
1.  Introduction
Coupling process between the lower and upper thermosphere/ionosphere through gravity waves (GWs) 
has been observed by many studies (Crowley et al., 1987; Djuth et al., 2004; Hocke & Tsuda, 2001; Hocke 
et al., 1996; Oliver et al., 1997; Porter & Tuan, 1974; Shibata, 1983). These waves originate from different 
altitudes in the lower and middle atmosphere due to topographic sources (mountain waves), convective 
sources and wind shears (Fritts & Alexander, 2003). GWs are one of the main agents in transporting energy 
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ionospheric irregularities are observed from the three Swarm satellites. Using these two independent set 
of measurements, we investigate the relationship between gravity waves and ionospheric irregularities 
on both equinox and solstice seasons for the years 2018–2019. The results show, post-sunset gravity 
wave characteristics are important in understanding the variability of global nighttime equatorial 
plasma density irregularities. We also find out that the pre-midnight and post-midnight characteristics 
of ionospheric irregularities show global westward shift in the occurrence of ionospheric irregularities. 
Upward propagating gravity waves also show three dominant peaks longitudinally with the strongest 
being between American and African longitudinal sectors. Strongest gravity wave amplitudes are 
associated with strongest plasma irregularities. GW suppression is observed around equatorial regions at 
stratopause region in our measurements which are commonly observed at polar and higher latitudinal 
regions in many studies. We also observe that, ionospheric irregularities are strongest when GWs are 
relatively less suppressed.

Plain Language Summary  Atmospheric gravity waves are medium scale waves originating 
from different altitudes in the lower and middle atmosphere due to topographic sources (airflow around 
mountains), convective sources and wind shears. This waves are the main agents in transporting energy 
and momentum from the lower atmosphere to the upper atmospheric (thermospheric/ionospheric) 
heights thereby dynamically connecting the two regions. Nighttime ionospheric irregularities are plasma 
density irregularities in the Earth’s ionosphere primarily created due to plasma density instability in 
the nighttime ionosphere. We utilize gravity waves derived from Sounding of the Atmosphere using 
Broadband Emission Radiometry satellite temperature measurements and plasma irregularities derived 
from Swarm satellite plasma density measurements to investigate the relationship between vertically 
upward propagating gravity waves and ionospheric nighttime plasma density irregularities. The results 
show that post-sunset gravity wave characteristics are important in understanding the variability of global 
nighttime plasma density irregularities. Strongest gravity wave amplitudes are associated with strongest 
plasma irregularities. Upward propagating gravity wave suppression (attenuation) on global scales is 
observed in which plasma irregularities are strongest when gravity waves are relatively less attenuated. 
Understanding the characteristics of plasma irregularities is very important because of its impact on radio 
wave communications. These impacts on radio wave communications can degrade ground- and satellite-
based communications and navigation systems.
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and momentum from the lower atmosphere to the thermospheric/ionospheric heights thereby dynamically 
connecting the two regions. When upward propagating GWs become unstable, the wave breaks and results 
in loss of energy (Fritts & Rastogi, 1985; Fritts & Yuan, 1989; Lindzen, 1981). The flux and energy dissi-
pation of GWs increases as they propagate upward and their influences become more pronounced in the 
mesosphere and lower thermosphere (Fritts & Alexander, 2003). In addition, airglow observation of GWs 
by Fritts and Vadas (2008), Vadas and Fritts (2009), and Vadas and Nicolls (2009) showed that GWs can 
penetrate to much higher altitudes under suitable conditions.

GW amplitude increases as it propagates vertically upward due to an exponential decrease in air density and 
mechanical friction. Moreover, at certain altitudes GW attenuation can result due to radiative cooling effect, 
which is caused by carbon dioxide and ozone layer. Reddy and Vijayan (1989) and Vijayan and Reddy (1994) 
theoretically described effective attenuation of vertically propagating GWs at different altitudes in the equa-
torial region. In general vertically upward propagating GW can be represented as

  i w t k x k zd x ze� (1)

where

  d xk U� (2)

where kx and kz are wavenumbers in the east-west and vertical directions respectively assuming eastward 
and upward propagations as positive. U and ω are zonal wind speed and angular frequency of the wave 
respectively and ωd is the doppler-shifted wave frequency. According to their finding, wave attenuation over 
short path (Δz) at any altitude is given by exp (−kiΔz) and the total wave attenuation between altitudes z1 
and z2 will therefore given by

      2
1

exp Δz
izD k z� (3)

where ki is the imaginary part of vertical wavenumber appropriately associated with the radiative cooling 
rate. Therefore, from Equation 3, we can estimate the effective attenuation if we know the dissipation rate 
caused by radiative cooling at various altitudes. According to Reddy and Vijayan  (1989) and references 
therin, radiative cooling rate is maximum for the altitude range between around 40–60 km, which is around 
stratopause region. Therefore, from this we can expect vertical GW attenuation due to radiative cooling 
around stratopause region. That is, vertically propagating GWs in this altitude ranges will be attenuated 
based on Equation 3. Our measurements also indicate that GWs are attenuated in this altitude range. The 
effective wave attenuation is governed by the wave growth due to exponential decrease in density, which 
is represented by ez/2H, and the opposite effect by radiative cooling. Therefore the effective attenuation be-
tween altitudes z1 and z2 is given by

D H z k z z
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where H is the scale height of the atmosphere. So as GWs propagate vertically upward, their amplitude in-
creases as a function of altitude due to exponential decrease in air density, but the waves will be attenuated 
at altitudes where radiative cooling effect is maximum.

Equatorial ionospheric plasma density irregularities, which are generally known as equatorial spread F, are 
electron density irregularities observed right after sunset in the equatorial regions. As a result of stronger 
upward E x B plasma drift around sunset hours, denser plasma moves to higher altitudes resulting in plas-
ma density instability. The existence of sharp vertical density gradient at F2 bottom side is an important 
initial condition for the growth of nighttime plasma bubbles. The most widely accepted theory for the gen-
eration of nighttime plasma irregularities is the Rayleigh-Taylor instability (RTI) mechanism. The growth 
rate (γg) of generalized Rayleigh-Taylor instability mechanism is defined as (Sekar & Raghavarao, 1987):
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where

1 1/ / /L Ni dNi dz   � (6)

where Ni is the electron/ion density of the ionosphere, g is acceleration due to Earth’s gravity, νin is ion-neu-
tral collision frequency and L is the scale height of the plasma density at F2 bottomside. Wx and Wz are the 
zonal and vertical winds, respectively. Ωi is the ion gyro frequency.

The role of gravity waves in initiating or seeding nighttime plasma bubbles is investigated in many studies 
based on observational data and numerical solutions to RTI mechanism (Abdu et al., 2009; Huang & Kel-
ley, 1996; Keskinen et al., 2003; Krall et al., 2013; Tsunoda, 2010; Zalesak et al., 1982). According to Abdu 
et al. (2009), comparison of observations from radar and digisond measurements with theoretical models 
indicated seeding of equatorial ionospheric irregularities by gravity waves. They found that perturbation 
winds caused by GWs can significantly contribute to the polarization electric field thereby controlling the 
growth rate of irregularities depending on F layer vertical velocity and height, and vertical density gradient 
at F layer bottom side. They solved the RTI analytically and showed that

  E S tx x g g  / exp 1� (7)

where δEx is zonal polarization electric field and Sx is source function which is proportional to vertical density 
gradient. Sx is a form of wind perturbation (δW) related to seeding gravity waves. They concluded that gravity 
wave induced perturbations can be an efficient source for the growth rate of RTI (Abdu et al., 2009). Keskinen 
et al. (2003) and Zalesak et al. (1982) showed that plasma density perturbations attributed to gravity waves 
initiate plasma bubbles during the post-sunset hours. It is clear that turbulence inside magnetized plasma 
is very important as it results in polarization electric fields and perturbations in local electric fields thereby 
causing fluctuations in upward E × B plasma drift that triggers ionospheric irregularities. Zonal electric field 
fluctuations and the associated plasma density fluctuations or initiation of plasma density irregularities are 
investigated in different studies (Yizengaw & Groves, 2018). This indicates the importance of factors that affect 
zonal electric field in initiating plasma density irregularity growth rate. In addition to gravity wave initiation 
of plasma irregularities, the study of gravity wave turbulence in seeding equatorial ionospheric irregularities 
using a three dimensional ionospheric model indicated that gravity wave associated zonal and vertical winds 
are found to be most effective in seeding ionospheric irregularities (Wu et al., 2015).

Vertically upward propagating GWs in equatorial region during post-midnight hours can induce an east-
ward electric field thereby triggering ionospheric irregularities. Post-midnight irregularities ranging from 
strong to longitudinally broad depletions were measured by Burke et al. (2009). They detected deep plasma 
depletions at topside altitudes after local midnight as the result of eastward polarization electric fields. 
Huang et  al.  (2010) also found that ionospheric irregularities are frequently observed in post-midnight 
hours and argued that the cause for this is not understood. Interestingly, the electric field in the plasma 
depletions is significantly enhanced during post-midnight hours according to Huang et al. (2010). Normally 
ionospheric irregularities are generated around sunset terminator hours. Although the mechanism how 
ionospheric irregularities form after midnight is not well understood, recent studies are indicating that 
GWs are potential candidates for the occurrence of the post-midnight ionospheric irregularities. Yizengaw 
et al. (2013) showed the existence of RTI after midnight hours through physics-based models indicating 
that one potential source for the generation of eastward electric field during post-midnight hours are gravity 
waves. A recent work for solar minimum periods by Otsuka (2018) showed that GWs can effectively initiate 
RTI through electric field perturbations during post-midnight periods resulting in irregularity formations. 
But the role of day-to-day variability of GWs on the day-to-day variability of ionospheric irregularities re-
quires high resolution simultaneous measurement and assessment of GWs, PRE and ionospheric irregulari-
ties. A recent study by Abdu (2019) also suggested that the investigation of the role of GWs as a precursor of 
equatorial plasma bubbles requires simultaneous assessment primarily of PRE and vertical drift amplitude 
including other related parameters.

Ionospheric irregularities show daily, seasonal, longitudinal and solar cycle variabilities (Burke et al., 2004; 
Gentile et al., 2006; Huang & Burke, 2004). But the natural mechanism why irregularities show day-to-day, 
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seasonal and longitudinal variabilities are some of the longstanding questions in the study of equatorial 
ionospheric irregularities (Abdu et al., 2009; Saito & Maruyama, 2007; Yizengaw & Groves, 2018). Moreo-
ver, the variability of ionospheric irregularities in ionospheric irregularity seasons (March and September) 
is not clear. Nigussie et al. (2020) showed that longitudinal variability of E × B which is the main cause for 
RTI mechanism, is caused by neutral winds. In this paper we present the longitudinal and vertical charac-
teristics of gravity waves in association with the longitudinal characteristics of ionospheric irregularities us-
ing measurements from two independent sources: SABER (Sounding of the Atmosphere using Broadband 
Emission Radiometry) instrument on board the TIMED satellite measures atmospheric temperature from 
which gravity waves are estimated and plasma density obtained from the three Swarm satellites. Therefore, 
this study investigates the characteristics of upward propagating GWs and their impact on the variability of 
pre-midnight and post-midnight ionospheric irregularities on global scales.

The paper is organized as follows: In Section 2, we provide discussion on the methods of extracting gravity 
waves from SABER satellite temperature measurements and also methods of ionospheric plasma density ir-
regularity calculations. In Sections 3 and 4, we present the results and discussions respectively, of the study. 
Finally in Section 5, we summarize the main findings of the study and conclusions.

2.  Data Analysis
In this study we used independent measurements of plasma densities (Swarm A, B, and C satellites) from 
which ionospheric irregularities were derived and temperature profile (SABER/TIMED satellite) to derive 
GWs. Rate of plasma density index (RODI) sampled for 10 seconds are used as proxy for the existence of 
irregularities from the three Swarm satellite data. The sampling rate of the Swarm satellite data is 0.5 s. 
RODI is calculated as follows:



 
   
 sw Δ 0.5sw

ΔROD
Δ t s

Ni
t� (8)

and

     2 2RODI ROD ROD� (9)

where the rate of density (ROD) measures change in plasma density (ΔNi) for every successive 0.5 s and 
RODI is the standard deviation of ROD sampled for 10 s. Based on the orbital speed of the Swarm satellite 
which is 7.6 km/s (Dunlop & Luhr, 2020), the spatial scale of ionospheric irregularities represented by RODI 
in our case is between 7.6 and 76 km. This RODI is used as proxy for ionospheric irregularities (Zakharen-
kova et  al.,  2016). Gravity waves are calculated using temperature measurements from SABER/TIMED 
satellite with the same method as described in Liu et al. (2017) and Gong et al. (2019). In this work we used 
monthly level 2 SABER temperature data to study the equinoctial and solstice GW characteristics from 2018 
to 2019 March equinox (February, March and April), September equinox (August, September, and October), 
December solstice (November, December, and January) and June solstice (May, June, and July). The SABER 
temperature measurement (T) data are first arranged as longitude versus height (25° × 1 km) for the range 
between ±40° latitudes for both the ascending and descending orbits of the satellite separately. In gravi-
ty wave extraction method, different studies used different longitudinal bin size. For instance Yamashita 
et al. (2013) used the longitudinal bin size as 20° whereas John and Kumar (2013) used 24° longitudinal 
bin size. In our case we used 25° longitudinal bin size and then we performed least square harmonic fitting 
with wave numbers 0–7 for each height profile of the temperature (T(z)) and obtained amplitudes and 
phase angles of a harmonic series (A*cos (kx +ϕ)). The amplitudes and phases are used to construct a new 
temperature profile (To) which is background temperature (John & Kumar, 2013; Liu et al., 2017). The wave 
numbers 0–7 represent longer background waves like tides and planetary waves (Liu et al., 2017). In this 
case, the correlation between the observation and the fitted is almost one. The background temperature 
(To) is then subtracted from the measurement (T) to obtain temperature perturbations (T’) caused by grav-
ity waves (T’ = T−To). We then performed wavelet analysis (morlet) on each T’(z). GW reconstruction is 
made for vertical wavelengths in the range between 4 and 30 km (Liu et al., 2017). Then a new perturbation 
temperature is reconstructed in this wavelength range. This process is done for both the ascending and 
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descending orbits of the satellite separately and then the final GW is calculated as the difference (ascend-
ing-descending orbits) in order to remove the effects of diurnal atmospheric tides (Remsberg et al., 2008). 
Example on extracting gravity waves can be seen from Figure 1. Logarithmic gravity wave amplitudes are 
calculated as 10*log10 (T’2) where T’ is GW temperature perturbation (Yamashita et al., 2013).

3.  Results
Global morphology of both ionospheric irregularities and vertical propagation of gravity waves for Sep-
tember equinox 2018 can be seen from Figure  2. It can be seen that there are three dominant upward 
propagating gravity waves propagating from stratosphere to lower thermosphere (30–105 km) for the time 
18–24 LT as seen by the three arrows (Figure 2b). The middle one being in between ≈±50 longitudes and the 
other two are −50 to −180 and 50–180 longitudes. The gravity wave is strongest in ≈±50 than the two other 
regions. Interestingly the longitudinal characteristics of ionospheric irregularities shows three dominant 
structures in these mentioned three regions with the ±50 being the strongest (Figures 2a and 2c). In addi-
tion, the post-midnight characteristics of both the gravity waves and ionospheric irregularities show similar 
trends. There are three dominant upward propagating gravity waves that nearly matches with the three 
dominant ionospheric irregularity structures which are in the west Pacific, Atlantic and the Asian sectors. 
Moreover, the post-midnight period measured strongest ionospheric irregularities and GWs. Three domi-
nant GW peaks have been observed in different ground-based and satellite-based measurements in different 
studies around Asian, African-Atlantic, and the American regions (Alexander et al., 2008; Ern et al., 2018; 
Hertzog et al., 2002; Tsuda et al., 2000; Zhang et al., 2012). An interesting characteristic of equatorial and 
mid-latitudinal ionospheric irregularities are observed before midnight and after midnight in the above 
mentioned longitudinal sectors. In-between the American - African sector, the ionospheric irregularities 
originated from African sector during the 18–24 LT hours and later it shifted to Atlantic sector following 

Figure 1.  Examples of gravity wave extraction on September, 2017 where (a) temperature observation or measurement (b) harmonic fitting to the 
measurement (c) temperature perturbations due to gravity wave (GW) calculated as GW = Observation–fit (d) temperature perturbation due to GW at particular 
latitude, longitude and local time.
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the dip magnetic equatorial line during 00–06 LT as indicated by the arrow (Figure 2c). The west Pacific 
sector equatorial and mid-latitudinal ionospheric irregularities showed stronger magnitude during 18–24 
LT and significantly decreased after midnight. The Asian sector showed relatively weaker magnitudes dur-
ing pre-midnight hours and increased its magnitude after midnight (Figures 2a and 2c) indicating westward 
shift in the occurrence of ionospheric irregularities in these regions. The westward shift is the result of shift 
in local time. That is the pre-sunset sector at a particular sector later changes to post-sunset/pre-midnight 
sector and this same sector later changes to post-midnight sector indicating westward shift in the local night 
time periods. Since irregularities become stronger during the post-midnight sector, which is shifting toward 
the west, the occurrence of irregularity also shifts toward the west. In addition, some deviations between 
irregularities in the west pacific and Asian sectors with the GWs underneath may also caused by this west-
ward shifting. Irregularity in the American-African sector is better correlated with the GWs underneath 
although there is westward shift in irregularity occurrence in this sector. The GW in the American-African 
sector is wider in range and stronger so that the shift in irregularity in this sector also approximately lies in 
this wider and stronger GW regions. Since the GWs in the west Pacific and Asian sectors are relatively weak-
er in strength and narrower in range as compared to the American-African longitude sector so that shift in 
irregularity occurrence in this sectors results in some deviations between ionospheric irregularity locations 
and GWs underneath. Besides the relationship between global trend of GWs and ionospheric irregularities, 
our results also confirmed an interesting vertical characteristics of GWs. That is GW attenuation around 
stratopause altitudes is clearly observed as indicated by dashed lines (Figure 2d). This is observed in both 
pre-midnight and post-midnight GW vertical propagation in our results which will be discussed below.

In March equinox for 2018, clear shift in ionospheric irregularity occurrence from around west African 
sector to Atlantic sector similar to that of September equinox season before and after midnight hours is 
observed (Figures 3a and 3c). The GWs showed three longitudinally distinct upward propagating charac-
teristics in which the American-African sector is the strongest for both pre-midnight and post-midnight 

Figure 2.  The upper plots (a and c) are logarithmic Rate of plasma density index (RODI) plots. The bottom plots (b and d) are logarithmic gravity wave (GW) 
amplitudes for 18–24 LT and 00–06 LT respectively for September equinox 2018.
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hours (Figures 3b and 3d). The equatorial ionospheric irregularities in the American-African sector during 
post-midnight hours is found to be stronger while the GW is also stronger in this time period, showing 
that stronger ionospheric irregularity magnitudes measured where there are stronger GWs. Here again, 
attenuation and enhancement of GWs around stratopause region is observed for both pre-midnight and 
post-midnight hours (Figures 3b and 3d). More interestingly, GW suppression is relatively stronger in the 
west Pacific and Asian sectors while the African-American GW suppression is relatively less affected (Fig-
ures 3b and 3d).

Figure 4 shows the December solstice season for 2018 and shows the ionospheric irregularities in ≈±50 
again started around west African sector and then showed clear shift to Atlantic and American sectors 
after midnight in addition to intensification in its magnitude. Similarly, the mid-latitude ionospheric ir-
regularities in the west Pacific sector showed stronger magnitude during pre-midnight hours and weaker 
magnitudes after midnight. But the reverse is true for the characteristics of mid-latitudinal ionospheric 
irregularities in the Asian sector in that, the magnitude of mid-latitude ionospheric irregularity is weaker in 
the pre-midnight hours than post-midnight hours. This again indicates a westward shift in the occurrence 
of ionospheric irregularities. Moreover, stratospheric GW attenuation is also observed in this season before 
and after midnight hours with the African-American sector being relatively less affected similar to the 
September and March equinox seasons discussed above. As we have discussed for September and March 
equinox as well as December solstice, GWs are relatively less suppressed in African-American sectors where 
there is the strongest ionospheric irregularity activity during all seasons than the other longitudinal sectors 
(Figures 2–4).

The GW and ionospheric irregularity trends for June solstice season in Figure  5 similarly show three 
dominant peaks in the three longitude sectors. Although the characteristics of ionospheric irregularities 
in the west Pacific sector and in the Asian sector show westward shift in the occurrence of ionospheric 

Figure 3.  The upper plots (a and c) are logarithmic Rate of plasma density index (RODI) plots. The bottom plots (b and d) are logarithmic gravity wave (GW) 
amplitudes for 18–24 LT and 00–06 LT respectively for March equinox 2018.
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irregularities, the African - American ionospheric irregularity characteristics does not show noticeable shift 
as can be seen from Figures 5a and 5c. Instead the ionospheric irregularities in the African sector inten-
sified in magnitude after midnight. The GW in June solstice showed stronger upward propagation during 
pre-midnight hours but significantly decreased after midnight. Although stronger GWs are observed for 
pre-midnight hours in June solstice, GW is highly suppressed after midnight (Figures 5b and 5d).

In September equinox for 2019 (Figure 6), both the GW and ionospheric irregularities showed three domi-
nant peaks in the three longitude sectors as discussed earlier. The ionospheric irregularities during pre-mid-
night hours initiated with smaller magnitudes in the African sector and later intensified in magnitude and 
shifted to the west African - American sector during post-midnight hours (Figures 6a and 6c). Moreover, 
both equatorial and mid-latitudinal ionospheric irregularities in the west Pacific sector are stronger be-
fore midnight and decreased its magnitude after midnight. But the reverse is true for the characteristics of 
mid-latitudinal ionospheric irregularities in the Asian sector. This again shows the global westward shift in 
the occurrence of ionospheric irregularities. GWs show three dominant structures before and after midnight 
hours with the post-midnight GWs being stronger where the ionospheric irregularities are also stronger.

In March equinox for 2019, the occurrence of ionospheric irregularity shifted from African sector during 
pre-midnight hours to the African – American sector after midnight hours (Figures 7a and 7c). The Asian 
sector as discussed earlier becomes stronger after midnight while the west Pacific sector diminishes after 
midnight. When we see the GWs, it is stronger during post-midnight hours where the ionospheric irreg-
ularity is stronger. In March equinox 2019, GW suppression is clearly observed as indicated by circles for 
both pre-midnight and post-midnight hours (Figures 7b and 7d). In this case also, ionospheric irregularity 
is stronger where the GW is relatively less suppressed in the African - American sector. December sol-
stice measured strongest ionospheric irregularity activity in the African - American sector where there is 
stronger GW activity after midnight hours in our observation in 2019 (Figures 8a–8d). Moreover, equatorial 

Figure 4.  The upper plots (a and c) are logarithmic Rate of plasma density index (RODI) plots. The bottom plots (b and d) are logarithmic gravity wave (GW) 
amplitudes for 18–24 LT and 00–06 LT respectively for December solstice 2018.
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and mid-latitude ionospheric irregularity activity in the west Pacific and Asian sectors show similar trends 
to that of September and March equinox seasons as discussed earlier. The GWs also show similar global 
trend to that of the equinox seasons. In June solstice, although there are dominant equatorial and mid-lat-
itude ionospheric irregularity activity observed in the three longitude sectors as observed in other seasons, 
ionospheric irregularities in the African - American sector did not show noticeable shift in ionospheric 
irregularity occurrence after midnight except an increase in magnitude (Figures 9a and 9c). But equatorial 
and mid-latitudinal ionospheric irregularities in the west Pacific and Asian sectors showed similar trends 
before and after midnight to that of other seasons. Although the GW shows similar trend to the other sea-
sons, stronger GWs mainly originated from around mesospheric altitudes (60–70 km) for both before and 
after midnight periods (Figures 9b and 9d). Large scale plasma depletions observed at mid-latitudes around 
Asian and west Pacific sectors are predominantly in solstice seasons (Figures 2–9) and June solstice had the 
strongest mid-latitude ionospheric irregularities in our measurements.

4.  Discussions
Ionospheric irregularities are known to be stronger during equinox seasons due to the alignment of Sun 
terminator with Earth’s magnetic field so that the electric field and magnetic field orientation results in 
maximum ExB thereby creating RTI. Although E × B during solstice season is not as strong as it is during 
equinox season, the December solstice measured strongest ionospheric irregularity activity in the African —  
American sector where there is stronger GW activity after midnight hours in our observation in 2019 (Fig-
ures 8a–8d). Moreover, ionospheric irregularity activity during December solstice in the west Pacific and 
Asian sectors show similar trends to that of the two equinox seasons. In addition to that, the GW vertical 
propagations also show similar global trend to that of the equinox seasons. Furthermore, the occurrence of 
ionospheric irregularities show westward shift mostly for December solstice and the two equinox seasons. 
It means that irregularity forming hours after sunset occur ahead of time in African sector than Atlantic 

Figure 5.  The upper plots (a and c) are logarithmic Rate of plasma density index (RODI) plots. The bottom plots (b and d) are logarithmic gravity wave (GW) 
amplitudes for 18–24 LT and 00–06 LT respectively for June solstice 2018.
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sector and the American sector lags the two sectors. On the other hand, many studies showed westward drift 
of ionospheric irregularities with respect to the background plasma based on satellite and ground-based 
measurements (Ajith et al., 2015; Hysell et al., 1990; Kil et al., 2014; McClure et al., 1977; Ossakow, 1979; 
Yokoyama et al., 2011).

Post-midnight GWs can be a likely candidate to the observation of strong ionospheric irregularities during 
post-midnight hours in December solstice and the two equinox seasons. Our result on strong post-midnight 
irregularities is consistent with interesting results found in Dao et al.  (2011). Their results indicate that 
ionospheric irregularities are stronger during post-midnight hours than pre-midnight hours throughout the 
year for solar minimum years. Olwendo et al. (2019) also confirmed that post-midnight irregularities are 
stronger than pre-midnight irregularities using RODI measurements from Swarm satellite data and ground-
based scintillation measuring receivers.

In our results, June solstice had the strongest mid-latitude ionospheric irregularities in the west Pacific and 
Asian-Australian sectors. Extensive study of mid-latitude ionospheric irregularities based on ionosonde 
measurements in Bowman (1990) showed that the occurrence rate of ionospheric irregularity over Aus-
tralian sector is high during June solstice season for solar minimum periods. According to Bowman (1990) 
breaking of GWs play central role for the occurrence of ionospheric irregularity structure at mid-latitudes. 
The GW strength in June solstice showed different characteristics than the other seasons for the two years 
in that it is stronger during pre-midnight hours than post-midnight hours. Moreover, the characteristics of 
ionospheric irregularities and GW strength during June solstice are not well correlated as compared to the 
other seasons for the two years. Since ionospheric irregularity formation is governed by different factors like 
vertical plasma gradient, elevation of equatorial F-region, background thermospheric winds, plasma densi-
ty magnitude, vertical plasma drift and GWs, considering the role of the combination of all the major factors 
is very important. An interesting work by Ajith et al. (2016) indicated that the vertical density gradient and 

Figure 6.  The upper plots (a and c) are logarithmic Rate of plasma density index (RODI) plots. The bottom plots (b and d) are logarithmic gravity wave (GW) 
amplitudes for 18–24 LT and 00–06 LT respectively for September equinox 2019.
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Rayleigh-Taylor growth rate during June solstice maximized around midnight between 22:00 and 03:00 LT. 
Moreover, Maruyama (1990) also indicated that E × B drift instability results in ionospheric irregularity 
formation at mid-latitudes. Perkin’s instability can well explain the occurrence of plasma depletions in the 
mid-latitude regions (Perkins, 1973). Since Perkin’s instability growth rate is small (10−4S−1), an initial seed-
ing mechanism like gravity waves is required according to Yokoyama and Stolle (2017).

The other interesting result is stratospheric attenuation of GWs as they propagate vertically upward. It is a 
confirmation of GW suppression observed in many studies from different ground and satellite-based meas-
urements for both orographic and non-orographic GWs (France et al., 2012; Siskind et al., 2007; Yamashita 
et al., 2010, 2013). Usually stratopause exists in altitude range between ≈50 and 60 km and an increase in 
stratopause altitude is termed as elevated stratopause (Manney et al., 2008). Blocking and suppression of 
GWs in stratosphere is observed in Siskind et al. (2007) and Yamashita et al. (2013).

5.  Conclusions
In this study we investigated the vertical propagation and longitudinal characteristics of equatorial and low 
latitudinal gravity waves (±40 latitudes) in association with the longitudinal characteristics of ionospheric 
irregularities for equinox and solstice seasons between 2018 and 2019. Based on the results of this study, the 
following conclusions can be drawn.

1.	 �In our results, vertical propagation of GWs show suppression around equatorial regions at the stratopa-
use region. On the other hand, GW suppression is commonly observed at polar and higher latitudinal re-
gions in many studies (France et al., 2012; Siskind et al., 2007; Yamashita et al., 2010, 2013). Stratospheric 
GWs are relatively less suppressed in the African - American sector where ionospheric irregularity is 

Figure 7.  The upper plots (a and c) are logarithmic Rate of plasma density index (RODI) plots. The bottom plots (b and d) are logarithmic gravity wave (GW) 
amplitudes for 18–24 LT and 00–06 LT respectively for March equinox 2019.
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strongest. Gravity wave amplitude strength can be one of the most important factors in understanding 
the variability and strength of ionospheric irregularities.

2.	 �Dominant ionospheric irregularities occur in three regions globally. In between ≈±50, −50 to −180 and 
50 to 180 longitudes. Characteristics of ionospheric irregularities in the west Pacific and the Asian lon-
gitude sectors showed similar characteristics in all the seasons (equinox and solstice). In the west Pacific 
sectors ionospheric irregularities are found to be stronger during pre-midnight hours and decreases its 
magnitude after midnight. The reverse is true for the Asian sectors in that ionospheric irregularities 
are weaker in pre-midnight hours and stronger after midnight. This may indicate westward shift in the 
occurrence of ionospheric irregularities between west Pacific region to the Asian sectors. The westward 
shift is related to shift in local hours. That is, the pre-sunset period at a particular sector changes to 
post-sunset/pre-midnight period in a later time and this same sector later changes to post-midnight sec-
tor indicating westward shift in the local night time periods. Since irregularities become stronger during 
the post-midnight sector, which is shifting toward the west, the occurrence of irregularities also shifts 
toward the west.

3.	 �Both equatorial and mid-latitude ionospheric irregularities are observed in west Pacific sector, while 
mostly mid-latitude irregularities are observed over Asian-Australian sector. Mid-latitude ionospheric 
irregularities mainly occur during solstice seasons predominantly during June solstice.

4.	 �The ionospheric irregularities in the American – African sector showed interesting characteristics in that 
the ionospheric irregularities originated in the central African sector during pre-midnight hours and 
later intensified in magnitude and shifted to the American – Atlantic sectors following the dip magnetic 
equatorial line for all seasons except June solstice. This indicates westward shift in the occurrence of 
ionospheric irregularities between African and American longitude sectors. It means that irregularity 
forming hours after sunset occur ahead of time in African sector than Atlantic sector and the American 
sector lags the two sectors.

Figure 8.  The upper plots (a and c) are logarithmic Rate of plasma density index (RODI) plots. The bottom plots (b and d) are logarithmic gravity wave (GW) 
amplitudes for 18–24 LT and 00–06 LT respectively for December solstice 2018.
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5.	 �The vertical propagation and longitudinal characteristics of GWs also showed three dominant peaks in the 
above mentioned longitudinal sectors. One of the puzzles in the study of ionospheric irregularity charac-
teristics is the strongest ionospheric irregularity magnitudes observed in American – African sectors. Our 
results indicated that strongest GWs and ionospheric irregularities are observed in the American-African 
sector. Furthermore, Blanc et  al.  (2014) also showed with 10  years of observations that GWs are very 
strong in the West African region where there are intense thunderstorms Our results are consistent with 
this observation in that GW is strongest around west African- Atlantic regions for all seasons.

6.	 �The GW strength in June solstice showed different characteristics than the other seasons in that it is 
stronger during pre-midnight hours than post-midnight hours. Moreover, the characteristics of iono-
spheric irregularities and GW strength during June solstice are not well correlated for pre-midnight and 
post-midnight hours as compared to the other seasons for the two years

Data Availability Statement
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lite data are available at https://www.gfz-potsdam.de/en/section/geomagnetism/infrastructure/swarm/
data-products/.
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