GENERALIZED SAV-EXPONENTIAL INTEGRATOR SCHEMES
FOR ALLEN-CAHN TYPE GRADIENT FLOWS

LILI JUT, XIAO LI¥, AND ZHONGHUA QIAOS

Abstract. The energy dissipation law and the maximum bound principle (MBP) are two
important physical features of the well-known Allen—-Cahn equation. While some commonly-used
first-order time stepping schemes have turned out to preserve unconditionally both energy dissipation
law and MBP for the equation, restrictions on the time step size are still needed for existing second-
order or even higher-order schemes in order to have such simultaneous preservation. In this paper,
we develop and analyze novel first- and second-order linear numerical schemes for a class of Allen—
Cahn type gradient flows. Our schemes combine the generalized scalar auxiliary variable (SAV)
approach and the exponential time integrator with a stabilization term, while the standard central
difference stencil is used for discretization of the spatial differential operator. We not only prove their
unconditional preservation of the energy dissipation law and the MBP in the discrete setting, but
also derive their optimal temporal error estimates under fixed spatial mesh. Numerical experiments
are also carried out to demonstrate the properties and performance of the proposed schemes.
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1. Introduction. The classic Allen—Cahn equation, originally introduced in [1]
to model the motion of the anti-phase boundaries in crystalline solids, takes the
following form:

(1.1) up = 2Au+ f(u), t>0, x €,

where the spatial domain Q C R%, u(t,z) : [0,00) x Q@ — R is the unknown func-
tion, € > 0 is an interfacial parameter, and f(u) = u — u® is the nonlinear reaction.
Equipped with the periodic or homogeneous Neumann boundary condition, the equa-
tion (1.1) can be viewed as the L? gradient flow with respect to the energy functional

(1.2) E(u) = /Q (§|Vu(m)|2+F(u<x))) de,

where F(u) = 1(u® — 1)? (i.e., —=F" = f) is the double-well potential function, and
thus satisfies the so-called energy dissipation law in the sense that the solution to (1.1)

decreases the energy (1.2) along with the time, ie., £ E(u(t)) < 0. The solution u

usually represents the difference between the concentrations of two components of the
alloy, and thus should be evaluated between —1 and 1 naturally, which corresponds
to another important feature, the mazimum bound principle (MBP), i.e., if the initial
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value falls pointwise between —1 and 1, then so is the solution for all time. Recently,
some variants of the Allen-Cahn equation (1.1) have been developed to model various
processes of phase transition, such as the nonlocal Allen—Cahn equation for phase
separations within long-range interactions [3] and the fractional Allen-Cahn equation
for anomalous diffusion processes [23], and they also satisfy the energy dissipation
law with respect to their respective energy and the MBP. Since the analytic solutions
to these models are usually not available, numerical solutions play a key role in their
study and applications. In order to obtain efficient and stable numerical simulations
and avoid nonphysical results, it is highly desirable to design accurate numerical
methods in space and time which also preserve important physical features of the
models, such as the energy dissipation law and the MBP.

In recent years, numerical schemes preserving the energy dissipation law have
attracted a lot of attention for time integration of the Allen—Cahn type equations
and other gradient flows, including convex splitting schemes [22, 42, 50], stabilized
implicit-explicit (IMEX) schemes [18, 46, 51|, discrete gradient schemes [15, 19, 38],
exponential time differencing (ETD) schemes [14, 32, 56], invariant energy quadrati-
zation (IEQ) schemes [52, 54], scalar auxiliary variable (SAV) schemes [9, 43, 44, 45],
and some variants of the SAV method [7, 8, 26, 28, 37]. By combining the SAV
approach with the Runge-Kutta (RK) method, arbitrarily high-order linear schemes
preserving energy dissipation law were developed in [2, 20]. In addition, there are
also a large amount of literature denoted to MBP-preserving numerical schemes for
the Allen—-Cahn type gradient flow problems, such as the stabilized IMEX schemes
[41, 48] and the exponential integrator methods [14, 34]. Borrowing the idea of strong
stability-preserving methods [21], MBP-preserving RK-type schemes with high-order
accuracy were studied theoretically and up to fourth-order schemes were provided
for practical computations in [31, 35, 55]. However, among all schemes we have just
mentioned, only a few first-order schemes can preserve simultaneously the energy dis-
sipation law and the MBP unconditionally [14, 16, 41] (i.e., without any restriction on
the time step size), while the second-order schemes always require certain restrictions
on the time step size [27, 36]. It is an interesting and important question whether
there exist second-order or even higher-order time stepping schemes preserving both
the energy dissipation law and the MBP unconditionally. An initial improvement was
made in [53] by considering the high-order SAV-RK method [2] to guarantee the en-
ergy dissipation, and the maximum bound is enforced by the cut-off post-processing
but not by the scheme itself.

The H~! gradient flow with respect to the energy (1.2) gives the classic Cahn—
Hilliard equation u; = —A(e?Au + f(u)), which fails to satisfy the MBP due to the
existence of the fourth-order dissipation term. It is also worth noting that, if the
nonlinear reaction function f is changed to the logarithmic one defined by (4.2) (i.e.,
corresponding to the Flory—Huggins potential) tested in our numerical experiments,
the solution of the Cahn—Hilliard equation still remains in the open interval (—1,1)
for all the time under some appropriate boundary conditions [10, 17], where +1 are
the points near which the singularities occur. Implicit or implicit-explicit numerical
schemes preserving such uniform boundedness have also been developed, where the
singularity of the nonlinear term plays a crucial role [5, 13] in their construction.

In this paper, our main purpose is to systematically develop first- and second-order
(in time) linear numerical schemes preserving both the energy dissipation law and the
MBP unconditionally for a family of Allen—Cahn type gradient flows. More precisely,
we will consider the equation (1.1) with a more general reaction term f : R — R given
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by a continuously differentiable function satisfying
(1.3) there exists a constant § > 0 such that f(8) <0 < f(—5).

The periodic or homogeneous Neumann boundary condition is equipped and the initial
condition is given as u(0, ) = uinj; on Q. Then, the MBP holds [14] in the sense that
if the absolute value of the initial value is bounded pointwise by 3, then the absolute
value of the solution is also bounded pointwise by § for all time, i.e.,

(1.4) max |uinit ()| < B = max |u(t,z)| < B, Vt>D0.
TEQ €

Furthermore, the energy dissipation law is also satisfied with respect to the energy
(1.2) with F now being a smooth potential function satisfying F' = —f. The key
ingredient is the appropriate combination of the SAV approach and the exponential
integrator method [11, 25]. Note that similar ideas have been applied to some non-
linear hyperbolic-type equations [12, 29]. We first reformulate the model equation
(1.1) in an equivalent form by defining an auxiliary variable, similar to the idea of the
generalized SAV approach [8]. Then, we introduce a stabilization term to the system
and apply exponential integrators to develop first- and second-order linear schemes in
time. We show that both schemes simultaneously preserve the energy dissipation law
and the MBP unconditionally under appropriate stabilizing constant. In the error
analysis, one of the major difficulties is caused by the variable coefficients from the
nonlinear reaction and the stabilization terms. By using the energy dissipation law
and the MBP, these variable coefficients are shown to be bounded from above and
below by certain generic positive constants, which helps us to successfully prove the
optimal temporal convergence under fixed spatial mesh. To the best of our knowl-
edge, this is the first work providing a second-order linear numerical scheme for time
integration of the model Allen—Cahn type gradient flows, with provable unconditional
preservation of both the energy dissipation law and the MBP.

The rest of this paper is organized as follows. In Section 2, we present the spa-
tial discretization with the central finite difference and some useful lemmas. In Sec-
tion 3, we propose the first- and second-order generalized SAV-exponential integrator
(GSAV-EI) schemes, and then prove their unconditional preservation of both the en-
ergy dissipation law and the MBP, followed by their temporal convergence analysis.
Numerical experiments are carried out to validate the theoretical results and demon-
strate the performance of the proposed schemes in Section 4. Finally, some concluding
remarks are given in Section 5.

2. Spatial discretization and some preliminaries. Throughout this paper,
we consider the two-dimensional square domain Q = (0, L) x (0,L) for the model
equation (1.1) with f satisfying the assumption (1.3). Without loss of generality, we
impose the periodic boundary condition. Extensions to the three-dimensional case
and homogeneous Neumann boundary condition do not have any difficulties. In this
section, we will present some notations related to the spatial discretization and a few
preliminary lemmas for the analysis of the time integration schemes proposed later.

Given a positive integer M, let h = L/M be the size of the uniform mesh par-
titioning 2, and denote by ), = {(z;,y;) = (ih,jh) |1 < i,5 < M} the set of mesh
points. For a grid function v defined on 2y, we denote v;; = v(z;,y;). Let My, be the
set of all M-periodic grid functions on Qp, i.e., My = {v: Qp = Rl vigrm jriv =
vij, k,l € Z, 1 <i,j7 < M}. Let us apply the central finite difference method to
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approximate the spatial differential operators. For any v € My, the discrete Laplace

operator Ay is defined by
1 ..
Apvi; = ﬁ(viﬂg +vim1,; Vi1 F v —4dug), 154,75 <M,

and the discrete gradient operator Vy, is defined by

Vig1j — Vij Vi1 — i\ T o
thij:(l Jh LU . ”), 1<4,5 <M.

The eigenvalues of A, are given by [33]

(2.1) )\kl:—%(sinQ%—i—sinQ%)gO, 0<ki<M—1.
As usual, the discrete inner product (-, -), the discrete L? norm || - ||, and the discrete
L* norm || - || can be defined respectively by
M
) =02 3 vy ol =V ol = g, o
for any v, w € Mj,, and
(v,w) = (vl,w1> + <1)27w2>7 o]l = V/{v,v)

for any v = (v',v?)T, w = (w!,w?)T € My, x Mjy,. By the periodicity, the summation-
by-parts formula obviously holds:

(v, Apw) = —(Vpv, Vyw) = (Apv,w), Vov,w e My,

The space-discrete problem corresponding to (1.1) is then to find a function wuy, :
[0,00) — M}, satisfies
duh

(2.2) g = 52Ahuh + f(uh)7 t>0

with up (0) = Ginig, where @y is the pointwise projection of uii; onto My,. Through-
out the paper, we do not differ ;¢ and win;r anymore since there is no ambiguity. It
is easy to verify the energy dissipation law for the space-discrete problem (2.2), i.e.,
4 By (up(t)) <0, where Ej, is the spatially-discretized energy functional defined as

2
€
(2.3) Ep(v) := §||th||2 + (F(v),1), Yvée My
As shown in [14], the MBP is also valid for the space-discrete problem (2.2), i.e.,
(2.4) [winitlloo <8 = [lun(@)]lc < B, VE>0.

We have assumed that f is continuously differentiable, so || f'[|c[—g,5 is finite.
Then the following result is valid [14].

LEMMA 2.1.  Under the assumption (1.3), if & > [|f'llcj—p,5 holds for some
positive constant k, then we have |f(§) + k€| < kB for any & € -8, B].

Since My, is a finite-dimensional linear space, any grid function in M}, and any
linear operator from M; to M; can be treated as a vector in RM* and a matrix
in RMZXMz, respectively. For functions of matrix/operator, we have the following
lemma (see [24]).

LEMMA 2.2. Let ¢ be defined on the spectrum of a diagonalizable matriz A €

R™>*™ e, the values {p(N;) 1™ exist, where {\;}1", are the eigenvalues of A. Then
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(i) #(A) commutes with A and ¢(AT) = ¢p(A)T;

(ii) the eigenvalues of ¢(A) are {dp(N;) |1 <1i < m};

(iii) ¢(P~TAP) = P~1¢(A)P for any nonsingular matriz P € R™*™.

We still use the notations || || and || - ||« to denote the matrix induced-norms con-
sistent with ||-|] and |- ||cc defined before, respectively. By viewing A}, as a matrix, we
know that Ap is symmetric, negative semi-definite, and weakly diagonally dominant
with all diagonal entries negative. Moreover, we have the following useful estimate,
which comes from the fact that Ay is the generator of a contraction semigroup [14],
and the proof can be found in [14, 31].

LEMMA 2.3. For any real numbers a > 0 and b > 0, we have ||e?*»~b1|| < e,
where T € RM*XM? g the identity matriz.

REMARK 2.1. Apart from the central difference discretization discussed above,
the lumped mass finite element method with piecewise linear basis functions can also
be adopted and Lemma 2.3 still holds correspondingly [14]. In addition, there have
been some initial explorations on the MBP-preserving methods using the fourth-order
accurate spatial discretization, such as the compact difference approzimation [49] and
the finite difference formulation of the Q* spectral element method [47], combined with
the Euler-type time-stepping approaches. Howewver, it is not obvious that whether these
fourth-order discrete Laplace operators satisfy Lemma 2.3, and thus it is worthy of
further investigations on the combination of higher-order spatial discretizations with
the exponential integrator methods studied in this paper.

3. Generalized SAV-exponential integrator schemes. From now on, we
always assume the initial value wui,;; has the enough regularity as needed. Let us
define the bulk energy term E1j(v) := (F(v),1) for any v € My,. The continuity of F'
implies that F' is bounded from below on [/, 8]. Therefore, according to the MBP
(2.4), there exist two constants C,, > 0 and C* > 0 such that

(31) —C* S Elh(uh) S C*

Motivated by the idea of the generalized SAV approach [8], we define the auxiliary
variable s (t) = E1p(up(t)), and rewrite the space-discrete equation (2.2) in an alter-
nate but equivalent form as below:

(3.2a) dd% = 2Apup + U(gl(;&zm (up),
dsp a(sp) duy,
(3.2b) e —m<f(uh)v W>7

where o : R — R is a one-variable function satisfying the following two conditions:
(X1) o0 >0o0nR;
(22) o is continuously differentiable and o’ > 0 on R.
These conditions are crucial to the MBP preservation and error analysis of the pro-
posed time integration schemes in this paper. For any v € M), and r € R, define

__ o)
(3.3) glu,r) = (B @)

(clearly g(v,r) > 0 due to the condition (X)) and the modified energy

2
(3.4) En(v,7) = %HVm)HQ +r.
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Obviously, g(up, sp) =1 and &, (up, sn) = Ep(up,) without time discretization.

REMARK 3.1. The form (3.2) and the conditions (£1) and (X2) differs from those
given in [8], where o may not be defined on the whole real line R and the constructed
schemes may be nonlinear, while our schemes developed later are all linear. A trivial
choice for the function o satisfying (31) and (X2) is the positive constant mapping,
e.g., o = 1. This gives a degenerate case since we still have exactly g(up,sp) = 1
with whatever time discretization and consequently sy does not provide any feedback
to the update of up, at each time step, which is similar to the idea adopted in [39)].
Some nontrivial choices [8] include elementary functions such as o(x) = e*, o(x) =
% +arctan(z), o(x) = 14 tanh(z), or even special functions constructed by the
integration such as o(x) = ffoo n(y)dy for some continuous function n > 0 on R.

Next we develop exponential integrators for the space-discrete system (3.2), in-
stead of the original one (2.2). Let us partition the time interval using the nodes
{tn = nT},>0 with a uniform time step size 7 > 0, and set u™ and s™ as the approxi-
mations of up ¢(t,) and spe(tn) = E1p(un,e(tn)) respectively, where up . denotes the
exact solution to the problem (2.2) (equivalently (3.2)).

3.1. First-order GSAV-EI scheme. Set u’ = uj,;; and s° = Ey,(u?). Sup-
pose the numerical solution (u", s™) is known for some n > 0. Introducing a positive
stabilizing constant k > 0, the equation (3.2a) is equivalent to

S A+ glaun, ) (un) + rg 5" — )
= —Ljup + N[ (un, sn),
where the linear operator L7 = kg(u™, s")I — 2/}, and the nonlinear operator
NZ(v,r) = glv,r)f(v) + kg(u™, s")v, Vve My, YreR.
We know that L7 is self-adjoint and positive definite since g(u™,s™) > 0 and x > 0.
Using the variation-of-constants formula on [t,,t,+1], we have

wn(bnst) = e~ Eun(tn) + / ==L N (4 (1 + 0), s (1 + 0)) d.
0

By approximating the term N by its value at 0 = 0, i.e., NI (up(tn + 6),sp(tn +
0)) ~ NI (un(tn), sn(tsn)), we obtain the first-order exponential integrator scheme for
computing u"*! as

(3.5a) utl = el 4 </ e~ (T=OLL d9> N (u™, s™)
0
— oy (<P LN 5",

where ¢1(a) = a=t(e® — 1) for a # 0. Integrating (3.2b) from ¢, to t,4+1 and using

the approximation g(up(t, +t), sp(tn + 1)) f(up(tn +1)) = glup(tn), sn(tn)) f(un(tn)),
we obtain the first-order formula for computing s"*' as

(3.5b) s = 5" — g(u™, s™)(f(u"), u" Tt —u™).

The combination of (3.5a) and (3.5b) defines the first-order generalized SAV-exponential
integrator (GSAV-EI1) scheme, which is unique solvable for any 7 > 0 due to its ex-
plicit formulation.
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3.1.1. Energy dissipation and MBP. We first show the unconditional preser-
vation of the energy dissipation law with respect to the modified energy &, defined by
(3.4) and the MBP of the GSAV-EI1 scheme (3.5). As a consequence, we then prove
the uniform boundedness of g(u™, s™), which is crucial to the convergence analysis.

THEOREM 3.1 (Energy dissipation of GSAV-EI1). The GSAV-EIl scheme (3.5)
is unconditionally energy dissipative in the time-discrete sense that &, (u™t!, s"t) <
En(u™, s™) holds for any 7 >0 and n > 0.

Proof. Using (3.5b), some simple calculations yield

(3.6)  Ep(u™t s"M) — & (u, ™) = §||th"+1||2 — §||th"||2 + s 5
= (V" Vipu" = V) — ?Hth”'H — Vyu"||?
—g(”, ") (f(u"), " —u)
= (A gl ) ) — ) = S -
= (L™ — N™(u™, s™),u" T — u™)
— rg(u, ) - T
It can also be derived from (3.5a) that
untt — oy = (e_TLZ —Du™ + 71 (—TLL)ND (u™, s™).
Multiplying [7¢1(—7L?)]~" = (I — e "%<)~'L" on both sides of the above equation
leads to
[ror(=7L)] ™ (™™ —u") = —Lju"™ + N (u", s")
= L™ (u"" — ™) — L™+ N (u”, s™),
and thus,
(3.7) LMy™ ™ — N™(u™, s™)

L — Iief‘rLZ “1rn) (L — ™).
(L% = ( .

Note that L7 is positive definite and a — (1 —e~%)"1a < 0 for any a > 0, which means,
by Lemma 2.2, that L — (I —e~"L%)~1L" is negative definite. Combining (3.6) and
(3.7), we obtain the energy dissipation &, (u"T!, s"*1) < &, (u",s") . O

REMARK 3.2. Theorem 3.1 states that the GSAV-EI1 scheme (3.5) is energy
dissipative with respect to the modified energy Ep(u™, s™) rather than the original en-
ergy En(u™). Note that Ep(u™,s™) is only an approzimation of Ep(u™) after time
discretization since usually s™ # Eqyp(u™) forn > 0.

COROLLARY 3.2. For any 7 > 0 and n > 0, it holds that s™ < Ep(uinit)-

Proof. Since s° = Eyp,(uinit), we have by Theorem 3.1 that

2
%thUHHQ + 8" =Ep(u™, ™) < Ep(un T s < < E (U0, 8°) = By (i)

Dropping off the nonnegative term %thunﬂz leads to the expected result. O

THEOREM 3.3 (MBP of GSAV-EIl). If & > ||f'|lc(-p,8, then the GSAV-EII
scheme (3.5) preserves the MBP unconditionally, i.e., for any 7 > 0, the time-discrete
version of (2.4) is valid as follows:
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Proof. Suppose (u",s") is given and |[u" || < S for some n > 0. By Lemma 2.3,
we get [le" 7% || < e7 ) Since k> || /|| c-p,5 and g(u™, s™) > 0, by Lemma
2.1, we have

INZ (", s")loo = g(u”, s") 1 f (u") + Ku"[| oo < KBg(u",s™).

Therefore, we obtain from (3.5a) that

”unJrl”oO < ef'rng(u”,s")ﬁ + (/ 67(779)ﬁg(un,sn) d9> .Hﬁg(un7sn)
0

_ ey g Lo e

kg(um, s™) g, 5 =6
By induction, we have ||u" |l < 8 for any n > 0. O

REMARK 3.3. By applying e 5= ~ (I +7L")~" to (3.5a), we can obtain

un+1 —un

(3.9 — = E2Apu" T+ g(u™, s™) f(u™) 4+ rg(u™, s™) (U —u™).
The scheme formed by (3.9) and (3.5b) can be regarded as the stabilizing version of the
generalized-SAV scheme [8], which also satisfies the energy dissipation law (Theorem
3.1) and the MBP (Theorem 3.3). In particular, by setting o(x) = e*, it recovers
exactly the first-order stabilized exponential-SAV scheme [30].

Unlike the time-continuous case in which g(up, sp) = 1, the coefficient g(u™, s™)
may vary at each time step unless o is chosen as a constant function, which lead to
some difficulties for the error analysis. Fortunately, by the energy dissipation law and
the MBP, we can show that g(u™, s™) is bounded uniformly in n. The following lemma
(without proof) is useful to estimate some exponential-related functions of matrices.

LEMMA 3.4. For any a > 0, the following inequalities hold:

0<l—e"<a, 0 < ¢1(—a) <1, 1< (1+a)pi(—a) <2

COROLLARY 3.5. Given any fived h > 0 and T > 0. If & > | f'llc[-p,5 and
[|tinit|loo < B, then there are two constants G, > 0 and G* > 0 such that

G, <gu",s")<G", 0<n<|T/7],

where G, and G* depend on C., C*, |Q|, T, Ui, k, €, and || f|lc[—p,5, but are
independent of T.

Proof. Since ||[u™|loco < B (by Theorem 3.3), according to (3.1) and the conditions
(31) and (23), it holds 0 < o(—C) < o(E1p(u™)) < (C*). According to Corollary
3.2, we have

g(un78n) _ U(sn) < J(Eh(uinit)) .

= B = o0y

Using (2.1), we then obtain the uniform bound of the spectral radius of L?, p(L?), as

(3.10) p(L?) < kg(u™, s™) +2p(Ap) < G*k + 7= My,.
Next we show the existence of the lower bound of {s"}. By making use of the MBP
and the first inequality in Lemma 3.4, we derive from (3.5a) that

lu™* —w | < 7= e E [l + Tl da (~T L) N (u”, s™) |
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< 7p(L2) - Bl + 7 kBg(u”,sM)[QIF < TBIQIE (M) + G*r).
Since || f(u™)]| < Fp|Q|2 with Fy := |lfllci—p,5, we then obtain from (3.5b) that
(3.11) 8"t > " — g(u™, s f(u™)||[Ju Tt — u™]| > s — G* FoBIQ|(My + G*k)T.
By recursion, noting that s = E1j, (uinit) > —Cl, we obtain
(3.12) §" > 5" — G*FyB|Q|(M), + G*k)nt > —C, — G*Fo Q) (M), + G* k)T := S..

Thus g(u™, s™) > 0(S.)/o(C*) := G, which completes the proof. O

3.1.2. Temporal error analysis. Note that (3.5a) is equivalent to find u"*! =
w(7) with w(#) satisfying

dw(8) " i
(3.13) —qg T Lew(0) = N2(u",s"), 0 € (0,7],
IU(O) — un.
Let spe(t) = E1p(une(t)). Define wy, o(0) = up,e(t, + 6) for 6 € [0,7]. It holds

dwh 6(9)
> n — N™ n
(314) dg + nwh,e (9> K (’U/h,e(tn), Sh,e(tn)) + Rlu (9)’ 9 € (07 T]’

wh,e(o) - uh,e(tn)a
where the truncation error
RY,(0) = g(une(tn +0),sne(tn +0)) f(une(tn +0)) — g(une(tn), she(tn)) f(une(tn))
+ rg(u”, 8")(Un,e(tn +0) — une(tn))-
For s, (t), we have
(3.15) sp.e(tnt1) — Sh.e(tn)
= _g(“h,e(tn)a Sh,e(tn))<f(uh,e(tn))a Uh,e(tn+1) - uh,e(tn» + TR,
for some truncation residual R7,. Furthermore, it is easy to verify that

(3.16) sup [[Ry,(0)]] < Cent,  [RY| < Cen,
0€(0,7)

where the constant C; > 0 depends on up e, &, €, and || f||c1;—g,5. Now we define
the error functions as

(3.17) en =u" —upe(tn), ey =" — speltn)-

LEMMA 3.6. Given any fived h > 0 and T > 0. If & > || f'||c1=p,8 and ||[tinit]lco <
B, we have

lg(u™, s™) f(u")=g(un,e(tn)s She(tn)) fune(tn))ll < Cylllegll+les]), 0<n < |T/7],

where Cy > 0 is a constant depending on C, |Q|, winit, and || f|c1—5,5)-

A special case of this lemma with o(z) = €® has been proved in [30]. Using (3.1)
and the conditions (X;) and (X32), there is no essential difficulty to obtain the general
result, so we omit the proof.
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THEOREM 3.7 (Temporal error estimate of GSAV-EIL). Given any fized h > 0
and T > 0, and let k > ||f'||cj—p.5)- Assume that the exact solution up . is smooth
enough on [0,T] and ||umit|lco < 8. If 7 > 0 is sufficiently small, then we have the
following error estimate for the GSAV-EI1 scheme (3.5):

(3.18) lu"™ — upe(tn)|l + 8" = She(tn)| < Char, 0<n<|T/7],

where the constant Ch 1 > 0 is independent of T.
Proof. Define e(§) = w(f) — wp (0). The difference between (3.13) and (3.14)
leads to

dzg) + Lle(f) = N2 (u"™,s™) — N:(Uh,e(tn),sh@(tn)) — ?u(9)7 0 c (O,T],
e(0) = ey,

T —up e (tnt1) = e can be expressed as

whose solution e(7) = u™
(3.19) entt = e 7TER e £ 7y (—TLT) [N (u™, 5™) — N™(un.e(tn), Sh.e(tn))]
- / e (T=OLIRR () d6.
0
Acting I + 7L} on both sides of (3.19), we obtain

(3.20) (14 7rg(u™, ™)) (em —em) — 72 (Ape™™ — Ape)

u

=7+ 7L)o1 (=T L)V (u", 8™) = N (une(tn), sh.e(tn))]
+ (I +7LE)(e ™ — D)ep — /0 T(I +rLY)e” "L RY (6) df.
Taking the discrete inner product of (3.20) with §;e?*! := (en*! — e) /7, we get the
reformulation of the left-hand side (LHS) of (3.20) as
LHS = rijseir |2 + g, ") el — el + 2| Vacit - Vael,
and the reformulation of the right-hand side (RHS) of (3.20) as
RHS = 7((1 + 7L)¢1(~TL) NS (u", ") = N (un,e(tn), sne(tn))], Seey ™)

(T 4 7L (e TEE — D)el, dpen ) — / (I + 7Lm)e~ C=OLLRR (8), 8,en) db.
0

By using Corollary 3.5, the identity |[en™! — e[| = ||en T2 — ||le?||? — 27(e?, zen 1),

u
and the Young’s inequality, we obtain

(3.21) LHS > 7|62 + Gurlle" T2 — Gurlle?||? — 2G kT (e, 5emt)

7T
> §||5t62+1”2 + Gurllen™? — Gurllen]|® — 8GIR Tlel ||

According to (3.10), when 7 < M; ', we have |[I +7L?| < 1+ 7p(L7) < 2. By
Lemma 3.4, we have |le”7l% — I|| < ||[7L?|| < My7. Thus, for 7 < M, !, we have

(3.22) RHS < 27| N} (u", s") = N (une(tn), sne(ta) |10 |
+ 2Mpr el deen ™| + 2 sup )IIR’fu(9)II [8een ]
c(0,7
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< 87N (", 8™) — Ny (un e (tn), sn.e(tn))®

, , 37
+8Mjr|en||* + 87 sup ||RY,(O)7 + < [I0ren .
0€(0,7) 8

Using Lemma 3.6, we have

(3.23) [[Ng(u";8") = Nif (une(tn), sn.e(tn))ll
< Hg(una sn)f(un) - g(uh,e(tn)a sh,e(tn))f(uh7e(tn))|| + "ig(una Sn)”eZH
< (Cg + G R)ley |l + Coleg],

and thus, we obtain from (3.22) and (3.23) that

(3.24) RHS < [16(Cy + G*r)* + 8M7]r||epn||* + 16CoTel|?

3

+ 8 sup ||RL,(0)]% + =[St
0€(0,7) 8

Combining (3.24) with (3.21), we obtain

(325)  Gumllen P = Gunllell? + Zder
< [16(Cy + G*r)* + 8M; + 8GRl ||* + 16Co7]el |

+87 sup [RY,(0)]*
0€(0,7)

The difference between (3.5b) and (3.15) leads to
ngrl - 6? = <g(uh e( )a Sh,e(tn )f(“h e(tn)) - g(un, Sn)f(un)yuh,e(tn+1) - uh,e(tn»
—g(", ") (f(u"), et —el) — TRy,
Multiplying the above equation by 2e7*! yields
(3.26) ed™* —[el]” + [edt! —elf?
= 2€g+1<9(uh,e(tn)v Shoe(tn)) f(Un,e(tn)) — g(u™, s™) f(u"),
Un.e(tns1) — Une(tn)) — 27g(u", s™)e? T {f(u™), SpelTh) — 27 Ry e Tt
For the first term on the right-hand side of (3.26), using Lemma 3.6, we have

(3.27)
262+1<g(uh,e(tn)a Sh,e(tn))f(uh,e(tn)) - g(un, Sn)f(un)v Uh,e(tn—i-l) - uh,e(tn)>
< 20ef ™ g (un.e(tn), she(tn)) f(une(tn)) — g(u”, s") (W) un,e(tnir) = une(tn)
< 20, leg(llenll +les DIl (une)e @)l (tn < 0n < tys1)
< Crr(llenll® + lef” + [ed ™),
where C1 > 0 depends on C,, [, up.e, and || f||c1[—g,5. For the second term on the
right-hand side of (3.26), we have
(3.28) —27g(u", s")el T (f ("), 0yt < 27 G| f (u")[[led T [I0er |

‘
< Corlen 2 + 2ot |,
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where Cy > 0 depends on C., |2, Uinit, and || f|lc(—g,5. For the third term on the
right-hand side of (3.26), we have

(3:29) 2R S IR 7l
Substituting (3.27)—(3.29) into (3.26) leads to

(3.30)
.
i TP = eS| < Crrlle|l® + Crrlel P+ (14 Co+ Co)rlef P + S [1drel ™I + 7| B |

Adding (3.25) and (3.30) and using (3.16), we reach

Gurllen 1" = llenl®) + (ed ™ — les?) < Cor(llell” + 3 * + les™*) +9C2 177,

S

where C3 > 0 depends on C, |Q|, T, upc, &, €, and || f||c1—g,5- Finally, by applying
the discrete Gronwall’s inequality, we obtain

Gurllen|® +ler|” < Cpar?,

where C~’h71 > 0 is a constant independent of 7, which finally gives us (3.18) by taking
Cha= \/C’h,l/min{l,@*n}. O

3.2. Second-order GSAV-EI scheme. Now we present the second-order gen-
eralized SAV-exponential integrator (GSAV-EI2) scheme, which is developed in the
prediction-correction fashion. Let x > 0 again be the stabilizing constant. First, we
adopt the GSAV-EI1 scheme (3.5) to generate a solution (u"*!,5"*1) as the predic-
tion and define @72 = (u" + @"*1)/2 and 32 = (s" + 3"t1)/2. Then, we rewrite
the space-discrete system (3.2a) in the equivalent form as

duy,

T = B+ glun, ) f(wn) + mg(@ 3574 (un - w)

nt3 nt+
=—Lx 2up+ Ny z(uh,sh),

1
where the linear operator Lt = /ig(ﬂ”*é , §”+%)1752Ah is self-adjoint and positive
definite since g(ﬂ”*é,?”r%) > 0 and k > 0, and the nonlinear operator

1
(3.31) N2 (0,1) = g(u,7) f(v) + kg(@ 2,5 %), Vove My, VreR.
Applying the variation-of-constants formula gives us
paks

T ntl 1
(3.32) up(tnyr) =e "hn uh(tn)—i-/ e (T=OLx 2N:Jré(uh(tn+9),sh(tn+0))d9.
0

1
Approximating the term N:Jrz by its value at 6 = 7 in the above equation, i.e.,

nt+l nt+l
(3.33) NET2 (up (b + 0), 50 (tn +0) & N2 (un(tyy 1), n(tay1),

we obtain the GSAV-EI2 scheme for computing u"*! as

i} i}

(3.34a) utt = mhe Tyn 4 < / e (7= L da) NIFE (rtd g
0

ntg 1 I
=e Thr Ty 4 T¢1(—TL:+2 )]\/',:L—~_2 (u"+%7§”+%).
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To update s"*!, we discretize (3.2b) at t =1, 1 to give

(3.34b) sttt — gn _ g(an+%’§ﬂ+%)<f(an+%),un+l —u")
+ gg(ﬂ”+%’§”+%)<un+l i ,l'InJrl’unJrl B ’LLn>.

The second term on the right-hand side of (3.34b) is based on the Crank-Nicolson
discretization, and the third term is an artificial stabilization term of high order.

3.2.1. Energy dissipation and MBP. Similar to the analysis of the GSAV-
EI1 scheme, we first prove the unconditional preservation of the energy dissipation law
and the MBP of the GSAV-EI2 scheme (3.34), then we show the uniform boundedness
of g(u™, s™) and g(ﬂ”+%,§”+%), which is important to the error analysis.

THEOREM 3.8 (Energy dissipation of GSAV-EI2). The GSAV-EI2 scheme (3.34)
is unconditionally energy dissipative in the time-discrete sense that &, (u™t!, s"t) <
En(u™, s™) holds for any 7 >0 and n > 0.

Proof. Similar to the proof of Theorem 3.1, some simple calculations give us

1 1
gh(un+1,sn+1) i Eh(u",s”) _ <L:+2un+1 _ N:+2 (ﬂn+%7:§n+%)7un+l _ un>
— Rg(@"T2, 3R W — eyt )
2
_ %thun—&-l . thn||2 + gg(an+%7’§n+%)<un+l _ ﬂn—i—l,un—&-l _ un>

1 ntg gl
= (LR = (= e )T @ =), ut )

2
_ %”th"+1 _ thn”Q _ gg(a7z+%7'éﬂ+%)||un+l _ un||2

Then, the energy dissipation comes from the negative definiteness of the operator
L (et g

COROLLARY 3.9. For any 7 > 0 and n > 0, it holds that s™ < Ep(unit) and
ST < B (uinit) for the the GSAV-EI2 scheme (3.34).

Proof. Similar to the proof of Corollary 3.2, the uniform boundedness of {s"} is a
direct consequence of Theorem 3.8. Since 5"*! is generated by the GSAV-EI1 scheme
(3.5), we have s"+1 < &, (unt! s"tl) < &,(u™, ") according to Theorem 3.1, and
thus, $" < Ej, (inie). O

THEOREM 3.10 (MBP of GSAV-EI2). If & > ||f'|lc—5,, then the GSAV-EI2
scheme (3.34) preserves the MBP unconditionally, i.e., for any 7 > 0, the time-
discrete version of MBP (3.8) is valid.

Proof. Suppose (u",s™) is given and ||u"]| < B for some n. According to
Theorem 3.3, we know [[#" ™ |.c < A, and thus ||7""2 || < B. We also have from
Theorem 3.8 that §"t2 < Ej, (uini). Noting that (3.34a) has the same form as (3.5a),
the proof can be completed in the similar way to that of Theorem 3.3. O

COROLLARY 3.11. Given any fited h > 0 and T > 0. If & > ||f'|lc-p,5 and

[ttinit [|oo < B, then there are two constants G. >0 and G* > 0 such that
G. <g(u",s") <G, G, <g@@t2,32)<G", 0<n<[T/r] -1,

where G* is the same constant defined in Corollary 3.5, and G, depends on C,, C*,
1Q, T, Uinit, &, €, and || f||c[—p,5), but is independent of T.
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Proof. As done in the proof of Corollary 3.5, the upper bound G* of {g(u", s™)}
and {g(a"2,5"2)} is the direct result of the monotonicity of o and Theorems 3.8
and 3.10, and thus, p(L?) < M), and p(LT—%) < Mj, with Mp, > 0 the same constant
defined in (3.10). For the existence of the lower bound G., it suffices to show the
existence of the lower bounds of {s"} and {3""2}. Similar to the derivations in the
proof of Corollary 3.5, we have

|un+1 _ un” < Tﬁ|Q|%(Mh +G*I€), ||"LG+1 o un” < Tﬂ|Q|%(Mh —|—G*I€),

and thus [[u"tt — a7t < 2T8|Q2 (M), + G*k). Then, we derive from (3.34b) that

s> " (@t E || F(@ )| un T - |

— D@t 3Rl — @t —

2
> 5" — G*FoB|Q|( M), + G* k)T — G*KT Q) (M), + G* k)T,

"

By recursion, we obtain
s" > —C, — G*FoB|Q(M), + G*k)T — G*kB%Q| (M), + G*r)?T?.
Finally, according to (3.11), we also have
3L > " — GFFyBIQ(M)y, + GFR)T,

which completes the proof. O

3.2.2. Temporal error analysis. The following lemma claims that the tem-
poral truncation error of (3.34) is of second order. The proof involves some careful
computations in calculus, and we present it in Appendix A.

LEMMA 3.12. Given any fited h > 0 and T > 0 and assume that the exact

solution up, . is smooth enough on [0,T]. Define ﬂZté = (uUne(tn) +tne(tnt1))/2 and

§Z;% = (she(tn) + sn.e(tnt1))/2. It holds that

(3.35a)
_ _TL:‘*'% n+i amt3 o nti ntl n
'U/h,e(tn-i-l) =€ uh7e(tn) + 7—(bl(_TLH )NK (uhte 7Sh,e ) + TR2u7
(3.35b)
,vn-&-% Nn-‘r% ~TL+%

She(tn+1) = Sne(tn) — g(u}he 1 She )(f(uh,e )s tne(tnt1) — une(tn)) + TR,
with the truncation terms Ry, and RY, satisfying
(3.36) 1RSI < Cent®  |RE| < Cent?,

where the constant Ce p, > 0 is independent of T.
The error functions el! and e are defined by (3.17). In addition, we define

EZ+1 — ;Jn-&-l

’é’;i-‘rl _ gﬂ-‘rl

- uh,e(thrl)a - Sh,e(thrl)-

We first present a lemma on the estimates with respect to e"*! and e?*!. The proof
is similar to that of Theorem 3.7 and will be given in Appendix B.
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LEMMA 3.13. Given any fived h > 0 and T > 0, and let k > ||f'|lc(—p,5-
Assume that the exact solution uyp . is smooth enough on [0,T] and ||tinis|co < 5. If
7 is sufficiently small, then it holds that

(337) @ P+ e < Culllenl® + el ?) + CuC2yr, 0 <n < [T/7),

where the constant éh > 0 is independent of T.

THEOREM 3.14 (Temporal error estimate of GSAV-EI2). Given any fized h > 0
and T > 0, and let k > ||f'||cj—p,5)- Assume that the exact solution up . is smooth
enough on [0 T and ||tinit]|eo < B. If T is sufficiently small, then we have the following
error estimate for the GSAV-EI2 scheme (3.34):

(3.38) [u™ — upe(En)]] + 18" = sh.e(tn)] < Ch’27'2, 0<n<|T/7],

where the constant C, o > 0 is independent of T.
Proof. The difference between (3.34a) and (3.35a) gives

n+l 1
entl = e mhe T el gy (—r L )N

St ) - NPT @2 5 ) — Ry

1
Acting T + TLZ+2 on both sides of the above equation, we obtain
(339) (1+7hg(@ 2,57 2)) (et —el) — re?(Apel ™! — Apel))
1 1 1 1 A
= (I + 7Ly ) (—r LR NI @ 5 - IR @R 5 )

1 nt+3 n
P+ e el =7 (14 L) RS,

Taking the discrete inner product of (3.39) with §;e”*!, similarly to (3.21), we esti-
mate the left-hand side (LHS) of the above identity as

LHS = 78, " |[* + mg(@ 2, 370 ) e — ep|* + 2 Vael ™ = Vel
> 7l P + aGL e — el
= 7ll6eiH® + Gunller P~ Ganlleh|® - 2Gunrel, 6™

T ~ ~ ~
> 10 P + Gurller ™ P = Gunller|® — 8GRl
and, when 7 < M, ', we estimate the right-hand side (RHS) of (3.39) as

RHS = (I + 7L )¢y (—7 "+2>[N"+%<a”+%,§”+%>—N”“r’;:t%gzt ), dpentt)

(I 47D e ™ yen, Gl Yy — 7((1 + TLE T2 R, Syen )
ntd o pil o 1 nt+i ntl ntl n
< 27| NETE@E ) - NIRRT 5en )

+ 2My|eplldeer T + 27| R3,, H||5te"“||
< srl| e @ ) N:+5(a’;t§,%’2§>||2
+ 8M7ET|e||? + 87|| Ry, |I* + ||5t )2,
Note that

+3 ~ntd 1 +3 ~n+ +
N: Q(u”+2,§"+2)—Ng z(uzez,gzez)
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SO 1\ eptl n+ + + o+l
= g(@" 2,532 f("E) — g(a Z;,g’,z;>f<u’;;>+~g< DR

)

1
and "2, u"+2 3t Sh+"’ are all bounded uniformly according to the energy dissi-
pation 1aw and the MBP. Similar to the proof of Lemma 3.6, we can obtain

1
(3.40) INZTE @ s, 5y — NI 5 )
Cy+G*r C,
< L (el + ) + S (er] + et

Combining (3.40) with estimates of the LHS and RHS of (3.39), we get

(3.41) é*HHeZ-HHQ _ é*’i”dLLHZ + %H(Stez-HHz
< [8(Cy + G*r)* + 8Mj + 8GR Tl |* +8(Cy + G r)* T |
+8CT(lex | + 1) + 87 R

For the error equation (3.35b), we can add a zero-value term to the right-hand
side to give

(3.42)  spe(tny1) — Sne(tn)
= =g 2 B ), e (tn) — wne(ta)) + Sg(@ e, 7H)
(Un,e(tnr1) = Une(tns1)s Une(tny1) — ne(tn)) + 7 R5;
The difference between (3.34b) and (3.42) leads to

+i ot + ~pl Ly pmpgl
€?+1 - 6? <g(uze2ash 62)f(uze2) - g(un+2,§n+2)f(un+2)7uh,e(tn+l) - uh,e(tn)>

+ @) = et — e

2
— g(@ TR ) (@R, et — el
K 1 1
+ 9@ T T e (ter) — une(t) — TRE,.

Multiplying the above equation by 2e7*! yields
e [en]? + fert — enf?
+1 gl ontl ol 1\ il
= 2€Z+1<g(uz 62 ) gZ e2 )f(uZ e2) - g(un+2 ) gﬂ+2 )f(un+2 )7 uh,e(thrl) - uh,e(tn)>
+ Tlig( n+2 ~n+ ) g+1<un+1 o ﬁn+1,5t63+1>
—2rel T g(umtE FR ) (F(Um), et

g (@R TR = T () = wne(ta)) - 27€l RS,
Similar to the deduction from (3.26) to (3.30), we then obtain
(3:43)  led™HP —lel]? < Csr(llenll® + llen ™1 + ||A”+1||2

+ el led TP+ el ) + ||5 en P + Tl Ry

with Cs depending on C, |, upe, &, and || f|lc1—s,5-
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Adding (3.41) and (3.43), we obtain

(3.44)  Guw([len? — [lex]?) + (len T2 — [e?)
< Cor(Jlen]|? + [[ent |2 + [[En |2 + [eP[? + [en+Y]? + [antt?)

+ 87| R, ||* + 7IR3, |,

where Cs > 0 depends on C,, |Q|, up.e, and || f|lc1j—g,5. Substituting (3.37) into
(3.44) and using the estimate (3.36), we obtain

(3.45) Gar(llen™ 1% = llenl®) + (e — led]?)
< Co(Cn+ Dr(lleull” + len 1" + leg” + [e2 %) + (CeCh + 9)C2 7

When 7 is sufficiently small, similar to the last paragraph in the proof of Theorem
3.7, applying the discrete Gronwall’s inequality to (3.45) leads to

G.rller|® + ey ]* < Crar,

where C~’h72 > 0 is a constant independent of 7, which gives us (3.38) by taking

Cho = \/C’h,g/min{l, @*/{} d

REMARK 3.4. In addition to the periodic or homogeneous Neumann boundary
condition considered above, one can also equip the equation (1.1) with the Dirichlet
boundary condition u(t,x) = Y(t,x) for t > 0 and x € Q. Then, it is shown in
[14] that the solution satisfies the MBP (1.4) if |¢(t,x)| < B for any t > 0 and
x € 09, and the energy dissipation law is also valid if ¥ (t, ) = 1 (x) is independent
of t. In particular, for the equation (1.1) with a time-independent boundary value
1Vllcoa) < B, we are still able to develop the GSAV-EI schemes simultaneously
preserving the MBP and the energy dissipation law, based on a slight modification of
the space-discrete system (3.2). The main idea is to add an extra term By, to (3.2a),
where By, depends only on the ratio €2 /h? and the boundary value v; see [14] for details
of the form oth For example, the GSAV EI2 scheme can be established by combining
(3.34a) with N,; 3 replaced by N, 4 + By, and (3.34b) with —(Bp,u™ ! —u™) added to
its right-hand side. Since By, is time-independent, the By-related terms do not affect
the order of the truncation error in time. The first-order scheme can be developed in
the similar spirit. We omit the details due to the limited space.

4. Numerical experiments. Let us consider the model equation (1.1) for Allen—
Cahn type gradient flows in 2D square domain © = (0,1) x (0,1) equipped with pe-
riodic boundary condition or homogeneous Neumann boundary condition. In either
case, the product of a matrix exponential with a vector can be efficiently implemented
by using the fast transform based on Lemma 2.2-(iii). We also set the interfacial pa-
rameter € = 0.01. There are two commonly-used forms of the nonlinear function f(u).
One is given by the cubic function

(4.1) flu) = —F'(u) = u—u’,

where F(u) = 1(1 —u?)? is the double-well potential. In this case, one can set 8 = 1
and [|f’|lcj=1,1) = 2. The other one is determined by the Flory-Huggins potential

F(u)=4[(1+w)In(l +u) + (1 —u)In(l — )] — %u?, and

'

0. 1—u

(4.2) flu)=—F'(u) = 3 In T u

+ 6.u
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where 6, > 6 > 0. In the following numerical experiments, we set § = 0.8 and
0. = 1.6, then the positive root of f(u) =0is 8~ 0.9575 and || f'||c|—g,5 ~ 8.02. We
always set £ = || f'[|c[—g,5 for both cases in the following experiments. In addition,
we always adopt the exponential function with a constant parameter a > 0 as

(4.3) o(x)=e*, xR

Clearly, 0(0) =1 and ¢'(0) = a.

REMARK 4.1. For the double-well potential (4.1) and the Flory—Huggins potential
(4.2), it is easy to see that the value of the bulk energy part E1p(u™) is close to 0 due
to the MBP of {u"}. Since s™ is also an approximation of Eyp(u™), only the behavior
of 0 near 0 has relatively large effect on the performance of the proposed GSAV-EI
schemes. By the Taylor expansion, these typical elementary functions for o given in
Remark 3.1 perform like a linear function near 0 with the y-intercept being 1 and the
slope a = o’ (0) if parameterized as (4.3). Thus, there is no essential difference on all
these choices for the above test problems.

4.1. Convergence in time. To verify the temporal convergence rates of the
GSAV-EI schemes, let us consider the problem (1.1) with a smooth initial value

Uinit (2, y) = 0.18in(27x) sin(27y).

By fixing the uniform spatial mesh size h = 1/2048, we compute the numerical
solutions at ¢ = 2 using the GSAV-EI1 and GSAV-EI2 schemes with various time
step sizes 7 = 27%, k = 4,5,...,12. To compute the numerical errors, the bench-
mark solution is generated by using the fourth-order integrating factor Runge-Kutta
(IFRK4) scheme [31] with the time step size 7 = 0.1 x 27!2. Figure 1 plots the L?
norms of the numerical errors versus the time step sizes, produced by GSAV-EI1 and
GSAV-EI2 with o given by (4.3) with a = 1, a = 10, and a = 100, where the left graph
shows the results for the double-well potential case (4.1) and the right one corresponds
to the Flory—Huggins potential case (4.2). The expected convergence rates in time,
first order for GSAV-EI1 and second order for GSAV-EI2, are clearly observed for all
cases. In addition, we find that the larger a leads to smaller numerical errors for the
GSAV-EI2 scheme, but such effect is not obvious for the GSAV-EI1 scheme.

We also repeat all the above convergence tests on the spatial mesh with h = 1/512
and find the results are almost identical to those with h = 1/2048 shown in Figure
1. This suggests that the temporal convergence constants in (3.18) and (3.38) could
be independent of the spatial mesh size h, although we are not able to remove their
dependence on h in the theoretical analysis.

4.2. Unconditional preservation of MBP and energy dissipation law.
We numerically verify the MBP and the energy dissipation law of the proposed GSAV-
EIl1 and GSAV-EI2 schemes by simulating the phase transition process beginning with
a random state. Though the discrete energy dissipation law is proved with respect to
the slightly modified energy (3.4), we are more concerned about the original energy
defined by (2.3) since it reflects the real physical mechanism of the dynamic process.
We consider the equation (1.1) on the uniform spatial mesh with h = 1/512. Different
from the previous convergence tests, the initial state is generated by random numbers
ranging from —0.8 to 0.8 on each mesh point, thus it has highly oscillated values.

We compute the numerical solutions by the GSAV-EI1 and GSAV-EI2 schemes
with 7 = 0.01 and various values of a (a = 1, 5, 10, respectively), and treat the results
obtained by the IFRK4 scheme with the time step size 7 = 10~* as the benchmark.
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F1G. 1. The L?-norm errors vs. the time step sizes produced by the GSAV-EI1 and GSAV-EI2
schemes with the spatial mesh of h = 1/2048 for the equation (1.1). Left: the double-well potential
(4.1); right: the Flory—Huggins potential (4.2).

First, we adopt the double-well potential (4.1), and the evolutions of the supremum
norms and the energies of the numerical solutions are shown in Figure 2. Obviously,
the MBP and the energy dissipation law are preserved perfectly. In addition, we
observe that the smaller a produces slightly more accurate numerical solutions in
this case. This behavior is opposite to that with smooth initial value shown in the
convergence tests. Then, we consider the Flory-Huggins potential (4.2) and Figure
3 presents the evolutions of the supremum norms and the energies of the numerical
solutions. Similar to the double-well potential case, the preservation of the MBP
and the energy dissipation law are obvious, and the smaller value of a in (4.3) yields
slightly more accurate numerical solution.
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Fic. 2. Evolutions of the supremum norms and the energies of simulated solutions computed
by the GSAV-EI1 (top row) and GSAV-EI2 (bottom row) schemes with T = 0.01 for the equation
(1.1) with the double-well potential (4.1).
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Fic. 3. Ewvolutions of the supremum norms and the energies of simulated solutions computed
by the GSAV-EI1 (top row) and GSAV-EI2 (bottom row) schemes with 7 = 0.01 for the egquation
(1.1) with the Flory—Huggins potential (4.2).

Next, we repeat the above experiments by choosing the (10 times) larger time
step size 7 = 0.1. We can observe the similar results that the MBP and the energy
dissipation law are still preserved well although the large time step size leads to a
little less accurate numerical solutions.

4.3. Adaptive time-stepping and long-time simulation. Since the pro-
posed two GSAV-EI schemes (3.5) and (3.34) are both one-step approaches, without
sacrificing the energy dissipation law and the MBP, they can also be applied on a
set of nonuniform temporal nodes {t, }n>0 with to = 0 and t,41 = t,, + Th41, Where
the time step size 7,41 varies in n. Let us consider (1.1) with € = 0.01 and the
Flory—Huggins potential (4.2) again but with the homogeneous Neumann boundary
condition. The spatial mesh and the random initial value are the same as aforemen-
tioned. We adopt the GSAV-EI2 scheme (3.34) with o(x) = ¢* and variable time step
sizes 7,41 updated by using the approach from [40]

Tm ax

NG i B

Tn+1 = INax {TmiIM

where d; Ej,(u") = (Ep(u") — Ep(u™1))/7, and a > 0 is a constant parameter. Here,
we choose the minimal and maximal time step sizes as Ty, = 0.0001 and 7. = 0.1
respectively, and set o = 10° as done in [40]. For comparison, we also conduct the
simulation by the GSAV-EI2 scheme with the uniform time step size 7 = 0.01.

The coarsening dynamics reach the steady state at around ¢t = 3000. We find that
the CPU time for the whole simulation with adaptive time-stepping is only about 10%
of that with uniform time step size. One can observe from the left and middle graphs
in Figure 4 that the energy dissipation law and the MBP are preserved perfectly. The
right graph in Figure 4 plots the evolution of the adaptive time step sizes. In the time
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interval [0,20], the time step size varies significantly and sometimes are very small
since the energy decreases rapidly at most of the time. Then after ¢ = 20, the energy
changes more and more slowly and the time step size is magnified gradually. When
t > 200, the time step size remains around 0.1 (not shown in the graph), and we
find that, although the large step size is used for this period, the relative error of the
energy is only about 1% in comparison with the case of uniform time step size. These
results show that the adaptive time-stepping strategy can greatly help accelerate the
computation without sacrificing the desired properties and the accuracy.
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Fic. 4. Ewolutions of the energies (left), the supremum mnorms (middle), and the time step
sizes (right) of simulated solutions computed by the GSAV-EI2 schemes for (1.1) with homogeneous
Neumann boundary condition and the Flory—Huggins potential (4.2).
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Fic. 5. Snapshots of the phase transition generated by the GSAV-EI2 schemes with adaptive
time step (top) and uniform time step (bottom) for (1.1) with homogeneous Neumann boundary
condition and the Flory—Huggins potential (4.2).

5. Concluding remarks. In this paper, we study the numerical schemes pre-
serving both the energy dissipation law and the MBP unconditionally for a class of
Allen—Cahn type gradient flows by combining the exponential integrator method and
the generalized SAV approach. With the appropriate stabilization terms, we develop
first- and second-order GSAV-EI schemes and prove their unconditional preservation
of the energy dissipation law and the MBP in the time discrete sense, as well as their
optimal temporal error estimates under fixed spatial mesh. Different from most ex-
isting numerical schemes, the energy dissipation law and the MBP of the proposed
GSAV-EI schemes can be established in parallel, which provides more flexibility to
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apply the proposed schemes to other types of gradient flow equations to preserve some
important physical properties. We also note that the fully-discrete error estimate for
the case that the spatial mesh size and the time step size change simultaneously is
still an open question for the proposed GSAV-EI schemes and surely worthy of fur-
ther study. A major difficulty comes from the issue that the matrix exponential e %
defined by a power series of the sparse matrix 7L}, is dense and affects the solution
globally. In particular, to estimate the temporal truncation error of the GSAV-EI2
scheme (Lemma 3.12), an h-dependent bound is inevitable, and thus we fix the spatial
mesh size to regard such bound as a constant in this paper.

When constructing the second-order GSAV-EI scheme (3.34), we approximate

the term N:Jr%(uh(tn +0),sn(t, +0)) in (3.32) by its value at the midpoint 6 =
rather than its linear interpolation in [0, 7]. This allows the cancellation between the
nonlinear terms in the analysis of the energy dissipation (Theorem 3.8). Instead, if
we adopt the linear interpolation as usually done for the RK2 method, two terms
involving the numerical solutions at ¢,, and t¢,,+1 will be included with the ¢-functions

of TL;H_% as the coefficients, which makes the cancellation unavailable due to the
different coefficients between the updating formula for ©”*! and that for s"*!. For
the similar reason, it is an open question whether higher-order GSAV-EI schemes
exist in either RK or multistep form, although there have been third-order multistep
schemes based on the standard ETD method for the epitaxial thin film model [4, 6].

It also remains interesting on how to choose the function o appropriately for the
GSAV-EI schemes in practical applications. As we explain in Remark 4.1, we only use
the exponential function (4.3) in Section 4 since the differences can hardly be observed
for the typical choices of ¢ given in Remark 3.1 for the specific problems we consider in
the numerical experiments. However, their performance could be significantly different
for some other situations and gradient flows, and more careful investigation is needed.
In addition, the effect of the parameter a on the numerical errors seems completely
opposite for the smooth and non-smooth initial data based on our observation from
numerical experiments, and such phenomenon also deserves deeper study.

Appendix A. Proof of Lemma 3.12.
Proof. From (3.32), we have

n+d T ntd 1
_ —(r— +35
Une(tng1) = e TE% Ty o (tn) + / e~ =L 2 N2 (uy, (4 0), e (tn + 6)) dO
0
nt T n+3 1 1 1
= )+ ([ e )@ o,

which gives (3.35a) with

n LT oLt yntd n+3 ~n+i n+i
zu:;/o e~ O NI (g o (b + 0), Snoc (b +0) — Ni 2 (1 12,5, £2)] O
1

T

T n 1 n 1 ~TN 1 ~1 1
:(/ [N (e (b 0):snetn +0)) = N2 (@ 05,57 07)] 46
0
T n+d 1 1 1 1
t+ / (=L D)INETE (up (b + 0), sn,e(tn +0) — Ni T2 (@ 2,570 7)] d")
1 n,l n,2
= ;(RQ’U, + R2u )

For the function N;H_%(v?r) defined in (3.31), let us denote by VUN,:H_%(’UJ’) and
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Oy Nn+2 (v,7) the derivatives of N2T (v r) with respect to v and 7, respectively. By
the Taylor expansion, we have

(A1)

~n+2 ~n+2
N;@(uh,e( 7L+0) She(t +0)) (uhe ’She )
= Vol 5 5 ) et +0) - ~Zt2>

+ O, N (T2 B0 ) (s (b +0) = 510 %) 47

20— 7 nti ntd ~nti ntl
= T (Vo Nali st St ) (une) () + 0N (@ L 5 (s.0) ()

n o 20 — 7)2 , 02 + (0 —71)2 ,
+ 9@ T (E ) - O )

~n ~n 28—7‘2 92+ 9_7—2
+ arN (Uh-ZQ ) htz ) <(4)(sh,e)//(tn+é) - (Zl)(sh,e)ll(tn_;'_%)) + Te,

where 7, represents the higher-order remainder term.

If we integrate both sides of (A.1) With respect to 6 from 0 to 7 and notice that
Jo (26 — 7)d6 = 0, then we obtain ||Rj;, o< C’ , where 6’,; > 0 is a constant
depending on uy ¢, T, h, and &, because we have ||uh,e( Moo < Band —C < sp¢(t) <
Ep(uinit) for all ¢, and N,@(uh,67 Sh,e) is smooth with respect to up . and sp.

According to Lemma 3.4, we also know

1 1
le= 0L T < (7 — 0)p(LET?) < My(r - 6).

Combining it with (A.1), we obtain that the leading term of ||R};’| is

T 7_3
/ (r—0)20 —7|dg = .
0 4

which implies || Ry:2|| < C}/3 for some constant C/ > 0 depending on wy, ¢, T, h, and
k. Thus we complete the proof of the first 1nequahty in (3.36).

The second inequality in (3.36) can be viewed as a direct consequence of the
Crank-Nicolson discretization. O

Appendix B. Proof of Lemma 3.13.
Proof. According to the proof of Theorem 3.7, the error equations with respect
to en*! and e"*! are given by

(Bala) @+ —en = (™5 — 1)l + mgn (—rLI)NZ (u", 5")
= N2l snet)] = [ €OV R (0) b
(B.1b) €?+1 —ey = (g(une(tn), sne(tn))f(une(tn)) —glu”,s")f(u"),
uh,e(tn-H) - uh,e(tn» - g(unv 5n)<f(un)v EZ+1 n> TRst

where the truncation errors R}, and RY, are identical to those in (3.14) and (3.15),
respectively, and satisfy (3.16).

Taking the discrete inner product of (B.1a) with 2e"*! and using Lemma 3.4 and
(3.23), we get

[P = llenll + llen ™" — enll?
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< dflepllllen T I+27IINE (u, 8™) = NE (un.e(tn), sn.e(tn) Il 1€ “||+27;S(up IRT, (O)llen ™|

< 161 + ||~”+1H2+8T2[<c + GRPILIE + Cler )+ L

+4r? sup ||RY, ()% + ||€ A
0e(0,7)

= 16[leg||” + 8(Cy + G*r)*T?[|eq|I” + 8CF7%|ex |* + IIN'AL“H2 +47% sup ||RY,(0)]1,
’ 0€(0,7)
and then,

H”"“II2 +lentt = enll® <17)len ] +8(Cy + G*w)* el |

+80§72|e?\2+472 sup ||RY,(0)]%
€

0,7)
When 7 < 1, by using (3.16), we get
(B.2) [[en*H* +4lley™ — el < (68+32(Cy+G*r)?) el > +32C7 e [* +16C2 ), 7.
Multiplying (B.1b) by 2e7*! yields
I el + ! — )P
=20 g(une(tn), she(tn)) f(une(tn)) — g(u", s™) f(u"), une(tnr1) = une(tn))
— 27 g(u", s")(f(u"), et —ell) — 27 R e

The last two terms on the right-hand side of the above equality can be estimated as

1
—2r Ry <A |RY[P + et

=26 g(u”, ") (F(u"), ey —en) < [P+ Cullen ™ - en?

»Jk\'—‘

with Cy > 0 depending on Ci, [Q|, uinit, and || f|lc(—g,5. The first term can be
estimated in the similar way to (3.27), and then we obtain

P s + et —en P < Orr(lle ) + [es ] + |~"“|2)
+C4||~n+1 n||2 ‘~n+1|2+4 2|R ‘2
and thus,
(1 =2Ci7)[est? < 20ef? +2Ci7(|lep]|® + |ef]?) + 2Culer ™t — en|® + 872 RE,[*.
When 7 < z2-, we can get by using (3.16),
(B.3) T < llell? + 5lel|? +4Cq|egtt — el ||* +16C7 7.

The sum of (B.2) multiplied by C4 and (B.3) leads to (3.37). O
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