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Abstract
It is well known that the classic Allen–Cahn equation sat-

isfies the maximum bound principle (MBP), that is, the

absolute value of its solution is uniformly bounded for all

time by certain constant under suitable initial and boundary

conditions. In this paper, we consider numerical solutions

of the modified Allen–Cahn equation with a Lagrange mul-

tiplier of nonlocal and local effects, which not only shares

the same MBP as the original Allen–Cahn equation but

also conserves the mass exactly. We reformulate the model

equation with a linear stabilizing technique, then con-

struct first- and second-order exponential time differencing

schemes for its time integration. We prove the uncondi-

tional MBP preservation and mass conservation of the

proposed schemes in the time discrete sense and derive their

error estimates under some regularity assumptions. Various

numerical experiments in two and three dimensions are also

conducted to verify the theoretical results.
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1 INTRODUCTION

The classic Allen–Cahn equation takes the following form:

𝜕tu(x, t) = 𝜀2Δu(x, t) + f (u(x, t)), x ∈ Ω, t > 0, (1)
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where u(x, t) is the real-valued unknown function, Ω ⊂ R
𝑑 (𝑑 = 2, 3) is an open, connected and

bounded domain with the Lipschitz continuous boundary 𝜕𝛺, 𝜀 is an interfacial parameter and f (u) =
−F′(u) with F(u) being certain nonlinear potential function. The classic Allen–Cahn equation can be

regarded as the L2 gradient flow with respect to the energy functional

E[u(x, t)] ≔ ∫Ω

(
𝜀2

2
|∇u(x, t)|2 + F(u(x, t))

)
dx, (2)

and its solution satisfies the energy dissipation law as follows:

𝑑

dt
E[u(x, t)] ≤ 0. (3)

The Allen–Cahn equation was originally introduced by Allen and Cahn [1] as a model for the phase

separation process of a binary alloy under a fixed temperature. Since then the Allen–Cahn equation

has been intensively studied due to its connection to the celebrated curvature driven geometric flow. In

the past few decades, many works on the Allen–Cahn equation have been devoted to motions of inter-

faces, especially, motion by mean curvature, and numerous applications ranging from image processing

[2, 3], material sciences [1] to biology [4].

Many parabolic types of equations often satisfy an important property, that is, the solution must

reach its maximum and/or minimum either at the initial time or on the boundary of the domain, which

is the well-studied maximum principle [5]. The Allen–Cahn Equation (1) satisfies a similar property,

called the maximum bound principle (MBP) [6, 7]: if the initial data and/or the boundary values are

pointwise bounded by a certain constant in absolute value, then the absolute value of the solution is

also bounded by the same constant everywhere and for all time. For example, when the double-well

potential F(u) = 1

4
(u2 − 1)2 (and f (u) = −F′(u) = u − u3) is used, the constant bounding the solu-

tion is 1, that is, ||u(⋅, t)|| ≤ 1 for all t ≥ 0 if ||u(⋅, 0)|| ≤ 1, where || ⋅ || denotes the supremum norm.

The MBP is weaker than the conventional maximum principle in the sense that a problem satisfying

a maximum principle must satisfy an MBP. The Equation (1) with a uniformly elliptic linear opera-

tor L replacing 𝜀2Δ and f = 0 satisfies the maximum principle. There have also been many studies

devoted to maximum principle preserving numerical approximations of linear elliptic operators, such

as finite difference method [8, 9], lumped-mass finite element method [10, 11], collocation method

[12, 13], and finite volume method [14]. For the Equation (1) with a uniformly elliptic linear opera-

tor, the nonlinear term f (u) leads to the existence of time-invariant regions [7], in which the MBP was

proved as a special invariant region of the Allen–Cahn equation. Recently, a variety of works have been

done on whether such an MBP could be preserved by some time-stepping schemes for discretizing

the Allen–Cahn equation. The discrete MBPs of a finite difference semi-discrete scheme and its fully

discrete approximations with forward and backward Euler time-stepping methods were obtained in

one-dimensional space [15]. Moreover, the first-order stabilized implicit-explicit schemes with finite

difference spatial discretization were proved to preserve the MBP [16], which was then generalized

[17] to the case with more general nonlinear terms.

The Cahn–Hilliard equation, a fourth-order equation governed by the same energy functional (2),

satisfies the so-called mass conservation while the Allen–Cahn equation fails to satisfy this property.

One can modify the Allen–Cahn equation to satisfy the mass conservation by adding an extra Lagrange

term of nonlocal constraint as [18]

𝜕tu(x, t) = 𝜀2Δu(x, t) + f (u(x, t)) − 1|Ω| ∫Ω
f (u(y, t))dy, x ∈ Ω, t > 0. (4)
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Integrating both sides of the Equation (4) over Ω, we can see that the modified Allen–Cahn

Equation (4) conserves the total mass exactly:

𝑑

dt ∫Ω
u(x, t)dx = 0,

or equivalently, ∫Ω u(x, t) dx ≡ ∫Ω u(x, 0) dx. In addition, the solution to the modified Allen–Cahn

Equation (4) also satisfies the same energy dissipation laws [18] (3) as the classic Allen–Cahn

Equation (1). However, a drawback of such modification is that the value of the solution to (4) may

fall beyond the interval [−1, 1] even for the commonly used double-well potential case [18, 19].

Apart from the Equation (4), for the Allen–Cahn equation with the double-well potential, another

well-known modification is to impose a Lagrange multiplier [20] as follows:

𝜕tu(x, t) = 𝜀2Δu(x, t) + f (u(x, t)) −
∫Ω f (u(y, t))dy

∫Ω
√

4F(u(y, t))dy

√
4F(u(x, t)), x ∈ Ω, t > 0, (5)

where f (u) = u − u3 and F(u) = 1

4
(1 − u2)2. It is easy to show that the total mass is also exactly con-

served for (5). Furthermore, the conservation of mass is ensured by the nonlocal effect of the Lagrange

multiplier − 1|Ω| ∫Ω f (u) dy in (4), whereas the Lagrange multiplier in (5) combines both nonlocal and

local effects. Alfaro and Alifrangis have proven that the solution to (5) satisfies the same MBP [21] as

that for the classic Allen–Cahn Equation (1), that is, ||u(⋅, t)|| ≤ 1 for all t ≥ 0 if ||u(⋅, 0)|| ≤ 1. How-

ever, the dissipation law with respect to the original energy functional (2) does not hold theoretically

for the Equation (5); instead, the Equation (5) is the L2 gradient flow with respect to a slightly different

energy functional modified from (2) [20].

There have been quite a few researches denoted to numerical schemes for the mass-conserving

Allen–Cahn Equation (4). Kim et al. [22] proposed a practically unconditionally stable hybrid

scheme with an exact mass-conserving update at each time step. Zhai et al. [23, 24] proposed the

Crank–Nicolson and operator splitting schemes. Lee [25] discretized the equation by using a Fourier

spectral method in space and first-, second-, and third-order implicit explicit Runge–Kutta schemes in

time.

Recently, the exponential time differencing (ETD) (or say, the exponential integrator) has been

considered for constructing unconditionally MBP-preserving schemes for the classic Allen–Cahn

equation. The ETD method comes from the variation-of-constants formula with the nonlinear terms

approximated by polynomial interpolations, followed by exact integration of the resulting integrals.

The ETD schemes have been systematically studied [26] and further developed by Cox and Matthews

for the applications to stiff systems [27]. Hochbruck and Ostermann provided several nice reviews on

ETD Runge–Kutta method [28] and ETD multistep method [29] for semilinear parabolic problems and

the convergence of these methods were analyzed. Du and Zhu [30, 31] investigated the linear stabilities

of some ETD and modified ETD schemes for the Allen–Cahn equation in two- and three-dimensional

spaces. One advantage of the ETD schemes is the exact evaluation of the linear part so that they possess

good stability and accuracy even though the linear terms have strong stiffness. Thus, ETD schemes

have been successfully applied to phase-field models which often yield highly stiff ODE systems

under suitable spatial discretization. Some high-order numerical methods based on fast and stable ETD

schemes were developed for solving the Allen–Cahn equation [32], the Cahn–Hilliard equation [33],

the elastic bending energy model [34], and the no-slope-selection thin film equation [35, 36].

A localized compact ETD method was firstly presented [37] for time integration with large step sizes

for phase-field simulations of coarsening dynamics on the Sunway TaihuLight supercomputer. In

addition, MBP-preserving numerical schemes have been also studied for the fractional Allen–Cahn

equation with the Crank–Nicolson time-stepping [38], the nonlocal Allen–Cahn equation by using
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first- and second-order ETD schemes [39], and the conservative Allen–Cahn Equation (4) using the

ETD schemes [19]. In a very recent work, an abstract framework was established [6] for analyzing the

MBPs of semilinear parabolic equations and unconditionally MBP-preserving ETD schemes, and it

was claimed that the classic ETD methods with order higher than 2 cannot preserve the MBP uncondi-

tionally. Several third- and fourth-order MBP-preserving schemes were developed for the Allen–Cahn

equation by considering the integrating factor Runge–Kutta schemes [40–42]. An arbitrarily high-order

ETD multistep method was presented in Reference [43] by enforcing the maximum bound via an extra

cutoff postprocessing.

In this paper, we are interested in developing stable linear schemes for solving the mass-conserving

Allen–Cahn Equation (5) based on the ETD approach. The rest of the paper is organized as follows. In

Section 2, we first reformulate the model Equation (5) based on the linear stabilizing technique, and

then propose first- and second-order ETD schemes for time integration of the transformed equation,

which are shown to be unconditionally mass-conserved and MBP-preserving in the time discrete

sense. In Section 3, we prove the convergence of the proposed ETD schemes under certain regularity

assumptions. Various numerical experiments in two and three dimensions are performed in Section 4

to validate the theoretical results. Finally, some concluding remarks are drawn in Section 5.

2 UNCONDITIONALLY MBP-PRESERVING EXPONENTIAL TIME
DIFFERENCING SCHEMES

Let us restate the mass-conserving Allen–Cahn equation with local and nonlocal effects as follows:

𝜕tu(x, t) = 𝜀2Δu(x, t) + f [u](x, t), x ∈ Ω, t > 0, (6)

with

f [u](x, t) = f (u(x, t)) −
∫Ω f (u(y, t))dy
∫Ω g(u(y, t))dy

g(u(x, t)). (7)

where f (u) = u − u3 and g(u) =
√

4F(u) = 1 − u2 (the notation of absolute value is dropped off since

1− u2 ≥ 0 due to the MBP in the time–space continuous setting), subject to the initial value condition

u(x, 0) = u0(x), x ∈ Ω, (8)

for some u0 ∈ C(Ω) with Ω = Ω ∪ 𝜕𝛺. We impose either the periodic boundary condition (such as a

regular rectangular domain Ω =
∏𝑑

i=1(ai, bi)) or homogeneous Neumann boundary condition given by

𝜕u(x, t)
𝜕n

= 0, x ∈ 𝜕Ω, t ≥ 0,

where n is the outer unit normal vector on the boundary 𝜕Ω. Integrating both sides of the Equation (6)

over Ω, it is easy to verify its mass-conserving property:

∫Ω
u(x, t)dx = M0 ≔ ∫Ω

u0(x)dx, t ≥ 0.

The nonlinear functions f and g are continuously differentiable and

f (−1) = f (1) = 0, g(−1) = g(1) = 0. (9)

The MBP property with the bounding constant 1 then becomes a result of the invariant set for the

Equation (6) [21]. In addition, the two constant functions u(⋅, t) ≡ 1 or u(⋅, t) ≡ −1 are clearly trivial

solutions to the Equation (6). Hence we always assume that ||u0|| ≤ 1 and |M0| ≠ |Ω| (i.e., u0 ≢ ±1)

to avoid the these two trivial solution cases.
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In comparison with the original Allen–Cahn equation, the modified Allen–Cahn Equation (6) can

preserve the mass conservation by introducing the local and nonlocal Lagrange multiplier. However,

the energy dissipation law does not hold with respect to the orginal energy functional (2). To the best of

our knowledge, the mass-conserving Allen–Cahn Equation (6) with the double-well potential function

has been proved to possess the MBP [21], while whether or not the MBP also holds for the logarithmic

potential case or other forms is still an open question. Therefore, in this paper we only focus on studying

the unconditional MBP-preserving schemes for the double-well potential function case.

2.1 Linear splitting for stabilization

Let us define

𝜆u(t) =
∫Ω f (u(x, t))dx
∫Ω g(u(x, t))dx

, (10)

then we can write the Equation (6) as

𝜕tu(x, t) = 𝜀2Δu(x, t) + f (u(x, t)) − 𝜆u(t)g(u(x, t)). (11)

Next we present a result on the boundedness of 𝜆u(t).

Lemma 1 For any function 𝜉 ∈ C(Ω) with ||𝜉|| ≤ 1 and 𝜉 ≢ ±1, it holds that|𝜆𝜉| ≤ 1. (12)

Proof. Since ||𝜉|| ≤ 1 we have g(𝜉(x)) = 1 − 𝜉2(x) ≥ 0 for any x ∈ Ω. Furthermore, it

is clear ∫Ω g(𝜉(x)) dx > 0 since 𝜉 ∈ C(Ω) and 𝜉 ≢ ±1. Thus we have

|𝜆𝜉| = ||||| ∫Ω f (𝜉(x))dx
∫Ω g(𝜉(x))dx

||||| =
||∫Ω 𝜉(x) − 𝜉(x)3 dx||
∫Ω 1 − 𝜉(x)2 dx

≤ ∫Ω ||𝜉||(1 − 𝜉(x)2)dx
∫Ω 1 − 𝜉(x)2 dx

= ||𝜉|| ≤ 1,

which completes the proof. ▪

Remark 2 Note that for any function 𝜉 ∈ C(Ω) with ||𝜉|| ≤ 1, the condition 𝜉 ≢ ±1 is

equivalent to | ∫Ω 𝜉(x) dx| ≠ |Ω|. In the case of the constant functions 𝜉 ≡ ±1, the above

result can be understood in the limit sense. The boundedness of 𝜆u(t) plays an important

role in ensuring that the solutions to the mass-conserving Allen–Cahn Equation (6) and

the corresponding temporally discretized equation analyzed later are always located in

the interval [−1, 1].

Next, let us introduce the stabilizing constant 𝜅 > 0. Correspondingly, the mass-conserving

Allen–Cahn Equation (6) can be written in the following equivalent form

𝜕tu(x, t) = 𝜅u(x, t) + [u](x, t), x ∈ Ω, t > 0, (13)

where the linear operator

𝜅 = 𝜀2Δ − 𝜅
and the nonlinear term

 [u](x, t) = 𝜅u(x, t) + f [u](x, t)
= 𝜅u(x, t) + f (u(x, t)) − 𝜆u(t)g(u(x, t)).
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We require that the stabilizing constant 𝜅 always satisfies

𝜅 ≥ max|𝜉|≤1
(|f ′(𝜉)| + |g′(𝜉)|) = max|𝜉|≤1

(|1 − 3𝜉2| + | − 2𝜉|) = 2 + 2 = 4, (14)

Then we have the following lemma on the nonlinear term.

Lemma 2 Suppose that the requirement (14) holds. For any function 𝜉 ∈ C(Ω) with||𝜉|| ≤ 1 and 𝜉 ≢ ±1, we have || [𝜉]|| ≤ 𝜅. (15)

Proof. For any 𝜉 ∈ C(Ω) such that ||𝜉|| ≤ 1, we have from [6] that

0 ≤ 𝜅 + f ′(𝜉(x)) − 𝜆𝜉g′(𝜉(x)) ≤ 2𝜅, ∀x ∈ Ω, (16)

where we have used the result ||𝜆𝜉|| ≤ 1 guaranteed by Lemma 2.1. Then, the combination

of (9) and (16) yields

−𝜅 = −𝜅 + f (−1) − 𝜆𝜉g(−1) ≤  [𝜉](x) = 𝜅𝜉(x) + f (𝜉(x)) − 𝜆𝜉g(𝜉(x))
≤ 𝜅 + f (1) − 𝜆𝜉g(1) = 𝜅 (17)

for any x ∈ Ω, which completes the proof. ▪

2.2 Exponential time differencing for time integration

Now we propose and analyze first- and second-order linear schemes for time integration of the

mass-conserving Allen–Cahn Equation (6) based on the equivalent form (13) and the exponential time

differencing approach.

Let us divide the time interval by {tn = n𝜏}n≥0 with a time step size 𝜏 > 0. The essence of

the ETD method is to approximate the nonlinear operator  [u] by some interpolation. We define

w(x, s) = u(x, tn + s) for s ∈ [0, 𝜏], then we have the following problem:{
𝜕sw = 𝜅w + [w], x ∈ Ω, s ∈ (0, 𝜏],
w(x, 0) = u(x, tn), x ∈ Ω,

(18)

equipped with the periodic boundary condition or homogeneous Neumann boundary condition.

Setting  [u(tn + s)] ≈  [u(tn)] in (18) gives the first-order ETD (ETD1) scheme: for n ≥ 0 and

given un, find un+1 = wn(𝜏) solving{
𝜕swn = 𝜅wn + [un], x ∈ Ω, s ∈ (0, 𝜏],
wn(x, 0) = un, x ∈ Ω,

(19)

subject to the periodic or homogeneous Neumann boundary condition, where un represents an

approximation of u(tn) and u0 = u0(⋅) is given.

First we have the following lemma regarding the Laplace operator.

Lemma 3 [6] For any w ∈ {u ∈ C(Ω) | Δu ∈ C(Ω)} and x0 ∈ Ω, if

w(x0) = max
x∈Ω

w(x),

then Δw(x0) ≤ 0. The Laplace operator Δ, enforced by the periodic or homogeneous
Neumann boundary condition, generates a contraction semigroup {eΔt}t≥0 with respect
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to the supremum norm on the subspace of C(Ω) [6], and for any 𝛼 ≥ 0, it holds that

||et(Δ−𝛼)u|| ≤ e−𝛼t||u||, t ≥ 0, (20)

for any u ∈ C(Ω).

Proposition 1 (Mass conservation of the ETD1 scheme) The ETD1 Scheme (19) con-
serves the mass unconditionally, i.e., for any time step size 𝜏 > 0, the ETD1 solution
satisfies

∫Ω
un dx = M0, ∀n ≥ 0. (21)

Proof. By induction, assuming that ∫Ω un dx = M0 is given, we only need to show

∫Ω un+1 dx = M0. Taking the L2 inner product of (19) with 1, we immediately obtain

𝑑

ds ∫Ω
wn dx + 𝜅 ∫Ω

wn dx = 𝜅 ∫Ω
un dx = 𝜅M0.

Let V(s) = ∫Ω wn(s) dx, then we have

dV(s)
ds

+ 𝜅V(s) = 𝜅M0,

with V(0) = M0. Multiplying by the exponential term e𝜅s and integrating on the interval

[0, 𝜏], we immediately get

V(𝜏)e𝜅𝜏 − M0 = M0(e𝜅𝜏 − 1),

which implies ∫Ω un+1 dx = V(𝜏) = M0. ▪

Proposition 1 implies that if u0 ≢ ±1 (i.e., |M0| ≠ |Ω|), then un ≢ ±1 for any n ≥ 0.

Theorem 1 (Discrete MBP of the ETD1 scheme) Suppose that the requirement (14)
holds and ||u0|| ≤ 1 with |M0| ≠ |Ω|. Then the ETD1 Scheme (19) preserves the discrete
MBP unconditionally, i.e., for any time step size 𝜏 > 0, the ETD1 solution satisfies ||un|| ≤
1 for any n ≥ 0.

Proof. By induction, we just need to show that ||un|| ≤ 1 and un ≢ ±1 deduce ||un+1|| ≤
1 for any n. The integration form of the ETD1 Scheme (19) reads as

un+1 = e𝜏𝜅 un + ∫
𝜏

0

e(𝜏−s)𝜅 [un]ds. (22)

According to Lemmas 2 and 3 and ||un|| ≤ 1, we obtain

||un+1|| ≤ ||e𝜏𝜅 ||||un|| + ∫
𝜏

0

||e(𝜏−s)𝜅 |||| [un]||ds

≤ e−𝜅𝜏 + ∫
𝜏

0

e−(𝜏−s)𝜅𝜅 ds

= e−𝜅𝜏 + 𝜅
1 − e−𝜅𝜏

𝜅
= 1,

which completes the proof. ▪
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Remark 3 By approximating e−𝜏𝜅 ≈ −𝜏𝜅 in the ETD1 Scheme (22), one can obtain

un+1 − un

𝜏
= 𝜅un+1 + [un],

which is exactly the standard stabilized implicit-explicit Euler (IMEX1) scheme, linear,

and also preserves the MBP [16] unconditionally. Such an observation suggests that the

IMEX1 scheme is actually an approximation of the ETD1 scheme, and the ETD1 solu-

tion is more accurate since it preserves completely the exponential behavior of the linear

operator and partially the nonlinear term [32, 33] while the IMEX1 scheme only uses the

first-order leading term.

The second-order ETD scheme of Runge–Kutta (ETDRK2) type is given by: find un+1 = wn(𝜏)
solving ⎧⎪⎨⎪⎩

𝜕swn = 𝜅wn +
(

1 − s
𝜏

) [un] + s
𝜏
 [ũn+1], x ∈ Ω, s ∈ (0, 𝜏],

wn(x, 0) = un, x ∈ Ω,
(23)

with u0 = u0(⋅), subject to the periodic or homogeneous Neumann boundary condition, where ũn+1

is generated by the ETD1 Scheme (19). It is worth noting that both ETD1 and ETDRK2 schemes are

linear. We now prove the mass conservation and the discrete MBP for the ETDRK2 scheme.

Proposition 2 (Mass conservation of the ETDRK2 scheme) The ETDRK2 Scheme (23)
conserves the mass unconditionally, i.e., for any time step size 𝜏 > 0, the ETDRK2
solution satisfies

∫Ω
un dx = M0, ∀n ≥ 0. (24)

Proof. Similar to the proof for Proposition 1, by taking the L2 inner product with (23)

by 1, we have

𝑑

ds ∫Ω
wn dx + 𝜅 ∫Ω

wn dx =
(

1 − s
𝜏

)
𝜅 ∫Ω

un dx + s
𝜏
𝜅 ∫Ω

ũn+1 dx = 𝜅M0,

where we have used ∫Ω ũn+1 dx = M0 from Proposition 1. Thus we obtain ∫Ω un+1 dx =
M0, which completes the proof. ▪

Theorem 2 (Discrete MBP of the ETDRK2 scheme) Suppose that the requirement (14)
holds, ||u0|| ≤ 1 with |M0|≢|Ω|. Then the ETDRK2 Scheme (23) preserves the discrete
MBP unconditionally, i.e., for any time step size 𝜏 > 0, the ETDRK2 solution satisfies||un|| ≤ 1 for any n > 0.

Proof. By induction, let us assume that ||un|| ≤ 1 and un ≢ ±1 for some n. From the

ETDRK2 Scheme (23), we have

un+1 = e𝜏𝜅 un + ∫
𝜏

0

e(𝜏−s)𝜅

[(
1 − s

𝜏

) [un] + s
𝜏
 [ũn+1]

]
ds. (25)

According to Lemmas 2-3, ||un|| ≤ 1 and ||ũn+1|| ≤ 1 (by Theorem 1), we obtain

||un+1|| ≤ ||e𝜏𝜅 ||||un|| + ∫
𝜏

0

||e(𝜏−s)𝜅 || [(1 − s
𝜏

) || [un]|| + s
𝜏
|| [ũn+1]||] ds
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≤ e−𝜅𝜏 + ∫
𝜏

0

e−𝜅(𝜏−s)
[(

1 − s
𝜏

)
𝜅 + s

𝜏
𝜅
]

ds

= e−𝜅𝜏 + 𝜅
1 − e−𝜅𝜏

𝜅
= 1,

which completes the proof. ▪

Remark 4 Different from the IMEX1 scheme, it was shown in Reference [42] that the

IMEX Runge–Kutta schemes with order greater than 1 only preserves the MBP condi-

tionally; more precisely, their MBP preservation still has the constraint on the time step

size and the spatial mesh size.

Remark 5 As claimed in Reference [6], the classic ETD Runge–Kutta approxima-

tions with order greater than 2 fail to maintain the MBP unconditionally since the

higher-order interpolation polynomials contain negative coefficients, and this also hap-

pens to the mass-conserving Allen–Cahn Equation (6). In addition to the Runge–Kutta

type approach, multistep methods have also been widely used to design high-order

schemes for gradient flow models, such as the third-order ETD multistep scheme and the

BDF3 scheme for the no-slope-selection thin film model [36, 44]. However, the ETD mul-

tistep approach is based on the extrapolation for the nonlinear term. Due to the existence

of negative coefficients, the extrapolation polynomials cannot be bounded by the max-

ima and minima of the extrapolated data, and thus the resulting ETD multistep schemes

with order greater than 1 fail to unconditionally preserve the MBP [6]. More recently, the

integrating factor Runge–Kutta (IFRK) method was considered for time integrartion of

the classic Allen–Cahn equation in References [40, 41], which successfully gives some

high-order MBP-preserving schemes, thus it remains very interesting to apply them to

the mass-conserving Allen–Cahn Equation (6).

2.3 Fully discrete schemes

In the following, we briefly discuss the fully discrete ETD schemes corresponding to (19) and (23),

which are also unconditionally MBP preserving. To this end, we recall the continuity of a function

defined on a set D ⊂ R
𝑑 as [45]:

w is continuous at x∗ ∈ D ⇔ ∀xk → x∗ in D implies w(xk) → w(x∗).

Thus, under the same theoretical framework, the MBP property of the mass-conserving Allen–Cahn

Equation (6) can be further extended to the case of finite-dimensional operators in space, such as

replacing Δ by its discrete approximation denoted by Δh. As shown in Reference [6], it is easy to verify

that the central difference operator and lumped-mass finite element operator for spatial discretization

of the Laplace operator Δ also satisfy Lemma 3. In this case, Δh can be simply regarded as a square

matrix and generates a contraction semigroup {eΔht}t≥0 on the subspace of C(X) satisfying the periodic

or homogeneous Neumann boundary condition, where X is the set of all spacial grid points (boundary

and interior points). The resulting space-discrete equation of (6) with Δ replaced by Δh becomes an

ordinary differential equation (ODE) system taking the same form:

ut = 𝜀2Δhu + f [u], x ∈ X∗, t > 0

with u(x, 0) = u0(x) for any x ∈ X, where X∗ = X for the homogeneous Neumann boundary condition

and X∗ = X ∩ Ω+
with Ω+ =

∏𝑑
i=1(ai, bi] for the periodic boundary condition.
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We present below the formulas of the fully-discrete ETD1 and ETDRK2 schemes, which can be

directly implemented for computation. Let 𝜅,h = 𝜀2Δh − 𝜅 and define the 𝜙-functions as follows:

𝜙0(a) = ea,

𝜙1(a) =
ea − 1

a
,

𝜙2(a) =
ea − 1 − a

a2
,

for any a ≠ 0. Then the fully-discrete ETD1 scheme is given by

un+1 = e𝜏𝜅,h un + ∫
𝜏

0

e(𝜏−s)𝜅,h [un]ds,

or equivalently,

un+1 = 𝜙0(𝜏𝜅,h)un + 𝜏𝜙1(𝜏𝜅,h) [un], (26)

and the fully-discrete ETDRK2 scheme by⎧⎪⎨⎪⎩
ũn+1 = e𝜏𝜅,h un + ∫ 𝜏

0
e(𝜏−s)𝜅,h [un]ds,

un+1 = e𝜏𝜅,h un + ∫ 𝜏

0
e(𝜏−s)𝜅,h

{(
1 − s

𝜏

) [un] + s
𝜏
 [ũn+1]

}
ds,

or equivalently, {
ũn+1 = 𝜙0(𝜏𝜅,h)un + 𝜏𝜙1(𝜏𝜅,h) [un],
un+1 = ũn+1 + 𝜏𝜙2(𝜏𝜅,h)( [ũn+1] − [un]).

(27)

3 ERROR ESTIMATES

In the following, we carry out convergence analysis for the ETD Schemes (19) and (23) in the

space-continuous setting. We first derive some useful results as follows.

Lemma 4 Let 𝛾 be any constant such that |Ω| > 𝛾 > 0. For any 𝜉1, 𝜉2 ∈ C(Ω) with||𝜉i|| ≤ 1 and ∫Ω g(𝜉i(x, t)) dx ≥ 𝛾 (i = 1, 2), we have

||𝜆𝜉1
g(𝜉1) − 𝜆𝜉2

g(𝜉2)|| ≤ C𝛾 ||𝜉1 − 𝜉2||, (28)

where C𝛾 = 4|Ω|
𝛾

+ 2|Ω|2
𝛾2

.

Proof. We first have for any x ∈ Ω,

𝜆𝜉1
g(𝜉1(x)) − 𝜆𝜉2

g(𝜉2((x)) =
∫Ω f (𝜉1(y))dy
∫Ω g(𝜉1(y))dy

g(𝜉1(x)) −
∫Ω f (𝜉2(y))dy
∫Ω g(𝜉2(y))dy

g(𝜉2(x))

=
(
∫Ω

f (𝜉1(y)) − f (𝜉2(y))dy
)

g(𝜉1(x))
∫Ω g(𝜉1(y))dy

+ ∫Ω
f (𝜉2(y))dy

(
g(𝜉1(x))

∫Ω g(𝜉1(y))dy
− g(𝜉2(x))

∫Ω g(𝜉2(y))dy

)
=
(
∫Ω

f (𝜉1(y)) − f (𝜉2(y))dy
)

g(𝜉1(x))
∫Ω g(𝜉1(y))dy
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+
(
∫Ω

f (𝜉2(y))dy
)

g(𝜉1(x)) − g(𝜉2(x))
∫Ω g(𝜉2(y))dy

+ ∫Ω
f (𝜉2(y))dy

(
g(𝜉1(x))

∫Ω g(𝜉2(y)) − g(𝜉1(y))dy
∫Ω g(𝜉1(y))dy ∫Ω g(𝜉2(y))dy

)
≕ I1 + I2 + I3.

Notice that |g(𝜉(x))| ≤ 1, |f (𝜉(x))| ≤ 1, |g′(𝜉(x))| ≤ 2, and |f ′(𝜉(x))| ≤ 2 for any

𝜉 ∈ C(Ω) with ||𝜉|| ≤ 1, then we get

|I1| ≤ 1

𝛾
|g(𝜉1(x))|∫Ω

|f (𝜉1(y)) − f (𝜉2(y))|dy ≤ 2|Ω|
𝛾

||𝜉1 − 𝜉2||,
|I2| ≤ |Ω|

𝛾
||f (𝜉2)|||g(𝜉2(x)) − g(𝜉1(x))| ≤ 2|Ω|

𝛾
||𝜉1 − 𝜉2||,

|I3| ≤ |Ω|
𝛾2

||f (𝜉2)|||g(𝜉1(x))|∫Ω
|g(𝜉2(y)) − g(𝜉1(y))|dy ≤ 2|Ω|2

𝛾2
||𝜉1 − 𝜉2||.

By combining the above results, we obtain

||𝜆𝜉1
g(𝜉1) − 𝜆𝜉2

g(𝜉2)|| ≤ (
4|Ω|
𝛾

+ 2|Ω|2
𝛾2

) ||𝜉1 − 𝜉2||, (29)

which completes the proof. ▪

Lemma 5 Suppose that the requirement (14) holds and let 𝛾 be any constant such that|Ω| > 𝛾 > 0. For any 𝜉1, 𝜉2 ∈ C(Ω) with ||𝜉i|| ≤ 1 and ∫Ω g(𝜉i(x, t)) dx ≥ 𝛾 (i = 1, 2), we
have || [𝜉1] − [𝜉2]|| ≤ C∗

𝛾 𝜅||𝜉1 − 𝜉2||, (30)

where C∗
𝛾 = 3

2
+ C𝛾

4
.

Proof. It is easy to check that for any x ∈ Ω,

| [𝜉1](x) − [𝜉2](x)| = |𝜅(𝜉1(x) − 𝜉2(x)) + (f (𝜉1(x)) − f (𝜉2(x)) − (𝜆𝜉1
g(𝜉1(x)) − 𝜆𝜉2

g(𝜉2(x)))|
≤ 𝜅|𝜉1(x) − 𝜉2(x)| + |f (𝜉1(x)) − f (𝜉2(x))| + |𝜆𝜉1

g(𝜉1(x)) − 𝜆𝜉2
g(𝜉2(x))|

≤ (𝜅 + 2 + C𝛾 )||𝜉1 − 𝜉2||
≤
(

3

2
+

C𝛾

4

)
𝜅||𝜉1 − 𝜉2||,

where we have used Lemma 4 and the requirement 𝜅 ≥ 4. The proof is completed. ▪

Next, we study the convergence for the ETD Schemes (19) and (23). Let T > 0 be a given fixed

terminal time. For any u ∈ C([0, T];C(Ω)) with ||u(t)|| ≤ 1 and ∫Ω u(x, t) dx = M0 ≠ |Ω| for any

t ∈ [0, T], there always exists a constant 𝛾u > 0 such that ∫Ω g(u(x, t)) dx ≥ 𝛾u for any t ∈ [0, T] due

to the continuity and boundedness of u.

Theorem 3 (Error estimate of the ETD1 scheme) Suppose that the requirement (14)
holds and ||u0|| ≤ 1 with |M0| ≠ |Ω|. Assume that the exact solution u to the model
problem (6) belongs to C1([0, T];C(Ω)) and let {un ∈ C(Ω)}n≥0 be the approximate
solution generated by the ETD1 Scheme (19). Furthermore, we also assume that there
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exists a constant 𝛾𝑑 > 0 such that ∫Ω g(un(x)) dx ≥ 𝛾𝑑 for any n with n𝜏 ≤ T and define
𝛾 = min(𝛾u, 𝛾𝑑). Then we have

||u(tn) − un|| ≤ C∗
𝛾

C∗
𝛾 − 1

Ce(C
∗
𝛾
−1)𝜅tn𝜏, ∀tn ≤ T , (31)

for any 𝜏 > 0, where the constant C > 0 is independent of 𝜏, 𝛾 and 𝜅.

Proof. Let en
1 = un − u(tn). The difference between (19) and (18) yields

en+1
1 = e𝜅𝜏en

1 + ∫
𝜏

0

e𝜅 (𝜏−s){ [un] − [u(tn)] + R1(s)}ds, (32)

where R1(s) is the truncation error as

R1(s) =  [u(tn)] − [u(tn + s)], s ∈ [0, 𝜏].

By the MBP property of u and Lemma 5, we have

||R1(s)|| = || [u(tn)] − [u(tn + s)]|| ≤ C∗
𝛾 𝜅||u(tn) − u(tn + s)|| ≤ C1C∗

𝛾 𝜅𝜏, ∀s ∈ [0, 𝜏],

where the constant C1 depends on the C1([0, T];C(Ω) norm of u, but independent of 𝜏

and 𝜅. Similarly, since ||un|| ≤ 1 due to Theorem 1, we also obtain by Lemma 5 that

|| [un] − [u(tn)]|| ≤ C∗
𝛾 𝜅||un − u(tn)|| = C∗

𝛾 𝜅||en
1||. (33)

Then, we derive from (32) and Lemma 3 that

||en+1
1 || ≤ e−𝜅𝜏 ||en

1|| + ∫
𝜏

0

e−𝜅(𝜏−s){|| [un] − [u(tn)]|| + ||R1(s)||}ds

≤ e−𝜅𝜏 ||en
1|| + C∗

𝛾 𝜅(||en
1|| + C1𝜏)∫

𝜏

0

e−𝜅(𝜏−s)ds

= e−𝜅𝜏 ||en
1|| + 1 − e−𝜅𝜏

𝜅
C∗
𝛾 𝜅(||en

1|| + C1𝜏)

= (C∗
𝛾 − (C∗

𝛾 − 1)e−𝜅𝜏)||en
1|| + 1 − e−𝜅𝜏

𝜅𝜏
C∗
𝛾C1𝜅𝜏

2

≤ (1 + (C∗
𝛾 − 1)𝜅𝜏)||en

1|| + C∗
𝛾C1𝜅𝜏

2, (34)

where in the last step we have used the fact that 1 − e−a ≤ a for any a > 0. By induction,

we have

||en
1|| ≤ (1 + (C∗

𝛾 − 1)𝜅𝜏)n||e0
1|| + C∗

𝛾C1𝜅𝜏
2

n−1∑
k=0

(1 + (C∗
𝛾 − 1)𝜅𝜏)k

= (1 + (C∗
𝛾 − 1)𝜅𝜏)n||e0

1|| + C∗
𝛾C1

C∗
𝛾 − 1

𝜏[(1 + (C∗
𝛾 − 1)𝜅𝜏)n − 1]

≤ e(C
∗
𝛾
−1)𝜅n𝜏 ||e0

1|| + C∗
𝛾

C∗
𝛾 − 1

C1e(C
∗
𝛾
−1)𝜅n𝜏𝜏.

Finally we obtain (31) by letting C = C1 since e0
1 = 0 and n𝜏 = tn. ▪

Theorem 4 (Error estimate of the ETDRK2 scheme) Suppose that the requirement (14)
holds and ||u0|| ≤ 1 with |M0| ≠ |Ω|. Assume that the exact solution u to the model
problem (6) belongs to C2([0, T];C(Ω)) and let {un ∈ C(Ω)}n≥0 be the approximate
solution generated by the ETD2 Scheme (23). Furthermore, we also assume that there
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exists a constant 𝛾𝑑 > 0 such that ∫Ω g(un(x)) dx ≥ 𝛾𝑑 for any n with n𝜏 ≤ T and define
𝛾 = min(𝛾u, 𝛾𝑑). Then we have

||u(tn) − un|| ≤ Ce(C
∗
𝛾
−1)𝜅tn𝜏2, ∀tn ≤ T , (35)

for any 𝜏 > 0, where the constant C > 0 is independent of 𝜏.

Proof. The proof strategy is quite similar to that for the ETD1 scheme. Let en
2 = un −

u(tn), then we have

en+1
2 = e𝜅𝜏en

2 +∫
𝜏

0

e𝜅 (𝜏−s)
{(

1 − s
𝜏

)
( [un] − [u(tn)]) +

s
𝜏
( [ũn+1] − [u(tn+1)]) + R2(s)

}
ds,

(36)

where R2(s) is the truncation error given by

R2(s) =
(

1 − s
𝜏

) [u(tn)] +
s
𝜏
 [u(tn+1)] − [u(tn + s)], s ∈ [0, 𝜏].

Using the estimation of the linear interpolation, we have

||R2(s)|| ≤ C2𝜏
2, ∀s ∈ [0, 𝜏],

where the constant C2 depends on the C2([0, T],C(Ω)) norm of u and 𝛾 but is independent

of 𝜏. From the last inequality in (34), we know

||ũn+1 − u(tn+1)|| ≤ (1 + (C∗
𝛾 − 1)𝜅𝜏)||un − u(tn)|| + C∗

𝛾C1𝜅𝜏
2.

By combining the above inequality with Theorem 2 and Lemma 5, we have, for any

s ∈ [0, 𝜏], ‖‖‖‖(1 − s
𝜏

)
( [un] − [u(tn)]) +

s
𝜏
( [ũn+1] − [u(tn+1)])

‖‖‖‖
≤ C∗

𝛾 𝜅
((

1 − s
𝜏

) ||en
2|| + s

𝜏
((1 + (C∗

𝛾 − 1)𝜅𝜏)||en
2|| + C∗

𝛾C1𝜅𝜏
2)
)

= C∗
𝛾 𝜅||en

2|| + C∗
𝛾 (C∗

𝛾 − 1)𝜅2s||en
2|| + C∗

𝛾
2C1𝜅

2𝜏s.

Then, we obtain from (36) and Lemma 3 that

||en+1
2 || ≤ e−𝜅𝜏 ||en

2|| + ∫
𝜏

0

e−𝜅(𝜏−s){C∗
𝛾 𝜅||en

2|| + C∗
𝛾 (C∗

𝛾 − 1)𝜅2s||en
2|| + C∗

𝛾
2C1𝜅

2𝜏s + C2𝜏
2}ds

= e−𝜅𝜏 ||en
2|| + (C∗

𝛾 𝜅||en
2|| + C2𝜏

2)∫
𝜏

0

e−𝜅(𝜏−s)ds

+ (C∗
𝛾 (C∗

𝛾 − 1)𝜅2||en
2|| + C∗

𝛾
2C1𝜅

2𝜏)∫
𝜏

0

se−𝜅(𝜏−s)ds

= e−𝜅𝜏 ||en
2|| + 1 − e−𝜅𝜏

𝜅
(C∗

𝛾 𝜅||en
2|| + C2𝜏

2)

+ e−𝜅𝜏 − 1 + 𝜅𝜏

𝜅2
(C∗

𝛾 (C∗
𝛾 − 1)𝜅2||en

2|| + C∗
𝛾

2C1𝜅
2𝜏)

= ((C∗
𝛾 − 1)2e−𝜅𝜏 + C∗

𝛾 (C∗
𝛾 − 1)𝜅𝜏 − C∗

𝛾 (C∗
𝛾 − 2))||en

2||
+ 1 − e−𝜅𝜏

𝜅
C2𝜏

2 + e−𝜅𝜏 − 1 + 𝜅𝜏

𝜅2
⋅ C∗

𝛾
2C1𝜅

2𝜏

≤ (
1 + (C∗

𝛾 − 1)𝜅𝜏 + 1

2
(C∗

𝛾 − 1)2(𝜅𝜏)2
) ||en

2|| + (
C2 +

1

2
C∗
𝛾C1𝜅

2
)
𝜏3,
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where we have used the inequality 1 − a ≤ e−a ≤ 1 − a + a2

2
for any a > 0. By induction,

we obtain

||en
2|| ≤ (

1 + (C∗
𝛾 − 1)𝜅𝜏 + 1

2
(C∗

𝛾 − 1)2(𝜅𝜏)2
)n||e0

2||
+

(
1

2
C∗
𝛾C1𝜅

2 + C2

)
𝜏3

n−1∑
k=0

(
1 + (C∗

𝛾 − 1)𝜅𝜏 + 1

2
(C∗

𝛾 − 1)2(𝜅𝜏)2
)k

≤ (
1 + (C∗

𝛾 − 1)𝜅𝜏 + 1

2
(C∗

𝛾 − 1)2(𝜅𝜏)2
)n||e0

2||
+

(
C∗
𝛾

2(C∗
𝛾 − 1)

C1𝜅 + C2

(C∗
𝛾 − 1)𝜅

)
𝜏2

((
1 + (C∗

𝛾 − 1)𝜅𝜏 + 1

2
(C∗

𝛾 − 1)2(𝜅𝜏)2
)n

− 1

)
≤ e(C

∗
𝛾
−1)𝜅n𝜏 ||e0

2|| +(
C∗
𝛾

2(C∗
𝛾 − 1)

C1𝜅 + C2

(C∗
𝛾 − 1)𝜅

)
e(C

∗
𝛾
−1)𝜅n𝜏𝜏2.

By letting C = C∗
𝛾

2(C∗
𝛾
−1)

C1𝜅 + C2

(C∗
𝛾
−1)𝜅

, we finally obtain (35) since e0
2 = 0 and n𝜏 = tn. ▪

Remark 6 In Theorems 3 and 4, we additionally assume that there exists a constant

𝛾𝑑 > 0 such that ∫Ω g(un(x)) dx ≥ 𝛾𝑑 for any n with n𝜏 ≤ T . While this assumption on

the approximate solution {un} is necessary to our current proofs of the error estimates,

it remains an interesting question whether such assumption can be removed with other

analysis techniques. Here, we only give the temporal convergence analysis for the ETD1

and ETDRK2 schemes in the space-continuous setting. In the similar spirit of the analysis

in Reference [39], the convergence analysis for the fully discrete version is also available

by taking the truncation error for spatial discretization into account.

4 NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to demonstrate the performance (convergence

rates, mass conservation and MBP preservation) of the proposed ETD Schemes (19) and (23) for the

mass-conserving Allen–Cahn Equation (6). We take the domain Ω = (−0.5,0.5)𝑑 with 𝑑 = 2 or 3.

Moreover, the ETDRK2 scheme is used in all examples while the ETD1 scheme is only considered

in temporal convergence tests due to its lack of high accuracy. For simplicity, we here only consider

the case of periodic boundary condition and the case of homogeneous Neumann boundary condition

is similar. The stabilizing coefficient is set to be 𝜅 = 4 in all experiments. The spatial discretization is

performed by the central difference discretization to form the fully-discrete Schemes (26) and (27), in

which the products of matrix exponentials with vectors are computed using the fast Fourier transform

based implementation [32].

4.1 Convergence tests

We run the first- and second-order ETD schemes for the mass-conserving Allen–Cahn Equation (6)

in 2D with 𝜀 = 0.01 and the initial value u0(x, y) = cos(2𝜋x) cos(2𝜋y). The terminal time is chosen

to be T = 1. In order to accurately catch the convergence rate in time, the spatial mesh size must be

small enough and we set h = 1∕1024. To compute the solution errors under different time step sizes

𝜏 = 1∕2k for k = 2, 3, … , 8, we treat the approximate solution obtained by the ETDRK2 scheme

with 𝜏 = 1∕1024 as the benchmark. Table 1 reports the L∞ and L2 norms of the solution errors
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TABLE 1 L2 and L∞ solution errors at T = 1 and corresponding convergence rates in time by the ETD1 and ETDRK2
schemes respectively

ETD1 ETDRK2

𝝉 L2 error Rate L∞ error Rate L2 error Rate L∞ error Rate

1∕4 2.28e−1 1.51e−1 1.49e−1 9.57e−2

1∕8 1.57e−1 0.54 1.01e−1 0.58 6.98e−2 1.09 4.36e−2 1.13

1∕16 9.40e−2 0.74 5.95e−2 0.77 2.53e−2 1.47 1.55e−2 1.49

1∕32 5.12e−2 0.87 3.19e−2 0.90 7.72e−3 1.71 4.69e−3 1.72

1∕64 2.61e−2 0.97 1.61e−2 0.98 2.13e−3 1.85 1.29e−3 1.86

1∕128 1.25e−2 1.06 7.70e−3 1.06 5.57e−4 1.94 3.37e−4 1.94

1∕256 5.43e−3 1.20 3.33e−3 1.20 1.36e−4 2.03 8.23e−5 2.03

TABLE 2 L2 and L∞ solution errors at T = 1 and corresponding
convergence rates in space by the ETDRK2 scheme

h L2 error Rate L∞ error Rate

1/64 9.98e−4 3.14e−4

/128 3.09e−4 1.69 9.21e−5 1.77

/256 8.38e−5 1.88 2.40e−5 1.94

/512 2.12e−5 1.97 6.07e−6 1.98

/1024 5.33e−6 1.99 1.52e−6 1.99

at the terminal time T = 1 and corresponding temporal convergence rates, which clearly verifies

the first-order temporal accuracy for ETD1 and the second-order temporal accuracy for ETDRK2

respectively.

Next, we test the spatial convergence of the central difference using the ETDRK2 scheme. We fix

the time step size 𝜏 = T∕1024 and regard the approximate solution produced by the ETDRK2 scheme

with h = 1∕2048 as the benchmark for computing the solution errors with different spatial mesh sizes.

The L∞ and L2 norms of the solution errors at T = 1 and corresponding convergence rates are presented

in Table 2. It is observed that the convergence rates with respect to h are clearly of second order as

expected.

4.2 Tests of mass-conservation and MBP-preservation

We numerically simulate and investigate the discrete MBP in long-time phase separation processes

governed by the mass-conserving Allen–Cahn Equation (6) in 2D and 3D spaces. The ETDRK2

scheme is used. We set 𝜀 = 0.01 and the time step size 𝜏 = 0.1. The spatial grid size is selected to be

h = 1∕1024 in 2D and h = 1∕256 in 3D .

We start the 2D simulations with an initial configuration of u0 = 0.9 rand (⋅) (here rand (⋅) rep-

resents the quasi-uniform random distribution between −1 and 1). In this case, we also compare the

simulation results with those produced by the classic Cahn–Hilliard equation [33]

𝜕tu(x, t) = −Δ(𝜀2Δu(x, t) + f (u(x, t))), x ∈ Ω, t > 0, (37)

with 𝜀 = 0.01 and the same initial configuration. Figure 1 presents the configurations of the simulated

solutions at t = 1, 100, 1000, and 2500 for the mass-conserving Allen–Cahn Equation (6). The steady

state is gradually reached after about t = 2000. The evolutions of the mass, the supremum norm
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FIGURE 1 The simulated solutions at t = 1, 100, 1000, and 2500, respectively, for the mass-conserving Allen–Cahn

equation with an initial quasi-uniform state in 2D by the ETDRK2 scheme

and the energy are plotted in Figure 2. It is easy to see that the mass is exactly conserved and the

discrete MBP is preserved perfectly along the time. Although there is no energy dissipation law for

the Equation (6) theoretically, we still observe that the energy decays monotonically for this example.

The configurations of the simulated solutions at t = 1, 10, 50, and 300 for the Cahn–Hilliard equation

are presented in Figure 3, where the same steady state is reached after around t = 80. This implies

that the evolution of the phase structure in the mass-conserving Allen–Cahn equation is much slower

than that in the Cahn–Hilliard equation. Figure 4 shows the corresponding evolutions of the mass,

the supremum norm and the energy. We observe that the mass is conserved and the energy decays

monotonically along the time. However, the supremum norm of the numerical solution is beyond the

constant 1 after about t = 1 since the Cahn–Hilliard equation does not have the MBP property.

Our 3D simulations start with the quasi-uniform initial state u0 = 0.9 rand(⋅) as well. Figure 5

presents the configurations of the computed solution at t = 1, 30, 200, and 4000 for the

mass-conserving Allen–Cahn equation. The corresponding evolutions of the mass, the supremum norm

and the energy are plotted in Figure 6. We observed again that the mass is exactly conserved, the

discrete MBP is preserved perfectly, and the energy decays monotonically along the time.
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FIGURE 2 Evolutions of the mass, the supremum norm and the energy of the simulated solutions for the mass-conserving

Allen–Cahn equation with an initial quasi-uniform state in 2D by the ETDRK2 scheme

FIGURE 3 The simulated solution at t = 1, 10, 50, and 300, respectively, for the Cahn–Hilliard equation with an initial

quasi-uniform state in 2D
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FIGURE 4 Evolutions of the mass, the supremum norm and the energy of the simulated solutions for the Cahn–Hilliard

equation with an initial quasi-uniform state in 2D
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FIGURE 5 The simulated phase structures at t = 1, 30, 200, and 4000 respectively for the mass-conserving Allen–Cahn

equation with an initial quasi-uniform state in 3D

4.3 The expanding bubble test

We use the ETDRK2 scheme to simulate the expansion process of the bubble in 3D, governed by the

mass-conserving Allen–Cahn equation beginning with a discontinuous initial configuration

u0 =

{
−0.5, x2 + y2 + z2 < 0.252,

0.5, otherwise.
(38)

The temporal and spatial step size are set as 𝜏 = 0.1 and h = 1∕256. Figure 7 presents the simulated

process of the expanding bubble, that is, the isosurface views of the numerical solutions at t = 1,

10, 15, and 100, respectively. Figure 8 illustrates the evolutions of the mass, the supremum norm, the
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FIGURE 6 Evolutions of the mass, the supremum norm and the energy of the simulated solutions for the mass-conserving

Allen–Cahn equation with an initial quasi-uniform state in 3D

FIGURE 7 The simulated phase structures at t = 1, 10, 15, and 100, respectively, for the expanding bubble test in 3D
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FIGURE 8 Evolutions of the mass, the supremum norm, the energy and the radius of the simulated solutions for the

expanding bubble test in 3D

energy and the radius of the bubble along the time. It is again observed that the mass is conserved,

the discrete MBP is well preserved, and the energy decays monotonically. The radius of the bubble

increases monotonically and the steady state is reached (a bubble with radius r ≈ 0.407 as expected

[19]) after about t = 18.

5 CONCLUSIONS

In this paper, we propose and analyze first- and second- order linear schemes for solving the

mass-conserving Allen–Cahn equation with local and nonlocal effects (in the double-well potential

case), which are based on the combination of the linear stabilizing technique and the exponential time

differencing method. We prove that the proposed schemes are unconditionally MBP-preserving and

mass-conserved in the time-discrete sense. Error estimates of these schemes are also rigorously derived

under some assumptions. It remains an open problem whether a more delicate analysis can relieve

the extra assumption on the numerical solutions {un} in Theorems 3 and 4 as discussed in Remark 6.

In addition, it is worth mentioning that the Flory-Huggins potential is also widely-used in the classic

Allen–Cahn model and how to extend the current work to that case is subject to future investigation as

well.
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