rate and
a polynomial rate. To better understand the minimax rate formula, we use Lemma 8.1 to
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quantify the order of the variance function Vi(θ
∗). There exist constants C1,C2 > 0, such

that

C1

(
β ∨ 1

n

)
≤ Vi(θ

∗)
n

≤ C2

(
β ∨ 1

n

)
.

Therefore, when β � n−1, the minimax rate (ignoring the n−5 term) can be simplified as

(17)

⎧⎪⎪⎨⎪⎪⎩
exp

(−�
(
nLpβ2)) nLpβ2 > 1,

n ∧
√

1

nLpβ2 nLpβ2 ≤ 1.

The formula (17) also exhibits a transition between a polynomial rate and an exponential rate.
Its behavior can be illustrated by Figure 1 with SNR being �(nLPβ2). It is worth noting that
the condition L

logn
→ ∞ is not needed when β � n−1, and the minimax rate can be achieved

by ranking the MLE,1

(18) θ̂ = arg max
θ

[
ȳij log

1

ψ(θi − θj )
+ (1 − ȳij ) log

1

1 − ψ(θi − θj )

]
,

where ȳij = 1
L

∑L
l=1 yijl .

In comparison, when β � n−1, the minimax rate (ignoring the n−5 term) is simplified into

(19)

⎧⎪⎪⎨⎪⎪⎩
exp

(−�(Lpβ)
)

Lpβ > 1,

n ∧
√

1

Lpβ
Lpβ ≤ 1.

Compared with the minimax rate (9) for the Gaussian comparison model, the dependence of
(19) on β is weaker. This is a consequence of the dual roles of β discussed in Section 3.2. In
fact, by writing

Lpβ = Lβ−1pβ2,

we can directly observe the effects of β−1p and β2 as the effective sample size and the signal
strength, respectively. On the other hand, the number of total players n has very little effect
on the minimax rate formula.

The condition p

(β∨n−1) logn
→ ∞ required by Theorem 3.2 can be equivalently written as

np
logn

→ ∞ and p
β logn

→ ∞. Compared with the setting of Theorem 3.1, an additional condi-

tion p
β logn

→ ∞ is assumed for the BTL model. This condition can be seen as a consequence

of the Fisher information formula (15) that statistical inference on the skill parameter of each
player only depends on the player’s close opponents. In other words, for each θ∗

i , the infor-
mation is available in the games on the local graph

(20) Ai =
{
Ajk : ∣∣r∗

j − r∗
i

∣∣ ≤ M

β
,
∣∣r∗

k − r∗
i

∣∣ ≤ M

β

}
.

All the other games have little information in the statistical inference of θ∗
i . Therefore, it

is required that the local graph Ai is connected. The condition p
β logn

→ ∞ guarantees the

connectivity of Ai for all i ∈ [n]. Note that the size of the local graph is O(β−1), which again
justifies that the effective sample size of the BTL model is p/β instead of pn in the Gaussian
case. Since the local graph Ai is unknown, the additional L

logn
→ ∞ assumption is needed in

the upper bound to estimate it or its surrogate.

1The error rate (17) for the MLE (18) is an immediate consequence of Lemma 4.3.



1784 P. CHEN, C. GAO AND A. Y. ZHANG

4. A divide-and-conquer algorithm. We introduce a fully adaptive and computation-
ally efficient algorithm for ranking under the BTL model in this section. We first outline
the main idea in Section 4.1. Details of the algorithm are presented in Section 4.2, and the
statistical properties are analyzed in Section 4.3.

4.1. An overview. In the Gaussian comparison model, we first compute the global MLE
for the skill parameters via the least-squares optimization (11), and then rank the players
according to the estimators of the skills. This simple idea does not generalize to the BTL
model, since the statistical information of each player concentrates on its close opponents,
a phenomenon that is discussed in Section 3.2. Therefore, instead of using the global MLE,
we should maximize likelihood functions that are only defined by players whose abilities
are close. This modification not only addresses the information-theoretic issue of the BTL
model that we just mentioned, but it also leads to Hessian matrices that are well conditioned,
a property that is critical for efficient convex optimization.

For Player i, the set of close opponents that are sufficient for optimal statistical inference is
given by Ai defined in (20). Suppose the knowledge of Ai was available, we could compute
the local MLE using games only against players in Ai . This idea is roughly correct, but
there are several nontrivial issues that we need to solve before making it actually work. The
first issue lies in the identifiability of the BTL model that θ∗

i can only be estimated up to a
translation, which makes the comparison between θ̂i obtained from Ai and θ̂j obtained from
Aj meaningless. The second issue is that the set Ai is unknown, and we need a data-driven
procedure to identify the close opponents of each player.

We propose an algorithm that first partitions the n players into several leagues and then
use local MLE to compare the skills of players within the same league. The league partition
is data driven, and serves as a surrogate for the local graphs Ai’s. Moreover, for two players
i and j in the same league, the MLEs of their skill parameters are computed using the same
set of opponents, and thus θ̂i − θ̂j is a well-defined estimator of θ∗

i − θ∗
j .

Another key idea we use in our proposed algorithm is that the estimation of r∗ is closely
related to the estimation of the pairwise relation matrix R∗ defined as

R∗
ij = I

{
r∗
i < r∗

j

}
for all 1 ≤ i �= j ≤ n.(21)

For any estimator of R∗, it can be converted into an estimator of the rank vector r∗ according
to Lemma 4.1. As a result, we shall focus on constructing a good estimator for all the pairwise
relations {I{r∗

i < r∗
j }}i<j .

This divide-and-conquer algorithm, which will be described in Section 4.2, resembles typ-
ical strategies adopted in professional sports such as European football leagues. It is compu-
tationally efficient and we will show the algorithm achieves the minimax rate of full ranking.

4.2. Details of the proposed algorithm. We first decompose the set [L] by {1, . . . ,L1}
and {L1 +1, . . . ,L}. Games in the first set are used as preliminary games for league partition,
and games in the second set are used for computing the MLE. Under the condition L

logn
→ ∞,

we can set the number L1 as L1 = �√L logn�. Define

ȳ
(1)
ij = 1

L1

L1∑
l=1

yijl and ȳ
(2)
ij = 1

L − L1

L∑
l=L1+1

yijl

as the summary statistics in {1, . . . ,L1} and {L1 + 1, . . . ,L}, respectively.
The proposed algorithm consists of four steps, which we describe in detail below before

presenting the whole procedure in Algorithm 2.
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Algorithm 1: A league partition algorithm

Input : {Aij ȳ
(1)
ij }1≤i<j≤n and {Aij }1≤i<j≤n; M and h

Output: A partition of [n]: S1, . . . , SK such that [n] = ⊎K
k=1 Sk

1 For i in [n], compute w
(1)
i ← ∑

j∈[n] Aij I{ȳ(1)
ij ≤ ψ(−2M)}.

Set S1 ← {i ∈ [n] : w(1)
i ≤ h} and k = 1.

2 While n − (|S1| + · · · + |Sk|) > |Sk|/2,
For each i ∈ [n]\(S1 ∪ · · · ∪ Sk),

compute w
(k+1)
i ← ∑

j∈[n]\(S1∪···∪Sk)
Aij I{ȳ(1)

ij ≤ ψ(−2M)}.
Set Sk+1 ← {i ∈ [n]\(S1 ∪ · · · ∪ Sk) : w(k+1)

i ≤ h} and k ← k + 1.
3 Set K ← k − 1 and SK ← SK ∪ ([n]\(S1 ∪ · · · ∪ SK−1)).

Step 1: League partition. For each i ∈ [n], we define

(22) w
(1)
i = ∑

j∈[n]
Aij I

{
ȳ

(1)
ij ≤ ψ(−2M)

}
,

where M is some sufficiently large constant. The indicator I{ȳ(1)
ij ≤ ψ(−2M)} describes the

event that Player i is completely dominated by Player j in the preliminary games. The quan-
tity w

(1)
i then counts the number of players who have dominated Player i. If w

(1)
i is suffi-

ciently small, Player i should belong to the top league since only few or no players could
dominate Player i. Indeed, the first league is defined by

(23) S1 = {
i ∈ [n] : w(1)

i ≤ h
}
,

where h is chosen as h = pM
β

. A data-driven h will be described in the Section 4.5. Similarly,

w
(2)
i and the second league S2 can be defined by replacing [n] with [n]\{S1} in (22) and (23).

Sequentially, we compute w
(k+1)
i and Sk+1 based on players in [n]\(S1 ∪ · · · ∪ Sk) for all

k ≥ 1. This procedure will terminate as soon as the number of the players who are yet to be
classified is small enough, at which point all of the remaining players will be grouped together
into the last league. The entire procedure of league partition is described in Algorithm 1.

Step 2: Local MLEs and within-league pairwise relation estimation. Having obtained the
league partition S1, . . . , SK , we need to compare players in the same league in the next
step. Given the ambiguity between neighboring leagues, we shall also compare players if
the leagues they belong to are next to each other. Therefore, for each k ∈ [K − 1], we need to
compute the MLE for {θ∗

r∗
i
}i∈Sk∪Sk+1 . This leads to the comparison between any two players

in Sk ∪ Sk+1. Define

(24) E = {
(i, j) : 1 ≤ i < j ≤ n,ψ(−M) ≤ ȳ

(1)
ij ≤ ψ(M)

}
.

For each k ∈ [K − 1], the local negative log-likelihood function is given by

(25)

	(k)(θ) = ∑
(i,j)∈E

i,j∈Sk−1∪Sk∪Sk+1∪Sk+2

Aij

[
ȳ

(2)
ij log

1

ψ(θi − θj )

+ (
1 − ȳ

(2)
ij

)
log

1

1 − ψ(θi − θj )

]
.

When k = 1 or k = K − 1, we use the notation S0 = SK+1 = ∅. Note that the negative
log likelihood function is only defined for edges in E . In other words, only games between
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close opponents are considered. Moreover, some of the top players in Sk may have close
opponents in the previous league Sk−1, and some of the bottom players in Sk+1 may have
close opponents in the next league Sk+2. The likelihood should include these games as well
for optimal inference of the parameters {θ∗

r∗
i
}i∈Sk∪Sk+1 . The MLE is defined by

(26) θ̂ (k) ∈ arg min	(k)(θ),

which is any vector that minimizes 	(k)(θ). Then, for any i ∈ Sk and any j ∈ Sk ∪ Sk+1, set

Rij = I
{
θ̂

(k)
i > θ̂

(k)
j

}
.

Note that {θ̂ (k)
i }i∈Sk∪Sk+1 is defined only up to a common translation, but even with such

ambiguity, the comparison indicator Rij is uniquely defined.
We also remark that the computation of the MLE (26) is a straightforward convex opti-

mization. It can be shown that the Hessian matrix of the objective function is well conditioned
(Lemma C.2 in the Supplementary Material), and thus a standard gradient descent algorithm
converges to the optimum with a linear rate [9, 12].

Step 3: Cross-league pairwise relation estimation. Consider i and j that belong to Sk and
Sl respectively with |k − l| ≥ 2. This is a pair of players that are separated by at least an entire
league between them. For all such pairs, we set

Rij = I{k < l}.
Combined with the entries that are computed in Step 2, all upper triangular entries of the
matrix R have been filled. The remaining entries of R can be filled according to the rule
Rij + Rji = 1.

Step 2 and Step 3 together serve the purpose of estimating the pairwise relation matrix
R∗ defined in (21). Illustrated in Figure 3, the matrix R∗ can be decomposed into blocks
{R∗

Sk×Sl
}k<l according to the league partition {Sk}k∈[K]. The yellow blocks close to the di-

agonal are estimated by the procedure described in Step 2. In Figure 3, the data used in the
two local MLEs (k = 1 and k = 4) are marked by different patterns for illustration. For ex-
ample, when k = 4, we obtain estimators for R∗

S4×S4
and R∗

S4×S5
based on the local MLE that

involves observations from {(i, j) ∈ E : i, j ∈ S3 ∪ S4 ∪ S5 ∪ S6}. The blue blocks are away
from the diagonal and are estimated in Step 3. The remaining blocks in the lower triangular
part are estimated according to Rij + Rji = 1.

FIG. 3. Illustration of Step 2 and Step 3.
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Algorithm 2: A divide-and-conquer full ranking algorithm

Input : {Aij ȳ
(1)
ij }1≤i<j≤n, {Aij ȳ

(2)
ij }1≤i<j≤n and {Aij }1≤i<j≤n; M and h

Output: A rank vector r̂ ∈Sn

1 Run Algorithm 1 and obtain the partition [n] = ⊎K
k=1 Sk .

Set S0 = SK+1 = ∅.
2 For k ∈ [K − 1],

compute the local MLE θ̂ (k) according to (26).
For i ∈ Sk and j ∈ Sk ∪ Sk+1,

set Rij ← I{θ̂ (k)
i > θ̂

(k)
j }.

3 For k ∈ [K − 2] and l ∈ [k + 2 : K],
For (i, j) ∈ Sk × Sl ,

set Rij ← 1.
For i ∈ [n] and j ∈ [i + 1 : n],

set Rji ← 1 − Rij .
4 For i ∈ [n],

compute si ← ∑
j∈[n]\{i} Rij .

Sort {si}i∈[n] from high to low and obtain a full rank vector r̂ .

Step 4: Full rank estimation. In the last step, we convert the pairwise relations estimator R

into a rank estimator. First, compute the score for the ith player by

si = ∑
j∈[n]\{i}

Rij .

Then the rank estimator r̂ is obtained by sorting the scores {si}i∈[n].
The whole procedure of full ranking is summarized as Algorithm 2.

4.3. Statistical properties of each step. The purpose of this section is to prove the upper
bound result of Theorem 3.2 by analyzing the statistical properties of Algorithm 2. The four
components of the algorithm will be analyzed separately. We will first analyze Step 4 in
Section 4.3.1, then Step 1 in Section 4.3.2, followed by Step 3 in Section 4.3.3, and finally
Step 2 in Section 4.3.4. The results of these individual components will be combined to derive
the minimax optimality of Algorithm 2, presented in Section 4.4.

4.3.1. From pairwise relations to full ranking (Step 4). We first establish a result that
clarifies the role of Step 4 of Algorithm 2. Consider any matrix R ∈ {0,1}n×n that satisfies
Rij +Rji = 1 for any i �= j . Let r̂ be the rank vector obtained by sorting {∑j∈[n]\{i} Rij }i∈[n]
from high to low. The error of r̂ is controlled by the following lemma.

LEMMA 4.1. For any r∗ ∈ Sn, define its pairwise relation matrix R∗ such that R∗
ij =

I{r∗
i < r∗

j }. Then we have

K
(̂
r, r∗) ≤ 4

n

∑
1≤i �=j≤n

I
{
Rij �= R∗

ij

}
.

Lemma 4.1 is a deterministic inequality that bounds the error of the rank estimation by
the estimation error of pairwise relations. It implies that to accurately rank n players, it is
sufficient to accurately estimate the pairwise relations between all pairs.
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4.3.2. Statistical properties of league partition (Step 1). The partition output by Algo-
rithm 1 satisfies several nice properties that are stated by the following theorem.

THEOREM 4.1. Assume θ∗ ∈ �n(β,C0) for some constant C0 ≥ 1, L
logn

→ ∞ and
p

(β∨n−1) logn
→ ∞. Let {Sk}k∈[K] be the output of Algorithm 1 with L1 = �√L logn�,

1 ≤ M = O(1) and h = pM
β

. Then there exist some constants C1,C2,C3 > 0 only depending

on C0 such that the following conclusions hold with probability at least 1 − O(n−9):

1. Boundedness: For any k ∈ [K] and any i, j ∈ Sk−1 ∪ Sk ∪ Sk+1, we have |θ∗
r∗
i

− θ∗
r∗
j
| ≤

C1M . Recall the convention that S0 = SK+1 = ∅;
2. Inclusiveness: For any k ∈ [K] and any i ∈ Sk , we have {j ∈ [n] : |r∗

i − r∗
j | ≤ C2M

β
} ⊂

Sk−1 ∪ Sk ∪ Sk+1;
3. Separation: For any i ∈ Sk and j ∈ Sl such that l − k ≥ 2, we have θ∗

r∗
i

> θ∗
r∗
j
;

4. Independence: For any k ∈ [K], we have Sk = Šk . Here, {Šk}k∈[K] is a partition that is

measurable with respect to the σ -algebra generated by {(Aij , ȳ
(1)
ij ) : |θ∗

r∗
i
− θ∗

r∗
j
| > 1.9M};

5. Continuity: For any k ∈ [K − 1] and any i ∈ Sk−1 ∪ Sk ∪ Sk+1 ∪ Sk+2, we have |{j ∈
[n] : |θ∗

r∗
i
− θ∗

r∗
j
| ≤ M

2 } ∩ (Sk−1 ∪ Sk ∪ Sk+1 ∪ Sk+2)| ≥ C3(
M
β

∧ n).

We give some remarks on each conclusion of Theorem 4.1. The first conclusion asserts
that the skill parameters of players from the neighboring leagues are close to each other. This
property is complemented by the second conclusion that the close opponents of each player
are either from the same league, the previous league or the next league. In other words, for
any k ∈ [K] and any i ∈ Sk , the local graph {Ajk : j, k ∈ Sk−1 ∪ Sk ∪ Sk+1} can be viewed as
a data-driven surrogate of Ai defined in (20). Moreover, the second conclusion also implies
that |Sk−1 ∪ Sk ∪ Sk+1| � 1

β
∧ n, from which we can deduce the bound K = O(nβ ∨ 1) that

controls the number of iterations Algorithm 1 needs before it is terminated.2 Conclusion 3
implies that the partition {Sk}k∈[K] is roughly correlated with the true rank in the sense that
it correctly identifies the comparisons between players who do not belong to neighboring
leagues. Conclusion 4 shows that almost all of the randomness of the partition is from that of
{(Aij , ȳ

(1)
ij ) : θ∗

r∗
i

− θ∗
r∗
j

≤ −1.9M}. This fact leads to a crucial independence property in the

later analysis of the local MLE. Conclusions 1, 2, 4 and 5 are crucial in the analysis of Step 2
in Section 4.3.4, while Conclusion 3 will be used in the analysis of Step 3 in Section 4.3.3.

The proof of Theorem 4.1 is a delicate mathematical induction argument that iteratively
explores the asymptotic independence between consecutive constructions of leagues. To be
specific, the random variable

w
(k+1)
i = ∑

j∈[n]\(S1∪···∪Sk)

Aij I
{
ȳ

(1)
ij ≤ ψ(−2M)

}
can be sandwiched between w

(k+1)
i and w

(k+1)
i . We show that both w

(k+1)
i and w

(k+1)
i , when

conditioning on the previous leagues S1, . . . , Sk , approximately follow Binomial distribu-
tions.3 Essentially, the Aij ’s that contribute to the summation of w

(k+1)
i are disjoint from the

2We can in fact prove a stronger result that 1
β ∧ n � |Sk | � 1

β ∧ n uniformly for all k ∈ [K] with probability at

least 1 − O(n−9).
3Here, w

(k+1)
i is defined as

∑
j∈[n]\(S′

1∪···∪S′
k)

Aij I{θ∗
r∗
j

≥ θ∗
r∗
i

+ 2M + δ1}, for some quantity δ1 such that

I{θ∗
r∗
j

≥ θ∗
r∗
i

+ 2M + δ1} is smaller than I{ȳ(1)
ij ≤ ψ(−2M)} for all pairs (i, j) with high probability, and S′

1 ∪ · · ·∪
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FIG. 4. Illustration of the independence property of Algorithm 1.

Aij ’s that lead to the constructions of S1, . . . , Sk , which then implies an asymptotic indepen-

dence property between (w
(k+1)
i ,w

(k+1)
i ) and S1, . . . , Sk . This phenomenon is illustrated in

Figure 4. In the picture, we use the orange block to denote S1 ∪ · · · ∪ Sk , the set that has
already been partitioned. The next step of the algorithm is to construct the (k + 1)th league
from [n]\(S1 ∪ · · · ∪ Sk), which is the blue block. From the positions of w

(k+1)
i ’s, we ob-

serve that the construction of Sk+1 depends on Aij ’s that are in the yellow area. On the other

hand, since the area on the left-hand side of the dashed curve satisfies ȳ
(1)
ij ≤ ψ(−2M), the

construction of the first k leagues only depends on Aij ’s that are in the grey area. The inde-
pendence property can be easily seen from the separation between the grey and the yellow
areas. A rigorous proof of Theorem 4.1, which is based on this argument, will be given in
Appendix B in the Supplementary Material.

4.3.3. Statistical properties of cross-league estimation (Step 3). The analysis of Step 3
is quite straightforward following the results from the league partition. Assume the Conclu-
sion 3 of Theorem 4.1 holds. Then for any i ∈ Sk and j ∈ Sl such that l − k ≥ 2, we have
R∗

ij = 1. Since Rij = 1 for all such pairs, we have
∑

k∈[K−2]
∑

l∈[k+2:K] 1{Rij �=R∗
ij ,i∈Sk,j∈Sl} =

0.

4.3.4. Statistical properties of local MLEs (Step 2). The main challenge of analyzing the
local MLE is the dependence between the partition {Sk}k∈[K] and the likelihood (25). We are
going to use Conclusion 4 of Theorem 4.1 to resolve this issue. Define

Ǎij = Aij I
{∣∣θ∗

r∗
i
− θ∗

r∗
j

∣∣ ≤ M/2
} + Aij I

{
(i, j) ∈ E,M/2 <

∣∣θ∗
r∗
i
− θ∗

r∗
j

∣∣ < 1.1M
}
,

and

	̌(k)(θ) = ∑
i,j∈Šk−1∪Šk∪Šk+1∪Šk+2

Ǎij

[
ȳ

(2)
ij log

1

ψ(θi − θj )
+ (

1 − ȳ
(2)
ij

) 1

1 − ψ(θi − θj )

]
.

S′
k is another partition of [n] that is identical to S1 ∪ · · ·∪Sk with high probability. The quantity w

(k+1)
i is defined

similarly. See the proof of Theorem 4.1 for details.
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The maximizer of 	̌(k)(θ) is denoted by

(27) θ̌ (k) ∈ arg min 	̌(k)(θ).

The introduction of 	̌(k)(θ) and θ̌ (k) is to disentangle the dependence of the MLE on the
league partition. By Theorem 4.1, we know that Sk = Šk for all k ∈ [K]. The concentration
of {ȳ(1)

ij } implies that {|θ∗
r∗
i

− θ∗
r∗
j
| ≤ M/2} ⊂ {(i, j) ∈ E} ⊂ {|θ∗

r∗
i

− θ∗
r∗
j
| ≤ 1.1M} for all 1 ≤

i < j ≤ n. Therefore, we have

I
{
(i, j) ∈ E

} = I
{∣∣θ∗

r∗
i
− θ∗

r∗
j

∣∣ ≤ M/2
} + I

{
(i, j) ∈ E,M/2 <

∣∣θ∗
r∗
i
− θ∗

r∗
j

∣∣ < 1.1M
}
.

We can thus conclude that 	(k)(θ) = 	̌(k)(θ) for all θ with high probability. The result is
formally stated below.

LEMMA 4.2. Assume θ∗ ∈ �n(β,C0) for some constant C0 ≥ 1, L
logn

→ ∞ and
p

(β∨n−1) logn
→ ∞. Let {Sk}k∈[K] be the output of Algorithm 1 with L1 = �√L logn�,

1 ≤ M = O(1) and h = pM
β

. Then, with probability at least 1 − O(n−8), we have 	(k)(θ) =
	̌(k)(θ) for all θ and for all k ∈ [K]. As a consequence, {θ̂ (k)

i }i∈Sk∪Sk+1 and {θ̌ (k)
i }i∈Sk∪Sk+1

are equivalent up to a common shift.

With Lemma 4.2, it suffices to study (27) for the statistical property of the MLE. Note that
{Ǎij } is measurable with respect to the σ -algebra generated by {(Aij , ȳ

(1)
ij ) : |θ∗

r∗
i

− θ∗
r∗
j
| <

1.1M}. Theorem 4.1 shows that {Šk} is measurable with respect to the σ -algebra generated
by {(Aij , ȳ

(1)
ij ) : |θ∗

r∗
i

− θ∗
r∗
j
| > 1.9M}. We then reach a very important conclusion that {Ǎij },

{ȳ(2)
ij } and {Šk} are mutually independent and, therefore, we can analyze θ̌ (k) by conditioning

on the partition {Šk}. To be more specific, for any i, j ∈ Šk ∪ Šk+1 such that θ∗
r∗
i

> θ∗
r∗
j
, since

Rij = 1{θ̌ (k)
i >θ̌

(k)
j }, we will provide an upper bound for P(θ̌

(k)
i < θ̌

(k)
j |{Šk}k∈[K]).

To this end, we state a result that characterizes the performance of the MLE under a
BTL model with bounded skill parameters. Consider a random graph with independent
edges Bij ∼ Bernoulli(pij ) for 1 ≤ i < j ≤ m. For each Bij = 1, observe i.i.d. yijl ∼
Bernoulli(ψ(η∗

i − η∗
j )) for l = 1, . . . ,L. Let ȳij = 1

L

∑L
l=1 yijl , and we define the MLE by

(28) η̂ ∈ arg min
∑

1≤i<j≤m

Bij

[
ȳij log

1

ψ(ηi − ηj )
+ (1 − ȳij ) log

1

1 − ψ(ηi − ηj )

]
.

LEMMA 4.3. Assume η∗
1 > · · · > η∗

m and η∗
1 − η∗

m ≤ κ . There exists some constant c ∈
(0,1) such that pij = p for all |i −j | ≤ cm and pij ≤ p otherwise. As long as mp

log(m+n)
→ ∞

and κ = O(1), then for any δ > 0 that is sufficiently small, there exists a constant C > 0 such
that

P(η̂i < η̂j ) ≤ C

[
exp

(
− (1 − δ)L(η∗

i − η∗
j )

2

2(Wi(η∗) + Wj(η∗))

)
+ n−7

]
,

for all 1 ≤ i < j ≤ m, where Wi(η
∗) = 1∑

j∈[m]\{i} pijψ ′(η∗
i −η∗

j )
for all i ∈ [m].

The proof of Lemma 4.3, which relies on a recently developed leave-one-out technique in
the analysis of the BTL model [9, 12], will be given in Appendix C in the Supplementary
Material.
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By conditioning on {Šk}, the statistical property of (27) is a direct consequence of

Lemma 4.3. Note that P(θ̌
(k)
i < θ̌

(k)
j |{Šk}k∈[K]) is a function of {Šk}k∈[K], and we will es-

tablish a uniform upper bound for this conditional probability for any partition {Šk}k∈[K]
satisfying the following conditions:

(i) For any k ∈ [K] and any i, j ∈ Šk−1 ∪ Šk ∪ Šk+1, we have |θ∗
r∗
i
− θ∗

r∗
j
| ≤ C1M ;

(ii) For any k ∈ [K] and any i ∈ Šk , we have {j ∈ [n] : |r∗
i − r∗

j | ≤ C2M
β

} ⊂ Šk−1 ∪ Šk ∪
Šk+1;

(iii) For any k ∈ [K − 1] and any i ∈ Šk−1 ∪ Šk ∪ Šk+1 ∪ Šk+2, we have |{j ∈ [n] : |θ∗
r∗
i
−

θ∗
r∗
j
| ≤ M

2 } ∩ (Šk−1 ∪ Šk ∪ Šk+1 ∪ Šk+2)| ≥ C3(
M
β

∧ n).

Note that we use the convention Š0 = ŠK+1 = ∅ and C1, C2, C3 are the same constants
in Theorem 4.1. Consider any partition {Šk}k∈[K] satisfying the three conditions above.
When applying Lemma 4.3, by Conditions (i) and (ii), we have κ = 2C1M and m =
|Šk−1 ∪ Šk ∪ Šk+1 ∪ Šk+2| � 1

β
∧n. We also know that for any i, j ∈ Šk−1 ∪ Šk ∪ Šk+1 ∪ Šk+2

such that |θ∗
r∗
i

− θ∗
r∗
j
| ≤ M

2 , we have Ǎij = Aij ∼ Bernoulli(p). Then Condition (iii) implies

the existence of a band in {(r∗
i , r∗

j ) : i, j ∈ Šk−1 ∪ Šk ∪ Šk+1 ∪ Šk+2} with width at least cm

for some constant c > 0, such that Ǎij ∼ Bernoulli(p) for all pairs in the band. For any
other (i, j), we have Ǎij ∼ Bernoulli(pij ) with pij ≤ p. Having checked the conditions of
Lemma 4.3, we obtain the following result for the local MLE (27),

(29) P
(
θ̌

(k)
i < θ̌

(k)
j |{Šk}k∈[K]

) ≤ C

[
exp

(
−

(1 − δ)npL(θ∗
r∗
i
− θ∗

r∗
j
)2

2(Vr∗
i
(θ∗) + Vr∗

j
(θ∗))

)
+ n−7

]
,

for any i, j ∈ Šk ∪ Šk+1 such that θ∗
r∗
i

> θ∗
r∗
j
. Recall the definition of Vi(θ

∗) in (16). The

constant δ in (29) can be made arbitrarily small with a sufficiently large M . To derive (29)
from Lemma 4.3, we only need to show

p
∑

j∈[n]\{i}
ψ ′(θ∗

i − θ∗
j

) ≤ (
1 + O

(
e−C2M

)) ∑
j∈(Šk−1∪Šk∪Šk+1∪Šk+2)\{i}

pijψ
′(θ∗

r∗
i
− θ∗

r∗
j

)
,

for all i ∈ Šk ∪ Šk+1. This is true by a similar argument that leads to (15), together with
Condition (ii). Finally, by Theorem 4.1, Conditions (i)–(iii) hold for {Šk}k∈[K] with high
probability, and thus (29) is a high-probability bound. A similar bound to (29) also holds for
(26) by the conclusion of Lemma 4.2.

4.4. Analysis of Algorithm 2. With the help of Lemma 4.1, Theorem 4.1, Lemma 4.2 and
Lemma 4.3, we are ready to analyze the performance of Algorithm 2 by sketching the upper
bound proof of Theorem 3.2. By Lemma 4.1, we have

EK
(̂
r, r∗) ≤ 4

n

∑
1≤i �=j≤n

P
(
Rij �= R∗

ij

)
.

It suffices to give a bound for P(Rij �= R∗
ij ) for every pair i �= j . For each pair, it can be shown

that

(30) P
(
Rij �= R∗

ij

)
� exp

(
−

(1 − δ)npL(θ∗
r∗
i
− θ∗

r∗
j
)2

2(Vr∗
i
(θ∗) + Vr∗

j
(θ∗))

)
+ n−7.
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A rigorous proof of (30) will be given in Section 8. Intuitively, Theorem 4.1 has established
that the league partition only leads to errors of estimating R∗

ij for pairs that do not belong
to neighboring leagues. For such pairs, the error probability can be bounded by the results
of Lemma 4.2 and Lemma 4.3. Finally, by carefully summing the bound (30) over all i �= j

in the two regimes Lpβ2

β∨n−1 ≤ 1 and Lpβ2

β∨n−1 > 1, we obtain the desired upper bound result
of Theorem 3.2. The detailed proof for the upper bound of Theorem 3.2 will be given in
Section 8.

4.5. A data-driven h. Our proposed algorithm relies on a tuning parameter h = pM
β

that
is unknown in practice. This quantity can be replaced by a data-driven version, defined as

(31) ĥ = 1

n

∑
1≤i<j≤n

Aij I
{
1.2M ≤ ∣∣ψ−1(ȳ(1)

ij

)∣∣ ≤ 1.8M
}
.

A standard concentration result implies that ĥ � pM
β

with high probability. Moreover, by
defining

ȟ = 1

n

∑
1≤i<j≤n

1.1M<|θ∗
r∗
i
−θ∗

r∗
j
|<1.9M

Aij I
{
1.2M ≤ ∣∣ψ−1(ȳ(1)

ij

)∣∣ ≤ 1.8M
}
,

it can be shown that ĥ = ȟ with high probability. Since ȟ is measurable with respect to the σ -
algebra generated by {(Aij , ȳ

(1)
ij ) : 1.1M < |θ∗

r∗
i
− θ∗

r∗
j
| < 1.9M}, we still have the asymptotic

independence property between the league partition and local MLE after h being replaced by
ĥ in Algorithm 1. Therefore, with a data-driven ĥ being used in the proposed algorithm, the
upper bound conclusion of Theorem 3.2 still holds.

5. Numerical results. In this section, we conduct numerical experiments to study the
statistical and computational properties of Algorithm 2.

5.1. Simulation setting. In our experiment, we consider θ∗ ∈ R
n with n = 1000. In par-

ticular, we set θ∗
i = −βi for all i ∈ [n] with some β ∈ [0.001,0.05]. The range of β implies

that the dynamic range θ∗
1 − θ∗

1000 takes value in [0.999,49.95]. We assume the true rank is
the identity permutation, that is, r∗

i = i for all i ∈ [n]. We also consider three different (L,L1)

pairs: (50, 10), (75, 15), (100, 20) in Algorithm 2.

5.2. Implementation. In the implementation of Algorithm 2, we set M = 5. For the
choice of h, though the recommended data-driven estimator (31) works for the theoretical
purpose, it may not be a sensible choice for a data set with a moderate size. Note that with
M = 5, we have ψ(1.2M) = 0.9975274 and ψ(1.8M) = 0.9998766, respectively, and thus
the indicator I{1.2M ≤ |ψ−1(ȳ

(1)
ij )| ≤ 1.8M} is usually zero in (31). To address this issue, we

set h by

h = 0.4 × 1

n

∑
1≤i<j≤n

Aij1{ψ(−M)≤ȳ
(2)
ij ≤ψ(M)}.

The computation of the local MLE (26) is implemented by the MM algorithm [25]. All sim-
ulations are implemented in Python (along with NumPy package, whose backend is written
in C) using a 2019 MacBook Pro, 15-inch, 2.6 GHz 6-core Intel Core i7.
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FIG. 5. The number of leagues obtained by Algorithm 1. The orange curve is mostly overlapped by the green
curve.

5.3. Accuracy of league partition. We first study Algorithm 1, which is Step 1 of Al-
gorithm 2. The purpose of Algorithm 1 is to divide all players into K leagues. The average
value of K from 50 independent experiments is reported in Figure 5. This number increases
with β linearly, which agrees with our theoretical bound K = OP(nβ ∨ 1).

To quantify the accuracy of Algorithm 1, we define the following metric:

Epartition =

⎧⎪⎪⎨⎪⎪⎩
1

K − 2

K−1∑
k=2

1{max{r∗
i :i∈⋃k′<k Sk′ }>min{r∗

i :i∈⋃k′>k Sk′ }} K ≥ 3,

0 K < 3.

The quantity Epartition is essentially designed to verify the Conclusion 3 in Theorem 4.1, and
we expect that Epartition should be 0 with high probability. Note that Conclusion 3 of The-
orem 4.1 guarantees the correctness of the cross-league pairwise relation estimation, which
is Step 3 of Algorithm 2. For each combination of (β,L,L1), we generate independent data
and repeat the experiments 50 times. It turns out that Epartition is always 0, which agrees with
the theoretical property of the league partition.

5.4. Statistical error. Next, we study the ranking error of the proposed divide-and-
conquer algorithm (Algorithm 2) under the Kendall’s tau distance defined by (4). For com-
parison, we also implement the global MLE and the spectral method. The MLE outputs the
rank of the entries of θ̂ defined by (18). The spectral method, also known as rank centrality,
is a ranking algorithm proposed by [42]. Define a matrix P ∈ R

n×n by

Pij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

d
Aij ȳj i i �= j,

1 − 1

d

∑
l∈[n]\{i}

Ailȳli i = j,

where d is set to be twice the maximum degree of the random graph A. Note that P is the
transition matrix of a Markov chain. Let π̂ be the stationary distribution of this Markov chain,
and the spectral method outputs the rank of the entries of the vector π̂ .
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FIG. 6. Statistical error under Kendall’s tau. Left: (L,L1) = (50,10); Middle: (L,L1) = (75,15); Right:
(L,L1) = (100,20).

Both the MLE and the spectral method have been studied for parameter estimation [12,
42] and top-k ranking [9, 12] under the BTL model. However, to the best of our knowledge,
the statistical properties of the two methods for full ranking have not been studied in the
literature. The recent work [12] has established the estimation errors of the skill parameter
for both the MLE and the spectral method. Their results involve a factor of eO(nβ) in the
estimation error under an 	∞ loss, which suggests that the MLE and the spectral method may
not perform well when the dynamic range nβ diverges.

We implement the MLE, the spectral method, and the divide-and-conquer algorithm for
various combinations of β and L. The results of each setting are computed by averaging
across 50 independent experiments. As shown in Figure 6, the spectral method is significantly
worse than the MLE and the divide-and-conquer algorithm. The performance of the spectral
method may be explained by the eO(nβ) factor in the 	∞ norm error bound obtained by [12],
though the exact relation between the 	∞ error and the full ranking error is not clear to us. On
the other hand, the error curves of the MLE and the divide-and-conquer algorithm are very
close. Since the divide-and-conquer algorithm has been proved to be minimax optimal, the
simulation results suggest that the MLE may also enjoy such statistical optimality.

The current analysis of the MLE [9, 12] crucially depends on the spectral property of
the Hessian matrix H(θ∗) of the objective function of (18). It is known that the condition
number of H(θ∗) on the subspace orthogonal to 1n is of order eO(nβ), which explains the
eO(nβ) factor in the 	∞ estimation error of the MLE [12]. However, our simulation study
reveals that the error bound of [12] can be potentially loose. The definition of the Kendall’s
tau distance suggests that a sharp analysis of the MLE requires a careful study of the ran-
dom variable θ̂r∗

i
− θ̂r∗

j
. We conjecture that the variance of θ̂r∗

i
− θ̂r∗

j
should be approximately

proportional to (er∗
i

− er∗
j
)T H(θ∗)†(er∗

i
− er∗

j
), where ej is the j th canonical vector with

all entries being 0 except that the j th entry is 1. Since H(θ∗) can be viewed as the graph
Laplacian of some random weighted graph, there may exist random matrix tools to study
(er∗

i
− er∗

j
)T H(θ∗)†(er∗

i
− er∗

j
) directly without using the naive condition number bound.

Moreover, it may be possible to adopt the divide-and-conquer idea in establishing the opti-
mality of the MLE by splitting the analysis into several small blocks with the subproblem in
each block being well conditioned. We leave this interesting direction as a future project.

In comparison, our divide-and-conquer algorithm does not need to solve the global MLE.
Since the objective function of each local MLE is well conditioned (Lemma C.2 in the Sup-
plementary Material), Algorithm 2 is provably optimal in addition to its good performance in
simulation.

5.5. Computational cost. Finally, we compare the computational costs of the three meth-
ods. The average time needed to run the three algorithms is given in Figure 7. The spectral
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FIG. 7. Running time comparison. Left: (L,L1) = (50,10); Middle: (L,L1) = (75,15); Right:
(L,L1) = (100,20).

method, though suffers from its unsatisfactory statistical error, is the fastest, partly because
finding the stationary distribution is just a single line of code using a NumPy function whose
backend is C. The running time of the MLE grows rapidly as β increases. This can be ex-
plained by the growing condition number of the Hessian matrix H(θ∗). While the condition
number may not affect the statistical error of the MLE, it does have a rather strong effect
on its computational cost. On the other hand, the running time for the divide-and-conquer
method (Algorithm 2) first increases with β , and then stabilizes. This is the effect of Al-
gorithm 1, which divides a large difficult problem into many small subproblems, and after
that each small subproblem can be conquered efficiently. In fact, we can further improve the
computational efficiency by solving the subproblems in parallel. The initial increase of the
running time of Algorithm 2 is because of the additional league partition step. Recall that
the league partition step divides the players into K = OP(nβ ∨ 1) subsets. When β is small,
we have a very small K . According to the formula (25), the local MLE is as difficult as the
global MLE whenever K ≤ 4. In this regime, the divide-and-conquer method is more time
consuming because of the additional league partition step. On the other hand, as β grows, the
computational advantage of the divide-and-conquer strategy becomes significant. This makes
our proposed algorithm scalable to large data sets, while preserving the statistical optimal-
ity, which concludes the divide-and-conquer algorithm as the best overall method among the
three.

6. A real data application. In this section, we discuss an application of our ranking
algorithm in finance to rank stocks from mutual fund holdings. Investing in the stock market
can be very lucrative if one can pick stocks with great potential. Mutual funds, often regarded
as a type of professional investors (or smart money), play indispensable roles of the market.
Thus, analyzing the holdings of mutual funds may well reveal invaluable information about
the market.

6.1. Modeling rationale. The rationale behind stock ranking from mutual fund holdings
is that the holdings of a mutual fund reflects the degree of conviction of the fund manager.
Specifically, if a stock comprises of a large proportion of a fund’s portfolio, it means that
the fund manager has a high degree of belief in the performance of the stock. Furthermore,
we assume that if the dollar percentage of stock A in the portfolio is higher than stock B,
it means that the fund manager ranks stock A higher than stock B. Thus, from a mutual
fund’s stock holding list including the constituents percentage, we naturally get a bunch of
pairwise comparisons based on the portfolio manager’s conviction. For some given stock A
and stock B, if they are both owned by several mutual funds, this can be thought as stock A
and stock B compared by these funds many times, which suggests that the BTL model can
be used.
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6.2. Data. The data we use comes from CRSP Survivor-Bias-Free US Mutual Funds
database, The University of Chicago Booth School of Business. Particularly, we study the
holdings snapshot of the mutual funds in the database reported on March 31, 2021. After the
prescreening step described later, we have a data set of comparison results from 777 stocks
on a graph with 147,462 edges. For each pair that is connected, the two stocks are compared
at least 100 times and at most 702 times. That is, all Lij ’s are in the interval [100,702].

6.3. Prescreening the stock pool. The original data set has around 6000 portfolios cover-
ing over 5000 stocks. Our prescreening procedure is based on the following criteria. First, we
consider long-only equity portfolios. Second, we only use stocks that appear in at least 200
portfolios. The reason we have the second condition is that we believe good stocks must have
some degree of popularity in the mutual fund community. After these two steps of prescreen-
ing, we are left with 4933 portfolios covering 1451 stocks. Then we construct a comparison
graph on these 1451 stocks. There is an edge connecting two stocks if and only if they are
simultaneously owned by at least 100 portfolios. This means that two connected stocks are
compared for at least 100 times. Finally, we only keep those stocks that are connected to
at least 600 and at most 800 other stocks. This effectively removes some relatively unpop-
ular stocks and extremely popular blue-chip stocks. We regard blue-chip stocks like Apple
as “background” stocks, which, if appear in a portfolio, usually take a big proportion. We
call the stocks remained after filtering as diamond in the rough, which are kind of in the
middle of popularity. The remaining comparison graph after deleting those stocks is also the
comparison graph used in our ranking algorithm.

6.4. Results. We apply Algorithm 2 slightly modified to account for different values of
Lij ’s between different pairs of stocks to the prescreened data set using M = 0.5 and h

adaptively chosen by (31). After we obtain the ranking result of the stocks, we look at the
close to close returns of these stocks in the next 6 months, from March 31, 2021 to September
29, 2021. We construct two equally weighted portfolios using the top k stocks and the bottom
k stocks, where k ranges from 50 to 200 and compute the returns of these portfolios over the 6
months. The return of the equally weighted portfolio is just the simple average of the returns
of the constituents. The performance of the MLE and the spectral method are also evaluated
in the same way. The results are plotted in Figure 8. Ideally, we expect higher ranked stocks
to outperform lower ranked stocks, which indicates that fund managers have some ability of
stock picking. This is indeed reflected in the result from Algorithm 2 (divide and conquer,

FIG. 8. Average returns of portfolios based on the ranking results. The blue line is the simple average return
(in percentage) of the top k ranked stocks and the orange line is the simple average return (in percentage) of the
bottom k ranked stocks where k ranges from 50 to 200. (Results are calculated or derived based on data from
Survivor-Bias-Free Mutual Fund Database©2021 Center for Research in Security Prices (CRSP), The University
of Chicago Booth School of Business.)
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the leftmost plot). The blue line, representing the average return of the top ranked stocks,
sits above the orange line that represents the average return of the bottom ranked stocks. In
comparison, this phenomenon is unclear from the results using the MLE (the middle plot)
and the spectral method (the rightmost plot).

7. Discussion. In this paper, the problem of ranking n players from partial comparison
data under the BTL model has been investigated. We have derived the minimax rate with
respect to the Kendall’s tau distance. A divide-and-conquer algorithm is proposed and is
proved to achieve the minimax rate. In this section, we discuss a few directions along which
the results of the paper can be extended.

The first extension one can consider is to assume that Aij ∼ Bernoulli(pij ) independently
for all 1 ≤ i < j ≤ n. For this more general comparison graph, as long as we assume that all
pij ’s are of the same order in the sense that maxij pij ≤ C minij pij for some constant C > 0,
Theorem 3.2 continues to hold with Vi(θ

∗)
np

replaced by

1∑
j∈[n]\{i} pijψ ′(θ∗

i − θ∗
j )

,

and all the technical arguments in the proofs will still go through.
Another important condition that we impose throughout the paper is the regularity of the

skill parameters θ∗ ∈ �n(β,C0). It assumes that |θ∗
i − θ∗

j | � β|i − j |, which roughly de-
scribes that players with different skills are evenly distributed in the population. Without this
condition, we conjecture that the minimax rate under the Kendall’s tau loss should be

inf
r̂∈Sn

sup
r∗∈Sn

E(θ∗,r∗)K
(̂
r, r∗) � 1

n

∑
1≤i<j≤n

exp
(
−(1 + o(1))npL(θ∗

i − θ∗
j )2

2(Vi(θ∗) + Vj (θ∗))

)
.

In fact, this formula has already appeared in the upper bound analysis (33) and can be sim-
plified to the result of Theorem 3.2 when θ∗ ∈ �n(β,C0). Extending the result of The-
orem 3.2 beyond the condition θ∗ ∈ �n(β,C0) is possible by some necessary modifica-
tions of the league partition step described in Algorithm 1. Without |θ∗

i − θ∗
j | � β|i − j |,

the partition formula Sk = {i ∈ [n]\(S1 ∪ · · · ∪ Sk−1) : w
(k)
i ≤ h} should be replaced by

Sk = {i ∈ [n]\(S1 ∪ · · · ∪ Sk−1) : w(k)
i ≤ hk} for some sequence {hk} to account for the non-

regularity of θ∗. Intuitively, the size of each |Sk| should adaptively depend on the local density
of the skill parameters in the neighborhood from which it is selected. Then the major diffi-
culty is to find a data-driven {ĥk} that estimates the local density. When |θ∗

i − θ∗
j | � β|i − j |,

we can just use the global estimator (31). Without this assumption, estimating {hk} is a much
harder problem. In [26], it is assumed that the skill parameters θ∗

1 , . . . , θ∗
n are i.i.d. drawn

from some distribution F instead of being fixed parameters, and the authors have studied
the problem of estimating F , which is called the skill distribution, from the partial pairwise
comparison data. Under this formulation, the estimation of the parameters {hk} can be linked
to the problem of local bandwidth selection in kernel density estimation [29]. We leave this
direction of research as one of our future projects.

A restriction of the BTL model is that it can only deal with pairwise comparison. One
extension from pairwise comparison to multiple comparison is the popular Plackett–Luce
model [34, 45]. Suppose there is a subset of J players S = {i1, i2, . . . , iJ }. Under the Plackett–
Luce model, the probability that j is selected among S is given by the formula exp(θj )∑

i∈S exp(θi )
.
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Statistical analysis of ranking under the Plackett–Luce model is a problem that has been rarely
explored. Both the minimax rate and the construction of optimal algorithms are important
open problems.

The ranking problem has also been studied under nonparametric comparison models. For
example, a nonparametric stochastically transitive model was proposed by [49, 50] and the
problems of estimating the mean matrix and top-k ranking have been investigated. However,
full ranking is still a problem that has not been well studied under nonparametric models.
One of the few works that we are aware of is [37] that assumes P(yij l = 1) > 1

2 + γ when
r∗
i < r∗

j . An investigation of full ranking under more general nonparametric settings is another
direction to be explored.

8. Proof of Theorem 3.2. We first give the proof of the upper bound result.

PROOF OF THEOREM 3.2 (UPPER BOUND). Let G be the event that the conclusions
of Theorem 4.1 and Lemma 4.2 hold. We have P(Gc) = O(n−8). In addition, we use the
notation Š for the event that {Šk}k∈[K] satisfies Conditions (i)–(iii) listed in Section 4.3.4.
It is clear that G ⊂ Š . By Lemma 4.1, we have EK(̂r, r∗) ≤ 4

n

∑
1≤i �=j≤n P(Rij �= R∗

ij ). It
suffices to give a bound for P(Rij �= R∗

ij ) for every pair i �= j . Note that we have P(Rij �=
R∗

ij ) ≤ P(Rij �= R∗
ij ,G) + P(Gc). Then

P
(
Rij �= R∗

ij ,G
) =

K∑
k=1

K∑
l=1

P
(
Rij �= R∗

ij ,G, i ∈ Sk, j ∈ Sl

)
= ∑

(k,l)∈[K]2:|k−l|≤1

P
(
Rij �= R∗

ij ,G, i ∈ Sk, j ∈ Sl

)
+ ∑

(k,l)∈[K]2:|k−l|≥2

P
(
Rij �= R∗

ij ,G, i ∈ Sk, j ∈ Sl

)
.

The second term above is zero. This is due to the analysis of Step 3 in Section 4.3.3, which
shows

∑
(k,l)∈[K]2:|k−l|≥2 I{Rij �= R∗

ij , i ∈ Sk, j ∈ Sl} = 0 under the event G. Hence, we only
need to study the first term. Without loss of generality, consider θr∗

i
> θ∗

r∗
j
. Then the event

{Rij �= R∗
ij ,G, i ∈ Sk, j ∈ Sk} is equivalent to {θ̂ (k)

i < θ̂
(k)
j ,G, i ∈ Sk, j ∈ Sk}, which is further

equivalent to {θ̌ (k)
i < θ̌

(k)
j ,G, i ∈ Šk, j ∈ Šk} by the definition of G. We thus have

P
(
Rij �= R∗

ij ,G
)

= ∑
(k,l)∈[K]2:|k−l|≤1

P
(
θ̌

(k)
i < θ̌

(k)
j ,G, i ∈ Šk, j ∈ Šl

)
≤ ∑

(k,l)∈[K]2:|k−l|≤1

P
(
θ̌

(k)
i < θ̌

(k)
j , Š, i ∈ Šk, j ∈ Šl

)
= ∑

(k,l)∈[K]2:|k−l|≤1

P
(
θ̌

(k)
i < θ̌

(k)
j |Š, i ∈ Šk, j ∈ Šl

)
P(Š, i ∈ Šk, j ∈ Šl)

≤ C

[
exp

(
−

(1 − δ)npL(θ∗
r∗
i
− θ∗

r∗
j
)2

2(Vr∗
i
(θ∗) + Vr∗

j
(θ∗))

)
+ n−7

] ∑
(k,l)∈[K]2:|k−l|≤1

P(Š, i ∈ Šk, j ∈ Šl)

≤ C

[
exp

(
−

(1 − δ)npL(θ∗
r∗
i
− θ∗

r∗
j
)2

2(Vr∗
i
(θ∗) + Vr∗

j
(θ∗))

)
+ n−7

]
,
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for some constant C > 0 and some δ > 0 that is arbitrarily small. The second last inequality
above is by Lemma 4.3, or more specifically, (29), as we show (29) holds for any {Šk}k∈[K]
satisfying Conditions (i)–(iii) listed in Section 4.3.4. Since P(Gc) = O(n−8), we obtain the
bound

(32) P
(
Rij �= R∗

ij

) ≤ 2C

[
exp

(
−

(1 − δ)npL(θ∗
r∗
i
− θ∗

r∗
j
)2

2(Vr∗
i
(θ∗) + Vr∗

j
(θ∗))

)
+ n−7

]
,

for all i �= j . The bound (32) is displayed as (30) in Section 4.4.
Summing the bound (32) over all i �= j , we have

EK
(̂
r, r∗) ≤ 8C

n

∑
1≤i �=j≤n

exp
(
−

(1 − δ)npL(θ∗
r∗
i
− θ∗

r∗
j
)2

2(Vr∗
i
(θ∗) + Vr∗

j
(θ∗))

)
+ 8Cn−6

= 8C

n

∑
1≤i �=j≤n

exp
(
−(1 − δ)npL(θ∗

i − θ∗
j )2

2(Vi(θ∗) + Vj (θ∗))

)
+ 8Cn−6.

(33)

Now it is just a matter of simplifying the expression (33). We consider the following two

cases: Lpβ2

β∨n−1 ≤ 1 and Lpβ2

β∨n−1 > 1.

First, we consider the case Lpβ2

β∨n−1 ≤ 1. By Lemma 8.1 proved in Section 8, there exist
constants c1, c2 > 0, such that

(34) c1

(
β ∨ 1

n

)
≤ Vi(θ

∗)
n

≤ c2

(
β ∨ 1

n

)
,

for all θ∗ ∈ �n(β,C0) and all i ∈ [n]. Then, for each i ∈ [n],
∑

j∈[n]\{i}
exp

(
−(1 − δ)npL(θ∗

i − θ∗
j )2

2(Vi(θ∗) + Vj (θ∗))

)
≤ ∑

j∈[n]\{i}
exp

(
− 1

3c2
(i − j)2 Lpβ2

β ∨ n−1

)

≤
∫ ∞

0
exp

(
− 1

3c2
x2 Lpβ2

β ∨ n−1

)
dx

=
√

3πc2

4

√
β ∨ n−1

Lpβ2 ,

and we have EK(̂r, r∗) �
√

β∨n−1

Lpβ2 . The definition of the loss function implies EK(̂r, r∗) ≤ n,

and thus we obtain the rate n ∧
√

β∨n−1

Lpβ2 when Lpβ2

β∨n−1 ≤ 1.

Next, we consider the case Lpβ2

β∨n−1 > 1. For any |i − j | ≤ C0
√

c2/c1, we have Vj (θ
∗) ≤

(1 + δ′)Vi(θ
∗) for some δ′ = o(1). This is by the definition of the variance function and the

fact that supx |ψ ′(x+�)
ψ ′(x)

− 1| � |�| for � = o(1). Therefore, we have

∑
1≤i �=j≤n:|i−j |≤C0

√
c2/c1

exp
(
−(1 − δ)npL(θ∗

i − θ∗
j )2

2(Vi(θ∗) + Vj (θ∗))

)

�
n−1∑
i=1

exp
(
−(1 − 2δ)npL(θ∗

i − θ∗
i+1)

2

4Vi(θ∗)

)
.
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By (34), we also have

∑
1≤i �=j≤n:|i−j |>C0

√
c2/c1

exp
(
−(1 − 2δ)npL(θ∗

i − θ∗
j )2

2(Vi(θ∗) + Vj (θ∗))

)

�
∑

1≤i �=j≤n:|i−j |>C0
√

c2/c1

exp
(
−(1 − 2δ)pLβ2(i − j)2

2c2(β ∨ n−1)

)

� n exp
(
−(1 − 2δ)pLβ2C2

0

2c1(β ∨ n−1)

)

�
n−1∑
i=1

exp
(
−(1 − 2δ)npL(θ∗

i − θ∗
i+1)

2

4Vi(θ∗)

)
.

The desired bound for EK(̂r, r∗) immediately follows by summing up the above bounds. �

To prove the lower bound, we first establish a few lemmas. The proof of these lemmas are
presented in Appendix D of the Supplementary Material.

LEMMA 8.1. Assume 1 ≤ C0 = O(1) and 0 < β = o(1). For any constant α > 0, there
exists constants C1,C2 > 0 such that for any θ ∈ �n(β,C0),

C1
1

β ∨ 1/n
≤ inf

θ0∈[θn,θ1]

n∑
i=1

ψ ′(θ0 − θi)
α ≤ sup

θ0∈[θn,θ1]

n∑
i=1

ψ ′(θ0 − θi)
α ≤ C2

1

β ∨ 1/n

for n large enough.

To proceed with our proof for the lower bound, we define

Gi,j,k,θ,r (u) = log
(1 + eθri

−θrk )u(1 + e
θrj

−θrk )1−u

1 + e
uθri

+(1−u)θrj
−θrk

.(35)

This term is a key ingredient in the exponent of the rate. We introduce another notation
r∗(i,j) ∈ Sn to be the element in Sn having

r
∗(i,j)
k =

⎧⎪⎪⎨⎪⎪⎩
r∗
k if k �= i, j,

r∗
j if k = i,

r∗
i if k = j.

(36)

That is, r∗(i,j) is a permutation by swapping the i, j th position in r∗ while keeping other
positions fixed.

LEMMA 8.2. Assume p
logn(β∨1/n)

→ ∞ and 1 ≤ C0 = O(1). For any constant C > 0,
there exist constants C1,C2 > 0, δ = o(1) such that for any θ∗ ∈ �n(β,C0), any r∗ ∈ Sn

and i �= j ∈ [n] such that |θ∗
r∗
i
− θ∗

r∗
j
| ≤ C, we have

inf
r̂

P(θ∗,r∗)(̂r �= r∗) + P(θ∗,r∗(i,j))(̂r �= r∗(i,j))

2

≥ C1 exp
(
−
√√√√C2Lp(θ∗

r∗
i
− θ∗

r∗
j
)2

β ∨ 1/n
− (1 + δ)2Lp

∑
k �=i,j

Gi,j,k,θ∗,r∗(1/2)

)
for n large enough. Here, r∗(i,j) is defined as in (36).
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Now we are ready to prove the lower bound part of Theorem 3.2.

PROOF OF THEOREM 3.2 (LOWER BOUND). We remark that p ≥ c0(β ∨ 1
n
) logn nec-

essarily implies 0 < β = o(1). It also implies n ∧ β−1 � 1 and β∨1/n
Lp

= o(1), which will be

useful in the proof. Recall the definition of r∗(i,j) in (36) for any r∗ ∈ Sn and i, j ∈ [n] such
that i �= j .

For any θ∗ ∈ �n(β,C0), we have

inf
r̂

sup
r∗∈Sn

E(θ∗,r∗)
[
K(̂r, r)

]
≥ inf

r̂

1

n!
∑

r∗∈Sn

1

n

∑
1≤i<j≤n

P(θ∗,r∗)
(̂
ri < r̂j , r

∗
i > r∗

j

)+ P(θ∗,r∗)
(̂
ri > r̂j , r

∗
i < r∗

j

)
= inf

r̂

1

n

∑
1≤i<j≤n

1

n!
∑

r∗∈Sn

P(θ∗,r∗)
(̂
ri < r̂j , r

∗
i > r∗

j

)+ P(θ∗,r∗)
(̂
ri > r̂j , r

∗
i < r∗

j

)
≥ 1

n

∑
1≤a<b≤n

2

n(n − 1)

× ∑
1≤i<j≤n

1

(n − 2)!
∑

r∗:r∗
i =a,r∗

j =b

inf
r̂

P(θ∗,r∗)(̂r �= r∗) + P(θ∗,r∗(i,j))(̂r �= r∗(i.j))

2

≥ 1

2n

n∑
a=1

2

n(n − 1)

× ∑
1≤i<j≤n

∑
b∈[n]\{a}:|a−b|≤1∨

√
C′

1(β∨n−1)

Lpβ2

1

(n − 2)!

× ∑
r∗:r∗

i =a,r∗
j =b

inf
r̂

P(θ∗,r∗)(̂r �= r∗) + P(θ∗,r∗(i,j))(̂r �= r∗(i.j))

2
,

where C′
1 > 0 is a constant. Note that for any a, b ∈ [n] such that |a − b| ≤ 1 ∨

√
C′

1(β∨n−1)

Lpβ2 ,

we have |θ∗
a − θ∗

b | ≤ C0(β ∨
√

C′
1(β∨n−1)

Lp
) = o(1). Then by Lemma 8.2, we have

inf
r̂

sup
r∗∈Sn

E(θ∗,r∗)
[
K(̂r, r)

]
≥ 1

2n

n∑
a=1

2

n(n − 1)

× ∑
1≤i<j≤n

∑
b∈[n]\{a}:|a−b|≤1∨

√
C′

1(β∨n−1)

Lpβ2

C′
3 exp

(
−
√

C′
2Lp(θ∗

a − θ∗
b )2

β ∨ n−1

− (
1 + δ′

1
)
Lp

∑
k �=a,b

log
(1 + eθ∗

a −θ∗
k )(1 + eθ∗

b −θ∗
k )

(1 + e
θ∗
a +θ∗

b
2 −θ∗

k )2

)
,

(37)
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for some constant C′
2,C

′
3 > 0 and some δ′

1 = o(1). We are going to simplify the second term
in the exponent. We have

∑
k �=a,b

log
(1 + eθ∗

a −θ∗
k )(1 + eθ∗

b −θ∗
k )

(1 + e
θ∗
a +θ∗

b
2 −θ∗

k )2
≤ ∑

k �=a,b

eθ∗
a −θ∗

k + eθ∗
b −θ∗

k − 2e
θ∗
a +θ∗

b
2 −θ∗

k

(1 + e
θ∗
a +θ∗

b
2 −θ∗

k )2
(38)

= 2
∑

k �=a,b

(cosh
θ∗
a −θ∗

b

2 − 1)e
θ∗
a +θ∗

b
2 −θ∗

k

(1 + e
θ∗
a +θ∗

b
2 −θ∗

k )2

= (
1 + δ′

2
)(θ∗

a − θ∗
b )2

4

∑
k �=a,b

ψ ′
(

θ∗
a + θ∗

b

2
− θ∗

k

)
(39)

= (
1 + δ′

3
)(θ∗

a − θ∗
b )2

4

∑
k �=a

ψ ′(θ∗
a − θ∗

k

)
(40)

for some δ′
2 = o(1), δ′

3 = o(1). Here, (38) uses log(1+x) ≤ x. In (39), we use θ∗
a − θ∗

b = o(1)

and coshx − 1 = (1 + O(x))x2

2 when x = o(1). From Lemma 8.1, we know
∑

k �=a ψ ′(θ∗
a −

θ∗
k ) � n ∧ β−1 � 1. Then using this and the fact supx |ψ ′(x+t)

ψ ′(x)
− 1| = O(t) when t = o(1),

we obtain (40). Using
∑

k �=a ψ ′(θ∗
a − θ∗

k ) � n ∧ β−1 again and the fact |θ∗
a − θ∗

b | ≥ β , there
exists a constant C′

4 > 0 such that√
C′

2Lp(θ∗
a −θ∗

b )2

β∨n−1

Lp(θ∗
a −θ∗

b )2

4
∑

k �=a ψ ′(θ∗
a − θ∗

k )
≤ C′

4√
Lpβ2

β∨n−1

.

Therefore, for an arbitrarily small constant δ > 0, we have constant C′
5 > 0, such that (37)

can be lower bounded by

C′
3 exp

(
−
√

C′
2Lp(θ∗

a − θ∗
b )2

β ∨ n−1 − (
1 + δ′

3
)Lp(θ∗

a − θ∗
b )2

4

∑
k �=a

ψ ′(θ∗
a − θ∗

k

))

≥ C′
3 exp

(
−
(

1 + δ′
3 + C′

4√
Lpβ2

β∨n−1

)
Lp(θ∗

a − θ∗
b )2

4Va(θ∗)

)

≥ C′
5 exp

(
−(1 + δ)

Lp(θ∗
a − θ∗

b )2

4Va(θ∗)

)
.

(41)

So far, we obtain

inf
r̂

sup
r∗∈Sn

E(θ∗,r∗)
[
K(̂r, r)

]
≥ 1

2n

n∑
a=1

2

n(n − 1)

× ∑
1≤i<j≤n

∑
b∈[n]\{a}:|a−b|≤1∨

√
C′

1(β∨n−1)

Lpβ2

C′
5 exp

(
−(1 + δ)

Lp(θ∗
a − θ∗

b )2

4Va(θ∗)

)
(42)
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≥ 1

2n

n∑
a=1

2

n(n − 1)

∑
1≤i<j≤n

∑
b=a+1

C′
5 exp

(
−(1 + δ)

Lp(θ∗
a − θ∗

b )2

4Va(θ∗)

)

≥ C′
5

2n

n∑
a=1

exp
(
−(1 + δ)

Lp(θ∗
a − θ∗

a+1)
2

4Va(θ∗)

)
.

Hence, we obtain the exponential rate.

In the following, we are going to derive the polynomial rate for the regime Lpβ2

β∨n−1 ≤ 1.

Note that for any a, b ∈ [n] such that |a − b| ≤ 1 ∨
√

C′
1(β∨n−1)

Lpβ2 , we have

Lp(θ∗
a − θ∗

b )2

4Va(θ∗)
� Lpβ2

n ∧ β−1

(
1 ∨ β ∨ n−1

Lpβ2

)
� 1.

Then from (42), there exist some constant C ′
6,C

′
7 > 0 such that

inf
r̂

sup
r∗∈Sn

E(θ∗,r∗)
[
K(̂r, r)

] ≥ 1

2n

n∑
a=1

2

n(n − 1)

∑
1≤i<j≤n

∑
b∈[n]\{a}:|a−b|≤1∨

√
C′

1(β∨n−1)

Lpβ2

C′
6

≥ C′
6

2

(
1 ∨

√
C′

1(β ∨ n−1)

Lpβ2

)

≥ C′
7

(
n ∧

√
β ∨ n−1

Lpβ2

)
,

where the last inequality is due to Lpβ2

β∨n−1 ≤ 1 and the fact that the loss is at most n. �
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal full ranking from pairwise comparisons” (DOI: 10.1214/22-
AOS2175SUPP; .pdf). The supplement [10] includes all the technical proofs. In Appendix A,
we first give the proof of Theorem 3.1. In Appendix B, we give the proof of Theorem 4.1.
After that, we prove Lemma 4.1, Lemma 4.2 and Lemma 4.3 in Appendix C. We then present
the proofs of Lemma 8.1 and Lemma 8.2 in Appendix D.
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