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We consider the problem of ranking n players from partial pairwise com-
parison data under the Bradley—Terry—Luce model. For the first time in the
literature, the minimax rate of this ranking problem is derived with respect
to the Kendall’s tau distance that measures the difference between two rank
vectors by counting the number of inversions. The minimax rate of ranking
exhibits a transition between an exponential rate and a polynomial rate de-
pending on the magnitude of the signal-to-noise ratio of the problem. To the
best of our knowledge, this phenomenon is unique to full ranking and has not
been seen in any other statistical estimation problem. To achieve the minimax
rate, we propose a divide-and-conquer ranking algorithm that first divides the
n players into groups of similar skills and then computes local MLE within
each group. The optimality of the proposed algorithm is established by a care-
ful approximate independence argument between the two steps.

1. Introduction. Given partially observed pairwise comparison data from n players, we
are interested in ranking the players according to their skills by aggregating the comparison
results. This high-dimensional statistical estimation problem has important applications in
many areas such as recommendation systems [1, 7], sports and gaming [2, 18, 24, 40, 41,
48], web search [17, 20], social choices [33, 36, 38, 39, 46], psychology [14, 35, 51], in-
formation retrieval [8, 32], etc. In this paper, we focus on arguably one of the most widely
used parametric models, the Bradley—Terry—Luce (BTL) model [4, 34]. That is, we observe
L games played between i and j, and the outcome is modeled by

a e noutti (7 I=1,....L
) Yijl ernou I(W) =1,...,L.
We only observe outcomes from a small subset of pairs. This subset E is modeled by
edges generated by an Erd6s—Rényi random graph [21] with connection probability p on
the n players. More details of the model will be given in Section 2. With the observations
{ij1},j)eE.i1e[L), our goal is to optimally recover the ranks of the skill parameters w;’s.
The literature on ranking under the BTL model has been mainly focused on the so-called
top-k ranking problem. Let r* be the rank vector of the n players. In other words, r* is a
permutation such that r* = j if w? is the jth largest number among {w;};c[4). The goal
of top-k ranking is to recover the set {i € [n]:r/ < k} from the pairwise comparison data.
Theoretical properties of the top-k ranking problem have been studied by [11-13, 27, 28] and
references therein. Recently, it was shown by [12] that both the MLE and the spectral ranking
algorithm proposed by [42] can exactly recover the set of top-k players with high probability
under optimal sample complexity up to some constant factor. In terms of partial recovery, the
minimax rate of the problem under a normalized Hamming distance was derived by [9].
In this paper, we study the problem of full ranking, the estimation of the entire rank vector
r*. To the best of our knowledge, theoretical analysis of full ranking under the BTL model has
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not been considered in the literature yet. We rigorously formulate the full ranking problem
from a decision-theoretic perspective, and derive the minimax rate with respect to a loss
function that measures the difference between two permutation vectors. To be specific, our
main result of the paper shows that

exp(—O(Lpp)) Lpp>1,
() inf sup EK(7,r*) <

1

7€6, ,x nA_ | —— L <1,
r*eg, Lp ﬂ p,B =
where &,, is the set of all rank vectors of size n, K(7, r*) is the Kendall’s tau distance that
counts the number of inversions between two ranks, and § is the minimal gap between skill
parameters of different players. The precise definitions of these quantities will be given in
Section 2. The minimax rate (2) exhibits a transition between an exponential rate and a
polynomial rate. This is a unique phenomenon in the estimation of a full rank vector. In
contrast, under the same BTL model, the minimax rate of estimating the skill parameters is
always polynomial [12, 42], and the minimax rate of top-k ranking is always exponential [9].
Whether (2) is exponential or polynomial depends on the value of Lpg that plays the role
of signal-to-noise ratio. When Lpg > 1, the exponential minimax rate is a consequence of
the discreteness of a rank vector. On the other hand, when Lpg8 < 1, the discrete nature of
ranking is blurred by the noise, and thus estimating the rank vector is effectively estimating
a continuous parameter, which leads to a polynomial rate. A more detailed statement of the
minimax rate (2) with an explicit exponent in the regime of exponential rate will be given in
Section 3.

Achieving the minimax rate (2) is a nontrivial problem. To this end, we propose a divide-
and-conquer algorithm that first partitions the n players into several leagues and then com-
putes a local MLE using games in each league. Finally, a full rank vector is obtained by
aggregating local ranking results from all leagues. The divide-and-conquer technique is the
basis of efficient algorithms for all kinds of sorting problems [30, 31, 47]. Our adaption of this
classical technique in the optimal full ranking is motivated by both information-theoretic and
computational considerations. From an information-theoretic perspective, games between
players whose skill parameters are significantly different from each other have little effect
on the final ranking result. This phenomenon can be revealed by a simple local Fisher in-
formation calculation of each player. The league partition step groups players with similar
skill parameters together, thus maximizing information in the follow-up step of local MLE.
From a computational perspective, the local MLE computed within each league involves an
objective function whose Hessian matrix is well conditioned, a property that is crucial for
efficient convex optimization. The description and the analysis of our algorithm are given in
Section 4.

Before the end of the Introduction section, let us also remark that the more general problem
of permutation estimation has also been considered in various other settings in the literature
[5, 6, 15, 16, 22, 23, 37, 43, 44]. For instance, in the problem of noisy sorting [6, 37], one
assumes a data generating process that satisfies P(y;j; = 1) > % +y when rf < r;.‘. In the

feature matching problem [15, 16], it is assumed that X; — le_* ~ N(0, criz) for some per-
mutation r*, and the goal is to match the two data sequences X and Y by recovering the
unknown permutation. An extension of this problem, called shuffled regression, assumes that
the response variable y; and regression function x;k B are linked by an unknown permutation.

Estimation of the unknown permutation in shuffled regression has been considered by [44].
The rest of the paper is organized as follows. We introduce the problem setting in Section 2.

The minimax rate of the full ranking is presented in Section 3. In Section 4, we introduce and

analyze a divide-and-conquer algorithm that achieves the minimax rate. Numerical studies of
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the algorithm and a real data example are given in Section 5 and Section 6, respectively. In
Section 7, we discuss a few extensions and future projects that are related to the paper. Due
to the limit on pages, we include the proof of the main theorem in Section 8 and the proofs
of all the other results in the Supplementary Material [10].

We close this section by introducing some notation that will be used in the paper. For
an integer d, we use [d] to denote the set {1,2,...,d}. Given two numbers a, b € R, we
use a V b = max(a, b) and a A b = min(a, b). For any x € R, |x] stands for the largest
integer that is no greater than x and [x] is the smallest integer that is no less than x. For two
positive sequences {a,}, {b,}, an < b, or a, = O(b,) means a, < Cb, for some constant
C=>0 1ndependent of n, an = Q(b,) means b,, = O(ay), and we use a, < b, or an =0(b,)
when both a,, < by, and b, < a, hold. We also write a, = o(b,) when limsup, b = 0. For
a set S, we use 1g) to denote its indicator function and S| to denote its cardinality. We
use the notation S = S W $» to denote a partition of § such that S; N S =& and § =
S1 U S,. For a vector v € R?, its norms are defined by |v|1 = Zflzl lvil, llvll? Zl v l
and |[v]looc = maxj<;<g |v;|. For a matrix A € R"*™, we use ||A|lop for its operator norm,
which is the largest singular value. The notation 1; means a d-dimensional column vector
of all ones. Given p, q e (0, 1), the Kullback-Leibler divergence is defined by D(p|q) =
plog +1-p) log —, - For a natural number n, &, is the set of permutations on [n].
The notatlon P and E are used for generic probability and expectation whose distribution is
determined from the context.

2. A decision-theoretic framework of full ranking.

2.1. The BTL model. Consider n players, each associated with a positive latent skill pa-
rameter w; for i € [n]. The games played among the n players are modeled by an Erd6s—

Rényi random graph A ~ G(n, p). To be specific, we have A;; n Bernoulli(p) for all
1 <i < j < n. For any pair (i, j) such that A;; =1, we observe the outcomes of L games
played between i and j, modeled by the Bradley—Terry—Luce (BTL) model (1). Our goal is
to estimate the ranks of the n players.

To formulate the problem of full ranking from a decision-theoretic perspective, we can
reparametrize the BTL model (1) by a sorted vector 6* and a rank vector r*. A sorted vector
0* satisfies 0] > 6 > --- > 6, and a rank vector r* is an element of the permutation set S,,.
We have

3) viji % Bernoulli(y (6% — 6%)), I=1,....L,

i J

where 1/ (-) is the sigmoid function () = Tle*f In the original representation (1), we have
wi = exp(G;"_*) for all i € [n]. With (3), the full ranking problem is to estimate the rank vector
r* from the random comparison data.

2.2. Loss function for full ranking. To measure the difference between an estimator 7 €
&, and the true r* € G,,, we introduce the Kendall’s tau distance, defined by

= 1
4) KFEr) == > Lisign(7; 7)) sign(rf —rt) <0}

I<i<j<n

where sign(x) represents the sign of x and nK(7, r*) counts the number of inversions between
7 and r*. Another distance is the normalized £ loss, defined as

ln
5 FE ) ==Y 7 —r7
(5) (. r") ni:llrl r;

’
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also known as the Spearman’s footrule. The two loss functions can be related by the following
inequality:

©) %F(?, ) < KF ) < FF ).

See [19] for the derivation of (6). The inequality (6) establishes an equivalence between the
estimation of the vector r* and that of the matrix of pairwise relation I{r’ < r;’.‘}, a key fact
that we will explore in constructing an optimal algorithm.

A problem that is closely related to full ranking is called top-k ranking. The goal of top-
k ranking is to identify the subset {i € [n]:r}* < k} from the random comparison data. In
[9], the minimax rate of top-k ranking was studied under the loss function of normalized
Hamming distance,

n 1 n n
) Hi (7, r") = ﬂ(ZI{M,m + Zlmsk,r;“>k})-

i=1 i=1
The comparison between (4) and (7) reveals the key difference between the two problems.
While top-k ranking only requires a correct classification of the two groups, the quality of
the full ranking depends on the accuracy of each individual [7; — r}*|. It is easy to see that
K(7, r) = 0 implies Hy (7, r*) = 0, but the opposite direction is not true.

2.3. Regularity of skill parameters. For the nuisance parameter 6* of the model (3), it is
necessary that the skill parameters of neighboring players 6 and 6% are separated so that
the identification of the ranks is possible. We introduce a parameter space that serves for this
purpose. For any 8 > 0 and any Cg > 1, define

@n(ﬁ,co):{aewzel z.--zen,1<M<c0foranyi¢j}.

CBli— T
In other words, neighboring 6/ and 6", are required to be separated by at least 8. The mag-
nitude of 8 then characterizes the difficulty of full ranking. The number Cy characterizes the
regularity of the space of sorted vectors ®, (8, Co). The special case ®,(f8, 1) only consists
of fully regular 6’s that can be written as 6; = o — Si. Throughout the paper, we assume that
Co > 1 is an absolute constant, but allow g to be a function of the sample size n, with the
possibility that § — 0.

The assumption 6* € ©, (B, Co) implies that the numbers 67, ..., 6 to be roughly evenly
spaced. This assumption, which can be certainly relaxed, allows us to obtain relatively clean
formulas of the minimax rate of full ranking. By restricting our focus to the space ®,(8, Co),
we will develop a clear but nontrivial understanding of the full ranking problem in this paper.
The extension of our results beyond 0* € ®,,(8, Co) will be briefly discussed in Section 7.

3. Minimax rates of full ranking. In this section, we present the minimax rate of full
ranking under the BTL model. To better understand the results, we first derive the minimax
rate of full ranking under a Gaussian pairwise comparison model in Section 3.1. This allows
us to highlight some of the unique and nontrivial features of the BTL model by comparing
the minimax rates of the two different distributions. Readers who are already familiar with
the BTL model can directly start with Section 3.2.

3.1. Results for a Gaussian model. Consider the same comparison scheme modeled by
the Erd6s—Rényi random graph A ~ G(n, p). For any pair (i, j) such that A;; = 1, we inde-
pendently observe

(8) Vij ’\'/\/(9:} — r*’." 02).
i j
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The joint distribution of {A;;} and {y;;}, under the above generating process, is denoted by
P(g*v o2.r%)- Estimation of the rank vector r* € &,, under the Gaussian model (8) is much less
complicated than the same problem under (3), because of the separate parametrization of
mean and variance.

THEOREM 3.1. Assume 6* € ®,,(B, Co) for some constant Co > 1 and 13;1 — 00. Then,
for any constant § that can be arbitrarily small, we have

! nX_E exp(_ (1 +8)np 67 — z+1)2) npp* > 1
n—1:+ 402 o2 '
inf sup E(G* *)K(?, r*) 2 i=1
7eG, px €5, 0_2 np,32
nA <1.

npp? o2
Moreover, let ¥ be the rank obtained by sorting the MLE 6, and then

(1= 8npOF —07,)* 2
ZCX ( )p(z H—l) >+n—5 npﬂ >1,

. n—1°¢ 402 o2
sup E(e*,azyr*)K(r,r )<
r*e&, O’2 anBZ
nA

_ <1.
np,32 o2 ~

Both inequalities are up to constant factors only depending on Cy and 5.

Theorem 3.1 characterizes the statistical fundamental limit of full ranking under the Gaus-
sian comparison model. The result holds for each individual 6* € ®, (8, Cop). It is interesting
to note that the minimax rate exhibits a transition between an exponential rate and a poly-
nomial rate. By scrutinizing the proof, the constant § can be replaced by some sequence
8, = o(1). Therefore, consider a special example 6* € ©,(8, 1), and the minimax rate (ig-
noring the n > term) can be simplified as

N (_<1+o(1>>npﬁ2) npp>
P 402 o? ’
©) . 5
o np
nA npp? = <1.

The behavior of (9) is illustrated in Figure 1. The quantity “25- plays the role of the signal-

to-noise ratio of the ranking problem. In the high SNR regime "Z /i > 1, the difficulty of the

ranking problem is dominated by whether the data can distinguish each r;* from its neighbor-
ing values. Therefore, ranking is essentially a hypothesis testing problem, which leads to an

2
exponential rate. In the low SNR regime ”g—f; < 1, the discrete nature of ranking is absent

because of the noise level. The recovery of r* is equivalent to the estimation of a continu-
ous vector in R”, which is essentially a parameter estimation problem. The polynomial rate

nA = ﬁZ is the usual minimax rate for estimating an n-dimensional parameter under the ¢

loss. It is also worthing noting that the rate (9) implies that the rank vector can be exactly

2 . . . . .
recovered when ”g;’ﬁ > Clogn for any constant C > 4. This is because in this regime, we

have K(7, r*) = o(n~!) with high probability by a direct application of Markov’s inequality.

According to the definition of K(7, r*), we know K(7, r*) = o(n~!) implies K(7, r*) = 0.
The upper bound of Theorem 3.1 involves an extra n~> term in the high SNR regime.

According to the proof, the number 5 in the exponent can actually be replaced by an arbitrarily
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Rate *
n
V1/SNR
1
Random
guess )
Polynomial
phase phase
exp (—SNR/4)
Exponential
1/n . Exact recovery
/ phase I phase
>
0 1/n? 1 4logn SNR

Fi1G. 1. lllustration of the the minimax rate of full ranking.

large constant. The n~> term does not contribute to the high-probability bound. By a direct

””ﬂ — oo, we have

application of Markov’s inequality, when

(10) K(r, r*

- ((1—8>np(9,-* ,H)z)

2
= 4o

with probability 1 — o(1). Notice that the high-probability bound (10) does not involve the
n=>. This is because when K(7, r*) is nonzero, it must be at least n 1 by the definition of the
loss function. Therefore, n™> can always be absorbed into the other term of the upper bound.

We also remark that the condition lggp -

nected with high probability. It is well known that when p < clo% for some sufficiently small
constant ¢ > 0, the random graph has several disjoint components, which makes the compar-
isons between different components impossible. The condition — oo can be slightly

1(’)155 n
relaxed to % > C for some sufficiently large constant that depends on § by carefully track-
ing the dependence among all constants in the proof, but we will just assume % — 00
throughout the paper to avoid this lengthy exercise of constants tracking.

An optimal estimator that achieves the minimax rate is the rank vector induced by the

MLE, which is defined by

(11) 0 e argemin ST Ay — 6 —6))”.

I<i<j<n

We note that the parameter 6* in (8) is identifiable up to a global shift. We may put an
extra constraint 176 = 0 in the least-squares estimator above, so that 6 is uniquely defined.
However, this constraint is actually not essential, since even without it, the rank vector 7
induced by 6 is still uniquely defined. To study the property of 6, we introduce a diagonal
matrix D € R"*" whose entries are given by D;; = Zje[n]\{i} A;j. Then Lo =D — A is the
graph Laplacian of A. A standard least-squares analysis of (11) leads to the fact that up to
some global shift,

(12) 6~ N(6* 0L,

where [,2 is the generalized inverse of L£4. The covariance matrix of (12) is optimal by
achieving the intrinsic Cramér—Rao lower bound of the problem [3]. Without loss of gener-
ality, we can assume rl-* = for each i € [n]. Then, by the definition of the loss function (4),
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we have

1 1 )
EKFr)=— 3 B@G>7=- 3 PO >0),

I<i<j<n I<i<j<n

and each IP’(@\,- > é\j) can be accurately estimated by a Gaussian tail bound under the distri-
bution (12), which then leads to the upper bound result of Theorem 3.1. A detailed proof of
Theorem 3.1, including a lower bound analysis, is given in Appendix A in the Supplementary
Material.

3.2. Some intuitions for the BTL model. Before stating the minimax rate for the BTL
model, we discuss a few key differences that one can expect from the result. Without loss of
generality, we assume r;* = i for all i € [n] throughout the discussion to simplify the notation.
Let us consider a problem of oracle estimation of the skill parameter of the first player 6}". To
be specific, we would like to estimate 6] by assuming that 6, ..., 6 are known. The Fisher
information of this problem can be shown as

n
(13) 17 (07) = Lp Y v/ (05 — 07).
j=2

The formula (13) characterizes the individual contribution of each player to the overall in-
formation in estimating 0. That is, the information from the games between 1 and j is

quantified by Lpy/' (0] — 0;‘). Since ¥/ (t) = < e 'l we have

ef
T2 =
¥ (0F — 07) < exp(—|of —07)).

In other words, /' (6] — 97) is an exponentially small function of the skill difference |0} — 9;‘ l.
This means for players whose skills are significantly different from 6}, their games with
Player 1 offers little information in the inference of 6.

This phenomenon can be intuitively understood from the following simple example
illustrated in Figure 2. Consider four players with skill parameters (0,6;,65,0;) =
(201, 200, 199, 0), and we would like to compare the first two players. With the direct link
between 1 and 2 missing, the only way to compare Players 1 and 2 is through their perfor-
mances against Players 3 and 4. Since both 6 — 6; =201 and 6} — 6; =200 are very large
numbers, it is very likely that Player 4 will lose all games against Players 1 and 2. On the
other hand, we have 6 — 65 =2 and 65 — 65 = 1, and thus Player 3 is likely to lose more
games against Player 1 than against Player 2. Therefore, we can conclude that Player 1 is
stronger than Player 2 based on their performances against Player 3, and the games against
Player 4 offer no information for this purpose. This example clearly illustrates that closer
opponents are more informative.

Mathematically, for any 6* € ©®,(8, Co) and any M > 0, it can be easily shown that

(14) 1 (07) < (1+ 0(e™™))Lp Y ¥'(6f —6)).
J=<M/B
03=200( 9 ——/ 3 )05=199
=201 1 — 4 6;=0

FIG. 2. A comparison graph of four players.
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Therefore, (13) and (14) imply that

(15) 17 (0F) = (1+ 0(e ™M) Lp 3" v'(6F —07).
J<M/B

There is no need to consider the games against players with j > M /B. Moreover, we also
observe from (15) that the parameter 8 plays two different roles in the BTL model:

1. The parameter § is the minimal gap between different players, and it quantifies the
signal strength of the BTL model.

2. The number 1/8 quantifies the number of close opponents of each player, and thus p/8
can be understood as the effective sample size of the BTL model.

While the first role is also shared by the § in the Gaussian comparison model (8), the second
role dramatically distinguishes the BTL model from its Gaussian counterpart. The effective
sample size of the Gaussian model is np, compared with p/8 of the BTL model. This critical
difference is a consequence of the nonlinearity of the logistic function. Increasing 8 magnifies
the signal but reduces the effective sample size at the same time. The precise role of g in full
ranking under the BTL model will be clarified by the formula of the minimax rate.

3.3. Results for the BTL model. To present the minimax rate of full ranking under the
BTL model, we first introduce some new quantities. For any i € [n], define

n
e VO =609

The quantity (16) is interpreted as the variance function of the ith best player. With a slight
abuse of notation, the expectation associated with the BTL model is denoted as Eg ).

(16) Vi(6%)

THEOREM 3.2. Assume 6* € ©, (8, Co) for some constant Cy > 1 and
00. Then, for any constant é that can be arbitrarily small, we have

S
(Bvn—lylogn -

—1 2
! nX:exp(— (1+8npL 6 — 67, 1) ) Lpp* >1
) . n—1: 1 4V; (6%) Bvnl '
_inf sup ]E(g*m*)K(r, r*) pe =
reG, r*e®, ,8 vl Lp,32
n L
Lpp? Bvn-l—

Moreover, let 7 be the rank computed by Algorithm 2, and then if additionally @ — 00, we
have

sup Egr 4 K(7, r*)

r*eG,
1 ”iexp(_(l—8)an(9,-*—9,-*+1>2)+”5 Lof*
& 4V, (6%) pvnt
N e Lpp?

Both inequalities are up to constant factors only depending on Cy and §.

Similar to Theorem 3.1, the result of Theorem 3.2 holds for each individual 9* €
®,(B, Co), and the minimax rate also exhibits a transition between an exponential rate and
a polynomial rate. To better understand the minimax rate formula, we use Lemma 8.1 to
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quantify the order of the variance function V;(6*). There exist constants Cy, C2 > 0, such

that
Vi (6% 1
cl<5 ) 100 C2<ﬁv—>.
n n n
Therefore, when 8 < n~!, the minimax rate (ignoring the n > term) can be simplified as

exp(—O(nLpp?) nLpp®>1,

(17 1 Lo <1
AN < 1.
A RS

The formula (17) also exhibits a transition between a polynomial rate and an exponential rate.
Its behavior can be illustrated by Figure 1 with SNR being © (nL PB?). It is worth noting that

the condition T — 00 is not needed when g < n~!, and the minimax rate can be achieved
by ranking the MLE,'
~ 1 1
(18) G:argmax[)?-logi—i-(l —)‘)--)log—],
o LT w6 —6)) PRIy - 6))

- 1 L
where y,'j = i Zl:l y,'ﬂ.
In comparison, when 8 2 n~!, the minimax rate (ignoring the n > term) is simplified into

lexp —O(Lpp)) Lpp>1,

nAa,— Lpp <1.

Compared with the minimax rate (9) for the Gaussian comparison model, the dependence of
(19) on B is weaker. This is a consequence of the dual roles of 8 discussed in Section 3.2. In
fact, by writing

(19)

Lpp=LE™" pp’.
we can directly observe the effects of 87! p and 82 as the effective sample size and the signal
strength, respectively. On the other hand, the number of total players n has very little effect
on the minimax rate formula.
The condition

np
logn

tion

m — oo required by Theorem 3.2 can be equivalently written as

— 00 and — 00. Compared with the setting of Theorem 3.1, an additional condi-

Blogn logn
/31 ogn > is assumed for the BTL model. This condition can be seen as a consequence
of the Fisher information formula (15) that statistical inference on the skill parameter of each
player only depends on the player’s close opponents. In other words, for each 67, the infor-

mation is available in the games on the local graph
(20) Ai—{ i |t —r*_ rg—rf| < — }
il =ril = = = 2

All the other games have little information in the statistical inference of 6. Therefore, it
is required that the local graph A; is connected. The condition ﬂl(l;gn — 00 guarantees the

connectivity of .A; for all i € [n]. Note that the size of the local graph is O (8~!), which again
justifies that the effective sample size of the BTL model is p/8 instead of pn in the Gaussian
case. Since the local graph A; is unknown, the additional @ — 00 assumption is needed in
the upper bound to estimate it or its surrogate.

IThe error rate (17) for the MLE (18) is an immediate consequence of Lemma 4.3.
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4. A divide-and-conquer algorithm. We introduce a fully adaptive and computation-
ally efficient algorithm for ranking under the BTL model in this section. We first outline
the main idea in Section 4.1. Details of the algorithm are presented in Section 4.2, and the
statistical properties are analyzed in Section 4.3.

4.1. An overview. In the Gaussian comparison model, we first compute the global MLE
for the skill parameters via the least-squares optimization (11), and then rank the players
according to the estimators of the skills. This simple idea does not generalize to the BTL
model, since the statistical information of each player concentrates on its close opponents,
a phenomenon that is discussed in Section 3.2. Therefore, instead of using the global MLE,
we should maximize likelihood functions that are only defined by players whose abilities
are close. This modification not only addresses the information-theoretic issue of the BTL
model that we just mentioned, but it also leads to Hessian matrices that are well conditioned,
a property that is critical for efficient convex optimization.

For Player i, the set of close opponents that are sufficient for optimal statistical inference is
given by A; defined in (20). Suppose the knowledge of .4; was available, we could compute
the local MLE using games only against players in .4;. This idea is roughly correct, but
there are several nontrivial issues that we need to solve before making it actually work. The
first issue lies in the identifiability of the BTL model that 6 can only be estimated up to a
translation, which makes the comparison between 6; obtalned from 4; and 0 obtained from
A; meaningless. The second issue is that the set A; is unknown, and we need a data-driven
procedure to identify the close opponents of each player.

We propose an algorithm that first partitions the n players into several leagues and then
use local MLE to compare the skills of players within the same league. The league partition
is data driven, and serves as a surrogate for the local graphs .4;’s. Moreover, for two players
i and j in the same league, the MLEs of their skill parameters are computed using the same
set of opponents, and thus 0; — 51 is a well-defined estimator of 6 — 97.

Another key idea we use in our proposed algorithm is that the estimation of r* is closely
related to the estimation of the pairwise relation matrix R* defined as

For any estimator of R*, it can be converted into an estimator of the rank vector »* according
to Lemma 4.1. As a result, we shall focus on constructing a good estimator for all the pairwise
relations {I{r’ < r;?‘}}i<j.

This divide-and-conquer algorithm, which will be described in Section 4.2, resembles typ-
ical strategies adopted in professional sports such as European football leagues. It is compu-
tationally efficient and we will show the algorithm achieves the minimax rate of full ranking.

4.2. Details of the proposed algorithm. We first decompose the set [L] by {1,..., L1}
and {L1+1,..., L}. Games in the first set are used as preliminary games for league partition,

and games in the second set are used for computing the MLE. Under the condition @ — 00,

we can set the number L as L1 = [4/Llogn]. Define

m_ 1 o _ 1 <
Yij L—Zyijz and y;»" = A3 > i
= 1 l=L1+l
as the summary statistics in {1, ..., Ly} and {L1 + 1, ..., L}, respectively.

The proposed algorithm consists of four steps, which we describe in detail below before
presenting the whole procedure in Algorithm 2.
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Algorithm 1: A league partition algorithm

Input : {Aijyi(j])}lfi<j§” and {A;j}1<i<j<ns M and h
Output: A partition of [r]: S1, ..., Sk such that [n] = Lﬂle Sk
1 For i in [n], compute w; < ¥ ;i Ay L{F;; < ¥ (—2M)}.
Set §; < {i e[n]:w!” <h}andk=1.
2 While n — (|S1] +--- 4+ [Sk]) > [Skl/2,
Foreachi € [n]\(S; U---U ),
k+1 (1
compute w{ " < ¥ i (s10-Use) Aij]I{yl'(j) =¥ (=2M)}.
Set Spy1 < {i € [nI\S1U---US) :w™ ™ <hyand k —k+1.
3 Set K < k—1and Sk < Sk U ([n]\(S] U---U Sg_1)).

Step 1: League partition. For each i € [n], we define

(22) wi’ = 3" AyI{5 < w(=2m)},
Jé€ln]

where M is some sufficiently large constant. The indicator I{ &i(jl) < ¥ (—2M)} describes the
event that Player i is completely dominated by Player j in the preliminary games. The quan-

tity wi(l) then counts the number of players who have dominated Player i. If wi(l) is suffi-
ciently small, Player i should belong to the top league since only few or no players could

dominate Player i. Indeed, the first league is defined by
(23) Si={ienl:w" <hl,
where 4 is chosen as h = %. A data-driven & will be described in the Section 4.5. Similarly,

wi@) and the second league S, can be defined by replacing [n] with [#]\{S} in (22) and (23).

Sequentially, we compute wl-(kH) and Si41 based on players in [#]\(S; U --- U Sg) for all
k > 1. This procedure will terminate as soon as the number of the players who are yet to be
classified is small enough, at which point all of the remaining players will be grouped together
into the last league. The entire procedure of league partition is described in Algorithm 1.
Step 2: Local MLEs and within-league pairwise relation estimation. Having obtained the
league partition Si,..., Sx, we need to compare players in the same league in the next
step. Given the ambiguity between neighboring leagues, we shall also compare players if
the leagues they belong to are next to each other. Therefore, for each k € [K — 1], we need to

compute the MLE for {6 };cs,us,,- This leads to the comparison between any two players
in Sg U Sg11. Define

(24) E={G.p:1<i<j<ny(-M) <5, <y}
For each k € [K — 1], the local negative log-likelihood function is given by
0 9) = 3 Aij [y@ log ————
(. pee Y V(0 —0))
(25) i,j€Sk—1USkUSk+1USk+2
-(2) 1 ]
1—-y5)log ——|.
+(1=735") S —r—

When k=1 or k = K — 1, we use the notation So = Sg+1 = . Note that the negative
log likelihood function is only defined for edges in £. In other words, only games between
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close opponents are considered. Moreover, some of the top players in S may have close
opponents in the previous league Sx_1, and some of the bottom players in Si4+1 may have
close opponents in the next league Six». The likelihood should include these games as well
for optimal inference of the parameters {6;’;* }ies Usis, - The MLE is defined by

(26) 6® € argmin¢® (9),
which is any vector that minimizes 2% (). Then, for any i € S; and any j € S; U Sg41, set

Ry =1 =31

Note that {é;(k)}ieskusk 1 1s defined only up to a common translation, but even with such
ambiguity, the comparison indicator R;; is uniquely defined.

We also remark that the computation of the MLE (26) is a straightforward convex opti-
mization. It can be shown that the Hessian matrix of the objective function is well conditioned
(Lemma C.2 in the Supplementary Material), and thus a standard gradient descent algorithm
converges to the optimum with a linear rate [9, 12].

Step 3: Cross-league pairwise relation estimation. Consider i and j that belong to Sy and
S; respectively with |k —[| > 2. This is a pair of players that are separated by at least an entire
league between them. For all such pairs, we set

R,‘j =]I{k <l}.

Combined with the entries that are computed in Step 2, all upper triangular entries of the
matrix R have been filled. The remaining entries of R can be filled according to the rule
R; i+ R ji = 1.

Step 2 and Step 3 together serve the purpose of estimating the pairwise relation matrix
R* defined in (21). Tllustrated in Figure 3, the matrix R* can be decomposed into blocks
{Rgikx Sz}k<1 according to the league partition {Sk}re[k]. The yellow blocks close to the di-
agonal are estimated by the procedure described in Step 2. In Figure 3, the data used in the
two local MLEs (k = 1 and k = 4) are marked by different patterns for illustration. For ex-
ample, when k = 4, we obtain estimators for R§4X s, and R§4X s based on the local MLE that
involves observations from {(i, j) € £ : i, j € S3U S4 U S5 U Sg}. The blue blocks are away
from the diagonal and are estimated in Step 3. The remaining blocks in the lower triangular
part are estimated according to R;; + R;; = 1.

Sy Sa S3 S4 S5 S¢ .. Data used in local MLEs:
S1 k=1:
Sa
S3
Sy k=4:
Ss
Se

FI1G. 3. lllustration of Step 2 and Step 3.
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Algorithm 2: A divide-and-conquer full ranking algorithm

Input : {Aijy,'(j])}lfi<j§m {Aijy[(jZ)}lfi<j§n and {A;j}1<i<j<n; M and h
Output: A rank vector ¥ € G,
1 Run Algorithm 1 and obtain the partition [n] = &szl Sk.
Set So = Skx4+1=9.
2 Forkel[K —1],
compute the local MLE 6*) according to (26).
Fori € S¢ and j € Si U Sk1,
set R;j < ]I{gi(k) > §§k)}.
3 Forke[K—2]andle[k+2:K],
For (i, j) € S, x S,
set R;j < 1.
Forie[n]and je[i +1:n],
set RJ',' «~1- Rij-
4 Fori € [n],
compute s; <= 3 e iy Rij-
Sort {s;}ie[n) from high to low and obtain a full rank vector 7.

Step 4: Full rank estimation. In the last step, we convert the pairwise relations estimator R
into a rank estimator. First, compute the score for the ith player by

S; = Z R,’j.
JemN\{i}

Then the rank estimator 7 is obtained by sorting the scores {s; };c[n].
The whole procedure of full ranking is summarized as Algorithm 2.

4.3. Statistical properties of each step. The purpose of this section is to prove the upper
bound result of Theorem 3.2 by analyzing the statistical properties of Algorithm 2. The four
components of the algorithm will be analyzed separately. We will first analyze Step 4 in
Section 4.3.1, then Step 1 in Section 4.3.2, followed by Step 3 in Section 4.3.3, and finally
Step 2 in Section 4.3.4. The results of these individual components will be combined to derive
the minimax optimality of Algorithm 2, presented in Section 4.4.

4.3.1. From pairwise relations to full ranking (Step 4). We first establish a result that
clarifies the role of Step 4 of Algorithm 2. Consider any matrix R € {0, 1}"*" that satisfies
Rij+ R;; = 1forany i # j. Let7 be the rank vector obtained by sorting {Zje[n]\{i} Rij}ien
from high to low. The error of 7 is controlled by the following lemma.

LEMMA 4.1. For any r* € G,,, define its pairwise relation matrix R* such that R;"j =
Ifr} < r;’.‘}. Then we have

S| A

K(r, r*) <

Y. I{Rij #RS}.

I<i#j=<n

Lemma 4.1 is a deterministic inequality that bounds the error of the rank estimation by
the estimation error of pairwise relations. It implies that to accurately rank n players, it is
sufficient to accurately estimate the pairwise relations between all pairs.
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4.3.2. Statistical properties of league partition (Step 1). The partition output by Algo-
rithm 1 satisfies several nice properties that are stated by the following theorem.

THEOREM 4.1. Assume 6* € ©,(8, Co) for some constant Cy > 1 — o0 and

L
* logn
m — 00. Let {Sk}ke[K] be the output of Algorithm 1 with Ly = [/Llogn],
1 <M = O(1) and h = = . Then there exist some constants C1, C>, C3 > 0 only depending
on Cy such that the followmg conclusions hold with probability at least 1 — O (n~°):

1. Boundedness: For any k € [K] and any i, j € S;—1 U Sg U Sg+1, we have |0* — 0 | <
C1 M. Recall the convention that So = Sg+1 = J;
2. Inclusiveness: For any k € [K] and any i € Sk, we have {j € [n] : |[r} — r;‘| <
Sk—1U Sk U Skt13
3. Separation: For any i € Sy and j € S; such that | — k > 2, we have 9;@ > 9:;;
1 J

CQM}C

4. Independence: For any k € [K], we have Sx = S’k Here, {S’k}ke[ K] IS a partition that is
measurable with respect to the o -algebra generated by {(A;;, yl Y ) |0* — 0% > 1.9M};
J

5. Continuity: For any k € [K — 1] and any i € Sp_1 U Sk U Sk+1 U Sk+2, we have |{j €
[n]: |9* -0 |< M0 (Sk- IUSkUSk+1USk+2)|>C%(ﬁ An).

We give some remarks on each conclusion of Theorem 4.1. The first conclusion asserts
that the skill parameters of players from the neighboring leagues are close to each other. This
property is complemented by the second conclusion that the close opponents of each player
are either from the same league, the previous league or the next league. In other words, for
any k € [K] and any i € S, the local graph {A i : j, k € Sg—1 U S U Sg41} can be viewed as
a data-driven surrogate of .A defined in (20). Moreover, the second conclusion also implies
that |Sk—1 U Sg U Sk11] 2 /\ n, from which we can deduce the bound K = O (ng Vv 1) that

controls the number of 1terat10ns Algorithm 1 needs before it is terminated.”> Conclusion 3
implies that the partition {Sk}rec(k] is roughly correlated with the true rank in the sense that
it correctly identifies the comparisons between players who do not belong to neighboring
leagues. Conclusion 4 shows that almost all of the randomness of the partition is from that of
{(Aj}, )—/l(jl) ): 9:} — 0% < —1.9M}. This fact leads to a crucial independence property in the
later analysis of the local MLE. Conclusions 1, 2, 4 and 5 are crucial in the analysis of Step 2
in Section 4.3.4, while Conclusion 3 will be used in the analysis of Step 3 in Section 4.3.3.

The proof of Theorem 4.1 is a delicate mathematical induction argument that iteratively
explores the asymptotic independence between consecutive constructions of leagues. To be
specific, the random variable

w*t = 3 A1 < y(—2m))
JelnN(S1U-US))

can be sandwiched between w( D and w(kH) We show that both w( 1 and w(kH) when
conditioning on the previous leagues S1, ..., Sk, approximately follow Bmomlal distribu-

tions.? Essentially, the A;;’ ;s that contribute to the summation of w(k+1) are disjoint from the

2We can in fact prove a stronger result that BAN NINABS ﬁ A n uniformly for all £ € [K] with probability at
least 1 — O(n™ ).
3Here, y§k+1) is defined as Zje[n]\(Siu--AUS,Q) A,'j]I{O;'} > 9;’;* + 2M + &1}, for some quantity §; such that

1465 > 0% +2M + 8} is smaller than I{5;’ < y(=2M)} for all pairs (i, j) with high probability, and S} U
J i
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S1U...USg [n]\(SIUUSk)
A A

U ..US]C<. ‘\\

1] @y

19 D/—~\\

1 wz2 \\‘
[n]\ (S1U...US)< %3 (k+1)‘
. i3 NN
14 — _/\
k+1)
24 \
. N

FI1G. 4. Illustration of the independence property of Algorithm 1.

A;j’s that lead to the constructions of Sy, ..., Sk, which then implies an asymptotic indepen-
dence property between (w(k+1) _(kH)) and Sy, ..., Sx. This phenomenon is illustrated in
Figure 4. In the picture, we use the orange block to denote Sy U --- U S, the set that has
already been partitioned The next step of the algorithm is to construct the (k + 1)th league
from [n]\(S1 U --- U Sk), which is the blue block. From the positions of w( +D ’s, we ob-

serve that the construction of S depends on A;;’s that are in the yellow area. On the other

hand, since the area on the left-hand side of the dashed curve satisfies y(l) <Y (—2M), the
construction of the first k leagues only depends on A;;’s that are in the grey area. The inde-
pendence property can be easily seen from the separation between the grey and the yellow
areas. A rigorous proof of Theorem 4.1, which is based on this argument, will be given in
Appendix B in the Supplementary Material.

4.3.3. Statistical properties of cross-league estimation (Step 3). The analysis of Step 3
is quite straightforward following the results from the league partition. Assume the Conclu-
sion 3 of Theorem 4.1 holds. Then for any i € S; and j € S; such that [ — k > 2, we have
R* = 1. Since R;; = 1 for all such pairs, we have } ;c1x—2) 2 iefk+2:K] I{RlﬂéR ieSpjes) =
0.

4.3.4. Statistical properties of local MLEs (Step 2). The main challenge of analyzing the
local MLE is the dependence between the partition {Si }xe[x and the likelihood (25). We are
going to use Conclusion 4 of Theorem 4.1 to resolve this issue. Define

Aij = Ayl{[6) — 03] < M2} + AyT{G, j) € €, M/2 < [0} — 6] < 1.1M]},
1 J 1 J

and

. v 1 1
(®@6) = A--[‘.@l —+(1-57 —}
i, J€Sk—1USkUS+1USk+2

S’,/( is another partition of [n] that is identical to S1 U- - - U Sy with high probability. The quantity w(k+ ) is defined
similarly. See the proof of Theorem 4.1 for details.
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The maximizer of £®) (0) is denoted by

(27) 6® ¢ argmin£® (6).

The introduction of ¢{®) (0) and 6% is to disentangle the dependence of the MLE on the

league partition. By Theorem 4.1, we know that Sy = Sy for all k € [K]. The concentration

of {7’} implies that {|6% — 6| < M/2} C {(i. j) € £} C {16} — %] < 1.1M} for all 1 <
y i Jj 1 J

i < j <n. Therefore, we have

I{G, j) € £} =T{|6% — 65| < M/2} +T{(i, j) € €, M2 < |6 — 65| < 1.1M]).
i J i J

We can thus conclude that ¢®)(9) = ‘o (0) for all & with high probability. The result is
formally stated below.

LEMMA 4.2. Assume 0% € ©,(8, Cy) for some constant Co > 1, @ — 00 and

m — 00. Let {Si}ke(k] be the output of Algorithm 1 with Ly = [/Llogn],

1<M=0Q1)and h = % Then, with probability at least 1 — 0(n=?), we have £® (9) =
{® (0) for all 0 and for all k € [K]. As a consequence, {é\i(k)}ieskuskﬁ and {éi(k)}ieskusk+1
are equivalent up to a common shift.

With Lemma 4.2, it suffices to study (27) for the statistical property of the MLE. Note that
{A,",-} is measurable with respect to the o-algebra generated by {(A;;, y; Jl )) : IQ;} - 9;’}| <

1.1M}. Theorem 4.1 shows that {Sy} is measurable with respect to the o -algebra generated
by {(Ajj, )')i(/-l)) 1 10% — 0%] > 1.9M}. We then reach a very important conclusion that {A,-j},
. ; 7
-(2
{y,-(j
on the partition {Sy}. To be more specific, for any i, j € Sx U Sx4+1 such that 0%, > 6%, since
J

1

)} and {Sy} are mutually independent and, therefore, we can analyze ) by conditioning

Rij = l{égk)>é(k)}, we will provide an upper bound for P(éi(k) < éj(-k)|{§k}ke[[(]).
i J
To this end, we state a result that characterizes the performance of the MLE under a
BTL model with bounded skill parameters. Consider a random graph with independent
edges B;; ~ Bernoulli(p;;) for 1 <i < j < m. For each B;; =1, observe i.i.d. y;j; ~
Bernoulli(y (f — n%)) for I =1,..., L. Let J;; = 13"/~ yiji, and we define the MLE by
(28) e in » B[' 1 : + (1=l ! }
1 € argmin ii| yij log —— —yij)log————|.
B R O YL =y =)
LEMMA 4.3. Assume n] > --- >y, and nf — ny, < k. There exists some constant ¢ €
(0, 1) such that p;j = p forall |i — j| < cm and p;j < p otherwise. As long as Mg(r:ln—’;m — o0
and k = O(1), then for any § > 0 that is sufficiently small, there exists a constant C > 0 such
that

(1 =&)L} — 15> ) ”_7}’

P@: <7;) < C[eXp(_ 2(W; (n*) + Wi(n*))

foralll1 <i < j <m,where W;(n*) = foralli € [m].

1
Y jetmiy Pij ¥ (f —n})
The proof of Lemma 4.3, which relies on a recently developed leave-one-out technique in
the analysis of the BTL model [9, 12], will be given in Appendix C in the Supplementary
Material.
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By conditioning on {Ek}, the statistical property of (27) is a direct consequence of
Lemma 4.3. Note that P(él-(k) < éj(.k)|{.§'k}ke[1<]) is a function of {S'k}ke[K], and we will es-
tablish a uniform upper bound for this conditional probability for any partition {Sk}re[k]
satisfying the following conditions:

(i) Forany k € [K] and any i, j € S'k_l U S’k U 5‘k+1, we have |0% — 07| < C1 M;
i J

(ii) For any k € [K] and any i € S, we have {j € [n]: [r] — r;‘l < %} C Sk—1 U S U
Skt1: 5 L 5

(iii) Forany k € [K — 1] and any i € Sx—1 U Sx U Sg11 U Sg12, we have [{j € [n]: 0% —
9;‘}| <My (Sk=1 U Sk U St U Skg2)| > C3(% An).

Note that we use the convention So =35 k+1 = and Cy, Cy, C3 are the same constants
in Theorem 4.1. Consider any partition {S‘k}ke[K] satisfying the three conditions above.
When applying Lemma 43 by Conditions (i) and (i), we have x = 2C1M and m =
|Sk U Sk U Sk+1 U Sk+2| /\ n. We also know that for any i, j € Sk U Sk U Sk+1 U Sk+2

such that [0% — 0%| < M we have A; ; = A;j ~ Bernoulli(p). Then Condition (iii) implies
i J
the existence of a band in {(r}, r;‘) 20, j € Sp—1 USk U Sky1 USkao} with width at least cm

for some constant ¢ > 0, such that A; j ~ Bernoulli(p) for all pairs in the band. For any

other (i, j), we have A; j ~ Bernoulli(p;;) with p;; < p. Having checked the conditions of
Lemma 4.3, we obtain the following result for the local MLE (27),

(1—38)npL (0% — 0%)>
: ! ) +n7],
2V (6%) + V,(0%))

29) PO <0 (Sihkerxy) < c[exp<—

for any i, j € Sp U Sk+1 such that 9* > 0%. Recall the definition of V;(0*) in (16). The

constant é in (29) can be made arbltrarlly srjnall with a sufficiently large M. To derive (29)
from Lemma 4.3, we only need to show

poY WO —8]) < (14+0(e M) D Pii ¥ (67 = 0r)

JEm\i} J€Sk—1USkUSk11USk42)\ (i}

for all i € S U 5’k+1. This is true by a similar argument that leads to (15), together with
Condition (ii). Finally, by Theorem 4.1, Conditions (i)—(iii) hold for {Sk}ke[K] with high
probability, and thus (29) is a high-probability bound. A similar bound to (29) also holds for
(26) by the conclusion of Lemma 4.2.

4.4. Analysis of Algorithm 2.  With the help of Lemma 4.1, Theorem 4.1, Lemma 4.2 and
Lemma 4.3, we are ready to analyze the performance of Algorithm 2 by sketching the upper
bound proof of Theorem 3.2. By Lemma 4.1, we have

Y. P(Rij #R).

I<i#j<n

EK(7, r*) <

S| e

It suffices to give a bound for P(R;; # R;‘/-) for every pair i # j. For each pair, it can be shown
that ‘

(1 —8)npL(©% — 0%)*
i J >+n_7.
2V, (0%) + V,: (6%)

(30) P(Rij # R};) S exp(
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A rigorous proof of (30) will be given in Section 8. Intuitively, Theorem 4.1 has established
that the league partition only leads to errors of estimating lekj for pairs that do not belong
to neighboring leagues. For such pairs, the error probability can be bounded by the results
of Lemma 4.2 and Lemma 4.3. Finally, by carefully summing the bound (30) over all i # j

2 2
in the two regimes ﬁvaf,l <1 and ﬂLff,l > 1, we obtain the desired upper bound result

of Theorem 3.2. The detailed proof for the upper bound of Theorem 3.2 will be given in
Section 8.

4.5. A data-driven h. Our proposed algorithm relies on a tuning parameter h = éw that
is unknown in practice. This quantity can be replaced by a data-driven version, defined as
~ 1 _
31) A== Y agi{iem <y ) < 1.8M).

I<i<j<n

A standard concentration result implies that h = pT with high probability. Moreover, by

defining
|
F= Y aglfiam = |y D) < 18m),

n I<i<j<n
1.1M<\0:‘*70r**|<1.9M
i J

it can be shown that 2 = h with high probability. Since h is measurable with respect to the o -

algebra generated by {(4;;, j}l(jl)) 1.1M < |9* — 9**| < 1.9M}, we still have the asymptotic

independence property between the league partltlon and local MLE after i being replaced by
7 in Algorithm 1. Therefore, with a data-driven h being used in the proposed algorithm, the
upper bound conclusion of Theorem 3.2 still holds.

5. Numerical results. In this section, we conduct numerical experiments to study the
statistical and computational properties of Algorithm 2.

5.1. Simulation setting. In our experiment, we consider * € R" with n = 1000. In par-
ticular, we set 6 = —Bi for all i € [n] with some 8 € [0.001, 0.05]. The range of 8 implies
that the dynamic range 91* — 9{"000 takes value in [0.999, 49.95]. We assume the true rank is
the identity permutation, thatis, »* =i for all i € [n]. We also consider three different (L, L)
pairs: (50, 10), (75, 15), (100, 20) in Algorithm 2.

5.2. Implementation. In the implementation of Algorithm 2, we set M = 5. For the
choice of &, though the recommended data-driven estimator (31) works for the theoretical
purpose, it may not be a sensible choice for a data set with a moderate size. Note that with
M =35, we have ¥ (1.2M) = 0.9975274 and v (1.8M) = 0.9998766, respectively, and thus
the indicator I{1.2M < | ~! ()'Jl.(jl))l < 1.8M} is usually zero in (31). To address this issue, we
set h by

1
h=04x~ > Ayl WM =<5 P <y )

I<i<j<n
The computation of the local MLE (26) is implemented by the MM algorithm [25]. All sim-
ulations are implemented in Python (along with NumPy package, whose backend is written
in C) using a 2019 MacBook Pro, 15-inch, 2.6 GHz 6-core Intel Core i7.
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12

—e— (L, L1) = (50, 10)
(L, L1) = (75, 15)
—~— (L, L1) = (100, 20)

10

Number of leagues
o

beta

FI1G. 5. The number of leagues obtained by Algorithm 1. The orange curve is mostly overlapped by the green
curve.

5.3. Accuracy of league partition. We first study Algorithm 1, which is Step 1 of Al-
gorithm 2. The purpose of Algorithm 1 is to divide all players into K leagues. The average
value of K from 50 independent experiments is reported in Figure 5. This number increases
with 8 linearly, which agrees with our theoretical bound K = Op(ng Vv 1).

To quantify the accuracy of Algorithm 1, we define the following metric:

1 K—-1

1 k0 / S, i ¥ , S,/ K Z 3,
Epartition ={K-2 kX::Z {max{r;:i €Uy o Spr}>min{r:ieUp . i1}

0 K <3.

The quantity Eparition is €ssentially designed to verify the Conclusion 3 in Theorem 4.1, and
we expect that Eparition should be 0 with high probability. Note that Conclusion 3 of The-
orem 4.1 guarantees the correctness of the cross-league pairwise relation estimation, which
is Step 3 of Algorithm 2. For each combination of (8, L, L1), we generate independent data
and repeat the experiments 50 times. It turns out that Eparion 18 always 0, which agrees with
the theoretical property of the league partition.

5.4. Statistical error. Next, we study the ranking error of the proposed divide-and-
conquer algorithm (Algorithm 2) under the Kendall’s tau distance defined by (4). For com-
parison, we also implement the global MLE and the spectral method. The MLE outputs the
rank of the entries of 6 defined by (18). The spectral method, also known as rank centrality,
is a ranking algorithm proposed by [42]. Define a matrix P € R"*" by

1

S Aij Vi L% ],
Pij = 1
! I== > Audi i=],
le[n]\{i}

where d is set to be twice the maximum degree of the random graph A. Note that P is the
transition matrix of a Markov chain. Let 7 be the stationary distribution of this Markov chain,
and the spectral method outputs the rank of the entries of the vector 7.
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F1G. 6. Statistical error under Kendall’s tau. Left: (L, L1) = (50, 10); Middle: (L, L) = (75, 15); Right:
(L, Ly)=(100,20).

Both the MLE and the spectral method have been studied for parameter estimation [12,
42] and top-k ranking [9, 12] under the BTL model. However, to the best of our knowledge,
the statistical properties of the two methods for full ranking have not been studied in the
literature. The recent work [12] has established the estimation errors of the skill parameter
for both the MLE and the spectral method. Their results involve a factor of ¢?™# in the
estimation error under an £, loss, which suggests that the MLE and the spectral method may
not perform well when the dynamic range nf diverges.

We implement the MLE, the spectral method, and the divide-and-conquer algorithm for
various combinations of 8 and L. The results of each setting are computed by averaging
across 50 independent experiments. As shown in Figure 6, the spectral method is significantly
worse than the MLE and the divide-and-conquer algorithm. The performance of the spectral
method may be explained by the ¢ ™) factor in the £+, norm error bound obtained by [12],
though the exact relation between the £, error and the full ranking error is not clear to us. On
the other hand, the error curves of the MLE and the divide-and-conquer algorithm are very
close. Since the divide-and-conquer algorithm has been proved to be minimax optimal, the
simulation results suggest that the MLE may also enjoy such statistical optimality.

The current analysis of the MLE [9, 12] crucially depends on the spectral property of
the Hessian matrix H(6*) of the objective function of (18). It is known that the condition
number of H(#*) on the subspace orthogonal to 1, is of order ¢?"# which explains the
e?2@B) factor in the Lo estimation error of the MLE [12]. However, our simulation study
reveals that the error bound of [12] can be potentially loose. The definition of the Kendall’s
tau distance suggests that a sharp analysis of the MLE requires a careful study of the ran-
dom variable 9 o — 0 . We conjecture that the variance of 0 * — 9 « should be approximately

proportional to (er* — e,*)TH ) (er* — er*) where ¢; is the ]th canonical vector with

all entries being 0 except that the jth entry 1s 1. Since H(0*) can be viewed as the graph
Laplacian of some random weighted graph, there may exist random matrix tools to study
(erl_* — e,}k)TH (9*)T(e,i* — e,;_f) directly without using the naive condition number bound.
Moreover, it may be possible to adopt the divide-and-conquer idea in establishing the opti-
mality of the MLE by splitting the analysis into several small blocks with the subproblem in
each block being well conditioned. We leave this interesting direction as a future project.

In comparison, our divide-and-conquer algorithm does not need to solve the global MLE.
Since the objective function of each local MLE is well conditioned (Lemma C.2 in the Sup-
plementary Material), Algorithm 2 is provably optimal in addition to its good performance in
simulation.

5.5. Computational cost. Finally, we compare the computational costs of the three meth-
ods. The average time needed to run the three algorithms is given in Figure 7. The spectral
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F1G. 7. Running time comparison. Left: (L,L{) = (50,10); Middle: (L,L;) = (75,15); Right
(L, Ly)=(100,20).

method, though suffers from its unsatisfactory statistical error, is the fastest, partly because
finding the stationary distribution is just a single line of code using a NumPy function whose
backend is C. The running time of the MLE grows rapidly as 8 increases. This can be ex-
plained by the growing condition number of the Hessian matrix H(6*). While the condition
number may not affect the statistical error of the MLE, it does have a rather strong effect
on its computational cost. On the other hand, the running time for the divide-and-conquer
method (Algorithm 2) first increases with 8, and then stabilizes. This is the effect of Al-
gorithm 1, which divides a large difficult problem into many small subproblems, and after
that each small subproblem can be conquered efficiently. In fact, we can further improve the
computational efficiency by solving the subproblems in parallel. The initial increase of the
running time of Algorithm 2 is because of the additional league partition step. Recall that
the league partition step divides the players into K = Op(nf Vv 1) subsets. When g is small,
we have a very small K. According to the formula (25), the local MLE is as difficult as the
global MLE whenever K < 4. In this regime, the divide-and-conquer method is more time
consuming because of the additional league partition step. On the other hand, as § grows, the
computational advantage of the divide-and-conquer strategy becomes significant. This makes
our proposed algorithm scalable to large data sets, while preserving the statistical optimal-
ity, which concludes the divide-and-conquer algorithm as the best overall method among the
three.

6. A real data application. In this section, we discuss an application of our ranking
algorithm in finance to rank stocks from mutual fund holdings. Investing in the stock market
can be very lucrative if one can pick stocks with great potential. Mutual funds, often regarded
as a type of professional investors (or smart money), play indispensable roles of the market.
Thus, analyzing the holdings of mutual funds may well reveal invaluable information about
the market.

6.1. Modeling rationale. The rationale behind stock ranking from mutual fund holdings
is that the holdings of a mutual fund reflects the degree of conviction of the fund manager.
Specifically, if a stock comprises of a large proportion of a fund’s portfolio, it means that
the fund manager has a high degree of belief in the performance of the stock. Furthermore,
we assume that if the dollar percentage of stock A in the portfolio is higher than stock B,
it means that the fund manager ranks stock A higher than stock B. Thus, from a mutual
fund’s stock holding list including the constituents percentage, we naturally get a bunch of
pairwise comparisons based on the portfolio manager’s conviction. For some given stock A
and stock B, if they are both owned by several mutual funds, this can be thought as stock A
and stock B compared by these funds many times, which suggests that the BTL model can
be used.
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6.2. Data. The data we use comes from CRSP Survivor-Bias-Free US Mutual Funds
database, The University of Chicago Booth School of Business. Particularly, we study the
holdings snapshot of the mutual funds in the database reported on March 31, 2021. After the
prescreening step described later, we have a data set of comparison results from 777 stocks
on a graph with 147,462 edges. For each pair that is connected, the two stocks are compared
at least 100 times and at most 702 times. That is, all L;;’s are in the interval [100, 702].

6.3. Prescreening the stock pool. The original data set has around 6000 portfolios cover-
ing over 5000 stocks. Our prescreening procedure is based on the following criteria. First, we
consider long-only equity portfolios. Second, we only use stocks that appear in at least 200
portfolios. The reason we have the second condition is that we believe good stocks must have
some degree of popularity in the mutual fund community. After these two steps of prescreen-
ing, we are left with 4933 portfolios covering 1451 stocks. Then we construct a comparison
graph on these 1451 stocks. There is an edge connecting two stocks if and only if they are
simultaneously owned by at least 100 portfolios. This means that two connected stocks are
compared for at least 100 times. Finally, we only keep those stocks that are connected to
at least 600 and at most 800 other stocks. This effectively removes some relatively unpop-
ular stocks and extremely popular blue-chip stocks. We regard blue-chip stocks like Apple
as “background” stocks, which, if appear in a portfolio, usually take a big proportion. We
call the stocks remained after filtering as diamond in the rough, which are kind of in the
middle of popularity. The remaining comparison graph after deleting those stocks is also the
comparison graph used in our ranking algorithm.

6.4. Results. We apply Algorithm 2 slightly modified to account for different values of
L;j’s between different pairs of stocks to the prescreened data set using M = 0.5 and h
adaptively chosen by (31). After we obtain the ranking result of the stocks, we look at the
close to close returns of these stocks in the next 6 months, from March 31, 2021 to September
29,2021. We construct two equally weighted portfolios using the top k stocks and the bottom
k stocks, where k ranges from 50 to 200 and compute the returns of these portfolios over the 6
months. The return of the equally weighted portfolio is just the simple average of the returns
of the constituents. The performance of the MLE and the spectral method are also evaluated
in the same way. The results are plotted in Figure 8. Ideally, we expect higher ranked stocks
to outperform lower ranked stocks, which indicates that fund managers have some ability of
stock picking. This is indeed reflected in the result from Algorithm 2 (divide and conquer,

Divide & Conqure MLE Spectral

—e— Avereage return of top k stocks —— Avereage return of top k stocks —e— Avereage return of top k stocks

1 Average return of bottom k stocks Average return of bottom k stocks 1 Average return of bottom k stocks
74 7 N 74

of 1 Y o
5 N\*w ] N\uwsz

60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200
k k k

Average return (%)
Average return (%)
e

Average return (%)

F1G. 8. Average returns of portfolios based on the ranking results. The blue line is the simple average return
(in percentage) of the top k ranked stocks and the orange line is the simple average return (in percentage) of the
bottom k ranked stocks where k ranges from 50 to 200. (Results are calculated or derived based on data from
Survivor-Bias-Free Mutual Fund Database©2021 Center for Research in Security Prices (CRSP), The University
of Chicago Booth School of Business.)
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the leftmost plot). The blue line, representing the average return of the top ranked stocks,
sits above the orange line that represents the average return of the bottom ranked stocks. In
comparison, this phenomenon is unclear from the results using the MLE (the middle plot)
and the spectral method (the rightmost plot).

7. Discussion. In this paper, the problem of ranking » players from partial comparison
data under the BTL model has been investigated. We have derived the minimax rate with
respect to the Kendall’s tau distance. A divide-and-conquer algorithm is proposed and is
proved to achieve the minimax rate. In this section, we discuss a few directions along which
the results of the paper can be extended.

The first extension one can consider is to assume that A;; ~ Bernoulli(p;;) independently
forall 1 <i < j <n. For this more general comparison graph, as long as we assume that all
pij’s are of the same order in the sense that max;; p;; < C min;; p;; for some constant C > 0,

Theorem 3.2 continues to hold with replaced by

1
Y ety Pij ¥ 6 —07)’

and all the technical arguments in the proofs will still go through.

Another important condition that we impose throughout the paper is the regularity of the
skill parameters 6* € ©,(B, Co). It assumes that |07 — 9;‘| = Bli — j|, which roughly de-
scribes that players with different skills are evenly distributed in the population. Without this
condition, we conjecture that the minimax rate under the Kendall’s tau loss should be

(14 o(1)npL(OF — 9;)2>

1
i sup ]E(a ) (" ") n Z 2(Vi(6%) 4+ V;(6%))
J

r€Ourres, I<i<j<n

In fact, this formula has already appeared in the upper bound analysis (33) and can be sim-
plified to the result of Theorem 3.2 when 6* € ®,(8, Co). Extending the result of The-
orem 3.2 beyond the condition 8* € ®, (8, Cp) is possible by some necessary modifica-
tions of the league partition step described in Algorithm 1. Without |6/ — 9;‘| = Bli — jl,
the partition formula Sy = {i € [n]\(S1 U --- U Sg_1) : wl.(k) < h} should be replaced by
Sr={i e[n\(S1U---US8_1): wl-(k) < hy} for some sequence {h} to account for the non-
regularity of 6*. Intuitively, the size of each | S| should adaptively depend on the local density
of the skill parameters in the neighborhood from which it is selected. Then the major diffi-
culty is to find a data-driven {hy) that estimates the local density. When |6 — 9;‘| = Bli — jl,
we can just use the global estimator (31). Without this assumption, estimating {A} is a much
harder problem. In [26], it is assumed that the skill parameters 6}, ..., 0, are i.i.d. drawn
from some distribution F instead of being fixed parameters, and the authors have studied
the problem of estimating F', which is called the skill distribution, from the partial pairwise
comparison data. Under this formulation, the estimation of the parameters {/;} can be linked
to the problem of local bandwidth selection in kernel density estimation [29]. We leave this
direction of research as one of our future projects.

A restriction of the BTL model is that it can only deal with pairwise comparison. One
extension from pairwise comparison to multiple comparison is the popular Plackett—Luce

model [34, 45]. Suppose there is a subset of J players S = {i1, i2, ..., i;}. Under the Plackett—
exp(0;)

Luce model, the probability that j is selected among S is given by the formula T sep@)
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Statistical analysis of ranking under the Plackett—Luce model is a problem that has been rarely
explored. Both the minimax rate and the construction of optimal algorithms are important
open problems.

The ranking problem has also been studied under nonparametric comparison models. For
example, a nonparametric stochastically transitive model was proposed by [49, 50] and the
problems of estimating the mean matrix and top-k ranking have been investigated. However,
full ranking is still a problem that has not been well studied under nonparametric models.
One of the few works that we are aware of is [37] that assumes P(y;;; = 1) > % + y when
ri < r;‘. An investigation of full ranking under more general nonparametric settings is another
direction to be explored.

8. Proof of Theorem 3.2. We first give the proof of the upper bound result.

PROOF OF THEOREM 3.2 (UPPER BOUND). Let G be the event that the conclusions
of Theorem 4.1 and Lemma 4.2 hold. We have P(G°) = O(n~%). In addition, we use the
notation S for the event that {Sy}xe(k satisfies Conditions (i) (iii) listed in Section 4.3.4.
It is clear that G C S. By Lemma 4.1, we have EK(7, r*) < 2 Zl<l¢j<n P(R;; # R*) It
suffices to give a bound for P(R;; # R}, ) for every pair i # j. Note that we have IP’(R, i #F
R) =P(Rij # R};, G) +P(G°). Then

K K

P(Rij # R, G) =) D> P(Rij # R}, G.i € Sk, j € S1)

k=11=1

lj’

(k,De[K]2:|k—1]<1
(k,l)e[K]2:|k—l|32

The second term above is zero. This is due to the analysis of Step 3 in Section 4.3.3, which
shows - ek 2:e—11=2 HRij # R} i € Sk, j € Si} = 0 under the event G. Hence, we only

need to study the first term. Without loss of generality, consider 6,+ > 0. Then the event
J

{Rij # R;‘j, G,i € Sk, j € Sk} is equivalent to {é?k) A(k) ,G,i € S, j € S}, which is further

equivalent to {é-(k) < GVJ(-k), g,ie §k, j€E §k} by the deﬁmtlon of G. We thus have

(le 7& le’ )
= Z ]P’(éi(k) < éj(-k), g,ie Sk, je€ 51)
(k,l)e[K]z:kallfl
< Z PO <. S ieSi.jed)
(k,D)e[K]? k=11<1
_ k) 200 & . G -G <. w .
= (6, <0; |S,i € Sk, j € S1)P(S,i € Sk, j €S1)
(k,)e[K1?:|k—1]|<1
(1 —8)npL (% — 0%)> , L 5
- L +n—} P(S.i €8 jed)
[ %%@ﬂ+%@m) 2

C
(k,DHe[K1%:k—1|<1
C

aq
(1 —8)npL(0F — 0%)?
o) )
2(V,e (0%) + V,:(6%)
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for some constant C > 0 and some § > 0 that is arbitrarily small. The second last inequality
above is by Lemma 4.3, or more specifically, (29), as we show (29) holds for any {Sk}re(k]
satisfying Conditions (i)—(iii) listed in Section 4.3.4. Since P(G¢) = O (n~?), we obtain the
bound

(1 —8)npL(©% —0%)*
! ) +n_7}
20V, (6%) + Vs (07))

for all i # j. The bound (32) is displayed as (30) in Section 4.4.
Summing the bound (32) over all i # j, we have

(32) P(Rij # R};) <2C [exp(—

8C (1= 8)npL (0% — 0%)>
EK(F, )< — exp(— D ) +ecn
n o _= 2V (0%) + V= (6%))
1<i#j<n i J
(33)
8C (1= 8)npL(6; —67)?

_ ¥ _ —6
= X eXp( 20V (0% + V;(0%)) >+8C” '

I<i#j=<n

Now it is just a matter of simplifying the expression (33). We consider the following two

. Lpp® Lpp*
cases: oo = <1land BT > 1.

- . Lpp®
First, we consider the case Bn—T <

1. By Lemma 8.1 proved in Section 8, there exist
constants ¢, ¢c» > 0, such that

1 Vi (0%) 1
(34) Q@V—)S SQ@V—>
n n n

for all 6* € ®,,(B, Co) and all i € [n]. Then, for each i € [n],

1 —8)npL (0 — 6%)? 2
> exp<—( pL O~ ) )S > exp<—i(i—J)2 LoP )

(% . (O* 1
jeln\(i) 2(Vi(0%) + V;(6™)) jebT 3¢ Bvn
00 1 L 2
= / exp<——x27p’8 ]>dx
0 3co Bvn~
_ \/37‘[C2 Bvn!
Vo4V Lpp
and we have EK(7, %) < ﬂva_;;—zl' The definition of the loss function implies EK(7, r*) < n,
and thus we obtain the rate n A ﬁLv";I when Lpﬁ_zl <l
B Bvn
Next, we consider the case ﬁLff _21 > 1. For any |i — j| < Coy/c2/c1, we have V;(6*) <

(14 8")V;(6*) for some 8’ = o(1). This is by the definition of the variance function and the
fact that sup,, |'/’ (44) _ 1| < JA| for A = o(1). Therefore, we have

Y (x)
(1—8)npL(6] —67)*
> exP(‘ 2(Vi(6%) + Vi (6%)) )

1<izj<nli—j|<Cov/er/ci : !

n—1 % x 2
(1 =28)npL(6;" — 67, )
S ;e’“’(_ 4V, (6%) >
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By (34), we also have

(1 —28)npL(0F — 9;)2
eXp(_ 2(Vi(6%) + V;(0%) )

1<i#j<n:|i—j|>Cos/c2/c

1—28)pLB%(i — j)?

_ > RS
2 2026 V1)

1<i#j<n:|i—j|>Co/c2/c1

- (1-28)pLp>C}
N”e"p(_ 2¢1(B V) )

n—1 * 2
(1 —28)npL(@;F — 67, )
s Zexp(‘ 0" )
i=1

The desired bound for EK(7, *) immediately follows by summing up the above bounds. [

To prove the lower bound, we first establish a few lemmas. The proof of these lemmas are
presented in Appendix D of the Supplementary Material.

LEMMA 8.1. Assume 1 < Cop= O(1) and 0 < B = o(1). For any constant o > 0, there
exists constants C1, Ca > 0 such that for any 6 € 0, (8, Co),

1
Zweo—e)“ sup Zw<eo—9)°‘<cz

,B vi/n ™ 906[9,, 91] f0€lbn.01)i—; Bvil/n

for n large enough.

To proceed with our proof for the lower bound, we define

. — Or . = \1—u
(1+69rl Grk)u(1+e j k)
(35) Gi jko.r()=log 14 O+ (A=)0,; =0,

This term is a key ingredient in the exponent of the rate. We introduce another notation
r*@1) e G, to be the element in &,, having

re ifk#i,j,
(36) P =0 ifk=i,
ri o itk=j.

That is, 7*(-/) is a permutation by swapping the i, jth position in r* while keeping other
positions fixed.

LEMMA 8.2. Assume m — oo and 1 < Cy = O(1). For any constant C > 0,

there exist constants Cy, Cr > 0, § = o(1) such that for any 6* € ©,(8, Cp), any r* € G,
and i # j € [n] such that |07 — 0%| < C, we have
i J

Px (T #1r*) + P(Q*’r*(i,j))(?# r*(i,j))

inf
7 2
CaLp(©) — 6.
e exp(— _a+82Lp ¥ G ,-,k,e*,r*a/z))
BVvl/n forg

for n large enough. Here, r*"1) s defined as in (36).
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Now we are ready to prove the lower bound part of Theorem 3.2.

PROOF OF THEOREM 3.2 (LOWER BOUND). We remark that p > co(B Vv %)logn nec-
essarily implies 0 < 8 = o(1). It also implies n A B~ > 1 and % = 0(1), which will be

useful in the proof. Recall the definition of r*®/) in (36) for any r* € &, and i, j € [n] such
that i 2 j.
For any 6* € ®,(8, Cyp), we have

inf sup Eg+ ) [KF, )]

' rxe@,

1
> inf — Z . Z P(O*vr*)(ﬂ<?j’r;ﬁ>r7)+P(9*,r*)(?i >7"\j,l’i*<r>'~<)

‘r*e@,  1<i<j<n

, 1 SN TP
:ll?lf— Z - Z P(g*,,*)(r,- < rj,ri”‘ > r;“) —{—]P)(g*’r*)(l"i >rj, }’l-* < Vﬂf)

I<i<j<n " r*eg,

1
339>
n 1<a<b<n I’l(l’l B 1)
Z 1 Z inf IP)(Q*vr*)(;'\?é I"*) + P(@*’r*(i,j))(?# I"*(lj))
<icien (1D T T 2
n
> L > 2
2n = nin—1)
1
X
1<i<j Z (n — 2)'
s civa—h
be[n\{a}:la—b|<1Vv leﬂz

P+ = ? r* +]P) * (i, ] ? r*(l])
< Y inf @+ (T F# 1Y) 2(9 PN GES )’

koK X __
r¥r; —a,rj—b

/ -1
where Ci > 0 is a constant. Note that for any a, b € [n] such that j[a —b| <1V ./ %,

/ —1
we have |0 — 6| < Co(B V 4/ %pn)) =o0(1). Then by Lemma 8.2, we have

inf sup Egs r[KT, r)]

I e,

n
>Lz#
_Zna nn—1)

=1

/ * *\2
(37) - 3 c! ( \/Cszwa - 6p)
sexp| — —
l<i<j<n = Bvn
be[n]\{a}:\a—blglvwluT

(1 + e%a=%)(1 +e92‘—92‘))

—(1+8])Lp Y log e
ka,b (A4+e 2 ~%)2
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for some constant C5, C5 > 0 and some 8] = o(1). We are going to simplify the second term
in the exponent. We have

* * * * 9a+9b
(1 +89‘1_9k)(1 —|—e‘9b_9k) 9 Gk +€9h Hk — D¢ Gk
(38) Z log e < Z o
ka,b (1+e 7 ~%)2 k+a,b (14e 2 %2
*_px Ox+o %
(cosh bt _ De 2 b—o;

=2y 2 T

ka,b (A+e 2 ~%)2

(39) =+ BB 3 (5 L g)
ksa,b
* *\2
(40) = (1484 (9 0”) S y'(0r - 67)
k#a

for some 8 = o(1), 85 = o(1). Here, (38) uses log(1 +x) < x.In (39), we use 6 — 0 = o(1)
and coshx — 1 =(1+ O(x))% when x = o(1). From Lemma 8.1, we know Zk# YO —
05) <n A ,3_1 >> 1. Then using this and the fact sup, |'/’:p(f(;t) — 1] = O(t) when t = 0(1),
we obtain (40). Using >, vOF —0F) <nA B! again and the fact |0 — 051 > B, there
exists a constant C; > 0 such that

| ChLp(6r—6;)?
vl C
Bvn < 4

Bvn~1

Therefore, for an arbitrarily small constant § > 0, we have constant C g > 0, such that (37)
can be lower bounded by

/ * _ 9*)2 * *\2
Céexp(—\/chp(Q“ ) —(1+3)Lp(9 — %)  y(0r - )

I
Bvn ke
C, \Lp@®;—6)?
41 > Chex <—<1+8’+ 4 > a )
*D 2P YT e ) v
Bvn—1
> ! —(1+38 “—b>
= 5“"( S AT
So far, we obtain
igf sup E(g*’r*)[K(?,r)]
' r+xeB,
1 n
= ; n(n —1
42 C! (— 143 aib)
(42) x > > sexp| —(1+8)=— 0o

1<i<j<n o 1
Bvn—1h)
. 1
be[n\{a}:la—D|<1V,/ LR
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n

s 2 exp( - M)
ZnZn(n—l) 2 X CSeXp( I+0=y 55

a=1 I<i<j<nb=a+1

v

c Lp©; — 9;+1)2
2—§ o1 +9 =)

Hence, we obtain the exponential rate.

(S

In the following, we are going to derive the polynomial rate for the regime ﬂvaf ,21 <1
/ —1
Note that for any a, b € [n] such that |a — b| <1 v,/%, we have
* _ )2 2 —1
Lp0; —6,) < Lpp <1vﬁ\/”l )51
4V, (0%) nApB-1 LppB?
Then from (42), there exist some constant Cg, C7 > 0 such that
1 & 2 ,
inf sup Eg 0 [KT, r)] > Z — Z Z Cs
" res 2n (= n(n =1 I<i<j<n =
beln\{a):la—b|<1v %

(1 [y
~ 2 Lpp?

, [Bvnl
ZC7<I/1/\ W)a

where the last inequality is due to By Lp f <1 and the fact that the loss is at most n. [
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal full ranking from pairwise comparisons” (DOI: 10.1214/22-
AOS2175SUPP; .pdf). The supplement [10] includes all the technical proofs. In Appendix A,
we first give the proof of Theorem 3.1. In Appendix B, we give the proof of Theorem 4.1.
After that, we prove Lemma 4.1, Lemma 4.2 and Lemma 4.3 in Appendix C. We then present
the proofs of Lemma 8.1 and Lemma 8.2 in Appendix D.

REFERENCES

[1] BALTRUNAS, L., MAKCINSKAS, T. and RIccl, F. (2010). Group recommendations with rank aggregation
and collaborative filtering. In Proceedings of the Fourth ACM Conference on Recommender Systems
119-126.

[2] BEAUDOIN, D. and SWARTZ, T. (2018). A computationally intensive ranking system for paired comparison
data. Oper. Res. Perspect. 5 105-112. MR3907614 https://doi.org/10.1016/j.0rp.2018.03.002

[3] BOUMAL, N. (2013). On intrinsic Cramér—Rao bounds for Riemannian submanifolds and quotient man-
ifolds. IEEE Trans. Signal Process. 61 1809-1821. MR3038392 https://doi.org/10.1109/TSP.2013.
2242068

[4] BRADLEY, R. A. and TERRY, M. E. (1952). Rank analysis of incomplete block designs. I. The method of
paired comparisons. Biometrika 39 324-345. MR0070925 https://doi.org/10.2307/2334029


https://doi.org/10.1214/22-AOS2175SUPP
http://www.ams.org/mathscinet-getitem?mr=3907614
https://doi.org/10.1016/j.orp.2018.03.002
http://www.ams.org/mathscinet-getitem?mr=3038392
https://doi.org/10.1109/TSP.2013.2242068
http://www.ams.org/mathscinet-getitem?mr=0070925
https://doi.org/10.2307/2334029
https://doi.org/10.1214/22-AOS2175SUPP
https://doi.org/10.1109/TSP.2013.2242068

1804

(5]

(6]
(71

(8]
9]
[10]

[11]

[12]
[13]
[14]

[15]
[16]

(17]

[18]
[19]
[20]
(21]

(22]
(23]

[24]
[25]
[26]
(27]
(28]
[29]

(30]

(31]

(32]
[33]

P. CHEN, C. GAO AND A. Y. ZHANG

BRAVERMAN, M. and MOSSEL, E. (2008). Noisy sorting without resampling. In Proceedings of the
Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms 268-276. ACM, New York.
MR2485312

BRAVERMAN, M. and MOSSEL, E. (2009). Sorting from noisy information. arXiv preprint. Available at
arXiv:0910.1191.

Cao, D., HE, X., M1AO, L., AN, Y., YANG, C. and HONG, R. (2018). Attentive group recommendation. In
The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval
645-654.

CAo0, Z., QIN, T., L1U, T.-Y., TSAI, M.-F. and L1, H. (2007). Learning to rank: From pairwise approach to
listwise approach. In Proceedings of the 24th International Conference on Machine Learning 129-136.

CHEN, P., GAO, C. and ZHANG, A. Y. (2022). Partial recovery for top-k ranking: Optimality of MLE and
sub-optimality of spectral method. Ann. Statist. 50 1618-1652.

CHEN, P., GAO, C. and ZHANG, A. Y. (2022). Supplement to “Optimal full ranking from pairwise com-
parisons.” https://doi.org/10.1214/22- AOS2175SUPP

CHEN, X., Gorl, S., MAO, J. and SCHNEIDER, J. (2017). Competitive analysis of the top-K ranking
problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
1245-1264. SIAM, Philadelphia, PA. MR3627810 https://doi.org/10.1137/1.9781611974782.81

CHEN, Y., FAN, J., MA, C. and WANG, K. (2019). Spectral method and regularized MLE are both optimal
for top-K ranking. Ann. Statist. 47 2204-2235. MR3953449 https://doi.org/10.1214/18-A0S1745

CHEN, Y. and SUH, C. (2015). Spectral mle: Top-k rank aggregation from pairwise comparisons. In Inter-
national Conference on Machine Learning 371-380.

CHOO, E. U. and WEDLEY, W. C. (2004). A common framework for deriving preference values from
pairwise comparison matrices. Comput. Oper. Res. 31 893-908.

COLLIER, O. and DALALYAN, A. (2013). Permutation estimation and minimax matching thresholds.

COLLIER, O. and DALALYAN, A. S. (2016). Minimax rates in permutation estimation for feature matching.
J. Mach. Learn. Res. 17 Paper No. 6, 31. MR3482926

C0SSOCK, D. and ZHANG, T. (2006). Subset ranking using regression. In Learning Theory. Lecture Notes
in Computer Science 4005 605-619. Springer, Berlin. MR2280634 https://doi.org/10.1007/11776420_
44

CSATO, L. (2013). Ranking by pairwise comparisons for Swiss-system tournaments. CEJOR Cent. Eur. J.
Oper. Res. 21 783-803. MR3103279 https://doi.org/10.1007/s10100-012-0261-8

DiAcoNi1s, P. and GRAHAM, R. L. (1977). Spearman’s footrule as a measure of disarray. J. Roy. Statist.
Soc. Ser. B 39 262-268. MR0652736

DWORK, C., KUMAR, R., NAOR, M. and SIVAKUMAR, D. (2001). Rank aggregation methods for the web.
In Proceedings of the 10th International Conference on World Wide Web 613-622.

ERDOS, P. and RENYI, A. (1960). On the evolution of random graphs. Magy. Tud. Akad. Mat. Kut. Intéz.
Kozl 5 17-61. MR0125031

GAO, C. (2017). Phase transitions in approximate ranking. arXiv preprint. Available at arXiv:1711.11189.

GAO, C. and ZHANG, A. Y. (2019). Iterative algorithm for discrete structure recovery. arXiv preprint.
Available at arXiv:1911.01018.

HERBRICH, R., MINKA, T. and GRAEPEL, T. (2007). TrueSkill: A Bayesian skill rating system. In Ad-
vances in Neural Information Processing Systems 569-576.

HUNTER, D. R. (2004). MM algorithms for generalized Bradley—Terry models. Ann. Statist. 32 384—406.
MR2051012 https://doi.org/10.1214/a0s/1079120141

JADBABAIE, A., MAKUR, A. and SHAH, D. (2020). Estimation of skill distributions. arXiv preprint. Avail-
able at arXiv:2006.08189.

JANG, M., K1M, S., SUH, C. and OH, S. (2016). Top-k ranking from pairwise comparisons: When spectral
ranking is optimal. arXiv preprint. Available at arXiv:1603.04153.

JANG, M., KM, S., SUH, C. and OH, S. (2017). Optimal sample complexity of m-wise data for top-k
ranking. In Advances in Neural Information Processing Systems 1686—1696.

JONES, M. C., MARRON, J. S. and SHEATHER, S. J. (1996). A brief survey of bandwidth selection for
density estimation. J. Amer. Statist. Assoc. 91 401-407. MR1394097 https://doi.org/10.2307/2291420

KATAJAINEN, J. and TRAFF, J. L. (1997). A meticulous analysis of mergesort programs. In Algorithms
and Complexity (Rome, 1997). Lecture Notes in Computer Science 1203 217-228. Springer, Berlin.
MR 1488977 https://doi.org/10.1007/3-540-62592-5_74

KNUTH, D. E. (1997). The Art of Computer Programming. Vol. 1: Fundamental Algorithms, 3rd ed.
Addison-Wesley, Reading, MA. MR3077152

Liu, T.-Y. (2011). Learning to Rank for Information Retrieval. Springer, Berlin.

LOUVIERE, J. J., HENSHER, D. A. and SWAIT, J. D. (2000). Stated Choice Methods: Analysis and Applica-
tions. Cambridge Univ. Press, Cambridge. MR1881927 https://doi.org/10.1017/CB09780511753831


http://www.ams.org/mathscinet-getitem?mr=2485312
http://arxiv.org/abs/arXiv:0910.1191
https://doi.org/10.1214/22-AOS2175SUPP
http://www.ams.org/mathscinet-getitem?mr=3627810
https://doi.org/10.1137/1.9781611974782.81
http://www.ams.org/mathscinet-getitem?mr=3953449
https://doi.org/10.1214/18-AOS1745
http://www.ams.org/mathscinet-getitem?mr=3482926
http://www.ams.org/mathscinet-getitem?mr=2280634
https://doi.org/10.1007/11776420_44
http://www.ams.org/mathscinet-getitem?mr=3103279
https://doi.org/10.1007/s10100-012-0261-8
http://www.ams.org/mathscinet-getitem?mr=0652736
http://www.ams.org/mathscinet-getitem?mr=0125031
http://arxiv.org/abs/arXiv:1711.11189
http://arxiv.org/abs/arXiv:1911.01018
http://www.ams.org/mathscinet-getitem?mr=2051012
https://doi.org/10.1214/aos/1079120141
http://arxiv.org/abs/arXiv:2006.08189
http://arxiv.org/abs/arXiv:1603.04153
http://www.ams.org/mathscinet-getitem?mr=1394097
https://doi.org/10.2307/2291420
http://www.ams.org/mathscinet-getitem?mr=1488977
https://doi.org/10.1007/3-540-62592-5_74
http://www.ams.org/mathscinet-getitem?mr=3077152
http://www.ams.org/mathscinet-getitem?mr=1881927
https://doi.org/10.1017/CBO9780511753831
https://doi.org/10.1007/11776420_44

[34]
(35]

(36]
(37]

(38]
(39]

[40]
[41]

[42]

[43]

[44]

[45]
[40]
(47]
(48]

[49]

(50]

[51]

OPTIMAL FULL RANKING 1805

LUCE, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis. Wiley, New York. MR0O108411

LUcE, R. D. (1977). The choice axiom after twenty years. J. Math. Psych. 15 215-233. MR0462675
https://doi.org/10.1016/0022-2496(77)90032-3

MANSKI, C. F. (1977). The structure of random utility models. Theory and Decision 8 229-254.
MRO0459524 https://doi.org/10.1007/BF00133443

Mao, C., WEED, J. and RIGOLLET, P. (2018). Minimax rates and efficient algorithms for noisy sorting. In
Algorithmic Learning Theory. Proc. Mach. Learn. Res. (PMLR) 83 27. MR3857331

MCFADDEN, D. (1973). Conditional logit analysis of qualitative choice behavior.

MCFADDEN, D. and TRAIN, K. (2000). Mixed MNL models for discrete response. J. Appl. Econometrics
15 447-470.

MINKA, T., CLEVEN, R. and ZAYKOV, Y. (2018). Trueskill 2: An improved Bayesian skill rating system.

MOTEGI, S. and MASUDA, N. (2012). A network-based dynamical ranking system for competitive sports.
Sci. Rep. 2 904. https://doi.org/10.1038/srep00904

NEGAHBAN, S., OH, S. and SHAH, D. (2017). Rank centrality: Ranking from pairwise comparisons. Oper.
Res. 65 266-287. MR3613103 https://doi.org/10.1287/opre.2016.1534

PANANJADY, A., MAO, C., MUTHUKUMAR, V., WAINWRIGHT, M. J. and COURTADE, T. A. (2020).
Worst-case versus average-case design for estimation from partial pairwise comparisons. Ann. Statist.
48 1072-1097. MR4102688 https://doi.org/10.1214/19- AOS 1838

PANANJADY, A., WAINWRIGHT, M. J. and COURTADE, T. A. (2016). Linear regression with an unknown
permutation: Statistical and computational limits. In 2016 54th Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton) 417-424. IEEE.

PLACKETT, R. L. (1975). The analysis of permutations. J. R. Stat. Soc. Ser. C. Appl. Stat. 24 193-202.
MRO0391338 https://doi.org/10.2307/2346567

SAATY, T. L. (1990). Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a
Complex World. RWS Publications.

SEDGEWICK, R. (1978). Implementing quicksort programs. Commun. ACM 21 847-857.

SHA, L., LUCEY, P., YUE, Y., CARR, P., ROHLF, C. and MATTHEWS, I. (2016). Chalkboarding: A new
spatiotemporal query paradigm for sports play retrieval. In Proceedings of the 21st International Con-
ference on Intelligent User Interfaces 336-347.

SHAH, N., BALAKRISHNAN, S., GUNTUBOYINA, A. and WAINWRIGHT, M. (2016). Stochastically tran-
sitive models for pairwise comparisons: Statistical and computational issues. In International Confer-
ence on Machine Learning 11-20.

SHAH, N. B. and WAINWRIGHT, M. J. (2017). Simple, robust and optimal ranking from pairwise compar-
isons. J. Mach. Learn. Res. 18 Paper No. 199, 38. MR3827087

THURSTONE, L. L. (1927). A law of comparative judgment. Psychol. Rev. 34 273.


http://www.ams.org/mathscinet-getitem?mr=0108411
http://www.ams.org/mathscinet-getitem?mr=0462675
https://doi.org/10.1016/0022-2496(77)90032-3
http://www.ams.org/mathscinet-getitem?mr=0459524
https://doi.org/10.1007/BF00133443
http://www.ams.org/mathscinet-getitem?mr=3857331
https://doi.org/10.1038/srep00904
http://www.ams.org/mathscinet-getitem?mr=3613103
https://doi.org/10.1287/opre.2016.1534
http://www.ams.org/mathscinet-getitem?mr=4102688
https://doi.org/10.1214/19-AOS1838
http://www.ams.org/mathscinet-getitem?mr=0391338
https://doi.org/10.2307/2346567
http://www.ams.org/mathscinet-getitem?mr=3827087

	Introduction
	A decision-theoretic framework of full ranking
	The BTL model
	Loss function for full ranking
	Regularity of skill parameters

	Minimax rates of full ranking
	Results for a Gaussian model
	Some intuitions for the BTL model
	Results for the BTL model

	A divide-and-conquer algorithm
	An overview
	Details of the proposed algorithm
	Statistical properties of each step
	From pairwise relations to full ranking (Step 4)
	Statistical properties of league partition (Step 1)
	Statistical properties of cross-league estimation (Step 3)
	Statistical properties of local MLEs (Step 2)

	Analysis of Algorithm 2
	A data-driven h

	Numerical results
	Simulation setting
	Implementation
	Accuracy of league partition
	Statistical error
	Computational cost

	A real data application
	Modeling rationale
	Data
	Prescreening the stock pool
	Results

	Discussion
	Proof of Theorem 3.2
	Funding
	Supplementary Material
	References

