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We consider warm inflation with a Dirac-Born-Infeld (DBI) kinetic term in which both the non-

equilibrium dissipative particle production and the sound speed parameter slow the motion of the inflaton

field. We find that a low sound speed parameter removes, or at least strongly suppresses, the growing

function appearing in the scalar of curvature power spectrum of warm inflation, which appears due to the

temperature dependence in the dissipation coefficient. As a consequence of that, a low sound speed helps to

push warm inflation into the strong dissipation regime, which is an attractive regime from a model building

and phenomenological perspective. In turn, the strong dissipation regime of warm inflation softens the

microscopic theoretical constraints on cold DBI inflation. The present findings, along with the recent

results from swampland criteria, give a strong hint that warm inflation may consistently be embedded into

string theory.
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I. INTRODUCTION

Warm inflation (WI) [1–3] is an alternative dynamical

realization for conventional cold inflation (CI) [4–8] during

which the inflaton field dissipates its vacuum energy into an

ambient radiation bath, thus eliminating the necessity of a

postinflationary reheating process [9] and leading into

different possibilities for a graceful exit mechanism [10].

Such a nonequilibrium dissipative particle production

process acts to slow the motion of the inflaton field,

allowing the embedding of steeper potentials in the WI

context and helping to solve, for example, the so-called

η-problem [11–13]. In WI the thermal fluctuations play the

dominant role in the formation of the seeds for the large

scale structure (LSS) by producing a quasi scale-invariant

spectrum of primordial curvature perturbations. At the

same time, the shape of the produced spectrum depends

on the field content of the model, leading to signatures able

to make it distinguishable from the one produced in CI

[14–22]. Furthermore, the rich dynamics of WI allows it to

address/alleviate some of long-lasting problems related to

the (post-)inflationary phase in the CI scenarios [23–34]

(see also Refs. [35–37] for related work).

Despite its tremendous success, earlier particle physics

realizations of WI were confronted with two important

difficulties. The first one was that achieving a thermal

radiation bath during inflation can result in potentially large

thermal corrections to the inflaton’s potential, thus, hinder-

ing the slow-roll dynamics. Earlier WI model building

constructions circumventing this problem made use of

models with large field multiplicities [38–41], making

them technically unappealing. This issue was later resolved

with the introduction of a new class of WI model building

realization able to sustain a nearly-thermal bath, yet with a

small number of field species [42]. These type of models

were dubbed “warm little inflaton (WLI)” models. The

second difficulty was that the backreaction of the thermal

radiation bath on the inflaton power spectrum due to a

temperature dependent dissipation coefficient leads to the

appearance of growing/decreasing modes in the scalar of

curvature power spectrum [20]. As a consequence of this,

consistency with the observations could only be achieved in

weak dissipation regimes of WI, thus preventing WI from

going into a strong dissipation regime. However, the strong

dissipation regime of WI is particularly appealing from

both a theoretical and effective field theory point of view. In

particular, the strong dissipation regime of WI can naturally

result in a smaller energy scale inflation with sub-Planckian

field excursions. These are features that have been attract-

ing considerable attention, especially more recently,

e.g., based on the swampland program aiming at finding
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effective field theories which can consistently be embedded

in quantum gravity theories and the role played by WI in

achieving this goal [43–50]. This issue was also partially

addressed recently by building two distinct explicit WI

models, namely the “variant of warm little inflaton”

(VWLI) [13] and the “minimal warm inflation” (MWI)

[51,52], utilizing different field contents in each construc-

tion. In the VWLI, the strong dissipative regime is obtained

by interpolating between decreasing and growing modes,

while in the MWI it is achievable only for some particular

form of potentials, while growing/decreasing modes for the

power spectrum can still exist in both cases.

As far as well-motivated theoretical field theory con-

structions for inflation are concerned, there has been

considerable progress towards this goal in recent years,

with the construction of several concrete string inflation

models for instance (for reviews see e.g., Refs. [53,54] and

references therein), with particular attention given to brane

inflation scenarios.
1
Dirac-Born-Infeld (DBI) inflation is

one such string theoretic motivated model in which the

inflaton is interpreted as a modulus parameter of a D-brane

propagating in a warped throat region of an approximate

Calabi-Yau flux compactification [57,58]. Hence, the

effective action for DBI inflation contains a special form

of the DBI kinetic term. The DBI kinetic term introduces

some novel speed limits on the inflaton field velocity and

helps in keeping it near the top of potential, even when it is

too steep, thus resulting in the slow-roll phase through a

low sound speed, instead of from dynamical friction due to

expansion. A low sound speed, smaller than unity, allows

the inflaton field to have a sub-Planckian evolution, even

for steep potentials, thus circumventing the η-problem [59].

Moreover, fluctuations also propagate with a low sound

speed parameter, resulting in both a smaller tensor-to-scalar

ratio and a significant non-Gaussianity, which can poten-

tially be distinguishable from other scenarios [57,58].

Although DBI inflation models were greatly successful,

it was realized that the microscopic bound on the maximal

field variation due to compactification is able to put strong

constraints on the throat volume [60] and bulk volume [61].

These issues, together with the Lyth bound, lead to a model

independent upper bound on the tensor-to-scalar ratio which

turns out to be inconsistent with the stringent observational

lower bound on gravitational waves that are produced by the

inflationary dynamics [62]. Moreover, a viable reheating

process, which typically involves brane/antibrane annihila-

tion (see e.g., Refs. [63–66] for earlier studies on reheating in

brane inflation) is highly constrained due to the overpro-

duction of long-lived Kaluza-Klein (KK) modes [67] (note,

however, that subsequentlyRefs. [68–71] argued thatwarped

KK modes can instead serve as dark matter candidates).

Reference [72] showed that the cold DBI inflation model

can be reconciled with the observations, removing the

aforementioned inconsistencies, provided that the strong

dissipation regime of Dirac-Born-Infeld warm inflation

(DBIWI) is achieved. This is also because the WI scenario

violates the Lyth bound. However, the work done in

Ref. [72] made use of a phenomenological dissipation

coefficient, assuming it to be independent of the temper-

ature.
2
However, almost all explicit particle physics real-

izations of WI result in an explicit temperature dependent

dissipation coefficient [13,39,40,42,51,75]. Besides this,

pushing WI into the strong dissipation regime is challeng-

ing due, again, to the aforementioned problem related to the

appearance of a growing/decreasing function in the power

spectrum, which tends to lead to results inconsistent with

the observations, e.g., for the spectral tilt [76]. Although

there have been some previous papers considering DBIWI

realizations [72,77,78], none of them made an investigation

of the role of the sound speed on the backreaction of the

radiationperturbations on the inflatonones. Thus, noneof the

earlier references on DBIWI have studied how the growing/

decreasing function in WI gets affected by the sound speed,

which requires a detailed study of the perturbations in

DBIWI. Taken all together, the purpose of this paper is to

cover this issue and to properly understand the primordial

perturbations in DBIWI and the consequences that it brings

to model realizations, as far as the observations constraints

are taken into account.Our results show thatDBIWI is able to

go into the strong dissipation regime for well-motivated field

theory realizations of WI that result in explicit temperature

dependent dissipation coefficients. Our results also shed new

light on the potential use ofDBI type ofmodels in the context

of WI.

The outline of the remainder of this paper is as follows.

In Sec. II, we present the dynamics of DBIWI realization

and investigate the behavior of the dynamical parameters in

the model. Then, in Sec. III, we study the perturbation

equations for the DBIWI and present the backreaction of

the thermal radiation bath on the inflaton perturbations and

scalar of curvature power spectrum. In Sec. IV we discuss

the results obtained for the DBIWI and demonstrate the

effect of a low sound speed on the spectrum of DBIWI.

Finally, in Sec. V, we give a summary of the results and

conclude by discussing the implications of the DBIWI

realization from a model building perspective. Throughout

this paper, we work with the natural units, in which

Planck’s constant, the speed of light and Boltzmann’s

1
There are two realizations of brane inflation, namely ultra-

violet (UV) and infrared (IR) models, depending on whether the
brane is moving towards or away from the tip of the throat. In this
paper, we consider an UV model (see Refs. [55,56] for IR
models).

2
The stringent observational lower bound on tensor-to-scalar

ratio found in Ref. [62] can be relaxed in other DBI setups
without dissipation, for instance, in multibrane [73] and multi-
field [74] models.
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constant are set to 1 and we also work with the reduced

Planck mass, MPl ≡ 1=
ffiffiffiffiffiffiffiffiffi

8πG
p

≃ 2.4 × 1018 GeV.

II. DBIWI BACKGROUND DYNAMICS

The dynamical realization of WI is different from the CI

one due to the presence of radiation and energy exchange

between the inflaton field and the radiation energy density.

Hence, the total energy density of the Universe in WI

contains both the inflaton field and a primordial radiation

energy density, i.e., ρ ¼ ρϕ þ ρr, where ρϕ and ρr are the

inflaton field and the radiation energy densities, respec-

tively. Even when ρr is subdominated at the beginning and

throughout inflation, i.e., ρr ≪ ρϕ, the underlying dissipa-

tion effects generating this radiation energy density are still

able to modify the inflationary dynamics and the perturba-

tions in a nontrivial way in WI. The inflaton field and

radiation energy density form a coupled system in the WI

dynamics due to dissipation of energy out of the inflaton

system and into radiation. In the spatially flat Friedmann-

Lemaître-Robertson-Walker (FLRW) metric, the back-

ground evolution equations are, respectively, given by

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ −ϒðρϕ þ pϕÞ; ð2:1Þ

_ρr þ 3Hðρr þ prÞ ¼ ϒðρϕ þ pϕÞ; ð2:2Þ

where pϕ and pr are the inflaton and radiation pressures,

respectively, and ϒ is the dissipation coefficient, which in

general can be a function of both the inflaton field ϕ and

temperature T of the produced radiation bath.

In the DBIWI realization, the inflaton is a modulus

parameter of a D-brane moving in a warped throat region

which dissipates its vacuum energy into radiation through

Eqs. (2.1) and (2.2), while its evolution is effectively

governed by the following Lagrangian density,

LDBI ¼ f−1ðϕÞ½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2fðϕÞX
p

� − VðϕÞ; ð2:3Þ

where X ¼ − 1

2
∂μϕ∂μϕ, with VðϕÞ being the potential

function for the inflaton and fðϕÞ is the redefined warp

factor. The form for the warp factor function can be

phenomenologicaly deformed depending on the desired

model construction. For the well-studied anti–de Sitter

throat [57,58] the warp factor function is given by fðϕÞ ¼
f0=ϕ

4 with f0 being a positive constant. For definiteness,

this is the form for the warp factor function that we will be

assuming in this work.

Varying the action with respect to the metric, the energy

density ρϕ and the pressure pϕ of the DBI field are given,

respectively, by

ρϕ ¼
_ϕ2

csð1þ csÞ
þ VðϕÞ; ð2:4Þ

pϕ ¼
_ϕ2

1þ cs
− VðϕÞ; ð2:5Þ

where cs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2XfðϕÞ
p

¼ γ−1 is the sound speed, which

is smaller than unity as a consequence of the nontrivial

kinetic structure of the DBI Lagrangian, with γ similarly

being the Lorentz factor in five dimensions. Inserting

Eq. (2.4) in Eqs. (2.1) and (2.2), the dynamical equation

for the inflaton field in the DBIWI is found to be given by

ϕ̈þ 3c2sHð1þQÞ _ϕþ c3sV
0 þ f0

2f2
ð1 − 3c2s þ 2c3sÞ ¼ 0;

ð2:6Þ

while for the radiation energy density it is

_ρr þ 4Hρr ¼ c−1s ϒ _ϕ2; ð2:7Þ

where Q ¼ ϒ=ð3HÞ gives a measure for the strength of the

dissipative processes in WI. Equation (2.6) for the inflaton

background evolution can also be obtained from the

following covariant equation (when taking ϕ as a homo-

geneous field),

c−1s □ϕ − c−3s fðϕÞð∇μ∇νϕÞð∇μϕ∇νϕÞ − V 0

−
f0ðϕÞ
2f2ðϕÞ ðc

−3
s − 3c−1s þ 2Þ ¼ −c−1s ϒu

μ∂μϕ: ð2:8Þ

In the slow-roll regime, ϕ̈ ≪ H _ϕ and _ρr ≪ 4Hρr,

i.e., the inflaton is slowly varying and radiation is produced

in a quasistationary way. Both slow-roll conditions hold as

long as

ϵs ≡
d ln cs

dN
¼ _cs

Hcs
≪ 1; ð2:9Þ

with ϵs quantifying the variation of the sound speed, along

with the usual condition that the standard slow-roll param-

eters in WI are small. Then, under the slow-roll approxi-

mation, the background equations reduce to

_ϕ ≃ −
csV

0

3Hð1þQÞ ; ρr ≃
3Q _ϕ2

4cs
; 3H2 ≃

VðϕÞ
MPl

:

ð2:10Þ

To study the model quantitatively, we need to fix the

functionality of the potential and of the dissipation coef-

ficient. In this paper, we consider a monomial power-law

potential for the inflaton,

VðϕÞ ¼ V0

2n

�

ϕ

MPl

�

2n

; ð2:11Þ
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where V0 is the amplitude of the potential and n is a real

number. Moreover, the dissipation coefficient can be very

well parameterized by
3

ϒðϕ; TÞ ¼ CϒT
cϕpM1−p−c; ð2:12Þ

where Cϒ is a constant, T is the temperature, M is some

appropriate mass scale and both quantities can be associated

with the specifics of the microscopic model parameters

leading to Eq. (2.12) (see, e.g., Refs. [40,42,52,75,81,82]

for some explicit examples of quantum field theory model

derivations for dissipation coefficients used in WI).

The scalar of the curvature power spectrum in WI

[17–20] has a strong dependence on the dissipation ratio

Q and on the temperature over the Hubble parameter ratio,

T=H. One also notes that strictly speaking T=H can also be

considered as a function of Q, once we use the CMB

amplitude value to constrain the scalar power spectrum.

In this case, Q can be considered the relevant quantity

parametrizing the WI dynamics. It is then useful to look at

the dynamical behavior of these quantities during inflation.

In particular, the analysis of their behavior is important to

determine regimes where the spectral tilt of the scalar of

curvature power spectrum increases (leading potentially to

a blue-tilted spectrum) or decreases (and that can lead to a

red-tilted spectrum). Such an analysis is particularly rel-

evant in modeling WI models and constraining them with

the observations [76]. Furthermore, since Q appears

explicitly in the slow-roll parameters of WI, the behavior

ofQ during WI is important for determining regimes where

the dynamics are consistent and can have a graceful exit

[10]. In the case of DBIWI, the slow-roll coefficients also

depend on the sound speed cs; hence, for completeness, we

also study its behavior here. During slow-roll we find that

the dissipation ratio Q, the temperature over Hubble

parameter T=H, and the sound speed cs in DBIWI evolve

with the number of e-folds N, respectively, as

d lnQ

dN
¼ csf½4þ cð1þ c2sÞ�ϵV − cð1þ c2sÞηV − ð2cð1 − c2sÞ þ 4pÞκVg

4 − cþ 4Qþ cc2sQ
; ð2:13Þ

d lnðT=HÞ
dN

¼ csfð6þ c2s þ 5Qþ cð−1þ c2sQÞÞϵV − ð1þ c2sÞð1þQÞηV þ ½pðc2sQ − 1Þ − 2ð1þQÞð1 − c2sÞ�κVg
ð1þQÞð4 − cþ 4Qþ cc2sQÞ ;

ð2:14Þ

d ln cs

dN
¼ csð1 − c2sÞfð−4þ cþ cQÞϵV − ð−4þ cÞð1þQÞηV − 2½4 − cþ ð4þ cþ 2pÞQ�κVg

ð1þQÞð4 − cþ 4Qþ cc2sQÞ ; ð2:15Þ

where ϵV ¼ M2

PlðV 0=VÞ2=2 and ηV ¼ M2

PlV
00=V are the

usual slow-roll inflaton potential parameters and

κV ¼ M2

PlV
0=ðϕVÞ.

We note from Eqs. (2.13)–(2.15) that the denominator of

those expressions is always positive. This is because the

power c in the temperature dependence of the dissipation

coefficient satisfies −4 < c < 4 (see e.g., Refs. [83–85]).

On the other hand, the sign of the numerator in the above

expressions will depend on both the form of the dissipation

coefficient and on the inflaton potential exponent n. As
examples of representative cases of WI models, we can

consider two cases of dissipation coefficient that are well

motivated microscopically: (a) c ¼ 1, p ¼ 0, i.e., a linear in

the temperature dependence for the dissipation coefficient,

ϒ ∝ T, that was first derived in Ref. [42] in the case of the

WLI, and (b) c ¼ 3, p ¼ 0, i.e., a cubic power in the

temperature dependence for the dissipation coefficient,

ϒ ∝ T3, derived recently in Refs. [51,52] in the case of

the MWI. From the Eqs. (2.13)–(2.15) we find that in case

(a) bothQ and T=H are growing functions with the number

of e-folds for n > 1=3 for all cs, while cs initially decreases
for n < 3 when Q ≪ 1, and for Q > 1 it will increase for

n > 13=7 and decreases otherwise. In case (b)Q and cs are
decreasing functions with the number of e-folds whenever

n < 3 and c2s < 1=3 or n > 3 and c2s > 1=3, and increasing
functions with N otherwise, while T=H is in general a

growing function with N. Both cases [(a) and (b)] then

reinforce the WI condition T=H > 1 throughout the infla-

tionary dynamics.

III. PERTURBATIONS FOR DBIWI

Let us describe the scalar perturbation equations in

DBIWI. We start with the fully perturbed FLRW metric,

ds2 ¼ −ð1þ 2αÞdt2 − 2a∂iβdx
idt

þ a2½δijð1þ 2φÞ þ 2∂i∂jγ�dxidxj; ð3:1Þ

where α, β, γ and φ are the spacetime-dependent metric

perturbation variables. In WI the evolution of field

3
See also Refs. [79,80] for some earlier studies also consid-

ering this functional form for the dissipation coefficient in WI.
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fluctuations δϕ, which is effectively described by a sto-

chastic evolution, is determined by a Langevin-like equa-

tion [17,20]. In the case of DBIWI, perturbing the

covariant equation (2.8) around the background, i.e.,

Φðx; tÞ ¼ ϕðtÞ þ δϕðx; tÞ, the corresponding Langevin

equation for δϕ reads

δϕ̈þ 3Hð1þQ − ϵsÞδ _ϕþH2

�

z2 þ 3_f

2Hf
½ð1 − c2sÞð1þQÞ − ϵs� −

1 − 3c2s þ 2c3s

H2

�

f02

f3
−

f00

2f2

�

þ c3sV
00

H2

�

δϕ

þ c2sδϒ _ϕ ¼ c3sðξq þ ξϒÞ þ ½ð3c−2s − 1Þϕ̈þ 3Hð1þQÞ _ϕ�αþ ð _αþ c2sκÞ _ϕ −
3f0

2f2
ð1 − c2sÞð1 − c−2s Þα; ð3:2Þ

which is also supplemented by the first-order pertur-

bation equations for the radiation energy density, δρr,

and for the radiation momentum perturbation, Ψr, given,

respectively, by

δ_ρr þ 4Hδρr ¼
k2

a2
Ψr þ _ρrαþ 4

3
ρrκ þ δQr; ð3:3Þ

and

_Ψr þ 3HΨr ¼ −
δρr

3
−
4

3
ρrαþ Jr: ð3:4Þ

In the Eqs. (3.2), (3.3), and (3.4), we have that

δϒ ¼ 3HQ

�

cδρr

4ρr
þ pδϕ

ϕ

�

; ð3:5Þ

δQr ¼ c−1s δϒ _ϕ2 þ 3H2Qc−3s ð1 − c2sÞ
_f

2Hf
_ϕδϕ

þ 3c−3s ð1þ c2sÞHQ _ϕδ _ϕ

− 3c−3s ð1þ c2sÞHQ _ϕ2α; ð3:6Þ

Jr ¼ −c−1s ϒ _ϕδϕ; ð3:7Þ

where z ¼ csk=ðaHÞ, κ ¼ 3ðHα − _φÞ þ k2χ=a2 and

χ ¼ aðβ þ a_γÞ. Moreover, in Eq. (3.2), ξq;ϒ ≡ ξq;ϒðk; tÞ
are stochastic Gaussian sources related to quantum and

thermal fluctuations with appropriate amplitudes chosen

such as to match the analytical derivation for the scalar of

curvature power spectrum in WI [18]. This leads to ξϒ and

ξq both having zero mean and they satisfying two-point

correlation functions given, respectively, by

hξϒðk; tÞξϒðk0; t0Þi ¼ 2ϒT

a3
δðt − t0Þð2πÞ3δðkþ k

0Þ; ð3:8Þ

hξqðk; tÞξqðk0; t0Þi ¼ H2ð9þ 12πQÞ1=2ð1þ 2n�Þ
πa3

× δðt − t0Þð2πÞ3δðkþ k
0Þ; ð3:9Þ

where n� represents the statistical distribution state for the

inflaton quanta at the Hubble radius [18] (see also

Appendix B of Ref. [43] for details).

The set of perturbation equations (3.2), (3.3), and (3.4)

are gauge-ready equations. They can be used with any

appropriate gauge choice or also be worked out in terms of

gauge-invariant quantities [86,87]. For instance, they can

be taken in the Newtonian-slicing (or zero-shear) gauge

χ ¼ 0, with the relevant metric equations becoming

κ ¼ 3

2M2

Pl

ðc−1s _ϕδϕ − ΨrÞ; ð3:10Þ

α ¼ −φ; ð3:11Þ

_φ ¼ −Hφ −
1

3
κ: ð3:12Þ

It can also be easily checked that Eq. (3.2) reduces to the

standard Langevin equation in WI [17,20] for cs ¼ 1, i.e.,

ϵs ¼ 0. As is clear from Eqs. (3.2) and (3.3), the term δϒ is

responsible for coupling the inflaton perturbations with

those of the radiation whenever c ≠ 0 and which is known

to lead to a growing mode for the resulting power

spectrum [20].

A. The scalar of curvature power spectrum

Given the perturbation equations, Eqs. (3.2)–(3.4), the

scalar power spectrum is determined from the comoving

curvature perturbation R,

ΔRðkÞ ¼
k3

2π2
hjRj2i; ð3:13Þ

where “h� � �i” means averaging over different realizations

of the noise terms in Eq. (3.2) (see, for instance

Refs. [17,19,20] for details of the numerical procedure).

Given an appropriate gauge, R is composed of con-

tributions from the inflaton momentum perturbations

Ψϕ ¼ −c−1s _ϕδϕ and from the radiation momentum pertur-

bations Ψr,
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R ¼
X

i¼ϕ;r

ρi þ pi

ρþ p
Ri; ð3:14Þ

Ri ¼ −φ −
H

ρi þ pi

Ψi; ð3:15Þ

with p ¼ pϕ þ pr, ρϕ þ pϕ ¼ c−1s _ϕ2 and ρr þ pr ≃

4ρr=3 ¼ c−1s Q _ϕ2.

An explicit analytic expression for the scalar of curvature

power spectrum can be obtained when neglecting the

coupling between inflaton and radiation perturbations

[i.e., taking c ¼ 0 in Eq. (3.5)] and it was determined

in Ref. [18]. The result in this case is well approximated

by [18]

ΔR ≃

�

H2
�

2π _ϕ�

�

2
�

1þ 2nBE þ 2
ffiffiffi

3
p

πQ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p T�

H�

�

; ð3:16Þ

where nBE is the Bose-Einstein distribution and the effect of
sound speed parameter is encoded in the inflaton field

velocity through Eq. (2.10). One should note that in

DBIWI, fluctuations are frozen at the sound horizon, where

cs�k� ¼ a�H�, rather than at the Hubble radius, where

k� ¼ a�H�. In general we can also replace nBE in Eq. (3.16)
by n�, representing the statistical distribution state of the

inflaton at the sound horizon, which might not be neces-

sarily that of thermal equilibrium. The form given by

Eq. (3.16) is typically the result used in most of the recent

literature in WI when the growing function is absent.

We want to first understand the effect of the coupling

between inflaton and radiation perturbations and how a

sound speed cs < 1 might change the results for the power

spectrum in DBIWI. To possibly do something analytical

and to obtain a feeling for these effects, we can start by

considering some simplifying assumptions. Since we are

interested in the strong dissipation regime Q > 1, we can

start by neglecting the contribution of quantum fluctuations

to the power spectrum. For Q > 1, the contribution from

the thermal stochastic fluctuations ξϒ in Eq. (3.2) domi-

nates over that from the quantum fluctuations ξq. Moreover,

we can also analytically solve Eq. (3.2) explicitly by

neglecting the slow-roll order corrections (and likewise

the metric contributions which also give slow-order cor-

rections only). Under these simplifying assumptions, the

authors in Ref. [20] have explicitly shown that the power

spectrum grows with Q� like ΔR ∝ ΔR;c¼0Q
3c
� , with

ΔR;c¼0 ≃

ffiffiffi

3
p

4π
3

2

H3
�T�
_ϕ2

�
Q

1

2�; ð3:17Þ

when taking Q� ≫ 1 in Eq. (3.16). By utilizing the same

techniques developed in Ref. [20], but now adapted to the

perturbation equations in DBIWI, we arrive at the result,

when Q� ≫ 1, that ΔR is now given by

ΔR ≃ ΔR;c¼0

�

Q�
Qc

�

3cc2s�
; ð3:18Þ

whereQc is a function of both c and cs. The result given by
Eq. (3.18) explicitly shows that cs < 1 can compensate for

the result of a growing scalar spectrum amplitude with large

Q and whenever c > 0 (or, likewise, a decreasing ampli-

tude when c < 0). The approximations assumed in

Ref. [20] allow us to solve for the inflaton perturbations

and hence, they help to find an analytical expression for

ΔR; it has been shown in Ref. [19] that these approxima-

tions tend to overestimate the effect of the coupling

between the inflaton and radiation perturbations. By

accounting for the full expressions, i.e., not dropping all

slow-roll order terms in the equations, the dependence of

ΔR on Q� tends to be more suppressed, with a smaller

power in Q�. Hence, the results from the (numerical)

solution for the full perturbation equations shows that

ΔR ∝ Q
β
�, with β < 3c, when cs ¼ 1. This result is also

observed in our analysis shown in the next section, showing

that β < 3cc2s� also holds here in the DBIWI. However, the

effect is still large enough to make the spectrum depart

considerably from the result given by Eq. (3.16). By

explicitly numerically solving the set of perturbations

equations, as in Ref. [19], the result of the coupling

between inflaton and radiation perturbations can be

expressed as an overall correction to Eq. (3.16), which

modifies it to

ΔR ¼
�

H2
�

2π _ϕ�

�

2
�

1þ 2nBE þ 2
ffiffiffi

3
p

πQ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p T�

H�

�

GðQ�Þ;

ð3:19Þ

where GðQ�Þ accounts for the effect of the coupling of

the inflaton and radiation fluctuations. Some explicit

forms for GðQ�Þ have been given in the literature, depend-

ing on the form of the dissipation coefficient in WI

[17,19,32,42,43,47,50,76]. In the next section we will give

results for GðQ�Þ in the DBIWI case for some of the most

representative dissipation coefficient forms used in recent

literature and we will also explicitly see how a cs < 1

effectively suppresses the effects of a growing Q� in the

amplitude of the scalar power spectrum. But before going

into that analysis, let us also derive some useful results

concerning the spectral tilt in DBIWI.

B. The spectral tilt ns in DBIWI

From Eq. (3.19) and also using Eqs. (2.13)–(2.15), we

can explicitly find expressions for the spectral tilt ns,

ns − 1 ¼ d lnΔRðkÞ
d ln k

≃
d lnΔRðkÞ

dN
; ð3:20Þ

which in the weak and strong dissipation regimes of

DBIWI are given, respectively, by
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ðns − 1ÞjQ�≪1 ¼
cs�
4 − c

f−½10þ 7c2s� − cð3þ 2c2s�Þ�ϵV
þ ½−1þ ð7 − 2cÞc2s��ηV
þ ½ð14 − 4cÞð1 − c2s�Þ − p�κVg; ð3:21Þ

and

ðns − 1ÞjQ�≫1

¼ −
cs�

2ð4þ cc2s�ÞQ�
f½18 − cð1 − c2s�Þ�ϵV

þ ½2þ cþ ð−14þ 5cÞc2s��ηV
þ 2½cð1 − c2s�Þ þ 2ð−7þ pÞ þ 7ð2þ pÞc2s��κVg

þ cs�
4þ cc2s�

fð4þ cþ cc2s�ÞϵV − cð1þ c2s�ÞηV

− ½2cð1 − c2s�Þ þ 4p�κVg
G0ðQ�Þ
GðQ�Þ

: ð3:22Þ

Note that in the case of the primordial inflaton potential of

the form Eq. (2.11), we have in Eqs. (3.21) and (3.22) that

ϵV ¼ 2n2M2

Pl

ϕ2
�

; ð3:23Þ

ηV ¼ 2nð2n − 1ÞM2

Pl

ϕ2
�

; ð3:24Þ

κV ¼ 2nM2

Pl

ϕ2
�

: ð3:25Þ

In deriving the Eqs. (3.21) and (3.22) for ns we have also

considered that in WI that T�=H� ≫ 1 (in particular,

T�=H� ≫ 1 can be explicitly verified in the examples to

be considered in the next section). Finally, in the regime

T�=H� ≪ 1 and Q� ≪ 1 we recover the cold inflation

standard result, ns − 1 ¼ −6ϵV þ 2ηV . We can note from

Eq. (3.22) that when cs� ≪ 1 (in the absence of the growing

mode, G0ðQÞ → 0) we have that ns − 1 ∝ −1=Q and the

spectral tilt will tend to be red-tilted for large Q. However,

in the presence of the growing mode, the last term in

Eq. (3.22) dominates at large Q and it will tend to drive the

spectrum to be blue-tilted (for G0ðQÞ > 0). To better

illustrate the latter case, let us consider a few relevant

WI dissipation terms that have commonly been used in the

literature, namely, (a) the linear in the temperature dis-

sipation coefficient [42], with c ¼ 1, p ¼ 0; (b) the cubic in

the temperature dissipation coefficient, with c ¼ 3, p ¼ 0

(e.g., from Ref. [51]), and (c) the dissipation coefficient

with c ¼ 3; p ¼ −2 (see, e.g., Refs. [40,41]). For definite-

ness, we will also consider the example of a primordial

potential with a quartic inflaton potential (n ¼ 2), which

has been the primordial potential mostly considered with

these dissipation coefficients in WI. We will also assume

that the growing mode function is well described by a

polynomial function in the dissipation ratio Q, with the

leading term for Q ≫ 1 of the form GðQÞ ∝ Qβ. Let us see

the results for each of these three cases separately.

1. Case (a)

For case (a), with c ¼ 1, p ¼ 0, we obtain for Eq. (3.22)

that

ðns − 1ÞjQ�≫1 ≃
−2cs�½ð17þ c2s�Þ − 2βð5þ c2s�Þ�

ð4þ c2s�ÞQ�ðϕ�=MPlÞ2
: ð3:26Þ

Hence, for cs� ≪ 1 we have that the spectral tilt will turn

blue, i.e., ns − 1 > 0, if β > 1.7, while for cs� ¼ 1, the

spectral tilt is blue forβ > 1.5.We recall that for this case [42]

we have that β ≃ 2.315 (for cs� ¼ 1), thus, for large Q this

dissipation coefficient with a quartic inflaton potential will

always disagree with the observations. But from Eq. (3.18),

we expect that β will decrease proportional to c2s . Thus, we

need at least c2s� ≲ 1.7=2.315 ∼ 0.7 for the model to be able

to sustain a large dissipation DBIWI regime and to have a

red-tilted scalar of curvature power spectrum consistent with

the observations. This expectation will be confirmed by our

numerical results shown in Sec. IV.

2. Case (b)

For case (b), with c ¼ 3, p ¼ 0, we obtain for Eq. (3.22)

that

ðns − 1ÞjQ�≫1 ≃
−2cs�½ð23þ 31c2s�Þ − 2βð−1þ 3c2s�Þ�

ð4þ 3c2s�ÞQ�ðϕ�=MPlÞ2
:

ð3:27Þ

Hence, for cs� ≪ 1 we have that the spectral tilt (different

from the previous case) will always be red, since in this

case ns − 1 ∝ −ð23þ 2βÞ. When cs� ¼ 1, we see from

Eq. (3.27) that ns − 1 ∝ −ð54 − 4βÞ and the spectral tilt is

thus blue for β > 13.5. But in this case [76] we have that

β ≃ 4.33 (for cs� ¼ 1), hence for large Q this dissipation

coefficient with a quartic inflaton potential can quite

robustly sustain a red-tilted spectrum. In fact, the effect

of having a cs� < 1 here can potentially make the spectrum

too red tilted to be consistent with the observations, since a

value of cs� < 1 would make the exponent β smaller and

lead to a redder spectrum. This is confirmed by our

numerical results shown in Sec. IV. Since this type of

dissipation coefficient already leads to quite satisfactory

results when compared to the observations [51], even in the

strong dissipation regime of WI, it does not benefit from a

DBIWI construction (at least in the context of monomial

chaotic inflaton potentials).

3. Case (c)

It is useful to compare case (b) with the results for

case (c), when c ¼ 3; p ¼ −2, in which case the dissi-

pation coefficient depends on the temperature but also
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on the inflaton amplitude. In this case, we obtain for

Eq. (3.22) that

ðns− 1ÞjQ�≫1≃
−2cs�½3ð5þ c2s�Þ− 2βð7þ 3c2s�Þ�

ð4þ 3c2s�ÞQ�ðϕ�=MPlÞ2
: ð3:28Þ

Here, we have that for cs� ≪ 1 the spectral tilt is such that it

will turn blue when β > 15=14 ≃ 1.07, while for cs� ¼ 1,

the spectral tilt is blue already for β > 0.9. In this case we

still have β ≃ 4.33 (for cs� ¼ 1), thus for large Q the

spectrum will always be quite blue tilted. This agrees with

the previous results for this type of WI model [41,76],

which have shown that this dissipation coefficient, within

the monomial chaotic inflaton potential models, can only

be consistent with the observational data
4
when Q� ≪ 1,

i.e., in the weak dissipation regime of WI. In this regime

of Q� ≪ 1, the growing mode is not an issue, since

GðQ�Þ → 1. As in case (a). with a linear temperature

dissipation coefficient, this model can benefit from a

DBIWI realization by exploring the effect of a small cs
value, which will help to suppress the growing mode by

decreasing β. However, this is expected to only happen for

a smaller value for cs than the one shown for the case (a),

c2s� ≲ 0.2. This case also illustrates the importance in

deriving the full dependence of the dissipation coefficient

in both the temperature and the inflaton field amplitude.

Despite cases (b) and (c) have exactly the same temperature

dependence, the fact that the dissipation coefficient in

(c) has an explicit dependence on ϕ implies that an

agreement with the observational value for the tilt of the

scalar power spectrum can only be achieved in the weak

dissipation regime of WI (for the standard case of cs� ¼ 1),

while in (b) we can robustly support the strong dissipation

regime of WI, even with the presence of the growing mode

(which in that case is benign).

C. Non-Gaussianities in DBIWI

Before ending this section. Let us briefly comment on

the expected non-Gaussianities in DBIWI. In the DBIWI

realization, non-Gaussianities may be generated by both

nonequilibrium dissipative effects and by a low sound

speed. It was shown in Ref. [14,15] that non-Gaussianities

produced by temperature dependent dissipation coeffici-

ents are larger than temperature independent dissipation

coefficients due to the backreaction of radiation bath and

coupling of the inflaton to the radiation field perturbations.

However, we qualitatively expect that for low sound

speeds, cs� < 1, a suppressing effect (as seen for the scalar

of curvature power spectrum) will also work in the case

of the nonlinear parameter fNL. Moreover, the non-

Gaussianity parameter for WI in the strong dissipation

regime is roughly less than 10, i.e., jfWarm
NL j ≤ 10, for

temperature dependent dissipation coefficients [14,15].

Furthermore, the non-Gaussianity produced by cold DBI

inflation is inversely proportional to the square of the sound

speed, i.e., fNL ≃ 35

108
ðc−2s − 1Þ. Hence, the corresponding

non-Gaussianity parameter in cold DBI inflation is fNL ≃ 3

for cs� ¼ 0.3, which is not very large. Therefore, depending

on how these two non-Gaussianity sources contribute to the

non-Gaussianity parameter (where they can either counter-

balance or enforce each other) we may obtain large or small

non-Gaussianities in DBIWI [72,89]. Nonetheless, a com-

prehensive analysis is needed to find how large the non-

Gaussianity will be in the DBIWI realization.

IV. RESULTS

To demonstrate the effect of cs on the power spectrum in

the DBIWI realization [more precisely on the function

10
0

10
1

10
2

10
3

Q
*

10
0

10
2

10
4

10
6

G
(Q

*
)

c
s*

=1.0

c
s*

=0.6

c
s*

=0.3

c
s*

=0.1

10
0

10
1

10
2

10
3

Q
*

10
0

10
4

10
8

10
12

10
16

G
(Q

*
)

c
s*

=1.0

c
s*

=0.6

c
s*

=0.3

c
s*

=0.1

(a)

(b)

FIG. 1. The growing function GðQ�Þ as defined by Eq. (4.1).

(a) Linear in T dissipation coefficient (b) Cubic in T dissipation

coefficient.

4
From the Planck Collaboration [88], the result for the

spectral tilt is ns ¼ 0.9658� 0.0040 (95% CL, Planck TT;TE;
EEþ lowEþ lensingþ BK15þ BAO þ running) at pivot scale
k� ¼ 0.05 Mpc−1.

MEYSAM MOTAHARFAR and RUDNEI O. RAMOS PHYS. REV. D 104, 043522 (2021)

043522-8



GðQ�Þ] we have considered the quartic monomial inflaton

potential (n ¼ 2) and focused our studies on the two

representative more recent cases of WI dissipation coef-

ficients, namely,ϒ ¼ CϒT andϒ ¼ CϒT
3=M2. Results for

other cases of monomial inflaton potential are found to be

very similar to the quartic one, so we refrain from showing

those other cases (with expected similar results) here. The

growing function GðQ�Þ is determined by the numerical

evaluation of the perturbation equations and obtaining the

scalar of curvature power spectrum (3.13), with GðQ�Þ
defined as

GðQ�Þ ¼
ΔR;c≠0

ΔR;c¼0

; ð4:1Þ

where ΔR;c≠0 is the solution for the scalar of curvature

power spectrum with the explicit coupling of the inflaton

perturbations with the radiation ones in Eq. (3.2), and

ΔR;c¼0 is the solution when this coupling is explicitly

dropped from the equation. We should note that during the

numerical analysis, although we dropped the metric

perturbations,—which is justified in an appropriate gauge

and in the strong dissipation regime—we take into account

the effect of first order slow-roll parameters, i.e., ϵV , ηV , κV ,

etc., in Eq. (3.2) to obtain the precise behavior for the

growing function. The results for the linear and cubic

dependencies in temperature for the dissipation coefficient

are shown in Fig. 1. The results shown in Fig. 1 indicate

that for cs ≲ 0.1 the growing functionGðQ�Þ can indeed be
taken as GðQ�Þ ≈ 1.

As shown in the previous section, we may obtain a red-

tilted spectral index in the strong dissipation regime even if

cs� has intermediate values, not necessarily for values of

cs� ≪ 1. This is because as cs� < 1, it can already suffice to

suppress the growing mode enough to allow for a red-tilted

spectrum (even for large Q values). Thus small, but still

reasonable values for cs� can work to allow the spectrum in

DBIWI to be red-tilted in the strong dissipation regime.

Hence, it is useful to obtain the exact functionality of

GðQ�Þ for future analysis. In this regard, we present the

following fitting functions to the curves shown in Fig. 1,

GðQ�Þ ¼ 1þ AcQ
α
� þ BcQ

β
�; ð4:2Þ

where the coefficients α, β, Ac and Bc are given in the

Table I for the two representative values of c (i.e., for a

linear and a cubic in T dissipation coefficients, as obtained

in the LWI and MWI models, respectively) and also for

three representative values for cs (at the effective Hubble

radius crossing).

When these results are applied to the cubic in the

temperature form for the dissipation coefficient (c ¼ 3,

p ¼ 0) for values of cs < 1, we get that ns ≃ 0.95 and even

TABLE I. The coefficients α, β, Ac and Bc in growing function

GðQ�Þ with different values for c and cs.

c cs� α β Ac Bc

1 1 1.364 2.315 0.335 0.0185

0.6 0.694 1.114 0.311 0.187

0.3 0.395 0.448 0.205 0.127

3 1 1.946 4.330 4.981 0.127

0.6 1.975 2.684 0.475 0.083

0.3 0.815 0.939 0.478 0.368

TABLE II. Numerical values of the parameters and the relevant cosmological quantities obtained for the case of a quartic inflaton

potential (n ¼ 2) with a linear in T dissipation coefficient (c ¼ 1, p ¼ 0) and for cs� ¼ 0.1, when GðQ�Þ ¼ 1, and for cs� ¼ 0.3, when

GðQ�Þ is given by Eq. (4.2).

cs� Q� ns r N� jΔϕj=MPl Cϒ Tend (GeV) V0 ðGeVÞ4 ϵV� ηV� V
1=4
� =MPl

f0

0.1 1.03 0.9651 1.13 × 10−5 62.1 3.36 0.0067 2.67 × 1013 3.94 × 1059 0.68 1.02 1.56 × 10−5 3.30 × 1017

10.25 0.9628 3.00 × 10−7 61.0 1.42 0.023 1.08 × 1013 3.27 × 1059 3.80 5.71 6.31 × 10−6 2.14 × 1018

102.51 0.9625 3.88 × 10−9 60.0 0.46 0.076 3.68 × 1012 3.69 × 1059 35.55 53.33 2.16 × 10−6 1.71 × 1019

0.3 1.03 0.9672 3.33 × 10−5 62.4 5.85 0.0088 3.27 × 1013 1.27 × 1059 0.23 0.34 1.91 × 10−5 3.15 × 1017

10.30 0.9667 5.70 × 10−7 61.5 2.44 0.027 1.09 × 1013 7.24 × 1058 1.30 1.95 6.39 × 10−6 2.91 × 1018

103.16 0.9684 3.49 × 10−9 60.3 0.79 0.074 3.08 × 1012 3.40 × 1058 12.31 18.47 1.80 × 10−6 4.73 × 1019
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smaller values
5
for ns the larger Q� is and the smaller cs� is

[as already anticipated from the discussion given for case

(b) in Sec. III B 2] showing that the spectrum is already

outside the two-sigma range in the red-tilted side of the

observational values for ns. This indicates that for this form
of a cubic dissipation coefficient, the model is not expected

to benefit from a DBIWI realization, as already discussed

before. Let us then next focus on the linear dissipation

coefficient WI model of Ref. [42]. Some explicit examples

of results obtained in this case are given in Table II for the

quartic inflaton potential and with a linear in T dissipation

coefficient. As it is clear, for Q� > 10, the tensor-to-scalar

ratio is smaller than 10−7, hence, the model is able to

resolve the aforementioned inconsistency in the cold DBI

inflation [62] and discussed in the Introduction section.

V. CONCLUSIONS

We studied the effects of a low sound speed on the

dynamics of perturbations equations of WI inspired by

string motivated models that include relativistic D-brane

motion. We numerically solved the coupled inflaton and

radiation field perturbation equations for the first time in

the case of a noncanonical kinetic term in DBIWI. We

found that a low sound speed is able to suppress the

growing function that always appears in the scalar power

spectrum of WI whenever the dissipation coefficient

exhibits an explicit dependence with the temperature of

the radiation bath. As a consequence of this suppression

effect seen in DBIWI, the restrictions for constructing a WI

realization in the strong dissipation regime Q ≫ 1 are

considerably relaxed. We have also complemented these

results with the ones derived from the analytical expres-

sions for the spectral tilt. Based on our results, as the low

sound speed will push WI models into the strong dis-

sipation regime, the severe inconsistency problems seen in

DBI cold inflation, e.g., due to an upper bound on the

tensor-to-scalar ratio arising from compactification con-

straints and a lower bound from observations, can all be

resolved due to large dissipation. We have explicitly shown

that among the most common dissipation coefficients that

have been derived from well-motivated particle physics

realizations and applied to the WI context, the dissipation

coefficient with a linear dependence on the temperature is

the case that can mostly benefit from a DBIWI realization.

Hence, these type of models are able to soften all theoretical

and observational constraints, while predicting very small

tensor-to-scalar ratio and potentially significant non-

Gaussianity, making them falsifiable in near future.

From a model-building perspective, the present work,

along with the previous results on swampland conjectures

in WI [47], gives a strong hint that WI may consistently

be embedded in string theory utilizing the physics of the

brane. Besides, phenomenologically realizing WI in the

strong dissipation regime is a significant step towards

achieving such goal. Therefore, the last step is building

an explicit model describing how D-brane may be able to

dissipate its energy into radiation field. This, and other

implications of our results, are certainly worthwhile to

explore further in future studies.
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