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ARTICLE INFO ABSTRACT

Keywords: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
PCA has a worldwide devastating effect. Understanding the evolution and transmission of SARS-CoV-2 is of para-
t-SNE mount importance for controlling, combating and preventing COVID-19. Due to the rapid growth in both the
UMAP . . . .

SARS.COV-2 number of SARS-CoV-2 genome sequences and the number of unique mutations, the phylogenetic analysis of
COVID-19 SARS-CoV-2 genome isolates faces an emergent large-data challenge. We introduce a dimension-reduced K-

means clustering strategy to tackle this challenge. We examine the performance and effectiveness of three
dimension-reduction algorithms: principal component analysis (PCA), t-distributed stochastic neighbor embed-
ding (t-SNE), and uniform manifold approximation and projection (UMAP). By using four benchmark datasets,
we found that UMAP is the best-suited technique due to its stable, reliable, and efficient performance, its ability
to improve clustering accuracy, especially for large Jaccard distanced-based datasets, and its superior clustering
visualization. The UMAP-assisted K-means clustering enables us to shed light on increasingly large datasets from
SARS-CoV-2 genome isolates.

1. Introduction

Beginning in December 2019, coronavirus disease 2019 (COVID-19)
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) has become one of the most deadly global pandemics in history. The
COVID-19 infections in the United States (US) and other nations are still
spiking. As of January 20, 2021, the World Health Organization (WHO)
has reported 93,217,287 confirmed cases of COVID-19 and 2,014,957
confirmed deaths. The virus has spread to Africa, Americas, Eastern
Mediterranean, Europe, South-East Asia and Western Pacific [1]. To
prevent further damage to our livelihood, we must control its spread
through testing, social distancing, tracking the spread, and developing
effective vaccines, drugs, diagnostics, and treatments.

SARS-CoV-2 is a positive-sense single-strand RNA virus that belongs
to the Nidovirales order, coronaviridae family and betacoronavirus
genus [21]. To effectively track the virus, testing patients with suspected
exposure to COVID-19 and sequencing the strand via PCR (polymerase
chain reaction) are important. From sequencing, we can analyze pat-
terns in mutation and predict transmission pathways. Without

understanding such pathways, current efforts to find effective medicines
and vaccines could become futile because mutations may change viral
genome or lead to resistance. As of January 20, 2021, there are 203,344
available sequences with 26,844 unique single nucleotide poly-
morphisms (SNPs) with respect to the first SARS-CoV-2 sequence
collected in December 2019 [36] according to our mutation tracker
https://users.math.msu.edu/users/weig/SARS-CoV-2_Mutation_Tra
cker.html.

A popular method for understanding mutational trends is to perform
phylogenetic analysis, where one clusters mutations to find evolution
patterns and transmission pathways. Phylogenetic analysis has been
done on the Nidovirales family [2,2,9,10,12,16] to understand genetic
evolutionary pathways, protein level changes [6,12,31,32], large scale
variants [31-33,35] and global trends [3,28,30]. Commonly used
techniques for phylogenetic analysis include tree based methods [22]
and K-means clustering. Both methods belong to unsupervised machine
learning techniques, where ground truth is unavailable. These ap-
proaches provide valuable information for exploratory research. A main
issue with phylogenetic tree analysis is that as the number of samples
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increase, its computation becomes unpractical, making it unsuitable for
large genome datasets. In contrast, K-means scales well with sample size
increase, but does not perform well when the sample size is too small.
Jaccard distance is commonly used to compare genome sequences [37]
because it offers a phylogenetic or topological difference between
samples. However, the tradeoff to the Jaccard distance is that its feature
dimension is the same as its number of samples, suggesting that for a
large sample size, the number of features is also large. Since K-means
clustering relies on computing the distance between the center of the
clusters and each sample, having a large feature space can result in
expensive computation, large memory requirement, and poor clustering
performance. This become a significant problem as the number of
SARS-CoV-2 genome isolates from patients has reached 200,000 at this
point. There is a pressing need for efficient clustering methods for
SARS-CoV-2 genome sequences.

One technique to address this challenge is to perform dimensional
reduction on the K-means input dataset so that the task becomes
manageable. Commonly used dimension reduction algorithms focus on
two aspects: 1) the pairwise distance structure of all the data samples
and 2) preservation of the local distances over the global distance.
Techniques such as principal component analysis (PCA) [11], Sammon
mapping [24], and multidimensional scaling (MDS) [8] aim to preserve
the pairwise distance structure of the dataset. In contrast, the t-distrib-
uted stochastic neighbor embedding (t-SNE) [17,18], uniform manifold
approximation and projection (UMAP) [4,19], Laplacian eigenmaps [5],
and LargeVis [27] focus on the preservation of local distances. Among
them, PCA, t-SNE, and UMAP are the most frequently used algorithms in
the applications of cell biology, bioinformatics, and visualization [4].

PCA is a popular method used in exploratory studies, aiming to find
the directions of the maximum variance in high-dimensional data and
projecting them onto a new subspace to obtain low-dimensional feature
spaces while preserving most of the variance. The principal components
of the new subspace can be interpreted as the directions of the maximum
variance, which makes the new feature axes orthogonal to each other.
Although PCA is able to cover the maximum variance among features, it
may lose some information if one chooses an inappropriate number of
principal components. As a linear algorithm, PCA performs poorly on
the features with nonlinear relationship. Therefore, in order to present
high-dimensional data on low dimensional and nonlinear manifold,
some nonlinear dimensional reduction algorithms such as t-SNE and
UMAP are employed. T-SNE is a nonlinear method that can preserve the
local and global structures of data. There are two main steps in t-SNE.
First, it finds a probability distribution of the high dimensional dataset,
where similar data points are given higher probability. Second, it finds a
similar probability distribution in the lower dimension space, and the
difference between the two distributions is minimized. However, t-SNE
computes pairwise conditional probabilities for each pair of samples and
involves hyperparameters that are not always easy to tune, which makes
it computationally complex. UMAP is a novel manifold learning tech-
nique that also captures a nonlinear structure, which is competitive with
t-SNE for visualization quality and maintains more of the global struc-
ture with superior run-time performance [19]. UMAP is built upon the
mathematical work of Belkin and Niyogi on Laplacian eigenmaps,
aiming to address the importance of uniform data distributions on
manifolds via Riemannian geometry and the metric realization of fuzzy
simplicial sets by David Spivak [26]. Similar to t-SNE, UMAP can opti-
mize the embedded low-dimensional representation with respect to
fuzzy set cross-entropy loss function by using stochastic gradient
descent. The embedding is found by finding a low-dimensional projec-
tion of the data that closely matches the fuzzy topological structure of
the original space. The error between two topological spaces will be
minimized by optimizing the spectral layout of data in a low dimen-
sional space.

The objective of this work is to explore efficient computational
methods for the SARS-CoV-2 phylogenetic analysis of large volume of
SARS-CoV-2 genome sequences. Specifically, we are interested in
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developing a dimension-reduction assisted clustering method. With the
increase in available sequencing data, the SNP dataset of SARS-CoV-2
has run into large-data problem. By effectively analyzing clusters, we
can find evolutionary trends, which will aid in finding effective medi-
cines and vaccines. To this end, we compare the effectiveness and ac-
curacy of PCA, t-SNE and UMAP for dimension reduction in association
with the K-means clustering. To quantitatively evaluate the perfor-
mance, we recast supervised classification problems with labels into a K-
means clustering problems so that the accuracy of K-means clustering
can be evaluated. As a result, the accuracy and performance of PCA, t-
SNE and UMAP-assisted K-means clustering can be compared. By
choosing the different dimensional reduction ratios, we examine the
performance of these methods in K-means settings on four standard
datasets. We found that UMAP is the most efficient, robust, reliable, and
accurate algorithm. Based on this finding, we applied the UMAP-assisted
K-means technique to large scale SARS-CoV-2 datasets generated from a
Jaccard distance representation and a SNP position-based representa-
tion to further analyze its effectiveness, both in terms of speed and
scalability. Our results are compared with those in the literature [32] to
shed new light on SARS-CoV-2 phylogenetics.

2. Methods
2.1. Sequence and alignment

The SARS-CoV-2 sequences were obtained from GISAID databank
(www.gisaid.com). Only complete genome sequences with collection
date, high coverage, and without ‘NNNNNN’ in the sequences were
considered. Each sequence was aligned to the reference sequence [36]
using a multiple sequence alignment (MSA) package Clustal Omega
[25]. A total of 203,344 complete SARS-CoV-2 sequences are analyzed
in this work.

2.2. SNP position based features

Let N be the number of SNP profiles with respect to the SARS-CoV-2
reference genome sequence, and let M be the number of unique muta-
tion sites. Denote V; as the position based feature of the ith SNP profile.

Vi:[v},vf7...,vﬂ, i=1,2,...N (€8]
isal x M vector. Here

i 1, mutation site
vi= { 0, otherwise. @

We compile this into an N x M position based feature,
S(i.j) =V, ®)

where each row represents a sample. Note that S(i, j) is a binary repre-
sentation of the position and is sparse.

2.3. Jaccard based representation

The Jaccard distance measures the dissimilarity between two sets. It
is widely used in the phylogenetic studies of SNP profiles. In this work,
we utilize Jaccard distance to compare SNP profiles of SARS-CoV-2
genome isolates.

Let A and B be two sets. Consider the Jaccard index between A and B,
denoted J(A, B), as the cardinality of the intersection divided by the
cardinality of the union

_|AnB| |AN B

- _ . 4
AUB| A+ |B—JANB| )

J(A,B)

The Jaccard distance between the two sets is defined by subtracting
the Jaccard index from 1:
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d,(A,B):l—J(A.B):W ®)

We assume there are N SNP profiles or genome isolates that have
been aligned to the reference SARS-CoV-2 genome. Let S;,i=1, ..., N, be
the set with the position of the mutation of the ith sample. The Jaccard
distance between two sets S; and S; is given by dy(S; S;). Taking the
pairwise distance between all the samples, we can construct the Jaccard
based representation, resulting in an N x N distance matrix D

D(i,j) =d;(S:,$)) (6)

This distance defines a metric over the collections of all finite sets
[15].

2.4. K-means clustering

K-means clustering is one of the most popular unsupervised learning
methods in machine learning, where it aims to cluster or partition a data
{x1, ..., Xxn}, x; € RM into k clusters, {Cy, ..., Cx}, k <N.

K-means clustering begins with selecting k points as k cluster centers,
or centroids. Then, each point in the dataset is assigned to the nearest
centroid. The centroids are then updated by minimizing the within-
cluster sum of squ ares (WCSS), which is defined as

k
> > Mk = ul @
Jj=1 x€C;

Here, ||-||2 denotes the I; norm and y; is the average of the data points
in cluster j

W= |CL > ®)

71 xiec

This method, however, only finds the optimal centroid, given a fixed
number of clusters j. In applications, we are interested in finding the
optimal number of clusters as well. In order to obtain the best j clusters,
elbow method was used. The optimal number of clusters can be deter-
mined via the elbow method by plotting the WCSS against the number of
clusters, and choosing the inflection point position as the optimal
number of clusters.

2.5. Principal component analysis

Principal component analysis (PCA) is one the most commonly used
dimensional reduction techniques for the exploratory analysis of high-
dimensional data [11]. Unlike other methods, there is no need for any
assumptions in the data. Therefore, it is a useful method for new data,
such as SARS-CoV-2 SNPs data. PCA is conducted by obtaining one
component or vector at a time. The first component, termed the prin-
cipal component, is the direction that maximizes the variance. The
subsequent components are orthogonal to earlier ones.

Let {x; }ﬁl be the input dataset, with N being the number of samples
or data points. For each x;, let x; € R™, where M is the number of features
or data dimension. Then, we can cast the data as a matrix X € R¥*M, PCA
seeks to find a linear combination of the columns of X with maximum
variance.

Z a;x; =Xa, (C))
=

where ay, ay, ..., a, are constants, and a is the vectorized ay, ay, ..., a,.
The variance of this linear combination is defined as

) (10)

var(Xa) = a’ Sa

where S is the covariance matrix for the dataset. Note that we compute
the eigenvalue of the covariance matrix. The maximum variance can be
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computed iteratively using Rayleigh’s quotient

a’X"Xa
= . 11
ag) argm{;clx da ( )

The subsequent components can be computed by maximizing the
variance of

k—1
Xi=X - Xaa (12)
Jj=1

where k represents the kth principal component. Here, k—1 principal
components are subtracted from the original matrix X. Therefore, the
complexity of the method scales linearly with the number of components
one seeks to find. In applications, we hope that the first few components
give rise to a good PCA representation of the original data matrix X.

2.6. t-SNE

The t-distributed stochastic neighbor embedding (t-SNE) is a
nonlinear dimensional reduction algorithm that is well suited for
reducing high dimensional data into the two- or three-dimensional
space. There are two main stages in t-SNE. First, it constructs a proba-
bility distribution over pairs of data such that a pair of near data points is
assigned with a high probability, while a pair of farther away points is
given a low probability. Second, t-SNE defines a probability distribution
in the embedded space that is similar to that in the original high-
dimensional space, and aims to minimize the Kullback-Leibler (KL)
divergence between them [17].

Let {x1, X2, ..., xy|x; € R™} be a high dimensional input dataset. Our
goal is to find an optimal low dimensional representation {y, ...,
Nlyi€ RK}, such that k <« M. The first step in t-SNE is to compute the
pairwise distribution between x; and xj, defined as p;. However, we find
the conditional probability of x;j, given x;:

o exp( —x; — x2/207)
P aexp( — 5~ 320

setting p;; = 0, and the denominator normalizes the probability.
Here, 0; is the predefined hyperparameter called perplexity. A smaller o;
is used for a denser dataset. Notice that this conditional probability is
symmetric when the perplexity is fixed, i.e. pj; = pjji. Then, define the
pairwise probability as

i, 13

ili JF ili
Pij :[7,\2—1\’[7\,. ()]
In the second step, we learn a k-dimensional embedding {y, ...,
¥n|y: € R¥}. To this end, t-SNE calculates a similar probability distribu-
tion g; defined as

1
1+yi—y)?

CAND Dy —
mLalEm |y, —y |

and setting g; = 0. Finally, the low dimensional embedding

i#j (15)

1, -y € R} is found by minimizing the KL-divergence via a
standard gradient descent method

KL(P|Q) = Zpiflogflj—':]:, (16)
ij ij

where P and Q are the distributions for p;; and gy, respectively. Note that
the probability distributions in Egs. (13) and (15) can be replaced by
using many other delta sequence kernel of positive type [34].

2.7. UMAP

Uniform manifold approximation and projection (UMAP) is a
nonlinear dimensional reduction method, utilizing three assumptions:
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the data is uniformly distributed on Riemannian manifold, Riemannian
metric is locally constant, and the manifold if locally connected. Unlike
t-SNE which utilizes probabilistic model, UMAP is a graph-based algo-
rithm. Its essentially idea is to create a predefined k-dimensional
weighted UMAP graph representation of each of the original high-
dimensional data point such that the edge-wise cross-entropy between
the weighted graph and the original data is minimized. Finally, the k-
dimensional eigenvectors of the UMAP graph are used to represent each
of the original data point. In this section, a computational view of UMAP
is presented. For a more theoretical account, the reader is referred to
Ref. [19].

Similar to t-SNE, UMAP considers the input data X = {x1, xa, ..., Xn},
x; € RM and look for an optimal low dimensional representation {yi,...,
yN\yie Rk}, such that k < M. The first stage is the construction of
weighted k-neighbor graphs. Let define a metricd : X x X— R". Let k <
M be a hyperparemeter, and compute the k-nearest neighbors of each x;
under a given metric d. For each x;, let

p;=min{d(x;,x;)[1<j<k,d(x;,x) >0} a7

where o; is defined via

k _ LX) — .
Zexp( max(0, (3. ) p)) =log,k. 18)
J=1

Oi

One chooses p; to ensure at least one data point is connected to x; and
having edge weight of 1, and set ¢; as a length scale parameter. One
defines a weighted directed graph G = (V,E, w), where V is the set of
vertices (in this case, the data X), E is the set of edges E = {(x;, x)|1 <h
<k,1 <i< N}, and o is the weight for edges

a)(x,-,x_/-) = exp<7max(0, d(xhxj) _ /J,-)) . (19)

o;

UMARP tries to define an undirected weighted graph G from directed
graph G via symmetrization. Let A be the adjacency matrix of the graph

G. A symmetric matrix can be obtained

B=A+AT —A®A", (20)

where T is the transpose and ® denotes the Hadamard product. Then, the
undirected weighted Laplacian G (the UMAP graph) is defined by its
adjacency matrix B.

In its realization, UMAP evolves an equivalent weighted graph H
with a set of points {y;};_; ... y, utilizing attractive and repulsive forces.
The attractive and repulsive forces at coordinate y; and y; are given by

bl -l and @
Pyl

2b

: (1= w(xx)) (v =) @2
(€+||Yi_yj||2)<1+ayi_yj%b)

where a, b are hyperparemeters, and ¢ is taken to be a small value such
that the denominator does not become 0. The goal is to find the optimal
low-dimensional coordinates {y;}Y ;, y; € Rk, that minimizes the edge-
wise cross entropy with the original data at each point. The evolution
of the UMAP graph Laplacian G can be regarded as a discrete approxi-
mation of the Laplace-Beltrami operator on a manifold defined by the
data [7]. Implementation and further detail of UMAP can be found in
Ref. [19].

UMAP may not work well if the data points is non-uniform. If part of
the data points have k important neighbors while other part of the data
points have k’>k important neighbors, the k-dimensional UMAP will
not work efficiently. Currently, there is no algorithm to automatically
determine the critic minimal kp, for a given dataset. Additionally,
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weights w(x; x;) and force terms can be replaced by other functions that
are easier to evaluate [34]. The metric d can be selected as Euclidean
distance, Manhattan distance, Minkowski distance, and Chebyshev dis-
tance, depending on applications.

3. Validation

K-means clustering is one of the unsupervised learning algorithms,
suggesting that neither the accuracy nor the root-mean-square error can
be calculated to evaluate the performance of the K-means clustering
explicitly. Additionally, K-means clustering can be problematic for high-
dimensional large datasets. Dimension-reduced K-means clustering is an
efficient approach. To evaluate its accuracy and performance, we
convert supervised classification problems with known solutions into
dimension-reduced K-means clustering problems. In doing so, we apply
the K-means clustering to the classification dataset by setting the num-
ber of clusters equals to the number of the real categories. Next, in each
cluster, we will take the data with the dominant label as the test for all
samples and then calculate the K-means clustering accuracy for the
whole dataset.

3.1. Validation data

In this work, we will consider the following classification datasets to
test the performance of the clustering methods: Coil 20, Facebook large
page-page network, MNIST, and Jaccard distanced-based MNIST. Pre-
vious work has been done on datasets using Euclidean and Minkowski
distance for lower dimensions [17-19]. Here, we verify the result with
higher reduction ratios, and tested the validity of using Jaccard distance
as a metric.

e Coil 20: Coil 20 [20] is a dataset with 1440 gray scale images,
consisting of 20 different objects, each with 72 orientation. Each
image is of size 128 x 128, which was treated as a 16384 dimen-
sional vector for dimensional reduction

Facebook Network: Facebook large page-page network [23] is a
page-page webgraph of verified Facebook sites. Each node represents
a facebook page, and the links are the mutual links between sites.
This is a binary dataset with 22,470 nodes; hence the sample size and
feature size are both 22,470. Jaccard distance was computed be-
tween each nodes for the feature space.

MNIST: MNIST [14] is a hand written digit dataset. Each image is a
grey scale of size 28 x 28, which was treated as a 784 dimensional
vector for the feature space, each with an integer value in [0, 255].
Standard normalization was used before performing dimensional
reduction. There are 70,000 sample, with 10 different labels.
Jaccard distanced-based MNIST: The above dataset was converted
to a Jaccard distance-based dataset. This is to simulate position based
mutational dataset, where 1 indicates a mutation in a particular
position. Jaccard distance was used to construct the feature space,
hence for each sample, the feature size is 70,000. This dataset can be
viewed as an additional validation on our Jaccard distance
representation.

3.2. Validation results

In the present work, we implement three popular dimensional
reduction methods, PCA, UMAP, and t-SNE, for the dimension reduction
and compare their performance in K-means clustering. For a uniform
comparison, we reduce the dimensions of the samples by a set of ratios.
The minimum between the number of features and the number of
samples was taken as base of the reduction. For the Coil 20 dataset, since
the numbers of samples and features were 1440 and 16384, respectively,
dimension-reductions were based on 1440. For the Facebook Network,
since the numbers of samples and features were both 22,470, dimension-
reductions were based on 22,470. For the MNIST dataset, since the
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numbers of samples and features were respectively 70,000 and 784,
dimension-reductions were based on 784. Finally, for the Jaccard
distanced-based MNIST dataset, since the numbers of samples and fea-
tures were both 70,000, dimension-reductions were based on 70,000.
Note that for the Jaccard distanced-based MNIST data, more aggressive
ratios were used because the original feature size is huge, i.e., 70,000.
The standard ratios of 2, 4, and 8, etc do not sufficiently reduce the
dimension for effective K-means computation. For the purpose of visu-
alization, two-dimensional reduction algorithms are applied to each
reduction scheme. In order to validate PCA, UMAP, and t-SNE assisted K-
means clustering, we observed their performance using labeled datasets.
K-nearest neighbors (K-NN) was used to find the baseline of the reduc-
tion, which reveals how much information can be preserved in the
feature after applying a dimensional reduction algorithm. For k-NN, 10
fold cross-validation was performed.

Notably, K-means clustering is an unsupervised learning algorithm,
which does not have labels to evaluate the clustering performance
explicitly. However, we can assess the K-means clustering accuracy via
labeled datasets that has ground truth. In doing so, we choose the
number of K as the original number of classes. Then, we can compared
the k-means clustering results with the ground truth. Therefore, the
accuracy can reveal the performance of the proposed dimension-
reduction-assisted (k-means) clustering method. For the classification
problem, we assume the training set is {(x;,y;)|x; € R™,y; € Z}?:l with
the \{yi}lf‘:l } = k. Here n, m, and k represent the number of samples, the
number of features {x;}, and the number of labels {y;}, respectively. We
set the number of clusters equals to the number of labels k. After
applying the K-means clustering algorithm, we get k different clusters

{¢ }J’.‘Zl. In each cluster, we define the predictor of the K-means clustering
in the cluster ¢; to be:

37\(cf):Ina'x{Fj(yl)v'“7Fj(yk)}7 (23)

where Fj(y;), ---, Fj(yx) are the appearance frequencies of each label in the
cluster ¢;. Then the clustering accuracy can be defined as:

Sl .
7{"":}"} , 24

n

Accuracy =

where {y;} are predicted labels. Moreover, other evaluation metrics
such as precision, recall, and receiver operating characteristic (ROC) can
also be defined accordingly.

3.2.1. Coil 20

Fig. 1 shows the performance of PCA-assisted, UMAP-assisted and t-
SNE-assisted clustering of the Coil 20 dataset. For each case, the dataset
were reduced to dimension 2 using default parameters, and the plots
were colored with the ground truth of the Coil 20 dataset. It can be seen
that PCA does not present good clustering, whereas UMAP and t-SNE

(@) (b)
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show very good clusters.

Table 1 shows the accuracy of k-NN clustering of the Coil 20 dataset
assisted by PCA, t-SNE, and UMAP with different dimensional reduction
radio. The Coil 20 dataset has 1440 samples, 16,384 features, and 20
different labels. For PCA, the sklearn implementation on python was
used with standard parameters. Note that for all methods, dimensions
were reduced to 3 and 2 for a comparison. For t-SNE, Multicore-TSNE
[29] was used because it offers up to 8 core processor, which is not
available in the sklearn implementation, and it is the fastest performing
t-SNE algorithm. For UMAP, we used standard parameters [19]. It can be
seen that when we reduce the dimension to 3, t-SNE performs best.
Moreover, when the dimensional reduction ratio is 1/100, PCA and
UMAP also perform well. Notably, the k-NN accuracy for the data
without applying any dimensional reduction algorithm is 0.956, indi-
cating that UMAP does not provide the best clustering performance on
the Coil 20 dataset. However, PCA and t-SNE will preserve the infor-
mation of the original data with a dimensional reduction ratio larger
than 1/100, and t-SNE even performs better for dimensional three on the
Coil 20 dataset.

Table 2 describes the accuracy of K-means clustering of Coil 20
assisted by PCA, UMAP, and t-SNE with different dimensional reduction
ratio. For consistency, we use the same set of standard parameters as k-
NN. For the Coil 20 dataset, the accuracy of K-means clustering assisted
by UMAP has the best performance. When the reduced dimension is
2048 (ratio 1/8), UMAP will result in a relatively high K-means accuracy
(0.822). Moreover, although PCA performs best on k-NN accuracy, it
performs poorly on the K-means accuracy, indicating that PCA is not a
suitable dimensional reduction algorithm on the Coil 20 dataset.
Furthermore, the highest accuracy of K-means clustering is 0.828, which
is calculated from the t-SNE-assisted algorithm. However, the t-SNE-
assisted accuracy under different reduction ratio changes dramatically.
When the ratio is 1/64, the t-SNE-assisted accuracy is only 0.151,
indicating that t-SNE is sensitive to the hyper-parameters settings. In
contrast, the performance of UMAP is highly stable under all dimension-
reduction ratios.

Note that dimension-reduced k-means clustering methods outper-
form the original k-means -clustering. Therefore, the proposed
dimension-reduced k-means clustering methods not only improve the k-
means clustering efficiency, but also achieve better accuracy.

3.2.2. Facebook Network

Fig. 2 shows the visualization performance of PCA-assisted, UMAP-
assisted, and t-SNE-assisted clustering of the Facebook Network. For
each case, the dataset was reduced to dimension 2 using default pa-
rameters, and the plots were colored with the ground truth of the
Facebook Network. Fig. 2 shows that the PCA-based data is located
distributively, while the t-SNE- and UMAP-based data show clusters.

Table 3 shows the accuracy of k-NN clustering of the Facebook
Network assisted by PCA, t-SNE, and UMAP with different dimensional
reduction radio. The Facebook Network dataset has 22,470 samples

(©
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Fig. 1. Comparison of different dimensional reduction algorithms on Coil 20 dataset. Total 20 different labels are in the Coil 20 dataset, and we use the ground truth
label to color each data points. (a) Feature size is reduced to dimension 2 by PCA. (b) Feature size is reduced to dimension 2 by t-SNE. (c) Feature size is reduced to

dimension 2 by UMAP.
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Table 1
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Accuracy of k-NN of the Coil 20 dataset without applying any reduction algorithms, as well as the accuracy of k-NN assisted by PCA, UMAP and t-SNE with different
dimensional reduction ratio. The sample size, feature size, and the number of labels of the Coil 20 dataset are 1440, 16384, and 20, respectively.

Dataset k-NN accuracy Reduced dimension PCA accuracy UMAP accuracy t-SNE
w/o reduction accuracy
Coil 20 (1440,16384,20) 0.956 720 (1/2) 0.955 0.668 0.850
360 (1/4) 0.957 0.861 0.889
180 (1/8) 0.973 0.867 0.881
90 (1/16) 0.977 0.860 0.885
45 (1/32) 0.980 0.861 0.875
22 (1/64) 0.985 0.868 0.743
14 (1/100) 0.730 0.851 0.878
7 (1/200) 0.985 0.870 0.845
3 0.850 0.863 0.959
2 0.730 0.853 0.948
Table 2

Accuracy of K-means clustering of the Coil 20 dataset without applying any reduction algorithms, as well as the accuracy of K-means assisted by PCA, UMAP and t-SNE
with different dimensional reduction ratio. The sample size, feature size, and the number of labels of the Coil 20 dataset are 1440, 16384, and 20, respectively.

Dataset K-means accuracy w/o reduction Reduced dimension PCA accuracy UMAP accuracy t-SNE
accuracy

Coil 20 (1440,16384,20) 0.626 720 (1/2) 0.64 0.301 0.798
360 (1/4) 0.678 0.800 0.718
180 (1/8) 0.633 0.822 0.648
90 (1/16) 0.642 0.799 0.681
45 (1/32) 0.666 0.800 0.615
22 (1/64) 0.673 0.819 0.151
14 (1/100) 0.631 0.817 0.154
7 (1/200) 0.591 0.819 0.360
3 0.561 0.800 0.780
2 0.537 0.801 0.828

(@)

Fig. 2. Comparison of different dimensional reduction algorithms on the Facebook Network dataset. Total 4 different labels are in the Facebook Network dataset, and
we use the ground truth label to color each data points. (a) Feature size is reduced to dimension 2 by PCA. (b) Feature size is reduced to dimension 2 by t-SNE. (c)

Feature size is reduced to dimension 2 by UMAP.

with 4 different labels, and the feature size of the Facebook Network is
also 22,470. For each algorithm, we use the same settings as the Coil 20
dataset. Without applying any dimensional reduction method, The
Facebook Network has 0.755 k-NN accuracy. The reduced feature from
PCA has the best k-NN performance when the reduction ratio is 1/2.
UMAP has a better performance compared to PCA and t-SNE when the
reduction ratio is smaller than 1/16.

Table 4 describes the accuracy of K-means clustering of the Facebook
Network assisted by PCA, UMAP and t-SNE with different dimensional
reduction ratio. PCA, UMAP, and t-SNE all have very poor performance,
which may be caused by the smaller number of labels. The highest ac-
curacy 0.427 is observed in the t-SNE-assistant algorithm with dimen-
sion 2.

Similar to the last case, UMAP-based and t-SNE-based dimension-
reduced k-means clustering methods outperform the original k-means
clustering with the full feature dimension. Therefore, it is useful to carry
out dimension reduction before k-means clustering for large datasets.

Fig. 3 shows the performance of PCA-assisted, UMAP-assisted and t-

SNE-assisted clustering of the MNIST dataset. The sample size of the
MNIST dataset is 70000, which has 784 features with 10 different digit
labels. For each case, the dataset was reduced to dimension 2 using
default parameters, and the plots were colored with the ground truth of
the MNIST dataset. In Fig. 3, by applying the UMAP algorithm, the clear
clusters can be detected for the MNIST dataset. The t-SNE offers a
reasonable clustering at dimension 2 too. However, the PCA does not
provide a good clustering.

3.2.3. MNIST

Table 5 shows the accuracy of k-NN clustering of the MNIST dataset
assisted by PCA, t-SNE, and UMAP with different dimensional reduction
radios. For each algorithm, we use the same settings as the Coil 20
dataset. Without applying any dimensional reduction algorithms, the
accuracy of k-NN is 0.948. By applying PCA/UMAP with the reduction
ratio greater than 1/64, the accuracy of PCA/UMAP-assisted k-NN is at
the same level without using any dimensional reduction algorithm.
However, in contract with UMAP and t-SNE, when the reduced
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Table 3

Accuracy of k-NN of the Facebook Network without applying any reduction
algorithms, as well as the accuracy of k-NN assisted by PCA, UMAP and t-SNE
with different dimensional reduction ratio. The sample size, feature size, and the
number of labels of the Facebook Network are 22470, 22470, and 4,
respectively.

Dataset K-means Reduced PCA UMAP t-SNE
accuracy w/ dimension accuracy accuracy accuracy
o reduction
Facebook 0.755 11235 (1/ 0.756 0.360 0.307

Network 2)

(22470, 5617 (1/4) 0.755 0.669 0.316

22470, 4) 2808 (1/8) 0.754 0.754 0.355
1404 (1/ 0.751 0.816 0.707
16)
702 (1/32) 0.751 0.814 0.669
351 (1/64) 0.746 0.815 0.690
224 (1/ 0.733 0.814 0.676
100)
112 (1/ 0.721 0.819 0.633
200)
44 (1/500) 0.714 0.816 0.709
22 (1/ 0.690 0.815 0.643
1000)
3 0.552 0.801 0.741
2 0.501 0.786 0.732

Table 4

Accuracy of K-means clustering of the Facebook Network without applying any
reduction algorithms, as well as the accuracy of K-means assisted by PCA, UMAP
and t-SNE with different dimensional reduction ratio. The sample size, feature
size, and the number of labels of the Facebook Network are 22470, 22470, and 4,
respectively.

Dataset K-means Reduced PCA UMAP t-SNE
accuracy w/  dimension accuracy accuracy accuracy
o reduction
Facebook 0.374 11235 (1/ 0.331 0.306 0.306
Network 2)
(22470, 5617 (1/4)  0.331 0.307 0.299
22470, 4) 2808 (1/8)  0.331 0.411 0.314
1404 (1/ 0.331 0.397 0.313
16)
702 (1/32)  0.331 0.401 0.306
351 (1/64)  0.331 0.400 0.308
224 (1/ 0.331 0.400 0.327
100)
112 (1/ 0.331 0.400 0.306
200)
44 (1/500)  0.331 0.400 0.313
22 (1/ 0.331 0.401 0.306
1000)
3 0.332 0.351 0.344
2 0.358 0.345 0.427
(@) | (b),
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dimension is 2 or 3, PCA performs poorly. This indicates that the PCA
may not be suitable for dimension-reduction for datasets with a large
sample size.

Table 6 describes the accuracy of K-means clustering of the MNIST
dataset assisted by PCA, UMAP, and t-SNE with different dimensional
reduction ratios. By applying PCA, the accuracy of K-means is around
0.45. The t-SNE method performance is quite unstable, from very poor
(0113) to the best (0.740), and to a relatively low value of 0.593. In
contrast, we can see a stable and improved accuracy from using UMAP at
various reduction ratios, indicating that the reduced feature generated
by UMAP can better represent the clustering properties of the MNIST
dataset compared to the PCA and t-SNE.

As observed early, the present UMAP and t-SNE-assisted k-means
clustering methods also significantly out-perform the original k-means

Table 5

Accuracy of k-NN of the MNIST dataset without applying any reduction algo-
rithms, as well as the accuracy of k-NN assisted by PCA, UMAP and t-SNE with
different dimensional reduction ratio. The sample size, feature size, and the
number of labels of the MNIST dataset are 70000, 784, and 10, respectively.

Dataset K-means Reduced PCA UMAP t-SNE

accuracy w/ dimension accuracy accuracy accuracy
o reduction

MNIST 0.948 392 (1/2) 0.951 0.937 0.696

(70000, 196 (1/4) 0.956 0.938 0.846

784, 10) 98 (1/8) 0.960 0.937 0.893

49 (1/16) 0.961 0.937 0.886

24 (1/32) 0.953 0.937 0.842

12 (1/64) 0.926 0.937 0.676

7 (1/100) 0.846 0.936 0.940

3 0.513 0.929 0.938

2 0.323 0.919 0.928

Table 6

Accuracy of K-means clustering of the MNIST dataset without applying any
reduction algorithms, as well as the accuracy of K-means assisted by PCA, UMAP
and t-SNE with different dimensional reduction ratio. The sample size, feature
size, and the number of labels of the MNIST dataset are 70000, 784, and 10,
respectively.

Dataset K-means Reduced PCA UMAP t-SNE

accuracy w/ dimension accuracy accuracy accuracy
o reduction

MNIST 0.494 392 (1/2) 0.487 0.665 0.122

(70000, 196 (1/4) 0.492 0.667 0.113

784, 10) 98 (1/8) 0.498 0.673 0.113

49 (1/16) 0.496 0.718 0.113

24 (1/32) 0.501 0.697 0.114

12 (1/64) 0.489 0.682 0.138

7 (1/100) 0.464 0.677 0.740

3 0.365 0.727 0.537

2 0.300 0.712 0.593
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Fig. 3. Comparison of different dimensional reduction algorithms on the MNIST dataset. Total 10 different labels are in the MNIST dataset, and we use the ground
truth label to color each data points. (a) Feature size is reduced to dimension 2 by PCA. (b) Feature size is reduced to dimension 2 by t-SNE. (c) Feature size is reduced

to dimension 2 by UMAP.
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clustering for this dataset.

3.2.4. Jaccard distanced-based MNIST

Our last validation dataset is Jaccard distanced-based MNIST. This
dataset can be treated as a test on the Jaccard distance-based data
representation. Fig. 4 shows the performance of PCA-assisted, UMAP-
assisted, and t-SNE-assisted clustering of the Jaccard distanced-based
MNIST dataset. The dataset was reduced to dimension 2 using default
parameters for visualization, and the plots were colored with the ground
truth of the Jaccard distanced-based MNIST dataset. From Fig. 4, we can
see that UMAP provides the clearest clusters compared to PCA and t-SNE
when the dimension is reduced to 2. The performance of t-SNE is
reasonable while PCA does not give a good clustering.

Table 7 shows the accuracy of k-NN clustering of Jaccard distanced-
based MNIST assisted by PCA, t-SNE, and UMAP with different dimen-
sional reduction radios. For each algorithm, we use the same settings as
the Coil 20 dataset. Notably, the k-NN accuracy for the data without
applying any dimensional reduction algorithm is 0.958, which is at the
same level as the PCA algorithm with a reduction ratio greater than 1/
5000. Moreover, we can find that UMAP performs well compared to PCA
and t-SNE, indicating that after applying UMAP, the reduced feature still
preserves most of the valued information of the Jaccard distanced-based
MNIST dataset. The stability and persistence of UMAP at various
reduction ratios are the most important features.

Table 8 describes the accuracy of K-means clustering of the Jaccard
distanced-based MNIST dataset assisted by PCA, UMAP, and t-SNE with
different dimensional reduction ratio. For consistency, we will use the
same standard parameters as k-NN. Similar to the MNIST dataset, the
accuracy of K-means clustering assisted by UMAP still has the best
performance. When the reduced dimension is 3, UMAP will result in the
highest K-means accuracy 0.798. Noticeably, although PCA performs
well on k-NN accuracy, it has the lowest K-mean accuracy, indicating
that PCA is not a suitable dimensional reduction algorithm, especially
for those datasets with a large number of samples. To be noted, the t-SNE
accuracy at four reduced dimensions are not available due to the
extremely long running time.

In a nutshell, PCA, UMAP, and t-SNE can all perform well for k-NN.
However, for the Coil 20 dataset, UMAP performs slightly poorly,
whereas the t-SNE performs well, which may be caused by a lack of data
size. In order to train UMAP, it needs a suitable data size. The Coil 20
dataset has 20 labels, each with only 72 samples. This may not be
enough to train UMAP properly. However, even in this case, UMAP
performance is still very stable at various reduction ratios and is the best
method in terms of reliability, which become the major advantages of
UMAP. Another strength of UMAP comes from its dimension-reduction
for K-means clustering. In most cases, UMAP can improve K-means
clustering accuracy, especially for the Jaccard distanced-based MNIST
dataset. Furthermore, UMAP can generate a very clear and elegant
visualization of clusters with low dimensional reduction value such as 2.
Additionally, UMAP performed better than PCA and t-SNE for a larger
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Table 7

Accuracy of k-NN of the Jaccard distanced-based MNIST dataset without
applying any reduction algorithms, as well as the accuracy of k-NN assisted by
PCA, UMAP and t-SNE with different dimensional reduction ratio. The sample
size, feature size, and the number of labels of the Jaccard distanced-based
MNIST dataset are 70000, 70000, and 10, respectively.

Dataset K-means Reduced PCA UMAP t-SNE
accuracy dimension accuracy accuracy accuracy
w/o
reduction
Jaccard 0.958 7000 (1/ 0.958 0.958 0.588
distanced- 10)
based 3500 (1/ 0.958 0.966 0.601
MNIST 20)
(70000, 1750 (1/ 0.958 0.967 0.725
70000, 10) 40)
875 (1/80) 0.958 0.967 0.613
437 (1/ 0.958 0.968 0.718
160)
218 (1/ 0.958 0.968 0.701
320)
109 (1/ 0.958 0.968 0.873
640)
70 (1/ 0.958 0.968 0.915
1000)
35 (1/ 0.956 0.968 0.872
2000)
17 (1/ 0.938 0.968 0.916
5000)
71/ 0.867 0.967 0.942
10000)
3 0.487 0.965 0.939
2 0.313 0.960 0.924

dataset (MNIST and Jaccard distanced-based MNIST). Especially for the
Jaccard distanced-based MNIST data, where Jaccard distance was used
as the metric, UMAP performed best, which indicates the merit of using
UMAP for Jaccard distanced-based datasets, such as COVID-19 SNP
datasets. Furthermore, the accuracies for k-NN classification and K-
means clustering are both improved on the Jaccard distance-based
MNIST dataset compared to the original MNIST dataset, which pro-
vides convincing evidence that the Jaccard distance representation will
help improve the performance of the clustering on the SARS-CoV-2
mutation dataset in the following sections.

3.3. Efficiency comparison

It is important to understand the computational time behaviors of
various methods. To this end, we compare computational time for three
dimension-reduction techniques. Fig. 5 depicts the computational time
of three methods for the four datasets under various reduction ratios.
The green, orange, and blue lines represent the computational time of t-
SNE, UMAP, and PCA, respectively. Some points in green line of Fig. 5
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Fig. 4. Comparison of different dimensional reduction algorithms on the Jaccard distanced-based MNIST dataset. Total 10 different labels are in the Jaccard
distanced-based MNIST dataset, and we use the ground truth label to color each data points. (a) Feature size is reduced to dimension 2 by PCA. (b) Feature size is
reduced to dimension 2 by t-SNE. (c) Feature size is reduced to dimension 2 by UMAP.
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Table 8

Accuracy of K-means clustering of the Jaccard distanced-based MNIST dataset
without applying any reduction algorithms, as well as the accuracy of K-means
assisted by PCA, UMAP and t-SNE with different dimensional reduction ratio.
The sample size, feature size, and the number of labels of the Jaccard distanced-
based MNIST dataset are 70000, 70000, and 10, respectively.

Dataset K-means Reduced PCA UMAP t-SNE
accuracy dimension accuracy accuracy accuracy
w/o
reduction
Jaccard 0.555 7000 (1/ 0.436 0.329 0.119
distanced- 10)
based 3500 (1/ 0.436 0.693 0.120
MNIST 20)
(70000, 1750 (1/ 0.436 0.792 0.112
70000, 10) 40)
875 (1/80) 0.435 0.793 0.112
437 (1/ 0.435 0.793 0.114
160)
218 (1/ 0.435 0.793 0.156
320)
109 (1/ 0.435 0.794 0.114
640)
70 (1/ 0.436 0.793 0.113
1000)
35 (1/ 0.435 0.794 0.116
2000)
17 (1/ 0.436 0.793 0.113
5000)
71/ 0.431 0.793 0.737
10000)
3 0.364 0.798 0.635
2 0.261 0.791 0.635

(d) are not available, which due to the extremely long running time. PCA
performed best in most cases, except for the Coil 20 dataset, where
UMAP had comparable computational time. This behavior is expected
because PCA is a linear transformation, and its time should scale linearly
with the number of components in the lower dimensional space. UMAP
and t-SNE were slower than PCA, but it is evident from MNIST and

30000 —e— PCA time
UMAP time
—e— t-SNE time
320000
[
£
F 10000
0 Ju
0.0 0.1 0.2 0.3 0.4 0.5
Reduction ratio
(a) Coil 20 time
12500 —e— PCAtime
10000 UMAP time
- —e— t-SNE time
£ 7500
g
£ 5000
2500
0
0.0 0.1 0.2 0.3 0.4 0.5
Reduction ratio
(c) MNIST time
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Jaccard distanced-based MNIST datasets that UMAP scales better with
the increase in the number of samples. Note that for Jaccard distanced-
based MNIST, a higher dimension was not computed because the
computational time was too long. For Facebook Network, UMAP is
outperforming t-SNE; however, for higher dimensions, t-SNE computed
faster. Nonetheless, from our baseline test Table 3, t-SNE does not
perform well, indicating instability.

4. SARS-CoV-2 mutation clustering
4.1. World SARS-CoV-2 mutation clustering

We gather data submitted to GISAID up to January 20, 2021, and the
total number of samples is 203,344. We first get the SNP information by
applying the multiple sequence alignment, which leads to 26,844 unique
SNPs. Next, we calculate the pairwise Jaccard distance of our dataset in
order to generate the Jaccard distance-based features. Here, the number
of rows is the number of samples (203,344), and the number of columns
is the feature size (203,344). As we mentioned in Section 2.3, the Jac-
card distance-based feature is a square matrix. However, due to the large
size of samples and features, applying K-means clustering directly on the
feature of the size of 203,344 x 203,344 is a very time-consuming
process. Considering that UMAP outperforms the other two dimen-
sional reduction algorithms (PCA and t-SNE) on the Jaccard distance-
based MNIST dataset, we employ UMAP to reduce our original feature
with the size of 203,344 x 203,344 to 203,344 x 203. To be noted,
UMAP is a reliable and stable algorithm, which performs consistently in
clustering at various reduction ratios. Therefore, there is no need to use
the same reduction dimension of 203 and one can also choose a different
reduction dimension value to generate similar results.

With the reduced dimension feature that has the size of 203,344 x
203, we split our SARS-CoV-2 dataset into different clusters by applying
the K-means clustering methods. After comparing the WCSS under a
different number of clusters, we find that there are 6 clusters forming
within the SARS-CoV-2 population based on the elbow method (See
Fig. 6), which can be determined from Fig. S1 in the Supporting

—e— PCA time
UMAP time
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15000 —e— t-SNEtime
wn
£10000
E
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o ! v—O—_"/.
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Fig. 5. Computational time of each reduction ratio. The green, orange and blue lines represent the computational time of t-SNE, UMAP, and PCA, respectively. Not
surprisingly, PCA performs the best in the majority of cases, except for the Coil 20 dataset. UMAP and t-SNE perform worse than PCA, but UMAP scales better when
there are more samples, as evident from MNIST and Jaccard distanced-based MNIST datasets. Note that for Jaccard distanced-based MNIST, the higher dimension

was not computed because the computational time was too long.



Y. Hozumi et al.

Information. Table C1 in the Supporting Information shows the top 25
single mutations of each cluster. In order to understand the relationship,
we also analyzed the co-mutation occurring in each cluster (Table 9).
Here, we define a co-mutation as mutations that occur simultaneously in
one SNP profile. For example, mutations occurring at position 241 and
3037 in a single SNP sample is a co-mutation [241, 3037]. From
Table C1 in the Supporting Information and Table 9 we see the
following:

Table C2 in the Supporting Information shows the cluster distribu-
tions of samples from 25 countries. Here, we use the ISO 3166-1 alpha-2
codes as the country code. The listed countries are the United Kingdom
(UK), the United States (US), Australia (AU), India (IN), Switzerland
(CH), Netherlands (NL), Canada (CA), France (FR), Belgium (BE),
Singapore (SG), Spain (ES), Russia (RU), Portugal (PT), Denmark (DK),
Sweden (SE), Austria (AT), Japan (JP), South Africa (ZA), Iceland (IS),
Brazil (BR), Saudi Arabia (SA), Norway (NO), China (CN), Italy (IT), and
Korea (KR). We can visualize the clusters on the world map from Fig. 7,
which was visualized using Highcharts. The underlying color indicates
the dominant cluster for each country. Furthermore, from table C2, we
can see the following:

e SNP profiles from UK and DK are dominated in Clusters 5.

o Clusters 3’s SNP profiles are predominantly found in AU. This may
indicate that SARS-CoV-2 are mutating differently in AU.

e SNP profiles from the US are found mostly in Clusters 2 and 5.

e Most country’s SNP profiles are found in Clusters 1,2,4,5 and 6, with
some having slightly higher numbers.

Notably, in Table 9, Cluster 4 and 5 have the same co-mutations with
relatively high frequencies, which indicates the Clusters 4 and 5 share
the same “root”. Clusters 1, 2, 3, and 6 shares the co-mutation as Clusters
4 and 5, indicating that Clusters 1, 2,3, and 6 may have branched from
Cluster 4 and 5 in the 203-dimensional (203D) space. However, we
cannot visualize the distribution of our reduced dataset in the 203D
space. Therefore, benefit from the stable and reliable performance of
UMAP at various reduction ratios, we reduce the dimension of our
original dataset to 2, which enables us to observe the distribution of the
dataset in the two-dimensional (2D) space. Fig. 7 visualizes the distri-
bution of our dataset with 6 distinct clusters with 2D UMAP. It can be
seen that Clusters 2, 3 and 4 share a same “root” in the middle. Clusters 3
and 6 are farther away from the center, indicating that they are a

@ Cluster 1
® Cluster 2
® Cluster 3
® Cluster 4
® Cluster 5

Cluster 6

-
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Table 9
The frequency and occurrence percentage of SARS-CoV-2 co-mutations from
each clusters in the world.

e Though Clusters 1 and 6 seem similar from the top 25 single mutations, the
co-mutations tells a different story.
Clusters 2 and 5 have high frequency of [241, 3037, 14408, 23403] muta-
tions, but Cluster 5 has a clear co-mutation descendant with high frequency.
Cluster 3 has a unique combination of mutation that is only popular in
Cluster 3.
Cluster 6 have high frequency of multiple co-mutations. Since it shares
similarity with Clusters 4 and 5, it may be that Cluster 6 branched from
Clusters 4 and 5.
Cluster 6 has many co-mutations when compared to other clusters. As seen in
table C2, the majority of the cases is found in Europe, including the United
Kingdom (UK), Denmark (DK), Netherlands (NL), Switzerland (CH) and
Luxemberg (LU).

Cluster Co-mutations Frequency Occurrence
percentage

Cluster [241, 3037, 14408, 23403, 28881, 21802 0.926

1 28882, 28883]
Cluster [241, 1059, 3037, 14408, 23403, 15008 0.660

2 25563]
Cluster [241, 1163, 3037, 7540, 14408, 2089 0.606

3 16647, 18555, 22992, 23401, 23403,

28881, 28882, 28883]

Cluster [241, 3037, 14408, 23403] 13387 0.936

4
Cluster [241, 3037, 14408, 23403] 124290 0.915

5
Cluster [241, 3037, 4543, 5629, 9526, 11497, 3279 0.940

6 13993, 14408, 15766, 16889, 17019,
18877, 22992, 23403, 25563, 25710,
26735, 26876, 28975, 29399]

descendants of the middle root. In addition, we looked specifically at the
spike (S) protein because of its significance in viral infectivity. In all the
clusters, 23403A > G (D614G) is present. Studies have shown that
D614G increases the infectivity of SARS-CoV-2 [13], hence the high
frequency in our data reflect such infectivity. In Clusters 1, 2 and 4, there
are no significant co-mutations in the S protein. In Cluster 3, 100% of the
variants contain the co-mutation [22992, 23401, 23403], which further
supports its geographical isolation, where it is predominantly found in
AU. Cluster 5 does not have a significant co-mutation, but the
co-mutations [21614, 22227, 23403, 24334] occurred in 11290 SNP

Fig. 6. Cluster distribution of the global SARS-CoV-2 mutation dataset. Using Highchart, the world map was colored, according to the dominant cluster. For example,
United States have SNP profiles from all clusters, but Cluster 5 (purple) is the dominant type in the US. Only countries with more than 25 sequenced data available on

GISAID were considered. Countries with fewer than 25 samples are labeled grayed.
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Cluster 6’

Cluster 5

Cluster 4/

Cluster 3'

Cluster 2

Cluster 1/

Fig. 7. 2D UMAP visualization of the world SARS-CoV-2 mutation dataset with 6 distinct clusters.

profiles (0.083). Cluster 6 has a pair of co-mutations [22992, 23403],
which occurs in 99.7% of samples.

4.2. United States SARS-CoV-2 mutation clustering

In addition to analyzing the clustering in the world, SNP profiles of
SARS-CoV-2 from the US were considered. In this section, the US dataset
has 17164 unique single mutations and 43395 samples. Therefore, the
dimension of the Jaccard distance-based dataset is 43395 x 43395. After
applying the UMAP, we reduce the dimension of the original dataset to
be 43395 x 216. Following the similar K-means clustering processes as
we did for the world dataset, we find that using the elbow method, we
can see from Fig. S2 in the Supporting Information that there are 6
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predominant clusters forming in the United States. Fig. 8 show the US
map with the cluster statistic. Here, Highchart was used to generate the
plot with the pie chart. Each states were colored based on the dominant
cluster.

Table C3 in the Supporting Information shows the top 25 mutations
from each clusters in the United States. The cluster distribution of each
states is listed in table C4. Table 10 shows the common occurring co-
mutations, and we can observe the following:

e Cluster A has a high frequency of co-mutations [241, 1059, 3037,
14408, 23403, 25563], which is a descendant of common co-
mutations of Cluster 2 [241, 1059, 3037, 14408, 23403, 25563]
from table C3.

® Cluster A

Cluster B
® Cluster C
® Cluster D
e Cluster E
e Cluster I

Fig. 8. Cluster distribution of United States SARS-CoV-2 mutation dataset. Using Highchart, the US map was colored, according to the dominant cluster. For example,
United States have SNP profiles from all clusters, but Cluster E (purple) is the dominant type in the US. Only those countries that have more than 25 sequenced data

available on GISAID were considered in the plot.
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Table 10
The frequency and occurrence percentage of SARS-CoV-2 co-mutations from
each clusters in US clusters.

Cluster Co-mutations Frequency Occurrence
percentage
Cluster [241, 1059, 3037, 14408, 23403, 6646 0.702
A 25563]
Cluster [241, 3037, 14408, 23403] 20442 0.932
B
Cluster [241, 3037, 14408, 23403, 28881, 4429 0.945
C 28882, 28883]
Cluster [241, 3037, 14408, 20268, 23403, 3276 0.643
D 28854]
Cluster [8782, 17747, 17858, 18060, 1183 0.744
E 28144]
Cluster [241, 1059, 3037, 11916, 14408, 501 0.789
F 18998, 23403, 25563, 29540]

e Cluster B has a high frequency of co-mutations [241, 3037, 14408,
23403], which is a descendant of common co-mutations of Cluster 4
and 5 [241, 3037, 14408, 23403].

Cluster C have high frequency of co-mutations [241, 3037, 14408,
23403, 28881, 28882, 28883], which is a descendant of common co-
mutations of Cluster 1 [241, 3037, 14408, 23403, 28881, 28882,
28883] from Table 10.

Clusters D has high frequency of co-mutations [241, 3037, 14408,
20268, 23403, 28854], which is descendant of Clusters 4 and 5 [241,
3037, 14408, 23403]. US accounts for more than one third of mu-
tations at site 23403 and half of mutations at site 28854

Cluster E and F have a high frequency of co-mutations [8782, 17747,
17858, 18060, 28144] and [241, 1059, 3037, 11916, 14408, 18998,
23403, 25563, 29540], respectively, which are descendants of
Cluster 4 and 5 [241, 3037, 14408, 23403].

Cluster F has a high frequency of co-mutations [241, 1059, 3037,
11916, 14408, 18998, 23403, 25563, 29540], which is a descendant
of Cluster 2’s co-mutation [241,1059,3037,14408,23403,25563]

Notably, in Table 10, Cluster B has a co-mutation that is present in
Clusters A, C, D and F, indicating that Clusters A, C, D, and E are de-
scendants of Cluster B. Interestingly, Cluster E has a completely different
set of co-mutations as the other clusters, indicating that they are a
different strands of mutation. Considering the stability and reliability of
UMAP at various reduction ratios, we employ UMAP to the original US
dataset with reduced dimension 2, aiming to observe the distribution of
the dataset in the 2D space. Fig. 9 illustrates the 2D visualization of the
US dataset with 6 distinct clusters. We can see that there are 3 clusters
(Clusters A’, B, and C') share the same “root” located in the middle of the
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figure, while the other 3 clusters (Clusters D', E/, and F’) are not. Cluster
E' is quite distinct from other clusters. This confirms our deduction about
why Clusters E’ has a high frequency of different co-mutations in
Table 10. In addition Cluster D’ is located close to Cluster A’, which may
indicate that they have similar root that diverted.

In addition, we looked at co-mutations on the S protein. Every
cluster, except for Cluster E, contains mutation 23403, which is expected
due to its ability to increase the infectivity of SARS-CoV-2. Clusters A, C,
and F does not have any significant co-mutation occurring in the S
protein, aside from 23403. Cluster E does not have a significant co-
mutation nor a significant mutation in the S protein. Cluster B has co-
mutations [22255, 23403], which occur in 780 samples. Cluster D has
co-mutations [23403, 23604, 24076] that occur in 892 samples.

5. Discussion

In this section, we compared our past results [32] with our new
method to gain a different perspective in clustering with the SNP profiles
of COVID-19. In our previous work, a total of 8309 unique single mu-
tations are detected in 15,140 SARS-CoV-2 isolates. Here, we also
calculate the pairwise distance among 15140 SNP profiles and set the
number of clusters to be six. Table C5 shows the cluster distribution of
samples from the 15 countries [32]. The listed countries are the United
States (US), Canada (CA), Australia (AU), United Kingdom (UK), Ger-
many (DE), France (FR), Italy (IT), Russia (RU), China (CN), Japan (JP),
Korean (KR), India (IN), Spain (ES), Saudi Arabia (SA), and Turkey (TR),
and we use Cluster I, IL, IIL, IV, V, and VI to represent six clusters without
applying any dimensional reduction algorithm. Table C6 lists the cluster
distribution of samples from the same 15 countries, where we use I, II,,,
III,, IVp, Vp, and VI, to represent six clusters performed by PCA with the
reduction ratio to be 1/160. Table C7 lists the cluster distribution of
samples from the same 15 countries, where we use [, II,, III,, IV,, V,,
and VI, to represent six clusters performed by UMAP with the reduction
ratio setting to be 1/160. Noticeably, the SNP profile is focused in
Cluster I, whereas in the non-reduced version, the samples are more
spread out. This may be caused by the large number of features, making
computed distance between the centroid and each data too similar, and
leading to samples being placed in incorrect clusters.

Not surprisingly, PCA and the original method for [32] has nearly
identical result. It has been shown in Ref. [32] that PCA is the contin-
uous solution of the cluster indicators in the K-means clustering method.
On the other hand, UMAP shows a slightly different result. In the PCA
method, the distribution is more spread out. In addition, the top
occurrence for each country is higher for UMAP. On the other hand, we
see that there are more samples in Cluster I, for UMAP, which may

Cluster F/

Cluster E/

Cluster D’

Cluster C’

R Cluster B

Cluster A’

Fig. 9. The 2D UMAP visualization of the US SARS-CoV-2 mutation dataset with 6 distinct clusters.
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indicate that mutations in Cluster I, are the main strand.

Moreover, Fig. 10 illustrates the 2D visualizations of the US dataset
up to June 01, 2020, with 6 distinct clusters by applying two different
dimensional reduction algorithms. We can see that the data distribute
disorderly under both PCA- and UMAP-assisted K-means clustering al-
gorithms. Specifically, the PCA-assisted algorithm has a really poor
clustering performance, while the UMAP-assisted algorithm forms more
clear and better clusters than the PCA-assisted algorithm, which is
consistent with our previous analysis in Section 3.1.

Table 11 shows co-mutations occurred in each cluster from the
UMAP-assisted K-means from data collected up to June 01, 2020.
Cluster III, has 2 dominant co-mutations. Note that the dataset had
15,140 SARS-CoV-2 isolates, whereas our current dataset has over
200,000 isolates. Nonetheless, we can compare the clusters to see which
clusters persists. Cluster 1’s co-mutations are the same as those of
Cluster V,, indicating that Cluster 1 may have been derived from Cluster
V. Cluster 2 shares the same co-mutations as those of Cluster II,,. Cluster
3’s co-mutations are the descendants of Cluster V. Clusters 4 and 5 have
the same co-mutations as those of Clusters III, and VI,, indicating
Clusters 4 and 5 are derived from Cluster III, and VI,. Cluster 6’s co-
mutations are descendants of Clusters III, and VI,. Note that co-
mutations of Cluster I, and the second set of co-mutations of Cluster
I, ([8782, 28144]) are not predominant co-mutations in our dataset,
which may indicate a weaker infectivity. For example, every co-
mutation in Table 9 has mutation 23403A > G (D614G) in the spike
protein, which has been shown to increase infectivity of COVID-19 [13].
It is not surprising to see a co-mutation group not being dominant in our
current dataset. By comparing these co-mutations, we can see that
co-mutations that are dominant in both datasets (up to June 01, 2020
and January 20, 2021) will most likely persist in the future.

6. Conclusion

The rapid global spread of coronavirus disease 2019 (COVID-19)
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) has led to genetic mutation stimulated by genetic evolution and
adaptation. Up to January 20, 2021, 203,344 complete SARS-CoV-2
sequences, and a total of 26,844 unique SNPs have been detected. Our
previous work traced the COVID-19 transmission pathways and
analyzed the distribution of the subtypes of SARS-CoV-2 across the
world based on 15,140 complete SARS-CoV-2 sequences. The K-means
clustering separated the sequences into six distinguished clusters.
However, considering the tremendous increase in the number of avail-
able SARS-CoV-2 sequences, an efficient and reliable dimensional
reduction method is urgently required. Therefore, the objective of the
present work is to explore the best suited dimension reduction algorithm
based on their performance and effectiveness. Here, a linear algorithm
PCA and two non-linear algorithms, t-distributed stochastic neighbor

(a)

Cluster V/,

Cluster Il

Cluster I},

. L
" IC\uster I

IC\uster Vi,

Cluster V),
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Table 11
The frequency and occurrence percentage of SARS-CoV-2 co-mutations from
each clusters collected from June 01, 2020.

Cluster Co-mutations Frequency Occurrence
percentage
Cluster I, [11083, 14805, 26144] 948 0.730
Cluster [241, 3037, 14408, 23403, 2800 0.893
11, 25563]
Cluster [241, 3037, 14408, 23403] 1468 0.412
111,
[8782, 28144] 1475 0.414
Cluster [241, 1059, 3037, 14408, 23403, 1318 0.621
v, 25563]
Cluster [241, 3037, 14408, 23403, 28881, 1872 0.817
Vu 28882, 28883]
Cluster [241, 3037, 14408, 23403] 2222 0.969
VI,

embedding (t-SNE) and uniform manifold approximation and projection
(UMAP), have been discussed. To evaluate the performance of dimen-
sion reduction techniques in clustering, which is an unsupervised
problem, we first cast classification problems into clustering problems
with labels. Next, by setting different reduction ratios, we test the
effectiveness and accuracy of PCA, t-SNE, and UMAP for k-NN and K-
means using four benchmark datasets. The results show that overall,
UMAP outperforms other two algorithms. The major strengths of UMAP
is that UMAP-assisted k-NN classification and UMAP-assisted K-means
clustering at various dimension reduction ratios have a consistent per-
formance in terms of accuracy, which proves that UMAP is a stable and
reliable dimension reduction algorithm. Moreover, compared to the K-
means clustering accuracy that does not involve any dimensional
reduction, UMAP-assisted K-means clustering can improve the accuracy
for most cases. Furthermore, when the dimension is reduced to two, the
UMAP clustering visualization is clear and elegant. Additionally, UMAP
is a relatively efficient algorithm compared to t-SNE. Although PCA is a
faster algorithm, its major limitation is its poor performance in accuracy.
To be noted, UMAP performs better than PCA and t-SNE for the dataset
with a large number of samples, indicating it is the best suited dimen-
sional reduction algorithm for our SARS-CoV-2 mutation dataset.
Moreover, we apply the UMAP-assisted K-means clustering to the world
SARS-CoV-2 mutation dataset (up to January 20, 2021), which displays
six distinct clusters. Correspondingly, the same approaches are also
applied to the United States SARS-CoV-2 mutation dataset (up to
January 20, 2021), resulting in six different clusters as well. Further-
more, we provide a new perspective by utilizing UMAP-assisted K-means
clustering to analyze our previous SARS-CoV-2 mutation datasets, and
the 2D visualization of UMAP-assisted K-means clustering of our pre-
vious world SARS-CoV-2 mutation dataset (up to June 01, 2020) forms
more clear clusters than the PCA-assisted K-means clustering. Finally,

(b)

ICIus(er N

i Cluster V,

Cluster IV,

Cluster Il

Cluster II]

Cluster I,

i
TR

Fig. 10. 2D visualizations of the US SARS-CoV-2 mutation dataset up to June 01, 2020 with 6 distinct clusters by applying two different dimensional reduction

algorithms. (a) 2D PCA visualization. (b) 2D UMAP visualization.
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one of our four datasets was generated by the Jaccard distance repre-
sentation, which improves both k-NN classification and k-means clus-
tering accuracies on the original dataset.
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