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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
has a worldwide devastating effect. Understanding the evolution and transmission of SARS-CoV-2 is of para-
mount importance for controlling, combating and preventing COVID-19. Due to the rapid growth in both the 
number of SARS-CoV-2 genome sequences and the number of unique mutations, the phylogenetic analysis of 
SARS-CoV-2 genome isolates faces an emergent large-data challenge. We introduce a dimension-reduced K- 
means clustering strategy to tackle this challenge. We examine the performance and effectiveness of three 
dimension-reduction algorithms: principal component analysis (PCA), t-distributed stochastic neighbor embed-
ding (t-SNE), and uniform manifold approximation and projection (UMAP). By using four benchmark datasets, 
we found that UMAP is the best-suited technique due to its stable, reliable, and efficient performance, its ability 
to improve clustering accuracy, especially for large Jaccard distanced-based datasets, and its superior clustering 
visualization. The UMAP-assisted K-means clustering enables us to shed light on increasingly large datasets from 
SARS-CoV-2 genome isolates.   

1. Introduction 

Beginning in December 2019, coronavirus disease 2019 (COVID-19) 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2) has become one of the most deadly global pandemics in history. The 
COVID-19 infections in the United States (US) and other nations are still 
spiking. As of January 20, 2021, the World Health Organization (WHO) 
has reported 93,217,287 confirmed cases of COVID-19 and 2,014,957 
confirmed deaths. The virus has spread to Africa, Americas, Eastern 
Mediterranean, Europe, South-East Asia and Western Pacific [1]. To 
prevent further damage to our livelihood, we must control its spread 
through testing, social distancing, tracking the spread, and developing 
effective vaccines, drugs, diagnostics, and treatments. 

SARS-CoV-2 is a positive-sense single-strand RNA virus that belongs 
to the Nidovirales order, coronaviridae family and betacoronavirus 
genus [21]. To effectively track the virus, testing patients with suspected 
exposure to COVID-19 and sequencing the strand via PCR (polymerase 
chain reaction) are important. From sequencing, we can analyze pat-
terns in mutation and predict transmission pathways. Without 

understanding such pathways, current efforts to find effective medicines 
and vaccines could become futile because mutations may change viral 
genome or lead to resistance. As of January 20, 2021, there are 203,344 
available sequences with 26,844 unique single nucleotide poly-
morphisms (SNPs) with respect to the first SARS-CoV-2 sequence 
collected in December 2019 [36] according to our mutation tracker 
https://users.math.msu.edu/users/weig/SARS-CoV-2_Mutation_Tra 
cker.html. 

A popular method for understanding mutational trends is to perform 
phylogenetic analysis, where one clusters mutations to find evolution 
patterns and transmission pathways. Phylogenetic analysis has been 
done on the Nidovirales family [2,2,9,10,12,16] to understand genetic 
evolutionary pathways, protein level changes [6,12,31,32], large scale 
variants [31–33,35] and global trends [3,28,30]. Commonly used 
techniques for phylogenetic analysis include tree based methods [22] 
and K-means clustering. Both methods belong to unsupervised machine 
learning techniques, where ground truth is unavailable. These ap-
proaches provide valuable information for exploratory research. A main 
issue with phylogenetic tree analysis is that as the number of samples 
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increase, its computation becomes unpractical, making it unsuitable for 
large genome datasets. In contrast, K-means scales well with sample size 
increase, but does not perform well when the sample size is too small. 
Jaccard distance is commonly used to compare genome sequences [37] 
because it offers a phylogenetic or topological difference between 
samples. However, the tradeoff to the Jaccard distance is that its feature 
dimension is the same as its number of samples, suggesting that for a 
large sample size, the number of features is also large. Since K-means 
clustering relies on computing the distance between the center of the 
clusters and each sample, having a large feature space can result in 
expensive computation, large memory requirement, and poor clustering 
performance. This become a significant problem as the number of 
SARS-CoV-2 genome isolates from patients has reached 200,000 at this 
point. There is a pressing need for efficient clustering methods for 
SARS-CoV-2 genome sequences. 

One technique to address this challenge is to perform dimensional 
reduction on the K-means input dataset so that the task becomes 
manageable. Commonly used dimension reduction algorithms focus on 
two aspects: 1) the pairwise distance structure of all the data samples 
and 2) preservation of the local distances over the global distance. 
Techniques such as principal component analysis (PCA) [11], Sammon 
mapping [24], and multidimensional scaling (MDS) [8] aim to preserve 
the pairwise distance structure of the dataset. In contrast, the t-distrib-
uted stochastic neighbor embedding (t-SNE) [17,18], uniform manifold 
approximation and projection (UMAP) [4,19], Laplacian eigenmaps [5], 
and LargeVis [27] focus on the preservation of local distances. Among 
them, PCA, t-SNE, and UMAP are the most frequently used algorithms in 
the applications of cell biology, bioinformatics, and visualization [4]. 

PCA is a popular method used in exploratory studies, aiming to find 
the directions of the maximum variance in high-dimensional data and 
projecting them onto a new subspace to obtain low-dimensional feature 
spaces while preserving most of the variance. The principal components 
of the new subspace can be interpreted as the directions of the maximum 
variance, which makes the new feature axes orthogonal to each other. 
Although PCA is able to cover the maximum variance among features, it 
may lose some information if one chooses an inappropriate number of 
principal components. As a linear algorithm, PCA performs poorly on 
the features with nonlinear relationship. Therefore, in order to present 
high-dimensional data on low dimensional and nonlinear manifold, 
some nonlinear dimensional reduction algorithms such as t-SNE and 
UMAP are employed. T-SNE is a nonlinear method that can preserve the 
local and global structures of data. There are two main steps in t-SNE. 
First, it finds a probability distribution of the high dimensional dataset, 
where similar data points are given higher probability. Second, it finds a 
similar probability distribution in the lower dimension space, and the 
difference between the two distributions is minimized. However, t-SNE 
computes pairwise conditional probabilities for each pair of samples and 
involves hyperparameters that are not always easy to tune, which makes 
it computationally complex. UMAP is a novel manifold learning tech-
nique that also captures a nonlinear structure, which is competitive with 
t-SNE for visualization quality and maintains more of the global struc-
ture with superior run-time performance [19]. UMAP is built upon the 
mathematical work of Belkin and Niyogi on Laplacian eigenmaps, 
aiming to address the importance of uniform data distributions on 
manifolds via Riemannian geometry and the metric realization of fuzzy 
simplicial sets by David Spivak [26]. Similar to t-SNE, UMAP can opti-
mize the embedded low-dimensional representation with respect to 
fuzzy set cross-entropy loss function by using stochastic gradient 
descent. The embedding is found by finding a low-dimensional projec-
tion of the data that closely matches the fuzzy topological structure of 
the original space. The error between two topological spaces will be 
minimized by optimizing the spectral layout of data in a low dimen-
sional space. 

The objective of this work is to explore efficient computational 
methods for the SARS-CoV-2 phylogenetic analysis of large volume of 
SARS-CoV-2 genome sequences. Specifically, we are interested in 

developing a dimension-reduction assisted clustering method. With the 
increase in available sequencing data, the SNP dataset of SARS-CoV-2 
has run into large-data problem. By effectively analyzing clusters, we 
can find evolutionary trends, which will aid in finding effective medi-
cines and vaccines. To this end, we compare the effectiveness and ac-
curacy of PCA, t-SNE and UMAP for dimension reduction in association 
with the K-means clustering. To quantitatively evaluate the perfor-
mance, we recast supervised classification problems with labels into a K- 
means clustering problems so that the accuracy of K-means clustering 
can be evaluated. As a result, the accuracy and performance of PCA, t- 
SNE and UMAP-assisted K-means clustering can be compared. By 
choosing the different dimensional reduction ratios, we examine the 
performance of these methods in K-means settings on four standard 
datasets. We found that UMAP is the most efficient, robust, reliable, and 
accurate algorithm. Based on this finding, we applied the UMAP-assisted 
K-means technique to large scale SARS-CoV-2 datasets generated from a 
Jaccard distance representation and a SNP position-based representa-
tion to further analyze its effectiveness, both in terms of speed and 
scalability. Our results are compared with those in the literature [32] to 
shed new light on SARS-CoV-2 phylogenetics. 

2. Methods 

2.1. Sequence and alignment 

The SARS-CoV-2 sequences were obtained from GISAID databank 
(www.gisaid.com). Only complete genome sequences with collection 
date, high coverage, and without ‘NNNNNN’ in the sequences were 
considered. Each sequence was aligned to the reference sequence [36] 
using a multiple sequence alignment (MSA) package Clustal Omega 
[25]. A total of 203,344 complete SARS-CoV-2 sequences are analyzed 
in this work. 

2.2. SNP position based features 

Let N be the number of SNP profiles with respect to the SARS-CoV-2 
reference genome sequence, and let M be the number of unique muta-
tion sites. Denote Vi as the position based feature of the ith SNP profile. 
Vi =

[
v1
i , v

2
i ,…, vMi

]
, i = 1, 2,…,N (1)  

is a 1 × M vector. Here 

v
j
i=

{
1, mutation ​ site

0, otherwise.
(2) 

We compile this into an N × M position based feature, 
S(i, j)= vji (3)  

where each row represents a sample. Note that S(i, j) is a binary repre-
sentation of the position and is sparse. 

2.3. Jaccard based representation 

The Jaccard distance measures the dissimilarity between two sets. It 
is widely used in the phylogenetic studies of SNP profiles. In this work, 
we utilize Jaccard distance to compare SNP profiles of SARS-CoV-2 
genome isolates. 

Let A and B be two sets. Consider the Jaccard index between A and B, 
denoted J(A, B), as the cardinality of the intersection divided by the 
cardinality of the union 

J(A,B)=
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|
. (4) 

The Jaccard distance between the two sets is defined by subtracting 
the Jaccard index from 1: 

Y. Hozumi et al.                                                                                                                                                                                                                                 

http://www.gisaid.com


Computers in Biology and Medicine 131 (2021) 104264

3

dJ(A,B)= 1− J(A,B)=
|A ∪ B| − |A ∩ B|

|A ∪ B|
(5) 

We assume there are N SNP profiles or genome isolates that have 
been aligned to the reference SARS-CoV-2 genome. Let Si, i = 1, …, N, be 
the set with the position of the mutation of the ith sample. The Jaccard 
distance between two sets Si and Sj is given by dJ(Si, Sj). Taking the 
pairwise distance between all the samples, we can construct the Jaccard 
based representation, resulting in an N × N distance matrix D 
D(i, j)= dJ

(
Si, Sj

) (6) 
This distance defines a metric over the collections of all finite sets 

[15]. 

2.4. K-means clustering 

K-means clustering is one of the most popular unsupervised learning 
methods in machine learning, where it aims to cluster or partition a data 
{x1, …, xN}, xi ∈ R

M into k clusters, {C1, …, Ck}, k ≤ N. 
K-means clustering begins with selecting k points as k cluster centers, 

or centroids. Then, each point in the dataset is assigned to the nearest 
centroid. The centroids are then updated by minimizing the within- 
cluster sum of squ ares (WCSS), which is defined as 
∑k

j=1

∑

xi∈Cj

⃦⃦
xi − μj

⃦⃦2

2
. (7) 

Here, ‖⋅‖2 denotes the l2 norm and μj is the average of the data points 
in cluster j 

μj =
1⃒⃒
Cj
⃒⃒
∑

xi∈Cj

xi. (8) 

This method, however, only finds the optimal centroid, given a fixed 
number of clusters j. In applications, we are interested in finding the 
optimal number of clusters as well. In order to obtain the best j clusters, 
elbow method was used. The optimal number of clusters can be deter-
mined via the elbow method by plotting the WCSS against the number of 
clusters, and choosing the inflection point position as the optimal 
number of clusters. 

2.5. Principal component analysis 

Principal component analysis (PCA) is one the most commonly used 
dimensional reduction techniques for the exploratory analysis of high- 
dimensional data [11]. Unlike other methods, there is no need for any 
assumptions in the data. Therefore, it is a useful method for new data, 
such as SARS-CoV-2 SNPs data. PCA is conducted by obtaining one 
component or vector at a time. The first component, termed the prin-
cipal component, is the direction that maximizes the variance. The 
subsequent components are orthogonal to earlier ones. 

Let {xi}N
i=1 be the input dataset, with N being the number of samples 

or data points. For each xi, let xi ∈ R
M, where M is the number of features 

or data dimension. Then, we can cast the data as a matrix X ∈R
N×M. PCA 

seeks to find a linear combination of the columns of X with maximum 
variance. 
∑n

j=1

ajxj=Xa, (9)  

where a1, a2, …, an are constants, and a is the vectorized a1, a2, …, an. 
The variance of this linear combination is defined as 
var(Xa)= aTSa, (10)  

where S is the covariance matrix for the dataset. Note that we compute 
the eigenvalue of the covariance matrix. The maximum variance can be 

computed iteratively using Rayleigh’s quotient 

a(1) = argmax
a

aTXTXa

aTa
. (11) 

The subsequent components can be computed by maximizing the 
variance of 

X̂ k =X −
∑k−1

j=1

Xaja
T
j (12)  

where k represents the kth principal component. Here, k−1 principal 
components are subtracted from the original matrix X. Therefore, the 
complexity of the method scales linearly with the number of components 
one seeks to find. In applications, we hope that the first few components 
give rise to a good PCA representation of the original data matrix X. 

2.6. t-SNE 

The t-distributed stochastic neighbor embedding (t-SNE) is a 
nonlinear dimensional reduction algorithm that is well suited for 
reducing high dimensional data into the two- or three-dimensional 
space. There are two main stages in t-SNE. First, it constructs a proba-
bility distribution over pairs of data such that a pair of near data points is 
assigned with a high probability, while a pair of farther away points is 
given a low probability. Second, t-SNE defines a probability distribution 
in the embedded space that is similar to that in the original high- 
dimensional space, and aims to minimize the Kullback-Leibler (KL) 
divergence between them [17]. 

Let {x1, x2,…, xN
⃒⃒xi ∈ R

M} be a high dimensional input dataset. Our 
goal is to find an optimal low dimensional representation {y1, …,

yN
⃒⃒yi ∈ R

k}, such that k ≪ M. The first step in t-SNE is to compute the 
pairwise distribution between xi and xj, defined as pij. However, we find 
the conditional probability of xj, given xi: 

pj|i =
exp

(
− xi − xj

2
/

2σ2
i

)
∑

m∕=iexp( − xi − xm2/2σ2
i )
, i ∕= j, (13) 

setting pi|i = 0, and the denominator normalizes the probability. 
Here, σi is the predefined hyperparameter called perplexity. A smaller σi 
is used for a denser dataset. Notice that this conditional probability is 
symmetric when the perplexity is fixed, i.e. pi|j = pj|i. Then, define the 
pairwise probability as 

pij=
pj|i + pi|j

2N
. (14) 

In the second step, we learn a k-dimensional embedding {y1, …,

yN
⃒⃒yi ∈ R

k}. To this end, t-SNE calculates a similar probability distribu-
tion qij defined as 

qij=

1
1+yi−yj2∑

m

∑
l∕=m

1

1+||ym−yl ||
2

, i ∕= j (15) 

and setting qii = 0. Finally, the low dimensional embedding 
{y1,…, yN

⃒⃒yi ∈ R
k} is found by minimizing the KL-divergence via a 

standard gradient descent method 

KL(P|Q)=
∑

i,j

pijlog
pij

qij
, (16)  

where P and Q are the distributions for pij and qij, respectively. Note that 
the probability distributions in Eqs. (13) and (15) can be replaced by 
using many other delta sequence kernel of positive type [34]. 

2.7. UMAP 

Uniform manifold approximation and projection (UMAP) is a 
nonlinear dimensional reduction method, utilizing three assumptions: 
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the data is uniformly distributed on Riemannian manifold, Riemannian 
metric is locally constant, and the manifold if locally connected. Unlike 
t-SNE which utilizes probabilistic model, UMAP is a graph-based algo-
rithm. Its essentially idea is to create a predefined k-dimensional 
weighted UMAP graph representation of each of the original high- 
dimensional data point such that the edge-wise cross-entropy between 
the weighted graph and the original data is minimized. Finally, the k- 
dimensional eigenvectors of the UMAP graph are used to represent each 
of the original data point. In this section, a computational view of UMAP 
is presented. For a more theoretical account, the reader is referred to 
Ref. [19]. 

Similar to t-SNE, UMAP considers the input data X = {x1, x2, …, xN}, 
xi ∈ R

M and look for an optimal low dimensional representation {y1,…,

yN
⃒⃒yi ∈ R

k}, such that k < M. The first stage is the construction of 
weighted k-neighbor graphs. Let define a metric d : X× X→ R+. Let k ≪ 

M be a hyperparemeter, and compute the k-nearest neighbors of each xi 
under a given metric d. For each xi, let 
ρi =min

{
d
(
xi, xj

)⃒⃒
1≤ j≤ k, d

(
xi, xj

)
> 0

} (17)  

where σi is defined via 
∑k

j=1

exp

(
−max

(
0, d

(
xi, xj

)
− ρi

)

σi

)
= log2k. (18) 

One chooses ρi to ensure at least one data point is connected to xi and 
having edge weight of 1, and set σi as a length scale parameter. One 
defines a weighted directed graph G = (V, E,ω), where V is the set of 
vertices (in this case, the data X), E is the set of edges E = {(xi, xj)|1 ≤ h 
≤ k, 1 ≤ i ≤ N}, and ω is the weight for edges 

ω
(
xi, xj

)
= exp

(
−max

(
0, d

(
xi, xj

)
− ρi

)

σi

)
. (19) 

UMAP tries to define an undirected weighted graph G from directed 
graph G via symmetrization. Let A be the adjacency matrix of the graph 
G. A symmetric matrix can be obtained 
B=A+ AT − A⊗ AT , (20)  

where T is the transpose and ⊗ denotes the Hadamard product. Then, the 
undirected weighted Laplacian G (the UMAP graph) is defined by its 
adjacency matrix B. 

In its realization, UMAP evolves an equivalent weighted graph H 
with a set of points {yi}i=1,⋯,N, utilizing attractive and repulsive forces. 
The attractive and repulsive forces at coordinate yi and yj are given by 

−2ab
⃒⃒⃒⃒
yi − yj

⃒⃒⃒⃒2(b−1)

2

1 +
⃒⃒⃒⃒
yi − yj

⃒⃒⃒⃒2

2

w
(
xi, xj

)(
yi − yj

)
, and (21)  

2b(
ε+

⃒⃒⃒⃒
yi − yj

⃒⃒⃒⃒2
2

)(
1 + ayi − yj

2b
2

) (
1−w

(
xi, xj

))(
yi − yj

) (22)  

where a, b are hyperparemeters, and ε is taken to be a small value such 
that the denominator does not become 0. The goal is to find the optimal 
low-dimensional coordinates {yi}N

i=1, yi ∈ R
k, that minimizes the edge- 

wise cross entropy with the original data at each point. The evolution 
of the UMAP graph Laplacian G can be regarded as a discrete approxi-
mation of the Laplace-Beltrami operator on a manifold defined by the 
data [7]. Implementation and further detail of UMAP can be found in 
Ref. [19]. 

UMAP may not work well if the data points is non-uniform. If part of 
the data points have k important neighbors while other part of the data 
points have k’≫k important neighbors, the k-dimensional UMAP will 
not work efficiently. Currently, there is no algorithm to automatically 
determine the critic minimal kmin for a given dataset. Additionally, 

weights w(xi, xj) and force terms can be replaced by other functions that 
are easier to evaluate [34]. The metric d can be selected as Euclidean 
distance, Manhattan distance, Minkowski distance, and Chebyshev dis-
tance, depending on applications. 

3. Validation 

K-means clustering is one of the unsupervised learning algorithms, 
suggesting that neither the accuracy nor the root-mean-square error can 
be calculated to evaluate the performance of the K-means clustering 
explicitly. Additionally, K-means clustering can be problematic for high- 
dimensional large datasets. Dimension-reduced K-means clustering is an 
efficient approach. To evaluate its accuracy and performance, we 
convert supervised classification problems with known solutions into 
dimension-reduced K-means clustering problems. In doing so, we apply 
the K-means clustering to the classification dataset by setting the num-
ber of clusters equals to the number of the real categories. Next, in each 
cluster, we will take the data with the dominant label as the test for all 
samples and then calculate the K-means clustering accuracy for the 
whole dataset. 

3.1. Validation data 

In this work, we will consider the following classification datasets to 
test the performance of the clustering methods: Coil 20, Facebook large 
page-page network, MNIST, and Jaccard distanced-based MNIST. Pre-
vious work has been done on datasets using Euclidean and Minkowski 
distance for lower dimensions [17–19]. Here, we verify the result with 
higher reduction ratios, and tested the validity of using Jaccard distance 
as a metric.  

• Coil 20: Coil 20 [20] is a dataset with 1440 gray scale images, 
consisting of 20 different objects, each with 72 orientation. Each 
image is of size 128 × 128, which was treated as a 16384 dimen-
sional vector for dimensional reduction  

• Facebook Network: Facebook large page-page network [23] is a 
page-page webgraph of verified Facebook sites. Each node represents 
a facebook page, and the links are the mutual links between sites. 
This is a binary dataset with 22,470 nodes; hence the sample size and 
feature size are both 22,470. Jaccard distance was computed be-
tween each nodes for the feature space.  

• MNIST: MNIST [14] is a hand written digit dataset. Each image is a 
grey scale of size 28 × 28, which was treated as a 784 dimensional 
vector for the feature space, each with an integer value in [0, 255]. 
Standard normalization was used before performing dimensional 
reduction. There are 70,000 sample, with 10 different labels.  

• Jaccard distanced-based MNIST: The above dataset was converted 
to a Jaccard distance-based dataset. This is to simulate position based 
mutational dataset, where 1 indicates a mutation in a particular 
position. Jaccard distance was used to construct the feature space, 
hence for each sample, the feature size is 70,000. This dataset can be 
viewed as an additional validation on our Jaccard distance 
representation. 

3.2. Validation results 

In the present work, we implement three popular dimensional 
reduction methods, PCA, UMAP, and t-SNE, for the dimension reduction 
and compare their performance in K-means clustering. For a uniform 
comparison, we reduce the dimensions of the samples by a set of ratios. 
The minimum between the number of features and the number of 
samples was taken as base of the reduction. For the Coil 20 dataset, since 
the numbers of samples and features were 1440 and 16384, respectively, 
dimension-reductions were based on 1440. For the Facebook Network, 
since the numbers of samples and features were both 22,470, dimension- 
reductions were based on 22,470. For the MNIST dataset, since the 
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numbers of samples and features were respectively 70,000 and 784, 
dimension-reductions were based on 784. Finally, for the Jaccard 
distanced-based MNIST dataset, since the numbers of samples and fea-
tures were both 70,000, dimension-reductions were based on 70,000. 
Note that for the Jaccard distanced-based MNIST data, more aggressive 
ratios were used because the original feature size is huge, i.e., 70,000. 
The standard ratios of 2, 4, and 8, etc do not sufficiently reduce the 
dimension for effective K-means computation. For the purpose of visu-
alization, two-dimensional reduction algorithms are applied to each 
reduction scheme. In order to validate PCA, UMAP, and t-SNE assisted K- 
means clustering, we observed their performance using labeled datasets. 
K-nearest neighbors (K-NN) was used to find the baseline of the reduc-
tion, which reveals how much information can be preserved in the 
feature after applying a dimensional reduction algorithm. For k-NN, 10 
fold cross-validation was performed. 

Notably, K-means clustering is an unsupervised learning algorithm, 
which does not have labels to evaluate the clustering performance 
explicitly. However, we can assess the K-means clustering accuracy via 
labeled datasets that has ground truth. In doing so, we choose the 
number of K as the original number of classes. Then, we can compared 
the k-means clustering results with the ground truth. Therefore, the 
accuracy can reveal the performance of the proposed dimension- 
reduction-assisted (k-means) clustering method. For the classification 
problem, we assume the training set is {(xi, yi)

⃒⃒
xi ∈ R

m, yi ∈ Z}
n
i=1 with 

the ⃒⃒{yi}n
i=1

⃒⃒
= k. Here n, m, and k represent the number of samples, the 

number of features {xi}, and the number of labels {yi}, respectively. We 
set the number of clusters equals to the number of labels k. After 
applying the K-means clustering algorithm, we get k different clusters 
{cj}k

j=1. In each cluster, we define the predictor of the K-means clustering 
in the cluster cj to be: 
ŷ
(
cj

)
=max

{
Fj(y1),⋯,Fj(yk)

}
, (23)  

where Fj(yi), ⋯, Fj(yk) are the appearance frequencies of each label in the 
cluster cj. Then the clustering accuracy can be defined as: 

Accuracy=

∑
i1
{
yi=̂y i

}

n
, (24)  

where {ŷi} are predicted labels. Moreover, other evaluation metrics 
such as precision, recall, and receiver operating characteristic (ROC) can 
also be defined accordingly. 

3.2.1. Coil 20 
Fig. 1 shows the performance of PCA-assisted, UMAP-assisted and t- 

SNE-assisted clustering of the Coil 20 dataset. For each case, the dataset 
were reduced to dimension 2 using default parameters, and the plots 
were colored with the ground truth of the Coil 20 dataset. It can be seen 
that PCA does not present good clustering, whereas UMAP and t-SNE 

show very good clusters. 
Table 1 shows the accuracy of k-NN clustering of the Coil 20 dataset 

assisted by PCA, t-SNE, and UMAP with different dimensional reduction 
radio. The Coil 20 dataset has 1440 samples, 16,384 features, and 20 
different labels. For PCA, the sklearn implementation on python was 
used with standard parameters. Note that for all methods, dimensions 
were reduced to 3 and 2 for a comparison. For t-SNE, Multicore-TSNE 
[29] was used because it offers up to 8 core processor, which is not 
available in the sklearn implementation, and it is the fastest performing 
t-SNE algorithm. For UMAP, we used standard parameters [19]. It can be 
seen that when we reduce the dimension to 3, t-SNE performs best. 
Moreover, when the dimensional reduction ratio is 1/100, PCA and 
UMAP also perform well. Notably, the k-NN accuracy for the data 
without applying any dimensional reduction algorithm is 0.956, indi-
cating that UMAP does not provide the best clustering performance on 
the Coil 20 dataset. However, PCA and t-SNE will preserve the infor-
mation of the original data with a dimensional reduction ratio larger 
than 1/100, and t-SNE even performs better for dimensional three on the 
Coil 20 dataset. 

Table 2 describes the accuracy of K-means clustering of Coil 20 
assisted by PCA, UMAP, and t-SNE with different dimensional reduction 
ratio. For consistency, we use the same set of standard parameters as k- 
NN. For the Coil 20 dataset, the accuracy of K-means clustering assisted 
by UMAP has the best performance. When the reduced dimension is 
2048 (ratio 1/8), UMAP will result in a relatively high K-means accuracy 
(0.822). Moreover, although PCA performs best on k-NN accuracy, it 
performs poorly on the K-means accuracy, indicating that PCA is not a 
suitable dimensional reduction algorithm on the Coil 20 dataset. 
Furthermore, the highest accuracy of K-means clustering is 0.828, which 
is calculated from the t-SNE-assisted algorithm. However, the t-SNE- 
assisted accuracy under different reduction ratio changes dramatically. 
When the ratio is 1/64, the t-SNE-assisted accuracy is only 0.151, 
indicating that t-SNE is sensitive to the hyper-parameters settings. In 
contrast, the performance of UMAP is highly stable under all dimension- 
reduction ratios. 

Note that dimension-reduced k-means clustering methods outper-
form the original k-means clustering. Therefore, the proposed 
dimension-reduced k-means clustering methods not only improve the k- 
means clustering efficiency, but also achieve better accuracy. 

3.2.2. Facebook Network 
Fig. 2 shows the visualization performance of PCA-assisted, UMAP- 

assisted, and t-SNE-assisted clustering of the Facebook Network. For 
each case, the dataset was reduced to dimension 2 using default pa-
rameters, and the plots were colored with the ground truth of the 
Facebook Network. Fig. 2 shows that the PCA-based data is located 
distributively, while the t-SNE- and UMAP-based data show clusters. 

Table 3 shows the accuracy of k-NN clustering of the Facebook 
Network assisted by PCA, t-SNE, and UMAP with different dimensional 
reduction radio. The Facebook Network dataset has 22,470 samples 

Fig. 1. Comparison of different dimensional reduction algorithms on Coil 20 dataset. Total 20 different labels are in the Coil 20 dataset, and we use the ground truth 
label to color each data points. (a) Feature size is reduced to dimension 2 by PCA. (b) Feature size is reduced to dimension 2 by t-SNE. (c) Feature size is reduced to 
dimension 2 by UMAP. 
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with 4 different labels, and the feature size of the Facebook Network is 
also 22,470. For each algorithm, we use the same settings as the Coil 20 
dataset. Without applying any dimensional reduction method, The 
Facebook Network has 0.755 k-NN accuracy. The reduced feature from 
PCA has the best k-NN performance when the reduction ratio is 1/2. 
UMAP has a better performance compared to PCA and t-SNE when the 
reduction ratio is smaller than 1/16. 

Table 4 describes the accuracy of K-means clustering of the Facebook 
Network assisted by PCA, UMAP and t-SNE with different dimensional 
reduction ratio. PCA, UMAP, and t-SNE all have very poor performance, 
which may be caused by the smaller number of labels. The highest ac-
curacy 0.427 is observed in the t-SNE-assistant algorithm with dimen-
sion 2. 

Similar to the last case, UMAP-based and t-SNE-based dimension- 
reduced k-means clustering methods outperform the original k-means 
clustering with the full feature dimension. Therefore, it is useful to carry 
out dimension reduction before k-means clustering for large datasets. 

Fig. 3 shows the performance of PCA-assisted, UMAP-assisted and t- 

SNE-assisted clustering of the MNIST dataset. The sample size of the 
MNIST dataset is 70000, which has 784 features with 10 different digit 
labels. For each case, the dataset was reduced to dimension 2 using 
default parameters, and the plots were colored with the ground truth of 
the MNIST dataset. In Fig. 3, by applying the UMAP algorithm, the clear 
clusters can be detected for the MNIST dataset. The t-SNE offers a 
reasonable clustering at dimension 2 too. However, the PCA does not 
provide a good clustering. 

3.2.3. MNIST 
Table 5 shows the accuracy of k-NN clustering of the MNIST dataset 

assisted by PCA, t-SNE, and UMAP with different dimensional reduction 
radios. For each algorithm, we use the same settings as the Coil 20 
dataset. Without applying any dimensional reduction algorithms, the 
accuracy of k-NN is 0.948. By applying PCA/UMAP with the reduction 
ratio greater than 1/64, the accuracy of PCA/UMAP-assisted k-NN is at 
the same level without using any dimensional reduction algorithm. 
However, in contract with UMAP and t-SNE, when the reduced 

Table 1 
Accuracy of k-NN of the Coil 20 dataset without applying any reduction algorithms, as well as the accuracy of k-NN assisted by PCA, UMAP and t-SNE with different 
dimensional reduction ratio. The sample size, feature size, and the number of labels of the Coil 20 dataset are 1440, 16384, and 20, respectively.  

Dataset k-NN accuracy 
w/o reduction 

Reduced dimension PCA accuracy UMAP accuracy t-SNE 
accuracy 

Coil 20 (1440,16384,20) 0.956 720 (1/2) 0.955 0.668 0.850 
360 (1/4) 0.957 0.861 0.889 
180 (1/8) 0.973 0.867 0.881 
90 (1/16) 0.977 0.860 0.885 
45 (1/32) 0.980 0.861 0.875 
22 (1/64) 0.985 0.868 0.743 
14 (1/100) 0.730 0.851 0.878 
7 (1/200) 0.985 0.870 0.845 
3 0.850 0.863 0.959 
2 0.730 0.853 0.948  

Table 2 
Accuracy of K-means clustering of the Coil 20 dataset without applying any reduction algorithms, as well as the accuracy of K-means assisted by PCA, UMAP and t-SNE 
with different dimensional reduction ratio. The sample size, feature size, and the number of labels of the Coil 20 dataset are 1440, 16384, and 20, respectively.  

Dataset K-means accuracy w/o reduction Reduced dimension PCA accuracy UMAP accuracy t-SNE 
accuracy 

Coil 20 (1440,16384,20) 0.626 720 (1/2) 0.64 0.301 0.798 
360 (1/4) 0.678 0.800 0.718 
180 (1/8) 0.633 0.822 0.648 
90 (1/16) 0.642 0.799 0.681 
45 (1/32) 0.666 0.800 0.615 
22 (1/64) 0.673 0.819 0.151 
14 (1/100) 0.631 0.817 0.154 
7 (1/200) 0.591 0.819 0.360 
3 0.561 0.800 0.780 
2 0.537 0.801 0.828  

Fig. 2. Comparison of different dimensional reduction algorithms on the Facebook Network dataset. Total 4 different labels are in the Facebook Network dataset, and 
we use the ground truth label to color each data points. (a) Feature size is reduced to dimension 2 by PCA. (b) Feature size is reduced to dimension 2 by t-SNE. (c) 
Feature size is reduced to dimension 2 by UMAP. 
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dimension is 2 or 3, PCA performs poorly. This indicates that the PCA 
may not be suitable for dimension-reduction for datasets with a large 
sample size. 

Table 6 describes the accuracy of K-means clustering of the MNIST 
dataset assisted by PCA, UMAP, and t-SNE with different dimensional 
reduction ratios. By applying PCA, the accuracy of K-means is around 
0.45. The t-SNE method performance is quite unstable, from very poor 
(0113) to the best (0.740), and to a relatively low value of 0.593. In 
contrast, we can see a stable and improved accuracy from using UMAP at 
various reduction ratios, indicating that the reduced feature generated 
by UMAP can better represent the clustering properties of the MNIST 
dataset compared to the PCA and t-SNE. 

As observed early, the present UMAP and t-SNE-assisted k-means 
clustering methods also significantly out-perform the original k-means 

Table 3 
Accuracy of k-NN of the Facebook Network without applying any reduction 
algorithms, as well as the accuracy of k-NN assisted by PCA, UMAP and t-SNE 
with different dimensional reduction ratio. The sample size, feature size, and the 
number of labels of the Facebook Network are 22470, 22470, and 4, 
respectively.  

Dataset K-means 
accuracy w/ 
o reduction 

Reduced 
dimension 

PCA 
accuracy 

UMAP 
accuracy 

t-SNE 
accuracy 

Facebook 
Network 
(22470, 
22470, 4) 

0.755 11235 (1/ 
2) 

0.756 0.360 0.307 

5617 (1/4) 0.755 0.669 0.316 
2808 (1/8) 0.754 0.754 0.355 
1404 (1/ 
16) 

0.751 0.816 0.707 

702 (1/32) 0.751 0.814 0.669 
351 (1/64) 0.746 0.815 0.690 
224 (1/ 
100) 

0.733 0.814 0.676 

112 (1/ 
200) 

0.721 0.819 0.633 

44 (1/500) 0.714 0.816 0.709 
22 (1/ 
1000) 

0.690 0.815 0.643 

3 0.552 0.801 0.741 
2 0.501 0.786 0.732  

Table 4 
Accuracy of K-means clustering of the Facebook Network without applying any 
reduction algorithms, as well as the accuracy of K-means assisted by PCA, UMAP 
and t-SNE with different dimensional reduction ratio. The sample size, feature 
size, and the number of labels of the Facebook Network are 22470, 22470, and 4, 
respectively.  

Dataset K-means 
accuracy w/ 
o reduction 

Reduced 
dimension 

PCA 
accuracy 

UMAP 
accuracy 

t-SNE 
accuracy 

Facebook 
Network 
(22470, 
22470, 4) 

0.374 11235 (1/ 
2) 

0.331 0.306 0.306 

5617 (1/4) 0.331 0.307 0.299 
2808 (1/8) 0.331 0.411 0.314 
1404 (1/ 
16) 

0.331 0.397 0.313 

702 (1/32) 0.331 0.401 0.306 
351 (1/64) 0.331 0.400 0.308 
224 (1/ 
100) 

0.331 0.400 0.327 

112 (1/ 
200) 

0.331 0.400 0.306 

44 (1/500) 0.331 0.400 0.313 
22 (1/ 
1000) 

0.331 0.401 0.306 

3 0.332 0.351 0.344 
2 0.358 0.345 0.427  

Fig. 3. Comparison of different dimensional reduction algorithms on the MNIST dataset. Total 10 different labels are in the MNIST dataset, and we use the ground 
truth label to color each data points. (a) Feature size is reduced to dimension 2 by PCA. (b) Feature size is reduced to dimension 2 by t-SNE. (c) Feature size is reduced 
to dimension 2 by UMAP. 

Table 5 
Accuracy of k-NN of the MNIST dataset without applying any reduction algo-
rithms, as well as the accuracy of k-NN assisted by PCA, UMAP and t-SNE with 
different dimensional reduction ratio. The sample size, feature size, and the 
number of labels of the MNIST dataset are 70000, 784, and 10, respectively.  

Dataset K-means 
accuracy w/ 
o reduction 

Reduced 
dimension 

PCA 
accuracy 

UMAP 
accuracy 

t-SNE 
accuracy 

MNIST 
(70000, 
784, 10) 

0.948 392 (1/2) 0.951 0.937 0.696 
196 (1/4) 0.956 0.938 0.846 
98 (1/8) 0.960 0.937 0.893 
49 (1/16) 0.961 0.937 0.886 
24 (1/32) 0.953 0.937 0.842 
12 (1/64) 0.926 0.937 0.676 
7 (1/100) 0.846 0.936 0.940 
3 0.513 0.929 0.938 
2 0.323 0.919 0.928  

Table 6 
Accuracy of K-means clustering of the MNIST dataset without applying any 
reduction algorithms, as well as the accuracy of K-means assisted by PCA, UMAP 
and t-SNE with different dimensional reduction ratio. The sample size, feature 
size, and the number of labels of the MNIST dataset are 70000, 784, and 10, 
respectively.  

Dataset K-means 
accuracy w/ 
o reduction 

Reduced 
dimension 

PCA 
accuracy 

UMAP 
accuracy 

t-SNE 
accuracy 

MNIST 
(70000, 
784, 10) 

0.494 392 (1/2) 0.487 0.665 0.122 
196 (1/4) 0.492 0.667 0.113 
98 (1/8) 0.498 0.673 0.113 
49 (1/16) 0.496 0.718 0.113 
24 (1/32) 0.501 0.697 0.114 
12 (1/64) 0.489 0.682 0.138 
7 (1/100) 0.464 0.677 0.740 
3 0.365 0.727 0.537 
2 0.300 0.712 0.593  
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clustering for this dataset. 

3.2.4. Jaccard distanced-based MNIST 
Our last validation dataset is Jaccard distanced-based MNIST. This 

dataset can be treated as a test on the Jaccard distance-based data 
representation. Fig. 4 shows the performance of PCA-assisted, UMAP- 
assisted, and t-SNE-assisted clustering of the Jaccard distanced-based 
MNIST dataset. The dataset was reduced to dimension 2 using default 
parameters for visualization, and the plots were colored with the ground 
truth of the Jaccard distanced-based MNIST dataset. From Fig. 4, we can 
see that UMAP provides the clearest clusters compared to PCA and t-SNE 
when the dimension is reduced to 2. The performance of t-SNE is 
reasonable while PCA does not give a good clustering. 

Table 7 shows the accuracy of k-NN clustering of Jaccard distanced- 
based MNIST assisted by PCA, t-SNE, and UMAP with different dimen-
sional reduction radios. For each algorithm, we use the same settings as 
the Coil 20 dataset. Notably, the k-NN accuracy for the data without 
applying any dimensional reduction algorithm is 0.958, which is at the 
same level as the PCA algorithm with a reduction ratio greater than 1/ 
5000. Moreover, we can find that UMAP performs well compared to PCA 
and t-SNE, indicating that after applying UMAP, the reduced feature still 
preserves most of the valued information of the Jaccard distanced-based 
MNIST dataset. The stability and persistence of UMAP at various 
reduction ratios are the most important features. 

Table 8 describes the accuracy of K-means clustering of the Jaccard 
distanced-based MNIST dataset assisted by PCA, UMAP, and t-SNE with 
different dimensional reduction ratio. For consistency, we will use the 
same standard parameters as k-NN. Similar to the MNIST dataset, the 
accuracy of K-means clustering assisted by UMAP still has the best 
performance. When the reduced dimension is 3, UMAP will result in the 
highest K-means accuracy 0.798. Noticeably, although PCA performs 
well on k-NN accuracy, it has the lowest K-mean accuracy, indicating 
that PCA is not a suitable dimensional reduction algorithm, especially 
for those datasets with a large number of samples. To be noted, the t-SNE 
accuracy at four reduced dimensions are not available due to the 
extremely long running time. 

In a nutshell, PCA, UMAP, and t-SNE can all perform well for k-NN. 
However, for the Coil 20 dataset, UMAP performs slightly poorly, 
whereas the t-SNE performs well, which may be caused by a lack of data 
size. In order to train UMAP, it needs a suitable data size. The Coil 20 
dataset has 20 labels, each with only 72 samples. This may not be 
enough to train UMAP properly. However, even in this case, UMAP 
performance is still very stable at various reduction ratios and is the best 
method in terms of reliability, which become the major advantages of 
UMAP. Another strength of UMAP comes from its dimension-reduction 
for K-means clustering. In most cases, UMAP can improve K-means 
clustering accuracy, especially for the Jaccard distanced-based MNIST 
dataset. Furthermore, UMAP can generate a very clear and elegant 
visualization of clusters with low dimensional reduction value such as 2. 
Additionally, UMAP performed better than PCA and t-SNE for a larger 

dataset (MNIST and Jaccard distanced-based MNIST). Especially for the 
Jaccard distanced-based MNIST data, where Jaccard distance was used 
as the metric, UMAP performed best, which indicates the merit of using 
UMAP for Jaccard distanced-based datasets, such as COVID-19 SNP 
datasets. Furthermore, the accuracies for k-NN classification and K- 
means clustering are both improved on the Jaccard distance-based 
MNIST dataset compared to the original MNIST dataset, which pro-
vides convincing evidence that the Jaccard distance representation will 
help improve the performance of the clustering on the SARS-CoV-2 
mutation dataset in the following sections. 

3.3. Efficiency comparison 

It is important to understand the computational time behaviors of 
various methods. To this end, we compare computational time for three 
dimension-reduction techniques. Fig. 5 depicts the computational time 
of three methods for the four datasets under various reduction ratios. 
The green, orange, and blue lines represent the computational time of t- 
SNE, UMAP, and PCA, respectively. Some points in green line of Fig. 5 

Fig. 4. Comparison of different dimensional reduction algorithms on the Jaccard distanced-based MNIST dataset. Total 10 different labels are in the Jaccard 
distanced-based MNIST dataset, and we use the ground truth label to color each data points. (a) Feature size is reduced to dimension 2 by PCA. (b) Feature size is 
reduced to dimension 2 by t-SNE. (c) Feature size is reduced to dimension 2 by UMAP. 

Table 7 
Accuracy of k-NN of the Jaccard distanced-based MNIST dataset without 
applying any reduction algorithms, as well as the accuracy of k-NN assisted by 
PCA, UMAP and t-SNE with different dimensional reduction ratio. The sample 
size, feature size, and the number of labels of the Jaccard distanced-based 
MNIST dataset are 70000, 70000, and 10, respectively.  

Dataset K-means 
accuracy 
w/o 
reduction 

Reduced 
dimension 

PCA 
accuracy 

UMAP 
accuracy 

t-SNE 
accuracy 

Jaccard 
distanced- 
based 
MNIST 
(70000, 
70000, 10) 

0.958 7000 (1/ 
10) 

0.958 0.958 0.588 

3500 (1/ 
20) 

0.958 0.966 0.601 

1750 (1/ 
40) 

0.958 0.967 0.725 

875 (1/80) 0.958 0.967 0.613 
437 (1/ 
160) 

0.958 0.968 0.718 

218 (1/ 
320) 

0.958 0.968 0.701 

109 (1/ 
640) 

0.958 0.968 0.873 

70 (1/ 
1000) 

0.958 0.968 0.915 

35 (1/ 
2000) 

0.956 0.968 0.872 

17 (1/ 
5000) 

0.938 0.968 0.916 

7 (1/ 
10000) 

0.867 0.967 0.942 

3 0.487 0.965 0.939 
2 0.313 0.960 0.924  
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(d) are not available, which due to the extremely long running time. PCA 
performed best in most cases, except for the Coil 20 dataset, where 
UMAP had comparable computational time. This behavior is expected 
because PCA is a linear transformation, and its time should scale linearly 
with the number of components in the lower dimensional space. UMAP 
and t-SNE were slower than PCA, but it is evident from MNIST and 

Jaccard distanced-based MNIST datasets that UMAP scales better with 
the increase in the number of samples. Note that for Jaccard distanced- 
based MNIST, a higher dimension was not computed because the 
computational time was too long. For Facebook Network, UMAP is 
outperforming t-SNE; however, for higher dimensions, t-SNE computed 
faster. Nonetheless, from our baseline test Table 3, t-SNE does not 
perform well, indicating instability. 

4. SARS-CoV-2 mutation clustering 

4.1. World SARS-CoV-2 mutation clustering 

We gather data submitted to GISAID up to January 20, 2021, and the 
total number of samples is 203,344. We first get the SNP information by 
applying the multiple sequence alignment, which leads to 26,844 unique 
SNPs. Next, we calculate the pairwise Jaccard distance of our dataset in 
order to generate the Jaccard distance-based features. Here, the number 
of rows is the number of samples (203,344), and the number of columns 
is the feature size (203,344). As we mentioned in Section 2.3, the Jac-
card distance-based feature is a square matrix. However, due to the large 
size of samples and features, applying K-means clustering directly on the 
feature of the size of 203,344 × 203,344 is a very time-consuming 
process. Considering that UMAP outperforms the other two dimen-
sional reduction algorithms (PCA and t-SNE) on the Jaccard distance- 
based MNIST dataset, we employ UMAP to reduce our original feature 
with the size of 203,344 × 203,344 to 203,344 × 203. To be noted, 
UMAP is a reliable and stable algorithm, which performs consistently in 
clustering at various reduction ratios. Therefore, there is no need to use 
the same reduction dimension of 203 and one can also choose a different 
reduction dimension value to generate similar results. 

With the reduced dimension feature that has the size of 203,344 ×
203, we split our SARS-CoV-2 dataset into different clusters by applying 
the K-means clustering methods. After comparing the WCSS under a 
different number of clusters, we find that there are 6 clusters forming 
within the SARS-CoV-2 population based on the elbow method (See 
Fig. 6), which can be determined from Fig. S1 in the Supporting 

Table 8 
Accuracy of K-means clustering of the Jaccard distanced-based MNIST dataset 
without applying any reduction algorithms, as well as the accuracy of K-means 
assisted by PCA, UMAP and t-SNE with different dimensional reduction ratio. 
The sample size, feature size, and the number of labels of the Jaccard distanced- 
based MNIST dataset are 70000, 70000, and 10, respectively.  

Dataset K-means 
accuracy 
w/o 
reduction 

Reduced 
dimension 

PCA 
accuracy 

UMAP 
accuracy 

t-SNE 
accuracy 

Jaccard 
distanced- 
based 
MNIST 
(70000, 
70000, 10) 

0.555 7000 (1/ 
10) 

0.436 0.329 0.119 

3500 (1/ 
20) 

0.436 0.693 0.120 

1750 (1/ 
40) 

0.436 0.792 0.112 

875 (1/80) 0.435 0.793 0.112 
437 (1/ 
160) 

0.435 0.793 0.114 

218 (1/ 
320) 

0.435 0.793 0.156 

109 (1/ 
640) 

0.435 0.794 0.114 

70 (1/ 
1000) 

0.436 0.793 0.113 

35 (1/ 
2000) 

0.435 0.794 0.116 

17 (1/ 
5000) 

0.436 0.793 0.113 

7 (1/ 
10000) 

0.431 0.793 0.737 

3 0.364 0.798 0.635 
2 0.261 0.791 0.635  

Fig. 5. Computational time of each reduction ratio. The green, orange and blue lines represent the computational time of t-SNE, UMAP, and PCA, respectively. Not 
surprisingly, PCA performs the best in the majority of cases, except for the Coil 20 dataset. UMAP and t-SNE perform worse than PCA, but UMAP scales better when 
there are more samples, as evident from MNIST and Jaccard distanced-based MNIST datasets. Note that for Jaccard distanced-based MNIST, the higher dimension 
was not computed because the computational time was too long. 
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Information. Table C1 in the Supporting Information shows the top 25 
single mutations of each cluster. In order to understand the relationship, 
we also analyzed the co-mutation occurring in each cluster (Table 9). 
Here, we define a co-mutation as mutations that occur simultaneously in 
one SNP profile. For example, mutations occurring at position 241 and 
3037 in a single SNP sample is a co-mutation [241, 3037]. From 
Table C1 in the Supporting Information and Table 9 we see the 
following: 

Table C2 in the Supporting Information shows the cluster distribu-
tions of samples from 25 countries. Here, we use the ISO 3166–1 alpha-2 
codes as the country code. The listed countries are the United Kingdom 
(UK), the United States (US), Australia (AU), India (IN), Switzerland 
(CH), Netherlands (NL), Canada (CA), France (FR), Belgium (BE), 
Singapore (SG), Spain (ES), Russia (RU), Portugal (PT), Denmark (DK), 
Sweden (SE), Austria (AT), Japan (JP), South Africa (ZA), Iceland (IS), 
Brazil (BR), Saudi Arabia (SA), Norway (NO), China (CN), Italy (IT), and 
Korea (KR). We can visualize the clusters on the world map from Fig. 7, 
which was visualized using Highcharts. The underlying color indicates 
the dominant cluster for each country. Furthermore, from table C2, we 
can see the following:  

• SNP profiles from UK and DK are dominated in Clusters 5.  
• Clusters 3’s SNP profiles are predominantly found in AU. This may 

indicate that SARS-CoV-2 are mutating differently in AU.  
• SNP profiles from the US are found mostly in Clusters 2 and 5.  
• Most country’s SNP profiles are found in Clusters 1,2,4,5 and 6, with 

some having slightly higher numbers. 

Notably, in Table 9, Cluster 4 and 5 have the same co-mutations with 
relatively high frequencies, which indicates the Clusters 4 and 5 share 
the same “root”. Clusters 1, 2, 3, and 6 shares the co-mutation as Clusters 
4 and 5, indicating that Clusters 1, 2,3, and 6 may have branched from 
Cluster 4 and 5 in the 203-dimensional (203D) space. However, we 
cannot visualize the distribution of our reduced dataset in the 203D 
space. Therefore, benefit from the stable and reliable performance of 
UMAP at various reduction ratios, we reduce the dimension of our 
original dataset to 2, which enables us to observe the distribution of the 
dataset in the two-dimensional (2D) space. Fig. 7 visualizes the distri-
bution of our dataset with 6 distinct clusters with 2D UMAP. It can be 
seen that Clusters 2, 3 and 4 share a same “root” in the middle. Clusters 3 
and 6 are farther away from the center, indicating that they are a 

descendants of the middle root. In addition, we looked specifically at the 
spike (S) protein because of its significance in viral infectivity. In all the 
clusters, 23403A > G (D614G) is present. Studies have shown that 
D614G increases the infectivity of SARS-CoV-2 [13], hence the high 
frequency in our data reflect such infectivity. In Clusters 1, 2 and 4, there 
are no significant co-mutations in the S protein. In Cluster 3, 100% of the 
variants contain the co-mutation [22992, 23401, 23403], which further 
supports its geographical isolation, where it is predominantly found in 
AU. Cluster 5 does not have a significant co-mutation, but the 
co-mutations [21614, 22227, 23403, 24334] occurred in 11290 SNP 

Fig. 6. Cluster distribution of the global SARS-CoV-2 mutation dataset. Using Highchart, the world map was colored, according to the dominant cluster. For example, 
United States have SNP profiles from all clusters, but Cluster 5 (purple) is the dominant type in the US. Only countries with more than 25 sequenced data available on 
GISAID were considered. Countries with fewer than 25 samples are labeled grayed. 

Table 9 
The frequency and occurrence percentage of SARS-CoV-2 co-mutations from 
each clusters in the world.  
• Though Clusters 1 and 6 seem similar from the top 25 single mutations, the 

co-mutations tells a different story. 
• Clusters 2 and 5 have high frequency of [241, 3037, 14408, 23403] muta-

tions, but Cluster 5 has a clear co-mutation descendant with high frequency.  
• Cluster 3 has a unique combination of mutation that is only popular in 

Cluster 3.  
• Cluster 6 have high frequency of multiple co-mutations. Since it shares 

similarity with Clusters 4 and 5, it may be that Cluster 6 branched from 
Clusters 4 and 5.  

• Cluster 6 has many co-mutations when compared to other clusters. As seen in 
table C2, the majority of the cases is found in Europe, including the United 
Kingdom (UK), Denmark (DK), Netherlands (NL), Switzerland (CH) and 
Luxemberg (LU).  

Cluster Co-mutations Frequency Occurrence 
percentage 

Cluster 
1 

[241, 3037, 14408, 23403, 28881, 
28882, 28883] 

21802 0.926 

Cluster 
2 

[241, 1059, 3037, 14408, 23403, 
25563] 

15008 0.660 

Cluster 
3 

[241, 1163, 3037, 7540, 14408, 
16647, 18555, 22992, 23401, 23403, 
28881, 28882, 28883] 

2089 0.606 

Cluster 
4 

[241, 3037, 14408, 23403] 13387 0.936 

Cluster 
5 

[241, 3037, 14408, 23403] 124290 0.915 

Cluster 
6 

[241, 3037, 4543, 5629, 9526, 11497, 
13993, 14408, 15766, 16889, 17019, 
18877, 22992, 23403, 25563, 25710, 
26735, 26876, 28975, 29399] 

3279 0.940  
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profiles (0.083). Cluster 6 has a pair of co-mutations [22992, 23403], 
which occurs in 99.7% of samples. 

4.2. United States SARS-CoV-2 mutation clustering 

In addition to analyzing the clustering in the world, SNP profiles of 
SARS-CoV-2 from the US were considered. In this section, the US dataset 
has 17164 unique single mutations and 43395 samples. Therefore, the 
dimension of the Jaccard distance-based dataset is 43395 × 43395. After 
applying the UMAP, we reduce the dimension of the original dataset to 
be 43395 × 216. Following the similar K-means clustering processes as 
we did for the world dataset, we find that using the elbow method, we 
can see from Fig. S2 in the Supporting Information that there are 6 

predominant clusters forming in the United States. Fig. 8 show the US 
map with the cluster statistic. Here, Highchart was used to generate the 
plot with the pie chart. Each states were colored based on the dominant 
cluster. 

Table C3 in the Supporting Information shows the top 25 mutations 
from each clusters in the United States. The cluster distribution of each 
states is listed in table C4. Table 10 shows the common occurring co- 
mutations, and we can observe the following:  

• Cluster A has a high frequency of co-mutations [241, 1059, 3037, 
14408, 23403, 25563], which is a descendant of common co- 
mutations of Cluster 2 [241, 1059, 3037, 14408, 23403, 25563] 
from table C3. 

Fig. 7. 2D UMAP visualization of the world SARS-CoV-2 mutation dataset with 6 distinct clusters.  

Fig. 8. Cluster distribution of United States SARS-CoV-2 mutation dataset. Using Highchart, the US map was colored, according to the dominant cluster. For example, 
United States have SNP profiles from all clusters, but Cluster E (purple) is the dominant type in the US. Only those countries that have more than 25 sequenced data 
available on GISAID were considered in the plot. 
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• Cluster B has a high frequency of co-mutations [241, 3037, 14408, 
23403], which is a descendant of common co-mutations of Cluster 4 
and 5 [241, 3037, 14408, 23403].  

• Cluster C have high frequency of co-mutations [241, 3037, 14408, 
23403, 28881, 28882, 28883], which is a descendant of common co- 
mutations of Cluster 1 [241, 3037, 14408, 23403, 28881, 28882, 
28883] from Table 10.  

• Clusters D has high frequency of co-mutations [241, 3037, 14408, 
20268, 23403, 28854], which is descendant of Clusters 4 and 5 [241, 
3037, 14408, 23403]. US accounts for more than one third of mu-
tations at site 23403 and half of mutations at site 28854  

• Cluster E and F have a high frequency of co-mutations [8782, 17747, 
17858, 18060, 28144] and [241, 1059, 3037, 11916, 14408, 18998, 
23403, 25563, 29540], respectively, which are descendants of 
Cluster 4 and 5 [241, 3037, 14408, 23403].  

• Cluster F has a high frequency of co-mutations [241, 1059, 3037, 
11916, 14408, 18998, 23403, 25563, 29540], which is a descendant 
of Cluster 2’s co-mutation [241,1059,3037,14408,23403,25563] 

Notably, in Table 10, Cluster B has a co-mutation that is present in 
Clusters A, C, D and F, indicating that Clusters A, C, D, and E are de-
scendants of Cluster B. Interestingly, Cluster E has a completely different 
set of co-mutations as the other clusters, indicating that they are a 
different strands of mutation. Considering the stability and reliability of 
UMAP at various reduction ratios, we employ UMAP to the original US 
dataset with reduced dimension 2, aiming to observe the distribution of 
the dataset in the 2D space. Fig. 9 illustrates the 2D visualization of the 
US dataset with 6 distinct clusters. We can see that there are 3 clusters 
(Clusters A′, B′, and C′) share the same “root” located in the middle of the 

figure, while the other 3 clusters (Clusters D′, E′, and F′) are not. Cluster 
E′ is quite distinct from other clusters. This confirms our deduction about 
why Clusters E′ has a high frequency of different co-mutations in 
Table 10. In addition Cluster D′ is located close to Cluster A’, which may 
indicate that they have similar root that diverted. 

In addition, we looked at co-mutations on the S protein. Every 
cluster, except for Cluster E, contains mutation 23403, which is expected 
due to its ability to increase the infectivity of SARS-CoV-2. Clusters A, C, 
and F does not have any significant co-mutation occurring in the S 
protein, aside from 23403. Cluster E does not have a significant co- 
mutation nor a significant mutation in the S protein. Cluster B has co- 
mutations [22255, 23403], which occur in 780 samples. Cluster D has 
co-mutations [23403, 23604, 24076] that occur in 892 samples. 

5. Discussion 

In this section, we compared our past results [32] with our new 
method to gain a different perspective in clustering with the SNP profiles 
of COVID-19. In our previous work, a total of 8309 unique single mu-
tations are detected in 15,140 SARS-CoV-2 isolates. Here, we also 
calculate the pairwise distance among 15140 SNP profiles and set the 
number of clusters to be six. Table C5 shows the cluster distribution of 
samples from the 15 countries [32]. The listed countries are the United 
States (US), Canada (CA), Australia (AU), United Kingdom (UK), Ger-
many (DE), France (FR), Italy (IT), Russia (RU), China (CN), Japan (JP), 
Korean (KR), India (IN), Spain (ES), Saudi Arabia (SA), and Turkey (TR), 
and we use Cluster I, II, III, IV, V, and VI to represent six clusters without 
applying any dimensional reduction algorithm. Table C6 lists the cluster 
distribution of samples from the same 15 countries, where we use Ip, IIp, 
IIIp, IVp, Vp, and VIp to represent six clusters performed by PCA with the 
reduction ratio to be 1/160. Table C7 lists the cluster distribution of 
samples from the same 15 countries, where we use Iu, IIu, IIIu, IVu, Vu, 
and VIu to represent six clusters performed by UMAP with the reduction 
ratio setting to be 1/160. Noticeably, the SNP profile is focused in 
Cluster Iu, whereas in the non-reduced version, the samples are more 
spread out. This may be caused by the large number of features, making 
computed distance between the centroid and each data too similar, and 
leading to samples being placed in incorrect clusters. 

Not surprisingly, PCA and the original method for [32] has nearly 
identical result. It has been shown in Ref. [32] that PCA is the contin-
uous solution of the cluster indicators in the K-means clustering method. 
On the other hand, UMAP shows a slightly different result. In the PCA 
method, the distribution is more spread out. In addition, the top 
occurrence for each country is higher for UMAP. On the other hand, we 
see that there are more samples in Cluster Iu for UMAP, which may 

Table 10 
The frequency and occurrence percentage of SARS-CoV-2 co-mutations from 
each clusters in US clusters.  

Cluster Co-mutations Frequency Occurrence 
percentage 

Cluster 
A 

[241, 1059, 3037, 14408, 23403, 
25563] 

6646 0.702 

Cluster 
B 

[241, 3037, 14408, 23403] 20442 0.932 

Cluster 
C 

[241, 3037, 14408, 23403, 28881, 
28882, 28883] 

4429 0.945 

Cluster 
D 

[241, 3037, 14408, 20268, 23403, 
28854] 

3276 0.643 

Cluster 
E 

[8782, 17747, 17858, 18060, 
28144] 

1183 0.744 

Cluster 
F 

[241, 1059, 3037, 11916, 14408, 
18998, 23403, 25563, 29540] 

501 0.789  

Fig. 9. The 2D UMAP visualization of the US SARS-CoV-2 mutation dataset with 6 distinct clusters.  
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indicate that mutations in Cluster Iu are the main strand. 
Moreover, Fig. 10 illustrates the 2D visualizations of the US dataset 

up to June 01, 2020, with 6 distinct clusters by applying two different 
dimensional reduction algorithms. We can see that the data distribute 
disorderly under both PCA- and UMAP-assisted K-means clustering al-
gorithms. Specifically, the PCA-assisted algorithm has a really poor 
clustering performance, while the UMAP-assisted algorithm forms more 
clear and better clusters than the PCA-assisted algorithm, which is 
consistent with our previous analysis in Section 3.1. 

Table 11 shows co-mutations occurred in each cluster from the 
UMAP-assisted K-means from data collected up to June 01, 2020. 
Cluster IIIu has 2 dominant co-mutations. Note that the dataset had 
15,140 SARS-CoV-2 isolates, whereas our current dataset has over 
200,000 isolates. Nonetheless, we can compare the clusters to see which 
clusters persists. Cluster 1’s co-mutations are the same as those of 
Cluster Vu, indicating that Cluster 1 may have been derived from Cluster 
Vu. Cluster 2 shares the same co-mutations as those of Cluster IIu. Cluster 
3’s co-mutations are the descendants of Cluster Vu. Clusters 4 and 5 have 
the same co-mutations as those of Clusters IIIu and VIu, indicating 
Clusters 4 and 5 are derived from Cluster IIIu and VIu. Cluster 6’s co- 
mutations are descendants of Clusters IIIu and VIu. Note that co- 
mutations of Cluster Iu and the second set of co-mutations of Cluster 
IIu ([8782, 28144]) are not predominant co-mutations in our dataset, 
which may indicate a weaker infectivity. For example, every co- 
mutation in Table 9 has mutation 23403A > G (D614G) in the spike 
protein, which has been shown to increase infectivity of COVID-19 [13]. 
It is not surprising to see a co-mutation group not being dominant in our 
current dataset. By comparing these co-mutations, we can see that 
co-mutations that are dominant in both datasets (up to June 01, 2020 
and January 20, 2021) will most likely persist in the future. 

6. Conclusion 

The rapid global spread of coronavirus disease 2019 (COVID-19) 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2) has led to genetic mutation stimulated by genetic evolution and 
adaptation. Up to January 20, 2021, 203,344 complete SARS-CoV-2 
sequences, and a total of 26,844 unique SNPs have been detected. Our 
previous work traced the COVID-19 transmission pathways and 
analyzed the distribution of the subtypes of SARS-CoV-2 across the 
world based on 15,140 complete SARS-CoV-2 sequences. The K-means 
clustering separated the sequences into six distinguished clusters. 
However, considering the tremendous increase in the number of avail-
able SARS-CoV-2 sequences, an efficient and reliable dimensional 
reduction method is urgently required. Therefore, the objective of the 
present work is to explore the best suited dimension reduction algorithm 
based on their performance and effectiveness. Here, a linear algorithm 
PCA and two non-linear algorithms, t-distributed stochastic neighbor 

embedding (t-SNE) and uniform manifold approximation and projection 
(UMAP), have been discussed. To evaluate the performance of dimen-
sion reduction techniques in clustering, which is an unsupervised 
problem, we first cast classification problems into clustering problems 
with labels. Next, by setting different reduction ratios, we test the 
effectiveness and accuracy of PCA, t-SNE, and UMAP for k-NN and K- 
means using four benchmark datasets. The results show that overall, 
UMAP outperforms other two algorithms. The major strengths of UMAP 
is that UMAP-assisted k-NN classification and UMAP-assisted K-means 
clustering at various dimension reduction ratios have a consistent per-
formance in terms of accuracy, which proves that UMAP is a stable and 
reliable dimension reduction algorithm. Moreover, compared to the K- 
means clustering accuracy that does not involve any dimensional 
reduction, UMAP-assisted K-means clustering can improve the accuracy 
for most cases. Furthermore, when the dimension is reduced to two, the 
UMAP clustering visualization is clear and elegant. Additionally, UMAP 
is a relatively efficient algorithm compared to t-SNE. Although PCA is a 
faster algorithm, its major limitation is its poor performance in accuracy. 
To be noted, UMAP performs better than PCA and t-SNE for the dataset 
with a large number of samples, indicating it is the best suited dimen-
sional reduction algorithm for our SARS-CoV-2 mutation dataset. 
Moreover, we apply the UMAP-assisted K-means clustering to the world 
SARS-CoV-2 mutation dataset (up to January 20, 2021), which displays 
six distinct clusters. Correspondingly, the same approaches are also 
applied to the United States SARS-CoV-2 mutation dataset (up to 
January 20, 2021), resulting in six different clusters as well. Further-
more, we provide a new perspective by utilizing UMAP-assisted K-means 
clustering to analyze our previous SARS-CoV-2 mutation datasets, and 
the 2D visualization of UMAP-assisted K-means clustering of our pre-
vious world SARS-CoV-2 mutation dataset (up to June 01, 2020) forms 
more clear clusters than the PCA-assisted K-means clustering. Finally, 

Fig. 10. 2D visualizations of the US SARS-CoV-2 mutation dataset up to June 01, 2020 with 6 distinct clusters by applying two different dimensional reduction 
algorithms. (a) 2D PCA visualization. (b) 2D UMAP visualization. 

Table 11 
The frequency and occurrence percentage of SARS-CoV-2 co-mutations from 
each clusters collected from June 01, 2020.  

Cluster Co-mutations Frequency Occurrence 
percentage 

Cluster Iu [11083, 14805, 26144] 948 0.730 
Cluster 

IIu 
[241, 3037, 14408, 23403, 
25563] 

2800 0.893 

Cluster 
IIIu 

[241, 3037, 14408, 23403] 1468 0.412  

[8782, 28144] 1475 0.414 
Cluster 

IVu 
[241, 1059, 3037, 14408, 23403, 
25563] 

1318 0.621 

Cluster 
Vu 

[241, 3037, 14408, 23403, 28881, 
28882, 28883] 

1872 0.817 

Cluster 
VIu 

[241, 3037, 14408, 23403] 2222 0.969  
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one of our four datasets was generated by the Jaccard distance repre-
sentation, which improves both k-NN classification and k-means clus-
tering accuracies on the original dataset. 
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