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Abstract

As the development of quantum computers progresses rapidly, continuous research efforts are ongoing for simulation
and emulation of quantum algorithms on classical platforms. Software simulations require use of large-scale, costly, and
resource-hungry supercomputers, while hardware emulators make use of fast Field-Programmable-Gate-Array (FPGA)
accelerators, but are limited in accuracy and scalability. This work presents a cost-effective FPGA-based emulation platform
that demonstrates improved scalability, accuracy, and throughput compared to existing FPGA-based emulators. In this work,
speed and area trade-offs between different proposed emulation architectures and computation techniques are investigated.
For example, stream-based computation is proposed that greatly reduces resource utilization, improves system scalability
in terms of the number of emulated quantum bits, and allows for dynamically changing algorithm inputs. The proposed
techniques assume that the unitary transformation of the quantum algorithm is known, and the matrix values can be pre-
computed or generated dynamically. 32-bit floating-point precision is used for high accuracy and the architectures are
fully pipelined to ensure high throughput. As case studies for emulation, the quantum Fourier transform and Grover’s
search algorithms are investigated and quantum circuits for multi-pattern Grover’s search are also proposed. Experimental
evaluation and analysis of the emulation architectures and computation techniques are provided for the investigated quantum
algorithms. The emulation framework is prototyped on a high-performance reconfigurable computing (HPRC) system and
the results show quantitative improvement over existing FPGA-based emulators.

Keywords Quantum computing - Quantum algorithm emulation - Reconfigurable computing -
Field-Programmable-Gate-Arrays

1 Introduction

Quantum computers represent a promising new comput-
ing paradigm with the potential to solve complex problems
[1-3] at speeds superior to modern state-of-the-art clas-
sical supercomputers. Quantum computers are expected
to demonstrate their superior performance in a class
of problems called Bounded-Error-Quantum-Polynomial
(BQP)[4], e.g., factoring composite integers, computing
discrete logarithms, sampling from a Fourier transform,
and estimating eigenvalues. Properties of quantum physics
such as entanglement and superposition [5] enable quantum

Extended author information available on the last page of the article.

computers to run quantum algorithms and to converge to
solutions much faster than a conventional von-Neumann
machine. The first steps towards quantum supremacy have
already been taken [6], sparking further debate and research
thrust in the quantum computing community [7]. Research
estimates that a quantum computer should be capable of
processing fully entangled qubits in the range of thousands
to millions before they surpass the capabilities of classical
computing machines and achieve quantum supremacy [8].
Current technology, including systems under development
by companies such as D-Wave, IBM, Google, Intel, Rigetti,
and IonQ [9-11], is still far away from achieving supremacy.

These hardware systems have limitations, for instance,
it is difficult to conduct experiments using fully entangled
qubit operations. The highest number of qubits physically
entangled so far at 18 qubits has been claimed by Wang et al.
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[12]. There are also many challenges in the maintenance of
a physical quantum computer [14]. For example, quantum
computers need to correct errors and tolerate faults caused
by quantum decoherence [13]. Physical quantum computers
also require cryogenic operating temperatures and advanced
equipment, making them expensive to acquire or access.
There have been efforts by IBM, D-Wave and Rigetti [15] to
make quantum computing systems accessible to the public
via the cloud, but the access time and the available hard-
ware capabilities remain highly limited. These factors are
encouraging research into efficient simulation and emula-
tion of quantum algorithms on classical high-performance
computer systems using FPGAs. The motivation is to pro-
vide alternative and less costly methods of testing and
improving quantum algorithms and to provide reliable sup-
port as quantum technology matures. Until large-scale quan-
tum systems are complete, real-world quantum applications
can be benchmarked and researched by simulating quantum
algorithms on classical platforms. They can also be used
as reference models for validation of quantum experiments.
Therefore, there is an intrinsic value in the research and
development of quantum simulations on classical systems
such as FPGAs.

Among related efforts, we have reviewed quantum sim-
ulators developed for parallel architectures [16-20, 22] and
works of quantum emulation on FPGA hardware [23-30].
FPGA emulators demonstrate parallelism by taking advan-
tage of the concurrent nature of many quantum algorithms.
They have demonstrated lower latency and greater speedup
over quantum simulators running on sequential machines
[27, 28]. Moreover, FPGAs have the distinguishing feature
of dynamic reconfigurability over other parallel architec-
tures, e.g., GPUs. One of the largest challenges of quan-
tum hardware emulation is addressing resource constraints.
FPGA emulation of quantum circuits is inevitably bound by
the available system resources as the algorithmic resource
requirements increase exponentially with the number of
qubits. To alleviate the resource issue, most FPGA emu-
lator architectures use fixed-point arithmetic as a trade-off
between resource utilization and accuracy. Compared to a
software simulator, the accuracy of the hardware emulator is
reduced when emulating larger-scale systems, as quantiza-
tion errors increase with an increase in the circuit size. Thus,
scalability and accuracy are problem areas for FPGA-based
quantum emulators.

In this paper, we propose using efficient computation
techniques and hardware architectures for performing uni-
tary transformations, i.e., unitary matrix multiplication, in
support of emulation of quantum algorithms. The proposed
techniques and architectures are space-efficient, providing
scalable, high-precision, and high-throughput FPGA-based
implementations of quantum algorithms. The objective of
our work is to improve emulation by minimizing hardware
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utilization and improving system scalability. Previous works
in the literature have generally used a quantum gate-based
circuit modeling approach that leads to low scalability and
low throughput. In our work, we propose a space-efficient
emulation data-flow architecture that computes the output
quantum state of a given quantum algorithm using a single
unitary operation on the input state. Based on this model, we
derive complex multiply-and-accumulate (CMAC)-based
emulation architectures that leverage efficient computation
techniques such as lookup, dynamic generation, and stream-
ing. Our hardware architectures are generalized and can
be used to emulate any quantum algorithm/circuit with the
assumption that the algorithm can be reduced to a single
unitary operation and the algorithm matrix can be pre-
computed or generated dynamically. As case studies for this
work, we investigate the quantum Fourier transform (QFT)
algorithm and Grover’s quantum search algorithm. We
present different hardware architectures exploring design
and memory space, and provide analysis of time and space
complexities for each architecture. Our experiments are pro-
totyped on a high-performance reconfigurable computing
(HPRC) platform and the obtained results show that the pro-
posed emulation model improves system scalability. Finally,
we provide a quantitative comparison of our results with
existing work.

The rest of the paper is organized as follows. In Section 2,
we provide a qualitative analysis of the work related to
parallel quantum simulators and FPGA-based quantum
emulators. In Section 3, we discuss fundamental concepts in
quantum computing. In Section 4, we present the case study
algorithms, i.e., QFT and Grover’s search, and propose their
corresponding quantum circuits. In Section 5, we present
the emulation architectures and techniques for the proposed
quantum emulation platform. In Section 6, we elaborate on
the experimental setup and results, and provide quantitative
comparison with existing work. Section 7 contains our
concluding comments and some discussions of future work.

2 Related Work
2.1 Parallel Quantum Simulators

A variety of work has been done on quantum simulators that
are based on parallel platforms. For example, in [16] the
authors demonstrate a massively parallel quantum simulator
implemented on different supercomputing platforms. How-
ever, their simulator while implementing up to 36 qubits,
consumes a high amount of resources (1 terabyte mem-
ory) with no software optimizations reported. The authors
in [17] propose a GPU-based simulator, showing implemen-
tation of up to 25 qubits, while a simple quantum gate was
used in the simulation case study. The work in [18] also



J Sign Process Syst (2020) 92:1017-1037

1019

uses GPUs and achieves simulation of entangled Hadamard
gates up to 21 qubits. In [19], the authors demonstrate
simulation of up to 38 qubits using a GPU accelerated
platform. However, cost-prohibitive amounts of computing
resources (2048 nodes and 24 cores/node) were dedicated in
the simulation. One of the newer works on quantum simula-
tion [20] uses a cluster supercomputing platform supported
by the Alibaba group. In that work, the authors demon-
strated simulation of up to 144 qubits with circuit depth
of 27 gate levels using 131,072 processors and 1 petabyte
memory. However, they have not investigated any quantum
algorithms and the circuits consist of random gates. Further-
more, their simulator is shown to evaluate only one out of
all possible output states. Existing parallel quantum simu-
lators are highly costly since they consume large amount
of resources in terms of required number of processors and
system memory. Our proposed solution in this work is much
less resource intensive and is therefore highly cost-effective,
as will be demonstrated by the experimental results.

2.2 FPGA Quantum Emulators

An assortment of work has also been done on hardware
emulation of quantum circuits using FPGAs. In [23] the
authors presented a quantum processor that abstracted
quantum circuit operations into binary logic. The proposed
system was shown to emulate up to 75 qubits. However,
the modeling methodology of the quantum operations was
highly inaccurate due to the use of low precision (1 bit) for
the representation of state coefficients. Moreover, hardware
cost in terms of resource utilization was not reported. In
[24] the authors implement an emulator based on a library
of quantum gates. The gate operations were implemented
using fixed-point arithmetic, and a low operating frequency
of 82.4 MHz was reported for the emulation of 3-qubit QFT
and Grover’s search algorithm. In [25] the authors proposed
a similar fixed-point emulator, reporting up to 3-qubit QFT,
but details regarding both their approach and the mapping
of the quantum algorithm to the proposed architecture are
missing. Moreover, quantum entanglement was also missing
in their model. The authors in [29] demonstrated a modular
emulation framework based on a library of quantum gates
and proposed space scheduling and space-time scheduling
methods. Quantum algorithms such as QFT and Grover’s
search were emulated for up to 5 qubits. In [26] and [27]
the authors present hardware architectures emulating QFT
and Grover’s search circuits. In their work, a maximum
fixed-point precision of 24-bits was used to emulate up
to 5-qubit QFT and 7-qubit Grover’s search on a single
FPGA. Scalability of their design is limited and there is
no proposed solution to the problem of scalability. In [28]
the authors propose a high-level synthesis (HLS) based
emulation framework for QFT, but here also, the scalability

of their design is limited and the authors did not address that
limitation. In a related work, ProjectQ [21] has compared
simulation and emulation results trying to showcase the
superiority of quantum computer emulators in terms of
performance. An extensive list of quantum simulators can
be found in [22].

While modular and hierarchical modeling approaches
in previous works improved re-usability, the modeling of
each quantum gate as an individual component consumes
greater resources, reduces accuracy, and limits scalability.
Our proposed approaches in this paper significantly reduce
the resource utilization and emulation times, thus improving
scalability and allows us to use floating-point precision
improving accuracy. In this work, we report the highest
number of fully entangled qubits on a single FPGA
among related work. Lastly, a fully pipelined design of the
hardware architectures result in higher operating frequency
and throughput compared to existing emulators.

3 Background
3.1 Quantum Computing

In a circuit-based model of quantum computing [5], the
process of computation begins with the system being
in a specific quantum state determined by entanglement
of qubits. A quantum state |y) can be expressed as a
superposition of 2"=N basis states, as shown in Eq. 1, where
n = number of qubits and N = number of states. The state
coefficients «g, o1, ..., ay—1 are complex-valued and the
magnitude of a given coefficient represents the probability
of finding the qubit in the corresponding basis state.
The quantum state goes through unitary transformations,
or ‘gates’, depending on the steps and operations of a
quantum algorithm to reach a final quantum state, see Eq. 2.
These operations involve transformations on the complex
coefficients of the basis states. Measurement of the final
quantum state is a probabilistic sample across the basis
states according to their coefficients.

N—-1

) = aili) 8
i=0

|wout> = Um . Um—l Uy Uy - |¢m> (2)

3.2 Qubits, Superposition, and Entanglement

The qubit is defined as the smallest unit of quantum
information and can be represented by a two-level quantum
mechanical system. Physical representations of the qubit
can be photon polarization, superconducting Josephson
junction, etc. [32]. A theoretical representation of the single

@ Springer



1020

J Sign Process Syst (2020) 92:1017-1037

qubit is the Bloch sphere [5], as shown in Fig. 1. The poles
of the Bloch sphere represent the two basis states of the
qubit, i.e., |0) and |1). The qubit can be in a mixed state,
which is any other point on the surface of the sphere. This
means that the qubit can exist in a superposition of the two
basis states at any point in time. The overall state of the
qubit is satisfied by the linear superposition equation |{) =
«|0) + B|1), where @ and B are complex numbers whose
values depend on ¢ and 6 as shown in Fig. 1. Entanglement
is another distinguishing property of qubits [5]. Two or more
qubits may become entangled meaning that each entangled
qubit becomes strongly correlated to the other and the
quantum state cannot be factored into a tensor product of
the individual qubits. When entangled, measurement across
qubits are correlated, but isolated measurement of a single
qubit demonstrates completely random behavior.

3.3 Quantum Gates

In quantum computing, quantum gates are the set of unitary
transformations on qubits and are analogous to classical
logic gates [14]. Quantum gates are used to manipulate the
states of qubits and are represented as N x N matrices where
N = 2" and n is the number of input qubits. In other words,
a one-qubit gate is represented as a 2 x 2 matrix, a two-qubit
gate is represented as a 4 x 4 matrix and so forth. A general
representation of a 1-qubit gate, U, is shown in Eq. 3 where
U is a unitary matrix, i.e., the inverse of U is equal to its
transposed conjugate. Commonly used quantum gates such
as H, X, cX, etc., are discussed in the next sections.

U=|:ab] where a,b,c,d € C,

cd
UU"=UuW*T =1,and A3)
(U*)T is the transposed
conjugate of U

3.3.1 Hadamard Gate

The Hadamard, or H gate, is an important single-qubit gate
because it creates an equal superposition of the basis states
[14]. When an H gate is applied to the ground or |0) state,
the resulting state will be an equal probability superposition

Figure 1 Bloch sphere
representation of a single qubit.
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between the |0) and |1) states, i.e., %(IO)—Hl)). The matrix
representation of an H gate is given in Eq. 4.

g L1 4
VR @

3.3.2 X and cX Gate

The X gate is a single-qubit gate that is analogous to the
NOT gate in classical computing and applies a swap on the
o and B coefficients of a qubit [14]. A control qubit can
be added to an X gate creating a two-qubit gate called the
cX or Controlled NOT gate. If the control qubit is equal to
[1), an X gate will be applied to the target qubit. The matrix
representation of the X and c¢X gate is given in Eq. 5.

01
X_[IO]’ cX =

3.3.3Zand cZ Gate

1000
0100
0001
0010

&)

The Z gate, or Phase Inversion gate, inverts the phase of the
input qubit, i.e., inverts the |1) basis state while leaving the
|0) basis state unchanged [14]. Like the cX gate a control
qubit can be added creating the cZ gate. The cZ gate will
apply a Z gate to the target qubit when the control qubit is
equal to |1). The matrix representation of the Z and cZ gate
is given in Eq. 6.

10
Z—I:O_1:|, cZ =

3.3.4 R, Gate

1000
0100
0010
000 -1

(6)

The Ry gate, or Phase Shift gate, shifts the phase of the input
qubit by 27 /2% radians based on k, where k is an integer and
i is v/—1 [14]. The corresponding matrix for an Ry gate is
shown in Eq. 7.

R, = ! 0 7
k= Oexp(% )

[¥) = cos (g) |0) + e sin (g) [1)
= cos (g) [0) + (cosg + ising) sin (g) |1)

= a|0) + BI1)

where,0 <0 <mand 0 < ¢ <21
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4 Investigated Algorithms and Proposed
Circuits

4.1 Quantum Fourier Transform

Quantum Fourier transform (QFT) is a fundamental part of
many well-known quantum algorithms [1, 3]. QFT is the
equivalent to the classical discrete Fourier transform (DFT).
The mathematical model and quantum circuit for QFT can
be determined from the classical DFT as demonstrated in
[33]. The classical DFT transformation is given by

1 i
Fe= 7 > fwa ®)

where k = 0,1,2,..,N — 1 and w, = e¥. The QFT
transformation for n qubits is shown in Eq. 9, where |¢/)
is the input quantum state, n is the number of qubits, and
N = 2" is the number of states. The input signal samples
are encoded as a normalized amplitude sequence given by
Eq. 10.

N-—1
v = T Z flgAn)lq)
OFT N—-1
) — 7 Z flaanwitq) ©)
N-—1
Y 1f@Anf =1 (10)
q=0

QFT can be modeled as a circuit consisting of Hadamard
and Controlled Phase Shift [14] quantum gates and the
corresponding quantum circuit is shown in Fig. 2. The QFT

Figure 2 Quantum circuit for

LT Uqrr

transformation can be represented using a single unitary
matrix, Ugrr, of size N x N, as shown in Eq. 11.

11 1 -1
Lwe  w?  eowN
1 1w,2Z w;‘ 2(N D
Uorr = \/_ﬁ 1w wd 3(N )

wl(1N—1)(N—l)

(11
4.2 Quantum Grover’s Search
4.2.1 Overview

Quantum Grover’s search or Grover’s algorithm is a
quantum algorithm used to search over an unsorted list of
N elements in O(+/N) time [14]. The objective of Grover’s
search algorithm is to find the element s* that makes
f(s*)=1 and holds Eq. 12 true, where s* belongs to the set
S={s1,52,53...,55}, N is the cardinality of S, and f is a
boolean function such that f(x)— {0, 1}.

F) = { Lifx=s (12)

0, if x #s*

For a set of cardinality N, a classical computer takes on
average % queries to find s*, whereas Grover’s algorithm
on a quantum computer accomplishes the same search in
V/N queries. This results in a quadratic speedup on quantum
machines in comparison to classical ones [14]. Grover’s
algorithm can also be used to search for multiple patterns.
To do this effectively, the total number of patterns/elements
must be known ahead of running the algorithm [14]. When
searching for multiple patterns, Grover’s algorithm will
find any of the target patterns with equal probability. The

o) —EHEY -

|qn-1) l

|q,)

CHA——

|qo)

:
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input to Grover’s algorithm are the items encoded as the
basis states of a superimposed quantum state. Initially, the
input state is in equal superposition, where their coefficients
(amplitudes) are equal, and therefore the probabilities of
locating any item in the list are also equal. To setup the
input state, an H gate is applied to the ground or zero state.
Then, in traditional Grover’s algorithm, two operations
are performed in multiple iterations on this input state:
phase inversion, and diffusion [14]. However, as traditional
Grover’s algorithm requires a new quantum circuit every
time the search pattern changes, we proposed a modified
Grover’s algorithm in [34] that dynamically modifies the
search pattern with a single circuit. This modified Grover’s
algorithm alters the phase inversion step and requires an
additional step called the permutation step. The general
overview of this process is shown in Fig. 3.

4.2.2 Phase Inversion and Diffusion

The phase inversion operation is often thought of as a black
box called the oracle [14], which will take the input set, then
identify and invert the coefficient on the pattern(s) that are
being searched for. To see how this works functionally, let
our oracle be denoted as Uypqere- In Eq. 13 if x # s*, then
f(x) = 0 and |x) will have no change. Otherwise, |x) will
be multiplied by —1 resulting in a phase inversion for |x).

Uoractelx) = (=17 |x) (13)

Modification of the oracle circuit allows us to extend
and generalize the algorithm to dynamically search for any
pattern with a single quantum circuit. This modified oracle
model, Uyrqcie, uses ¢X instead of the traditional X to
dynamically modify the target pattern as seen in Fig. 4

[34]. In the traditional oracle circuit, an X gate should be
placed if the basis state for the target qubit is |0) and no
gate should be placed if the basis state for the target qubit
is |1). In the modified oracle, ancilla qubits will hold the
pattern that is being searched for and by being the control
qubits for the cX gates, the X gate will be applied as
needed. For single-pattern search, only the amplitude of the
first state, |0...0), will be inverted. For multi-pattern search,
cascaded incremental single-pattern oracle quantum circuits
are performed to invert the first Npgsrerns amplitudes as
seen in Fig. 5. As each oracle circuit only inverts a single
state and does not affect any other state, multiple oracle
operations can be performed sequentially. The output from
the oracle, |¢1), will subsequently be provided to the
diffusion circuit for amplification.

In the diffusion operation, the inverted coefficient
amplitudes will be amplified and the other coefficient
amplitudes will be attenuated [14]. The general quantum
circuit implementation of the diffusion operation is shown
in Fig. 6. The quantum circuit only depends on the number
of qubits and always follows the same pattern therefore no
modification is needed in the modified Grover’s algorithm.
The diffusion operation is also sometimes referred to as
inversion about the mean, as the quantum circuit detects
negative amplitudes, amplifies them, and negates them
resulting in a positive amplitude with a higher probability
than the non-inverted states[14].

Repeating these two steps, i.e., oracle, and diffusion, m
times will make the coefficient amplitudes of the sought
patterns close to 1, thus making the probability of the
entangled qubits collapsing to the target state also close to 1.
The optimal number of iterations [35] m is shown in Eq. 14,
where Npgirerns €quals the number of solutions/patterns
being searched for. This process can be represented using
a single unitary matrix, U = (Udiffusion - Uoracie)™. An

Figure3 Modified multi-pattern
Grover’s algorithm.
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[)
—>[WYout)

UPennute

Pg

P

PNpatterns—.l

@ Springer



J Sign Process Syst (2020) 92:1017-1037

1023

[Wous)

Figure 4 Modified oracle for Uorace:
Grover’s algorithm for a single - -
solution/pattern. Qo1 g
] G2 .
|ll)ini) | q )
1
L 190
F .
!n—lg
. 1n-2
Hy .
i
L o

example Ug matrix for n = 3, Npgrrerns = 3, and m = 1 is
shown in Eq. 15.

T

m = = (14)
- —1 atterns
4sin™ ({/ H5)
r_3 1 1 _1 _1_1_1_17
4 4 4 4 4 4 4 4
r_3 1 _1_1_1_1_1
174 47477747171
r 13 _1_1_1_1_1
i 47474 7°F 74177171
r 1 1 3 _1_1_1_.1
4 4 4 4 4 4 4 4
V=1 1 1 1 1 3 1 _1 1 (15
i 4 374 F 7417171
r 1 1 _1_1 3 _1_.1
4 4 4 4 4 4 4 4
r 1 1 _1_1_1 3 _1
i 4 37477741 171
r 1 1 _1_1_1_1 3
L 7 3 4777771741 7

4.2.3 Quantum State Permutation

As our modification of Grover’s algorithm only amplifies
the first Npurrerns States, a permutation step U permute, S€€
Fig. 3, is required to shift the target patterns to the target
states in the output superimposed quantum state |Vy,:)

Figure 5 Modified oracle for
Grover’s algorithm for multiple
solutions/patterns.

[34]. The quantum circuit for the permutation using cX
gates is shown in Fig. 7 with the pattern ancilla qubits
acting as the control qubits. The use of c¢X gates allows
for inverting the selected qubits and move the amplitude
to a selected state based on any given pattern P;, where
i = 0,1,2,..,n — 1, see Fig. 7 . The permutation
step allows for a more generalized and flexible design as
the oracle/diffusion circuit only needs to amplify the first
Nparrerns and the permutation circuit can dynamically swap
the necessary states.

5 Emulation Architectures and Computation
Techniques

Previous implementations of FPGA emulation of quantum
circuits use circuit modeling approaches, where each stage
or quantum gate of the quantum circuit is modeled for
hardware using the corresponding classical operation [5].
This approach results in poor scalability, as the hardware
resource utilization increases exponentially with circuit
size, i.e., number of qubits and number of stages (cascaded
gates). We propose a highly scalable, generalized emulation
model that is optimized in terms of resource utilization
and emulation time. A quantum algorithm is a series of

Uorace for multi solution

[win,) [Wou)

| Win)

> - - - >

Fe==r —>y1)

—t - -

@ Springer



1024

J Sign Process Syst (2020) 92:1017-1037

Figure 6 General inversion
about the mean for Grover’s
algorithm.

Udiffusion

-
|qn-l)

1q.0)
Y)4

-1,)

q9,)

L 9,)

transformations on the entangled quantum state of the
qubits. The series of transformations can be represented
as a single unitary complex-valued matrix, Uarg [4]. An
input quantum state, |1;,), can be represented by a vector
comprising of the complex coefficients of the basis states of
the quantum state. A complex vector-matrix multiplication
of the input vector with the algorithm matrix produces
the output quantum state vector, |¥,,:), whose coefficients
represent the basis states of the output quantum state. We
use this approach, illustrated in Fig. 8, as a model for
designing hardware architectures for the proposed quantum
emulation framework. This model is generalized and can be
used to emulate any quantum algorithm/circuit that can be
reduced to a single unitary operation, i.e., the transformation
matrix can be pre-computed or generated dynamically.

By reducing the algorithm/circuit to a single transforma-
tion and performing the necessary vector-matrix product,
the corresponding hardware implementation becomes inde-
pendent of the circuit depth, resulting in a space- and
time-efficient emulation architecture. This methodology

Figure 7 Quantum permutation
circuit.

@ Springer

assumes that the algorithm matrix is known and pre-
computed, or can be dynamically generated. A limitation
of this methodology is that for some algorithms, pre-
computing and storing the algorithm matrix may not be
feasible as the matrix dynamically changes with the algo-
rithm input, for example, Shor’s algorithm [1]. Dynamically
generating the matrix is also difficult for algorithms with
no pattern in the matrix elements, but it is certainly doable.
To mitigate the limitations of pre-computing or dynami-
cally generating the matrix and account for dynamically
changing algorithm inputs and matrices, we incorporate
data streaming techniques for emulation as elaborated in
Section 5.2.3.

5.1 CMAC Architectures

To implement complex-valued vector-matrix multiplica-
tions on hardware (FPGA), we use a generic complex
multiply-and-accumulate (CMAC) unit, as shown in Fig. 9.
The inputs of the unit are complex values, i.e., elements of

UPermute

e

[Voud
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Figure 8 Model for quantum
algorithm emulation.

Quantum
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U matrix
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Quantum state
initialization

Input qubits

» [Yin) — Upre — [Yout) »

Input quantum

Quantum
state
measurement

Output bits

Output quantum

states states

Quantum Algorithm Emulator

the input state vector, |, (j)), and of the algorithm matrix,
U (i, j). The complex values are represented using 64 bits,
with 32 floating-point bits for each of the real and imaginary
parts. The benefit of using a CMAC is that different com-
putation techniques, each with space and time trade-offs,
can be applied during computation. To operate on complex
values, the internal components of the CMAC (such as the
multiplier and adder) have been designed for complex oper-
ations. The CMAC operations are described in Eq. 16. One
CMAC unit performs, in total, four multiplications and four
additions, see Fig. 9.

real real '
Vour () = ZR i J

rmag

out (l) -

Z R™ G, j)

16)

Figure9 Complex

where,
i=0,1, 2 , (N —1),
R G )= i ()= UG, j)
—ir Gy x U™ G, ), and
Rtmag (l’ ]) _ (w;:ag (]) « U eal(i, ]))

W () x UG )

We explored different hardware architectures, as listed in
Table 1, by varying the number of CMAC instances. The
purpose of this design space exploration was to implement
either fully resource-optimized or fully latency-optimized
designs to find an optimized CMAC configuration for
developing a scalable hardware emulation framework.
Space and time complexities for these architectures are
summarized in Table 1.

multiply-and-accumulate unit.

Wi (1))

>[woatt (D)

e )

Ureal (l, ])

Uimag (i,j)

? (D)
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Table 1 Space and time complexities of CMAC architectures.

CMAC Architecture Complexity

Space (Oy) Time (O;)
Single o(1) O(N?)
N-concurrent O(N) O(N)
Dual-sequential o) O(N?)

5.1.1 Single-CMAC Architecture

For a fully resource-optimized design, we instantiate only
one CMAC unit and feed it with one algorithm matrix
element and one input quantum state vector element for each
clock cycle. This is repeated for all N2 items in the Uz
matrix. For this architecture, the time complexity is O (N 2),
as shown in Eq. 17, where T,k is the clock period. The
hardware takes N cycles to store each input coefficient and
N? cycles to process each element of the algorithm matrix,
in addition to some initial latency, L. The space complexity
is O(1), as shown in Eq. 18, since a single CMAC instance
is being used.

Otime = (L1 + N + N?) X Tejpek = O(N?) (17)

Ospace =1 x CMAC = O(1) (18)
5.1.2 N-concurrent-CMAC Architecture

In a fully parallel implementation, N CMAC instances are
used to operate concurrently, for processing each row of the
U 4L matrix. The time complexity of this design, as shown
in Eq. 19, is effectively O(N) as it takes N cycles to store
the input states, and N more cycles to concurrently process
all N rows of the algorithm matrix, along with initial latency
L;. The space complexity now becomes O(N), due to the
N instances of CMAC units, as shown in Eq. 20.

Otime = (L2 +2N) X Tejock = O(N) (19)

Ospace = N x CMACs = O(N) (20)
5.1.3 Dual-sequential-CMAC Architecture

In this implementation, two CMAC instances are utilized
sequentially. After the initial latency L3, the first CMAC
processes the first row of the matrix while the input vector
is being stored, and the second CMAC instance continues
the subsequent processing of the remaining rows using the
stored inputs. This implementation has double the resource
requirements of the first architecture but has the benefit
of improvement in execution time. The time complexity is

@ Springer

determined as in Eq. 21 and the space complexity is given
by Eq. 22.

Otime = (L3 + N? = 1) X Tjock = O(N?) 1)
Ospace =2 x CMACs = O(1) (22)
5.2 CMAC Computation Techniques

For the CMAC architectures, in our previous work we have
explored different computation techniques such as lookup,
and dynamic generation [36], to investigate trade-offs in
area and speed of the emulator. In this work, we leverage
data streaming techniques and apply them for the CMAC
architecture, and show that it is better optimized in both
area and speed, compared to the previous techniques. For
completeness, we discuss the previously used lookup, and
dynamic generation techniques along with the proposed
streaming technique in the following sections.

5.2.1 Lookup-based CMAC

Look-up-tables (LUTs) simplify hardware design by replac-
ing complex parts of computation with simple array-indexed
operations. It is generally implemented as an array in mem-
ory that stores pre-calculated values which results in low
resource requirements. In the CMAC architecture, we use
the process of lookup to fetch pre-computed algorithm
matrix values from memory during complex computation
operations. A limitation of this technique is that for some
algorithms, the algorithm matrix changes dynamically with
the inputs, hence this method will not be feasible in those
cases. We combine this lookup approach with the dual-
sequential-CMAC architecture to optimize the design in
terms of speed. The total memory, My, required using this
combination is derived in Eq. 23, assuming 32-bit float-
ing point numbers are used for each real and imaginary
component of the complex matrix and vector elements.

ML = Myee + My = 8N + 8N2 = 213 4 22143 (93
5.2.2 Dynamic Generation-based CMAC

The lookup approach is optimized for speed, but stor-
ing the algorithm matrix consumes resources that increase
exponentially with circuit size. For resource utilization
optimization and improved scalability, we propose integrat-
ing the dual-sequential-CMAC architecture with a dynamic
approach that involves generating the algorithm matrix val-
ues at runtime, storing only input vectors in memory. The
advantage of this method is that it significantly reduces the
total memory utilization, M pg, of the simulation, as shown
in Eq. 24. The algorithm matrix Ugrr, see Eq. 11, is gen-
erated as part of the architecture using dedicated hardware
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units as shown in Fig. 10. The operations of this architecture
are summarized in Eq. 25.

MpG = Myee = 8N =23 (24)
R(G) = RG — .w
UG, j) = U, j—1).R() (25)

for A . (27
where, w =¢€e'N = cos(—) +1.s1n<ﬁ),
i,j=0—>N—1,
and, R©O) =1, U®0,0) =1

The drawback of this technique is that the dynamic gener-
ation hardware can introduce pipeline latencies depending
on the complexity of the algorithm, degrading the speed of
the overall emulation. Furthermore, designing a dedicated
hardware generation unit also requires us to find and exploit
some pattern in the algorithm matrix, which might not be
possible in every case. Generally, it is hard to efficiently
generate the matrix values if the algorithm matrix doesn’t
have a special structure, therefore the generation hardware
would be complex, and the approach may not be feasible for
particular algorithms.

5.2.3 Stream-based CMAC

While the lookup approach improves speed, it sacrifices
area, and similarly, while dynamic generation improves
area, it sacrifices speed. We investigate a more optimal
approach that sustains both speed and area improvements
and improves scalability and latency of the emulator. Instead
of being stored into on-chip resources (OCR) or on-
board memory (OBM), or dynamically generated during
computation, the algorithm matrix elements are streamed
in during computation as an input stream from an external
control processor. The cost of streaming is typically the
I/O channel latency between the control processor and
the FPGA, which is negligible relative to the compute
time necessary for processing the algorithm matrix. The
contribution of this technique is that it greatly reduces the
constraint on memory requirement compared to the lookup

based technique, while also avoiding the hardware cost and
bottleneck of using the dynamic generation technique.
As a result, a significantly higher number of qubits can
be emulated on the same FPGA area. The total memory
requirement, M, using this method is equivalent to Mpg
and shown in Eq. 26. The top-level view of the emulator
design using the data streaming technique is shown in
Fig. 11.

Ms = MpG = Myee = 8N =213 (26)

6 Experimental Results and Analysis

Our experimental work was carried out on DSS8, a
state-of-the-art high-performance reconfigurable computing
(HPRC) system provided by DirectStream [37]. A single
C2 compute node of the DS8 system is equipped with
high-end Intel-Altera Arria 10 FPGA and on-board mem-
ory (OBM) SRAM and SDRAM modules, as shown in
Fig. 12. The FPGA on-chip resources (OCR) consists of
427,200 Adaptive Logic Modules (ALMs), 2,713 Block
RAMs (BRAMs), and 1,518 Digital Signal Processing
(DSP) blocks. The DS8 hardware system is integrated with
DirectStream’s programming environment, which succeeds
the previous Carte-C compiler [38]. DirectStream’s envi-
ronment was selected for our experimental work because
it uses a High-Level Language (HLL) which facilitates
the development of complex, parallel, and reconfigurable
codes in an efficient manner. Moreover, an HLL design
flow provides more control over floating-point resources,
compared to conventional Hardware Description Language
(HDL) design flow. The study in [39] showed that Carte-C
had highly productive environment, short acquisition time,
short learning time, and short development time.

We performed several experiments and implementations
on the DS8 system. All results are collected from hardware
deployments on FPGAs with complete system and memory
interface implementations on the DS platform. The hard-
ware architectures were implemented in High-Level Syn-
thesis (HLS) using C++. The high-level C++ codes were
built for hardware using Quartus Prime version 17.0.2 on an

Figure 10 Hardware
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Figure 11 Architecture of the
quantum algorithm emulator
using data streaming.
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Arria 10 10AX115N4F45E3SG FPGA, and the resource uti-
lizations and latencies were obtained from compiler reports.
As a result of fully pipelining the designs, a high operat-
ing frequency of 233 MHz was reported, resulting in high
system throughput. For functional verification of the DS
hardware designs, reference circuit models were developed
in MATLAB. The models that we developed in MATLAB
and our DS hardware designs both use single-precision
floating-point arithmetic, and the emulation results on the
hardware and circuit simulations in MATLAB were identi-
cal in accuracy. The algorithm matrix and input vectors were
generated from the MATLAB models and imported into the
DS environment. In the experiments, when using the lookup
technique, the matrix/vector elements were stored into the
on-chip resources (OCR) or the on-board memory (OBM),
and when using the streaming technique the elements were
streamed in from the DS host control processor.

6.1 Implementation Results using Lookup Technique
We first implemented the single, N-concurrent, and dual-

sequential-CMAC architectures using the lookup technique
and both on-chip and on-board memory configurations.

Emulation of the QFT algorithm was performed using these
implementations. Table 2 reports the on-chip implementa-
tion results for the single-CMAC architecture. Figure 13
presents the resource utilizations as a function of the num-
ber of qubits. From this experiment, the ALM and DSP
resource utilizations reported were constant, which was a
result of using one CMAC hardware unit. The BRAM units
are used for on-chip storage and lookup of the algorithm
matrix/vector elements, and the BRAM resource utiliza-
tion increases exponentially with the number of qubits. An
increase in emulation time with circuit size is also observed,
as expected, due to the increasing number of temporal
iterations of the single CMAC unit.

The implementation results of the N-concurrent-CMAC
architecture are reported in Table 3 and Fig. 14. There
is a consistent increase in ALMs as the number of
CMAC hardware units in this architecture increases with
the number of qubits. The Intel Quartus Prime hardware
compiler applies optimizations to maintain the constant
utilizations for scarce DSP units. For example, the compiler
automatically searches for functions using common inputs
or completely independent functions to be placed in one
ALM to make efficient use of device resources [40].

Figure 12 DSB8 system
architectures.
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Table2 QFT implementation results using single-CMAC architecture,
on-chip resources, and lookup.

Table 3 QFT implementation results using N-concurrent-CMAC
architecture, on-chip resources, and lookup.

Number of Qubits OCR“ Utilization (%) Emulation time (sec) Number of Qubits OCR“ Utilization (%) Emulation time (sec)
ALMs BRAMs DSPs ALMs BRAMs DSPs

2 10.30 8.04 1.05 14E-6 2 10.70  7.08 1.05  6.78E-7

3 1024  8.12 1.05  1.15E-6 3 10.74  7.08 1.05  7.64E-7

4 10.24  8.11 1.05  2.01E-6 4 11.53  7.08 1.05  9.36E-7

5 10.27  8.18 1.05  5.37E-6 5 17.10  7.08 1.05 1.28E-6

6 10.26  8.55 1.05  1.87E-5 6 2450  7.08 1.05 197E-6

7 1026  10.25 1.05  7.17E-5 7 39.50  7.08 1.05  3.34E-6

8 1029 16.73 1.05  3.19e-4 8 74.88  7.08 1.05  6.09E-6

9 1031  41.28 1.05  0.0013

aTotal on-chip resources: Napm = 427,200, Ngram = 2,713,
Npsp = 1, 518

We implemented the third proposed architecture, i.e.,
dual-sequential-CMAC, in which two sequentially operat-
ing CMAC computations are overlapped with data write
operations. Table 4 and Fig. 15 show the obtained results.
The results are similar to the first architecture implementa-
tion in which the ALM utilization increases exponentially
while the remaining resource utilization is fixed. In Fig. 16,
we compare the emulation time of all three implementations
and we observe that the N-concurrent implementation has
the highest performance. This is due to the parallel opera-
tion of the CMAC units. The trade-off for the N-concurrent
implementation is area since we were only able to emulate
up to 8 qubits, while using the single-CMAC and dual-
sequential-CMAC architectures we were able to emulate up
to 9 qubits. Any larger circuit exceeds the FPGA on-chip
resources allocated for storing the computation vectors and
algorithm matrix.

Device: Arria 10AX115N4F45E3SG
Nam = 427,2005 Nppav=2,713; Npp=1,518
100

—8-BRAM (%) ——ALM (%) —@—DSP (%)

Resource Utilization
Wi
(=]

4

10*——! & =

0@ ° ° ° ° ° °

2 3 4 5 6 7 8 9
Number of qubits

Figure 13 QFT on-chip resource utilizations using single-CMAC
architecture and lookup.

4Total on-chip resources: Natm = 427,200, Npram = 2,713,
Npsp = 1, 518

On-board memory (OBM) configurations of the pro-
posed architectures were also implemented to scale the
emulation to a higher number of qubits. The storage of state
vectors and algorithm matrix is performed using on-board
SRAM and on-board SDRAM memories respectively. We
implemented this for the single-CMAC and dual-sequential-
CMAC architectures running QFT. For the N-concurrent-
CMAC architecture, an OBM configuration leads to
SDRAM read/write contention issues, which significantly
degrades the performance, and it was not considered for
implementation. Table 5 shows the results from imple-
mentation of the single-CMAC architecture with an OBM
configuration. The obtained results demonstrate that the on-
chip resources are constant with increasing qubits because
they are only used for the fixed number of adders/multipliers
of the single CMAC unit. Therefore, the scalability limit is
determined by the size of the on-board memory, which is

Device: Arria 10AX115N4F45E3SG
Num =427,2005 Nppam=2,713; Npgp=1,518
100
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Figure 14 QFT on-chip resource utilization using N-concurrent-
CMAC architecture and lookup.
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Table 4 QFT implementation results using dual-sequential-CMAC
architecture, on-chip resources and lookup.

Number of Qubits OCR? Utilization (%) Emulation time (sec)

ALMs BRAMs DSPs

2 12.39  8.55 2.11 7.55E-7

3 12.34  8.55 2.11 9.61E-7

4 12.36  8.63 2.11 1.79E-6

5 1243 8.70 2.11 5.08E-6

6 12.38  8.99 2.11 1.83E-5

7 12.39  10.69 2.11 7.1E-5

8 12.37  17.18 2.11 0.0003

9 12.37 43.54 2.11 0.0011

aTotal on-chip resources: Narm = 427,200, NgrAM =

2,713, Npsp = 1,518

being used to store the state vectors and algorithm matrix.
Using 1 x 32 GB SDRAM bank of a single C2 com-
pute node, it was possible to emulate up to 16-qubit QFT,
compared to 9-qubit QFT using on-chip resources.

We also implemented the dual-sequential-CMAC archi-
tecture with OBM configuration and the results are shown
in Table 6. For both OBM configurations, we observe, as
expected, that the on-chip resources (OCR) on the FPGA
are fixed for emulation of a particular algorithm due to
the fixed architecture of the CMAC. Figure 17 shows
the comparison of the emulation times between the two
configurations. It can be observed that the dual-sequential-
CMAC architecture performs better in terms of emulation
time. The time complexity of O(N?) for single-CMAC and
dual-sequential-CMAC, see Table 1, is also reflected in
these results. From our experiments, we conclude that the

Device: Arria 10AX115N4F45E3SG
Nam = 427,2005 Ngpav=2,713; Npgp=1,518
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Figure 15 QFT on-chip resource utilizations using dual-sequential-
CMAC architecture and lookup.
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Figure 16 Comparison of QFT emulation times using CMAC
architectures, on-chip resources and lookup.

proposed dual-sequential CMAC architecture provides the
highest performance in terms of emulation time when com-
pared to other configurations. Integrating on-board memory
with that architecture enables us to emulate QFT using 16
fully-entangled qubits on a single Arria 10 FPGA node with
32 GB memory, with an emulation time of 18 seconds.

6.2 Implementation Results using Dynamic
Generation Technique

To emulate larger QFT circuits, we perform implementation
of the dual-sequential-CMAC architecture with OBM and
using the dynamic generation technique. QFT results are
shown in Table 7. Using the dynamic generation technique,
the algorithm matrix elements are generated in hardware
dynamically, and the SDRAM stores only the input/output
state vectors. Therefore, up to 32-qubit emulation of QFT
was possible on a single FPGA with 32 GB on-board
memory, compared to the maximum of 16 qubits using
lookup. On-chip resources are slightly higher because of
the additional generation hardware units. Although QFT
circuits for up to 32 qubits were successfully built on
hardware, emulation times were unrealistically large for
circuits larger than 20 qubits, and the runtimes for these
circuits were estimated using an accurate model derived
from Eqs. 17, 19, and 21 for the proposed pipelined
architectures.

6.3 Implementation Results using Streaming
Technique

Finally, we implement the dual-sequential-CMAC architec-
ture with OBM and use the data streaming technique. The
algorithm matrix elements are streamed in during compu-
tation and only the state vectors require storage. As a case
study for this technique, we emulated Grover’s search algo-
rithm. The target patterns were set to {1 11 2 134 156
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Table 5 QFT implementation

results using single-CMAC Qubits OCR? Utilization (%) OBM?” Utilization (bytes) Emulation time (sec)

architecture, on-board memory,

and lookup. ALMs BRAMs DSPs SRAM SDRAM
2 10.71 8.44 1.05 32 128 1.7E-6
3 10.71 8.44 1.05 64 512 2.0E-6
4 10.71 8.44 1.05 128 2K 3.9E-6
5 10.71 8.44 1.05 256 8K 1.1E-5
6 10.71 8.44 1.05 512 32K 3.9E-5
7 10.71 8.44 1.05 1K 128K 0.00015
8 10.71 8.44 1.05 2K 512K 0.00061
9 10.71 8.44 1.05 4K 2M 0.00241
10 10.71 8.44 1.05 8K &M 0.00963
11 10.71 8.44 1.05 16K 32M 0.03851
12 10.71 8.44 1.05 32K 128M 0.15399
13 10.71 8.44 1.05 64K 512M 0.61586
14 10.71 8.44 1.05 128K 2G 2.36324
15 10.71 8.44 1.05 256K 8G 9.853
16 10.71 8.44 1.05 512K 32G 39.4209

4Total on-chip resources: Napyv = 427, 200, Ngram = 2, 713, Npsp = 1, 518
bTotal on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each

7}, where each number corresponds to the index of a tar-
get state we are searching for. Output results demonstrated
high probability amplitudes identifying the target states, and
these were verified against results obtained from software
simulations in MATLAB. The hardware implementation
results are shown in Table 8. The space complexity of

this architecture is O(1), as there are only two operat-
ing CMACs. The time complexity is O(N?) due to the
computation of N2 elements of the algorithm matrix, see
Table 1. Hardware builds of up to 32-qubit circuits for
Grover’s algorithm were performed on a single FPGA with
32 GB SDRAM memory. Emulation times for circuits larger

Table 6 QFT implementation

results using dual-sequential- Qubits OCR? Utilization (%) OBM? Utilization (bytes) Emulation time (sec)
CMAC architecture, on-board
memory, and lookup. ALMs BRAMs DSPs SRAM SDRAM
2 12 8.63 2.11 32 128 7.55E-7
3 12 8.63 2.11 64 512 9.61E-7
4 12 8.63 2.11 128 2K 1.79E-6
5 12 8.63 2.11 256 8K 5.08E-6
6 12 8.63 2.11 512 32K 1.83E-5
7 12 8.63 2.11 1K 128K 7.10E-5
8 12 8.63 2.11 2K 512K 0.00028
9 12 8.63 2.11 4K 2M 0.00113
10 12 8.63 2.11 8K &M 0.00451
11 12 8.63 2.11 16K 32M 0.018002
12 12 8.63 2.11 32K 128M 0.072006
13 12 8.63 2.11 64K 512M 0.2888021
14 12 8.63 2.11 128K 2G 1.152083
15 12 8.63 2.11 256K 8G 4.608329
16 12 8.63 2.11 512K 32G 18.4331

4Total on-chip resources: Napy = 427, 200, Ngram = 2, 713, Npsp = 1, 518
bTotal on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each
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Figure 17 Comparison of QFT Device: Arria 10AX115N4F45E3SG
emulation times using CMAC 100
architectures with on-board 10 F —#—Single ——Dual sequential
memory. N
@ 2 3 4 5 6 7 8 9 10 11 14 15 1p
=) 0.1
E
= 0.01
g
k=) 0.001
=
E}
5 0.0001
0.00001
0.000001
0.0000001
Number of qubits
Table 7 QFT implementation
results using Number of qubits ~ OCR utilization? (%) OBM? utilization (bytes) ~ Emulation time (sec)
dual-sequential-CMAC
architecture, on-board memory ALMs  BRAMs  DSPs SDRAM
and dynamic generation.
2 13.16 9.58 3.23 32 1.99E-6
3 13.16 9.58 3.23 64 2.20E-6
4 13.16 9.58 3.23 128 3.03E-6
5 13.16 9.58 3.23 256 6.32E-6
6 13.16 9.58 3.23 512 1.95E-5
7 13.16 9.58 3.23 1K 7.22E-5
8 13.16 9.58 3.23 2K 2.83E-4
9 13.16 9.58 3.23 4K 1.13E-3
10 13.16 9.58 3.23 8K 4.50E-3
11 13.16 9.58 3.23 16K 1.80E-2
12 13.16 9.58 3.23 32K 7.20E-2
13 13.16 9.58 3.23 64K 2.88E-1
14 13.16 9.58 3.23 128K 1.15E0
15 13.16 9.58 3.23 256K 4.61E0
16 13.16 9.58 3.23 512K 1.84E1
17 13.16 9.58 3.23 1M 7.37E1
18 13.16 9.58 3.23 2M 2.95E2
19 13.16 9.58 3.23 4M 1.18E3
20 13.16 9.58 3.23 &M 4.72E3
21 13.16 9.58 3.23 16M 1.89E4
22 13.16 9.58 3.23 32M 7.55E4
23 13.16 9.58 3.23 64M 3.02E5¢
24 13.16 9.58 3.23 128M 1.21E6¢
25 13.16 9.58 3.23 256M 4.83E6°¢
26 13.16 9.58 3.23 512M 1.93E7¢
27 13.16 9.58 3.23 1G 7.73E7¢
28 13.16 9.58 3.23 2G 3.09E8¢
29 13.16 9.58 3.23 4G 1.24E9¢
30 13.16 9.58 3.23 8G 4.95E9¢
31 13.16 9.58 3.23 16G 1.98E10¢
32 13.16 9.58 3.23 32G 7.92E10¢

2Total on-chip resources: Napym = 427, 200, Ngram = 2, 713, Npsp = 1, 518
YTotal on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each
“Results are projected using a performance estimation model
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Table 8 Grover’s algorithm

implementation results using Number of qubits ~ OCR* utilization (%) OBM? utilization (bytes) ~ Emulation time (sec)

dual-sequential-CMAC

architecture, on-board memory ALMs BRAMs DSPs SDRAM

and streaming.
2 11 8 1 32 2.3E-6
3 11 8 1 64 2.54E-6
4 11 8 1 128 3.4E-6
5 11 8 1 256 7.22E-6
6 11 8 1 512 2.0E-5
7 11 8 1 1K 7.36E-5
8 11 8 1 2K 2.8E-4
9 11 8 1 4K 1.13E-3
10 11 8 1 8K 4.5E-3
11 11 8 1 16K 1.8E-2
12 11 8 1 32K 7.2E-2
13 11 8 1 64K 2.88E-1
14 11 8 1 128K 1.15E0
15 11 8 1 256K 4.61E0
16 11 8 1 512K 1.84E1
17 11 8 1 IM 7.37E1
18 11 8 1 2M 2.95E2
19 11 8 1 4AM 1.18E3
20 11 8 1 &M 4.72E3
21 11 8 1 16M 1.89E4
22 11 8 1 32M 7.5E4
23 11 8 1 64M 3.02E5¢
24 11 8 1 128M 1.2E6¢
25 11 8 1 256M 4.83E6¢
26 11 8 1 512M 1.93E7¢
27 11 8 1 1G 7.73E7¢
28 11 8 1 2G 3.09E8¢
29 11 8 1 4G 1.24E9¢
30 11 8 1 8G 4.95E9¢
31 11 8 1 16G 1.98E10¢
32 11 8 1 32G 7.92E10¢

4Total on-chip resources: Napyv = 427, 200, Ngram = 2, 713, Npsp = 1, 518
bTotal on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each
“Results are projected using a performance estimation model

than 22 qubits were estimated using the performance model
derived from Eqgs. 17, 19, and 21. The emulation time as
a function of the number of qubits is shown in Fig. 18.
The developed architectures for this technique were fully
pipelined and an operating frequency of 233 MHz was
reported by the compiler.

The streaming technique does not require any generation
hardware and therefore can be used to emulate any
quantum algorithm that is reducible to a single unitary
transformation. The complexity of the algorithm does not
affect the performance of emulation. Therefore, emulation

of other algorithms would yield the same results in terms of
hardware utilization and emulation time. The reconfigurable
architecture of our emulator allows improvement of the time
complexity to O (N) by instantiating N parallel instances of
CMAC units for vector matrix multiplications. To emulate
a larger number of qubits using the single CMAC approach,
the amount of on-chip resources, and/or on-board memory
would need to be increased. Other approaches include
adopting multi-CMAC architectures, and/or using a multi-
node architecture where the design is partitioned among the
nodes [29]. In other words, scaling to higher quantum circuit
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Figure 18 Grover’s search

algorithm emulation using 1.00E+10
dual-sequential-CMAC
architecture, on-board memory, 1.00E+08
and streaming.
1.00E+06
m
(7]
© 1.00E+04
£
= 1.00E+02
c
o
S 1.00E+00
=
3
£ 1.00E-02
w
1.00E-04

1.00E-06

16 18 20 22 24 26 28 30 32

Number of qubits

sizes would require using more hardware resources such
as on-chip resources (OCR), on-board memory (OBM),
number of CMAC:sS, or the number of FPGA nodes.

6.4 Comparison with Related Work

We here quantitatively compare our obtained results with
current and existing work on FPGA-based emulation, as
shown in Table 9. Among the related work on FPGA
emulation of quantum circuits [23-30], our proposed
emulation framework has the capability of emulating the
largest quantum circuit (31-qubit quantum sorting [31]),
with the highest operating frequency (233 MHz) at the
highest accuracy (64-bit floating-point precision). Current
FPGA hardware emulators have many discrepancies such as
incomplete reporting of their results on resource utilization,
operating frequency, and emulation time, which makes a
comprehensive comparison difficult. In our comparison,

we included only hardware emulators, as most parallel-
software-simulators are extremely costly and resource-
hungry, e.g., 131,072 processors and 1 petabyte memory
[20], and cannot be compared fairly with single node FPGA-
based emulators. Also, they have mostly simulated random
quantum circuits and not full algorithms, e.g., [19], while
in our work we emulated various important algorithms in
quantum computing, e.g., QFT and Grover’s search.

7 Conclusions and Future Work

A major limitation in FPGA emulation of quantum circuits
is scalability. In this paper, we proposed space-efficient
computation techniques and hardware architectures for
performing unitary transformations, for improved and
scalable emulation of quantum algorithms. High accuracy
is maintained through the use of floating-point operations,

Table 9 Comparison of proposed work with existing work on FPGA emulation.

Reported Work Algorithm

Number of

Precision frequency (MHz) Operating Emulation time(sec)

qubits emulated

Fujishima [23], 2003
Khalid et al. [24], 2004

Shor’s factoring
QFT*
Grover’s search
Aminian et al. [25], 2008 QFT
Lee et al. [27], 2016 QFT

Grover’s search
Silva et al. [28], 2017 QFT
Pilch et al. [30], 2018
Proposed work

N A9 W W W

Deutsch
Quantum Fourier Transform [27] 22
Quantum Haar Transform [36] 30
Grover’s search 22
Quantum sorting[31] 31

- 80 10
16-bit fixed pt. 82.1 61E-9
16-bit fixed pt. 82.1 84E-9
16-bit fixed pt 131.3 46E-9
24-bit fixed pt. 90 219E-9
24-bit fixed pt. 85 96.8E-9
32-bit floating pt. - 4E-6
32-bit floating pt. 233 7.55E4¢
32-bit floating pt. 233 13.8
32-bit floating pt. 233 7.5E4¢
64-bit floating pt. 233 1.14E11¢

4Results are projected using a performance estimation model
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and high throughput is achieved by fully pipelining the
hardware architectures. We also provided experimental
analysis to compare the proposed approaches in terms
of area and speed. Our results include fully deployable
synthesized hardware builds of up to 32-qubit QFT and 32-
qubit Grover’s search circuits. While emulation runs for
up to 22-qubit circuits could be fully performed/executed
on hardware, emulation runtimes for larger circuits were
estimated using an accurate derived performance model.
The FPGA used was Intel Arria 10 with 32 GB on-board
memory.

In future work, we will investigate more complex quan-
tum algorithms such as Shor’s algorithm for integer factor-
ing, and applications such as quantum machine learning and
quantum cryptography. We will conduct accuracy trade-off
studies between fixed-point and floating-point implementa-
tions of our emulation framework targeting embedded sys-
tems. We plan to investigate techniques inherent to FPGAs
such as full run-time reconfiguration (FRTR) and partial
run-time reconfiguration (PRTR) for dynamic adaptation of
quantum algorithm simulations. Also, more efficient I/O
data conversion techniques between classical and quantum
systems will be investigated.
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