Protracted hydrothermal alteration recorded at the microscale in the Chenaillet ophicarbonates (Western Alps): Insights from in situ δ^{18} O thermometry in serpentine, carbonate and magnetite Maria Rosa Scicchitano^{a, b, *}, Romain Lafay^c, John W. Valley^b, Noriko T. Kita^b, William O. Nachlas^b ^a Deutsches GeoForschungsZentrum GFZ, D14473 Potsdam, Germany (maria.rosa.scicchitano@gfz-potsdam.de) ^b Department of Geoscience, University of Wisconsin, Madison 53706, WI, USA (valley@geology.wisc.edu, noriko@geology.wisc.edu, nachlas@wisc.edu) ^c Géosciences Montpellier, Université Montpellier-II, 34095 Montpellier, France (romain.lafay@yahoo.fr) * Corresponding author. E-mail: maria.rosa.scicchitano@gfz-potsdam.de Keywords: ophicarbonates, Alps, oxygen isotopes, geothermometry, SIMS

Abstract

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

27

The study of serpentinites and ophicarbonates from ophiolitic terrains provides a three-dimensional perspective on the hydration and carbonation processes affecting modern oceanic lithosphere. The Chenaillet ophiolite (western Alps) is interpreted as a fragment of an oceanic core complex that resembles a modern slow spreading center, and it was weakly affected by Alpine metamorphism. Ophicarbonates from the Chenaillet ophiolite were targeted in this study for *in situ* analysis by Secondary Ion Mass Spectrometry (SIMS) of oxygen and carbon isotopes in serpentine, calcite, dolomite and magnetite. The high spatial resolution of SIMS allowed us to target different serpentine, carbonate and magnetite generations intergrown at scales ≤ 50 μ m, and reveal systematic zoning in δ^{18} O with a range of 5.8% in serpentine (from 3.0 to 8.8%, V-SMOW), 21.2% in carbonate (9.4 to 30.6%), and 5.6% in magnetite (-5.0 to -10.6%). Coupled analysis of oxygen isotopes in seven different touchingpairs of co-crystallized serpentine+carbonate and serpentine+magnetite provides independent constraints on both the temperatures and $\delta^{18}O_{(water)}$ values during serpentinization and carbonation responsible for the formation of the Chenaillet ophicarbonates. The new stable isotope data and thermometric estimates can be directly linked to textural and petrographic observations. These new results identify at least four different stages of hydrothermal alteration in the Chenaillet ophicarbonates: (1) peridotite hydration during seafloor exhumation at temperatures down to 200-130 °C and water δ^{18} O values varying from 5 to 2‰, as documented by serpentine+magnetite in mesh textures; (2) carbonation during exhumation near the seafloor at temperatures as low as 10 °C assuming water δ^{18} O values of -1%, as documented by the highest oxygen isotope ratios in texturally older calcite; (3)

serpentinization and carbonation at temperatures up to 240 °C and water δ^{18} O values of 2-3‰, as documented by serpentine+magnetite in veins crosscutting mesh textures $(T = 192\pm66 \text{ °C}, \delta^{18}O_{\text{(water)}} = 2\pm1\%, 2 \text{ standard deviation)}, \text{ serpentine+magnetite } (T = 192\pm66 \text{ °C}, \delta^{18}O_{\text{(water)}} = 2\pm1\%, 2 \text{ standard deviation)}$ 182 ± 32 °C, $\delta^{18}O_{\text{(water)}} = 2\pm1\%$) and serpentine+dolomite ($T = 243\pm79$ °C, $\delta^{18}O_{\text{(water)}} =$ 3±2‰) in recrystallized hourglass domains within serpentinite clasts, serpentine+dolomite ($T = 229\pm50$ °C, $\delta^{18}O_{(water)} = 3\pm1\%$) and serpentine+calcite ($T = 229\pm50$ °C, $\delta^{18}O_{(water)} = 3\pm1\%$) 208 ± 40 °C, $\delta^{18}O_{\text{(water)}} = 2\pm1\%$) within the fine-grained calcite matrix surrounding serpentinite clasts; (4) late stage carbonation at temperatures down to 70-40 °C assuming water δ^{18} O values of 3 to -1%, as documented by the highest oxygen isotope ratios in a large calcite vein crosscutting both serpentinite clasts and fine-grained carbonate matrix. We suggest that the textural and isotopic observations are consistent with a protracted serpentinization and carbonation of the lithospheric mantle that started during progressive exhumation to the seafloor and continued due to interaction with hot and isotopically shifted seawater, which circulated at depth in the oceanic crust and was then discharged near the seafloor, similar to modern mid-ocean ridge venting systems.

1. INTRODUCTION

70

79	Serpentinization and carbonation of ultramafic rocks occur over a wide range of
80	environments and physical-chemical conditions. The majority of modern serpentinites
81	form at slow and ultraslow spreading ridges during mantle unroofing and exhumation
82	at the seafloor at temperatures varying from 500 °C to <100 °C (e.g., Mével, 2003;
83	Barnes et al., 2009; Boudier et al., 2010; Bach et al., 2011; Rouméjon et al., 2018).
84	Carbonation reactions resulting in the formation of veins and ophicarbonates (i.e.,
85	carbonated ultramafic breccias resulting from repeated tectonic and/or hydraulic
86	fracturing of serpentinites) are usually associated with late stages of low-temperature
87	alteration near the seafloor (Bonatti et al., 1974; Mével, 2003; Früh-Green et al.,
88	2004; Manatschal and Müntener, 2009). Serpentinization of the subcontinental mantle
89	is also documented at ocean-continent transition (OCT) boundaries (e.g., Iberia-
90	Newfoundland rifted margins) where seawater infiltration is favored by crustal
91	thinning and tectonic activity (e.g., Boillot et al., 1989; Skelton and Valley, 2000;
92	Manatschal and Müntener, 2009; Schwarzenbach et al., 2013; Alt et al., 2018; Picazo
93	et al., 2019). In addition to passive margins, serpentinization and carbonation of
94	peridotite also occur at active margins and on continental settings. Ultramafic rocks
95	exposed in ophiolitic terrains can undergo further hydration and carbonation due to
96	low-temperature (<50 °C) interaction with meteoric water (e.g., Barnes and O'Neil,
97	1969; Barnes et al., 1978; Neal and Stanger, 1985; Streit et al., 2012; Barnes et al.,
98	2013; Falk et al., 2016).
99	The study of ophiolitic terrains is fundamental to unravel the magmatic, tectonic
100	and hydrothermal evolution of ocean basins from rift-drift and seafloor spreading
101	stages to subduction initiation and final closure (Dilek and Furnes, 2014). In fact,

ophiolites represent an analogue for present-day oceanic crust and preserve the only evidence for ocean basins older than ~170 Ma (Dilek and Furnes, 2014; Pearce, 2014). Ophiolites provide better access than the one-dimensional drill cores from modern oceanic crust, but they often record intense alteration during their passage from rift to subduction/collision zone to mountain belt (Pierce, 2014; Staudigel et al., 2014). Constraining *P-T* conditions and fluid sources of hydration and carbonation reactions in ultramafic rocks from ophiolitic terrains is also important for better characterizing the conditions that favor dissolution and precipitation of carbonate minerals in these lithologies, with implications for better estimating the potential for permanent storage of CO₂ in ultramafic rocks (Kelemen and Matter, 2008; Kelemen et al., 2011). It is also crucial for tracing the mobilization and fluxes of water, carbon and fluid-mobile elements among Earth's different reservoirs (e.g., Scambelluri et al., 2004; Alt et al., 2012; Collins et al., 2015) and the production of fluids enriched in hydrogen, methane and other hydrocarbons both at near-surface conditions (Kelley et al., 2005; Miller et al., 2016) and in subduction zones (Vitale Brovarone et al., 2017). Oxygen isotopes have been extensively used as geothermometers and tracers to determine the temperatures and fluid sources during peridotite hydration and carbonation in various tectonic settings (e.g., Wenner and Taylor, 1971, 1973; Agrinier and Cannat, 1997; Früh-Green et al., 1990, 1996; Barnes et al., 2009; Lafay et al., 2017; Noël et al., 2018; Rouméjon et al., 2018; Scicchitano et al., 2018a,b, 2020). This method requires knowledge of mineral-fluid or mineral-mineral oxygen isotope fractionation factors and assumption that isotope equilibrium between coprecipitated minerals and fluids was achieved and preserved. Measured δ^{18} O values in co-precipitated minerals can, then, be combined with corresponding calibrations of oxygen isotope fractionations to independently calculate both the equilibrium

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

temperature and the oxygen isotope composition of the interacting fluid. Several studies (e.g., Wenner and Taylor, 1971; O'Hanley and Offler, 1992; Früh-Green et al., 1996; Alt and Shanks, 2006; Barnes et al., 2009) have estimated serpentinization temperatures and fluid δ^{18} O values using the equilibrium oxygen isotope fractionation between coexisting serpentine and magnetite previously separated from the rock. Geothermometry in carbonated serpentinites has recently been achieved using carbonate clumped isotope techniques that allow calculating equilibrium temperatures independently of the isotopic composition of the fluids from which carbonate formed (e.g., Streit et al., 2012; Falk and Kelemen, 2015; de Obeso and Kelemen, 2018). Studies based on mineral separates and clumped isotope techniques represent a fundamental achievement in our understanding of the temperatures at which serpentinization and carbonation of ultramafic rocks occur. Nevertheless, they likely represent average estimates and overlook the larger complexity of these reactions recorded at the microscale by the occurrence of multiple serpentine and carbonate generations. In fact, recent in situ oxygen isotope studies by Secondary Ion Mass Spectrometry (SIMS) in serpentinites and carbonated serpentinites from different tectonic settings have shown a significant variation in the oxygen isotope composition of serpentine and carbonate minerals recorded at the microscale (Noël et al., 2018; Rouméjon et al., 2018; Scicchitano et al., 2018a, 2020). The high spatial resolution of SIMS techniques allows the analysis of oxygen isotopes to be measured along detailed traverses through co-precipitated host rock and vein minerals that are in textural equilibrium at scales $\leq 50 \mu m$ (Turnier et al., 2020). Consequently, it is a powerful tool for obtaining independent estimates of serpentinization temperatures and fluid δ^{18} O values framed in a petrological context in rocks that record multiple stages of fluid-rock interactions (e.g., Scicchitano et al., 2018b, 2020) as well as for

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

testing the achievement of isotopic equilibrium during serpentinization processes (e.g., Lafay et al., 2019).

In this study we apply SIMS techniques in combination with new reference materials (Scicchitano et al., 2020) to analyze oxygen and carbon isotopes in serpentine, carbonate (calcite, dolomite) and magnetite in order to unravel the complex fluid-rock history recorded at the microscale in ophicarbonate samples from the Chenaillet ophiolite. The fine-grained textures observed in the investigated samples can only be targeted by SIMS, which requires the use of matrix-matched reference materials (Valley and Kita, 2009). The new analytical capabilities provide unique constraints on oceanic hydrothermal alteration recorded in the Chenaillet ophiolite that were not resolved by earlier studies based on conventional data. Furthermore, the ability to target mineral phases that are in textural equilibrium (e.g., serpentine-carbonate, serpentine-magnetite) allowed us to constrain independently both alteration temperatures and fluid sources.

2. GEOLOGICAL SETTING AND PREVIOUS STUDIES

The Chenaillet ophiolite in the Franco-Italian Alps (Fig. 1) is interpreted as a remnant of embryonic oceanic crust formed at the distal part of a Magma-Poor-Ocean Continent Transition (MP-OCT) margin (Manatschal and Müntener, 2009; Manatschal et al., 2011; Li et al., 2013; Lafay et al., 2017) resembling actual slow spreading centers (Lagabrielle and Cannat, 1990; Lagabrielle and Lemoine, 1997). It consists mainly of pillow lavas with Mid Ocean Ridge Basalt (MORB) geochemical signature superimposed on tectonically exhumed gabbros and serpentinized mantle rocks comparable to oceanic core complexes (OCC) exposed in modern slow- to

ultraslow-spreading ridges (Manatschal and Müntener, 2009; Manatschal et al., 2011; Li et al., 2013; Lafay et al., 2017). Recent U-Pb zircon ages in the gabbros suggest that the Piemont-Liguria oceanic domain formed between 158-166 Ma (Li et al., 2013). No sheeted dike complex and post-rift sedimentary cover are observed in the Chenaillet ophiolite; sediments occur locally and consist of reworked mafic and ultramafic rocks covered by pelagic deposits, radiolarite and limestones (Lemoine et al., 1983; Manatschal et al., 2011). In contrast to other ophiolitic terrains in the Alps, the Chenaillet ophiolite escaped high-pressure metamorphism during the Late Cretaceous to Eocene Alpine subduction and was only weakly overprinted by subgreenschist to lower greenschist facies metamorphism during thrusting onto the European margin (Mével et al., 1978; Goffé et al., 2004; Manatschal and Müntener, 2009; Manatschal et al., 2011). High- to low-temperature hydrothermal processes in the Chenaillet ophiolite occurred in an oceanic setting prior to obduction and are represented by mylonitized amphibole-bearing gabbros (Mével et al., 1978), serpentinites and ophicarbonates (Manatschal and Müntener, 2009; Lafay et al., 2017). Serpentinization of mantle rocks is pervasive and original silicate minerals from the igneous stage are usually replaced by mesh and bastite textures typical of seafloor alteration under static conditions (Andreani et al., 2007; Manatschal and Müntener, 2009; Manatschal et al., 2011; Lafay et al., 2017). The pioneering work of Lemoine et al. (1983) and Lagabrielle and Lemoine (1997) has been recently reconsidered by Lafay et al. (2017) who provided a detailed petrological, geochemical and stable isotope (O, C, H) study of ophicarbonates from the Chenaillet ophiolite. These rocks consist of few tens of meter thick layers (Fig. 1b) of breccia found atop massive serpentinites near the serpentinite-basalt transition. Ophicarbonate breccias are made of slightly rounded serpentinite clasts cemented by a matrix of small (~12

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

μm in average) calcite grains (Lemoine et al., 1983; Lafay et al., 2017) (Fig. A.1). The diversity of microstructures (veins, replacement, matrix) allowed the authors to identify multiple events of carbonation following initial serpentinization of peridotites, which were attributed to a progressive cooling during exhumation of the mantle at the seafloor (Lafay et al., 2017). However, values of δ^{18} O in serpentine (3.3) to 5.1‰) and carbonates (11 to 16‰) could suggest that both serpentinization and carbonation occurred at higher temperatures (T = 155-190 °C and 110-180 °C, respectively) than seafloor alteration (Lafay et al., 2017). These temperature estimates should be reexamined. They were calculated assuming a constant unaltered seawater composition (Lafay et al., 2017) and homogenous mineral grains. However, the microstructures and chemical zoning suggest that the micro-drilling technique used to select serpentine and carbonate for stable isotope analyses has mixed different generations resulting in average compositions. In light of recent analytical developments allowing accurate in situ analysis of oxygen and carbon isotopes in serpentine, magnetite and carbonate by SIMS (Valley and Kita, 2009; Huberty et al.., 2010; Kita et al., 2011; Śliwiński et al., 2015a,b; Scicchitano et al., 2018a, 2020), a number of ophicarbonates studied by Lafay et al. (2017) were reanalyzed for stable isotope ratios (O, C) by SIMS to: (i) target the various serpentine and carbonate generations identified by Lafay et al. (2017) that could not be separated with microdrilling techniques due to their fine-grained size, (ii) identify systematic isotopic zoning recorded at the microscale in both serpentine and carbonate, (iii) couple in situ analysis of oxygen isotopes in potentially co-crystallized minerals (serpentine-calcite, serpentine-dolomite, calcite-dolomite, serpentine-magnetite) to estimate the equilibrium temperature independently of the fluid composition. To the best of our knowledge, this study represents the first successful attempt to applying the

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

serpentine-magnetite geothermometer at the microscale and provides the first stable isotope data in dolomite in these samples that could not be targeted by previous studies due to its small grain size.

230

227

228

229

3. PREPARATION OF GRAIN MOUNTS AND ANALYTICAL METHODS

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

231

Five ophicarbonate samples (RL3, RL6, RL7, RL9 and RL10) from the Chenaillet ophiolite previously characterized by Lafay et al. (2017) were prepared for oxygen and carbon isotope analysis by SIMS, as described in the Electronic Appendix A. A Hitachi S3400 Variable Pressure (VP) Scanning Electron Microscope (SEM) at the Department of Geoscience (University of Wisconsin-Madison, UW-Madison) was operated at low (P = 30 Pa) and high vacuum in backscattered electron (BSE) mode to identify the different generations of serpentine, carbonate and magnetite in the Chenaillet ophicarbonates described by Lafay et al. (2017). Carbonate minerals were also imaged using a cathodoluminescence (CL) Gatan PanaCL/F system. Careful SEM imaging in BSE, secondary electron (SE) and CL modes was performed following each SIMS session to check the location and features of all SIMS pits. We rejected analyses where pits were located on fractures, mixed domains or other features that could alter isotope ratios. Prior to SEM analysis, mounts were coated with carbon or a thin layer of gold; to avoid affecting carbon isotope ratios during SIMS analysis in carbonates, no carbon coating was used on the corresponding mounts. The accelerating voltage and working distance were usually ~15 or 10 kV and ~10 or 15 mm for BSE and CL imaging, respectively. Serpentine, calcite, dolomite and magnetite from the Chenaillet ophicarbonates were analyzed for major and minor element mineral chemistry using a CAMECA

SXFive Field Emission Electron Microprobe (EPMA) at the Department of Geoscience (UW-Madison). Details of EPMA methods are given in the Electronic Appendix A. Direct analysis of oxygen with EPMA was necessary for accurate quantification of variable Fe oxidation in serpentine and magnetite and variable water contents in serpentine. All serpentine analyses were normalized to 18 (O + OH) according to the general formula Mg₆Si₄O₁₀(OH)₈. Approximate H₂O content (wt.%) was calculated based on excess oxygen values measured by EPMA assuming total iron as Fe²⁺ (Table A.1). Carbonate analyses were normalized to 6 O according to the general formula (Ca,Mg)₂(CO₃)₂ (Table A.2). Magnetite analyses were normalized to 3 cations according to the general formula Fe₃O₄, and approximate Fe³⁺ and Fe²⁺ contents were estimated by charge balance (Table A.3). A CAMECA IMS-1280 large radius multicollector secondary ion mass spectrometer at the WiscSIMS laboratory (UW-Madison) was used to perform in situ oxygen and carbon isotope analyses of serpentine, carbonate and magnetite in the Chenaillet ophicarbonates during seven analytical sessions (Tables A.1 to A.4). Details on analytical settings are given in the Electronic Appendix A. We monitored bias, drift and external precision during each analytical session by bracketing 10-20 unknown analyses with at least eight analyses of the reference material located in the same grain mount. Matrix effects on bias due to variations in Mg/Fe ratios in serpentine and dolomite-ankerite solid solutions, which are observed during oxygen and carbon isotope analysis by SIMS (Śliwiński et al., 2015a,b; Scicchitano et al., 2020), were monitored and quantified for each analytical session by constructing a calibration curve using a suite of serpentine and carbonate reference materials (Table A.4). These calibration curves were then used to correct $\delta^{18}O$ and $\delta^{13}C$ values measured in serpentine and dolomite from the Chenaillet ophicarbonates. Orientation

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

effects in chrysotile were estimated by analyzing two different orientations of the chrysotile C22908 reference material as described in Scicchitano et al. (2018a, 2020), while orientation effects in magnetite were minimized using a special 3 kV protocol (see Electronic Appendix A for details) and evaluated by analyzing ~30 grains with different orientation of the magnetite M7-5830 reference material (Huberty et al., 2010; Kita et al., 2011).

4. RESULTS

4.1. Petrography and mineral chemistry

For the purpose of this study, we summarize the main textures targeted for *in situ* analysis by SIMS, which are essential for putting into petrological context the new oxygen and carbon isotope data.

4.1.1. Serpentine

Serpentine is the main constituent of the serpentinite clasts where it forms either mesh textures characterized by well-defined cores and rims (Fig. 2a-c) or hourglass textures in which a distinction between mesh rim and mesh center is not possible (Fig. 2d). Raman spectroscopy showed that mesh cores consist of a mixture between lizardite and chrysotile (hereafter referred to as "serpentine"), whereas mesh rims consist of pure lizardite (Lafay et al., 2017). Magnetite (up to ~20 µm large) is often observed around mesh cores in sample RL6 (Fig. 2b), while it is usually lacking or very limited in mesh textures of other samples. It is occasionally possible to identify an inner and outer mesh

core both surrounded by magnetite (Fig. 2b). A complex network of mesh veinlets (V-1) consisting of lizardite+magnetite follows original (pristine silicate) grain boundaries (Fig. 2e-f), while larger lizardite+magnetite veins 250 μm in width (V-2) crosscut mesh and hourglass textures (Fig. 2g). In sample RL6, lizardite+dolomite layers are observed within the carbonate matrix (Fig. 2j-k); this serpentine generation is hereafter referred to as "matrix serpentine". Finally, small chrysotile aggregates up to a few tens of µm large (Lafay et al., 2017) are widespread in the carbonate matrix surrounding serpentinite clasts (Fig. 2k-1). Mesh cores have higher Mg numbers $[Mg\# = 100 \times Mg/(Mg+Fe)]$, molar, with Fe = Fe(total)] and silica contents relative to mesh rims in all samples (Fig. A.2). In particular, mesh cores in samples RL6, RL7 and RL9 have Mg# ranging between 96 and 99 mole % and SiO₂ contents ranging between 40.6 and 43.4 wt.%, whereas mesh rims have Mg# of 90 to 97 mole % and SiO₂ contents of 38.0 to 42.0 wt.% (Fig. A.2, Table A.1). A similar trend between Mg# and silica is observed in mesh textures from samples RL10 and RL3, which however show lower Mg# (91 to 95 mole % in mesh cores, 85 to 95 mole % in mesh rims) and comparable SiO₂ contents (39.9 to 42.5 wt.% in mesh cores, 36.0 to 42.8 wt.% in mesh rims) relative to mesh serpentine in the other three samples (Fig. A.2, Table A.1). The variability in alumina content is lower in mesh serpentine from samples RL6, RL7 and RL9 (Al₂O₃ = 0.2-1.3 wt.%) relative to mesh serpentine from samples RL10 and RL3 ($Al_2O_3 = 0.1$ -4.3 wt.%) (Fig. A.2, Table A.1). Serpentine in hourglass textures has a similar chemical composition as serpentine in mesh rims (Fig. A.2, Table A.1). Lizardite in V-1 veins has similar silica ($SiO_2 = 41.2$ -43.1 wt.%) and alumina contents (Al₂O₃ = 0.1-0.6 wt.%) across different samples, whereas Mg# decreases from sample RL9 (Mg# = 96-97) to samples RL10 and RL3 (Mg# = 94-95) (Fig. A.2, Table A.1). Lizardite in V-2 veins and "matrix serpentine"

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

observed in sample RL6 have similar chemical compositions as those of mesh cores in the same sample (Fig. A.2, Table A.1). Chrysotile in the carbonate matrix surrounding serpentinite clasts is also characterized by higher Mg# in samples RL6, RL7 and RL9 (Mg# = 94-98) relative to samples RL10 and RL3 (Mg# = 88-95; Fig. A.2, Table A.1); in contrast, both silica and alumina contents are similar across different samples (SiO₂ = 39.5-44.2 wt.%, $Al_2O_3 = 0.2-2.2$ wt.%).

333

334

327

328

329

330

331

332

4.1.2. Carbonates within serpentinite clasts

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

Serpentine in mesh cores is often partially or completely replaced by calcite (hereafter referred to as C2, Lafay et al., 2017) and relict serpentine inclusions are frequently observed in calcite mesh (Fig. 2a-c). C2 calcite is sometimes connected to calcite veinlets ~10 µm in width (hereafter C1; Lafay et al., 2017); the largest C1 calcite veins (up to 500 μm in width) crosscut serpentine in mesh and hourglass textures as well as V-1 and V-2 lizardite+magnetite veins (Fig. 2h-i). Although C1 calcite veins are usually restricted to individual clasts and are often truncated at the edges of the clasts, they sometimes propagate into the surrounding carbonate matrix (Fig. A.1). SEM-CL imaging shows complex patchy zoning and resorption features in both C1 veins and C2 mesh suggesting multiple events of recrystallization (Fig. 3). As previously shown by Lafay et al. (2017), the edges of C1 calcite veins are sometimes delimited by distinct CL calcite rims (Fig. 3b-c). In addition to calcite, subordinate dolomite is observed in some samples as (i) rims around C2 calcite mesh (Fig. 3e, 4a), (ii) borders along C1 veins at the boundary with serpentine (Fig. 3a, 4b), (iii) subhedral grains associated with "matrix serpentine" in sample RL6 (Fig. 2k, 4c) and (iv) veinlets in the C3 calcite matrix.

No significant variation is observed in the chemical composition of calcite in different textures across different samples (Table A.2). FeO and MnO contents are usually <0.5 wt.% with the exception of calcite in C2 mesh (FeO = 0.1-1.3 wt.%) from sample RL6. In contrast, the MgO content in calcite from different textures has a larger variability from 0.02 to 1.6 wt.% (Table A.2).

Dolomite has a similar chemical composition in all samples and textural locations with FeO content varying from 0.1 to 1.2 wt.% and MnO content <0.3 wt.%; Fe# is <3 mole %.

4.1.3. Carbonates surrounding serpentinite clasts

Serpentinite clasts are embedded in a calcite matrix (hereafter C3; Lafay et al., 2017) that appears either "turbid", when intergrown with fine-grained chrysotile aggregates as documented through Raman spectroscopy (Lafay et al., 2017), or "clear", when no chrysotile is present (Fig. A.3). Clear calcite domains (hereafter C1') in the C3 calcite matrix were interpreted by Lafay et al. (2017) as remnants of C1 veins channeling fluids. Calcite veins ~100 μm in width (hereafter C3-veins) sometimes crosscut the C3 calcite matrix but not the lizardite+dolomite layers (Fig. 2j). Finally, a large calcite vein ~5 mm in width (hereafter C4; Lafay et al., 2017) crosscuts both C3 calcite matrix and serpentinite clasts in sample RL9 (Fig. A.1). SEM-CL imaging shows that C1' clear calcite domains consist of large calcite grains that sometimes exhibit a concentric (Fig. 5a-b) or oscillatory CL zoning (Fig. 5c) truncated by the surrounding aggregates of fine-grained C3 calcite matrix; the latter also shows a similar concentric CL zoning (Fig. 5a, d). Calcite grains in C1' are often crosscut or bounded by later calcite veinlets (hereafter C1'-veins) (Fig. 5a, c). In contrast, C3-veins do not exhibit complex CL

zoning (Fig. 5d). In addition to calcite, dolomite was observed at the boundary between C4 vein and serpentinite clast in sample RL9 (Fig. 4d).

FeO and MnO contents are usually <0.5 wt.% with the exception of calcite in C3-veins (MnO = 0.1-0.7 wt.%) from sample RL6. In contrast, the MgO content in calcite from different textures has a larger variability from 0.03 to 1.9 wt.% (Table A.2). No significant variation is observed between different textures across different samples.

4.2. Oxygen and carbon isotopes by SIMS

4.2.1. Serpentine

In situ oxygen isotope analyses of serpentine were performed in two analytical sessions (S1 and S2; Table A.1). A suite of six (S1) to seven (S2) antigorite reference materials was analyzed at the beginning of each analytical session in order to build a calibration curve for the correction of polymorph-specific matrix effects due to Mg/Fe variations in the compositional range Mg# = 77.5-99.5 (Table S2 in Scicchitano et al., 2020). Lizardite (L3431) and chrysotile (C22908) reference materials (Scicchitano et al., 2018a, 2020) were also analyzed to correct for the bias relative to the normalizing antigorite reference material Al06-44A (Table S2 in Scicchitano et al., 2020). A bias of ~1‰ was measured between lizardite L3431 and antigorite Al06-44A in both analytical sessions. Orientation effects in chrysotile C22908 were ~1‰ in all analytical sessions, hence this is considered as a limitation on the accuracy of analyses done in this polymorph, but no orientation effects are detected for lizardite or antigorite. Measured δ^{18} O values in serpentine from the Chenaillet ophicarbonates

were corrected according to the method described in Scicchitano et al. (2020) and are reported relative to the V-SMOW scale (Table A.1).

The highest average δ^{18} O values are recorded in the core of mesh textures where oxygen isotope ratios vary between 4.4 and 8.5% with no distinction between calcitefree and calcite-bearing mesh cores (Fig. 6). Although mesh rims show a large variability in oxygen isotope ratios with δ^{18} O values varying from 4.5 to 8.8%, their average δ^{18} O values are generally lower compared to mesh cores (Fig. 6). No correlation between δ^{18} O value and Mg# was observed in mesh textures. Lizardite in V-1 veins has an oxygen isotope composition varying from 3.5 to 6.4% with average δ^{18} O values lower relative to mesh rims (Fig. 6). Lizardite in V-2 veins crosscutting both V-1 veins and mesh textures has low δ^{18} O values of 3.2-4.2% (Fig. 6). Similar low oxygen isotope ratios relative to mesh cores are recorded in hourglass serpentine (δ^{18} O = 3.8-5.7%), "matrix serpentine" (δ^{18} O = 3.1-5.4%) and serpentine in the C4 calcite vein (δ^{18} O = 4.0-4.8%) (Fig. 6). Chrysotile in the C3 calcite matrix has a large variability in δ^{18} O values from 3.0 to 5.7% (Fig. 6).

Overall, SIMS analyses allow identifying a larger variation in serpentine $\delta^{18}O$ values (from 3.0 to 8.8‰) relative to previous studies on powdered micro-drilled samples ($\delta^{18}O = 3.3-5.1\%$; Lafay et al., 2017) as well as a systematic variation in $\delta^{18}O$ values between different serpentine generations.

4.2.2. Carbonate

In situ oxygen and carbon isotope analyses in carbonates were performed in four analytical sessions (S3 to S5 for O, S6 for C; Table A.2). Calcite UWC-3 (Kozdon et al., 2009) was used as a working reference material. A suite of seven to ten carbonate

reference materials was analyzed at the start of each session to calibrate matrix effects in samples with chemical composition along the dolomite-ankerite solid solution series (Table A.4). Measured δ^{18} O and δ^{13} C values in dolomite from the Chenaillet ophicarbonates were corrected according to the method described in Śliwiński et al. (2015a,b) and for the bias between dolomite UW6220 and calcite UWC-3 reference materials (Table A.2). Values of $\delta^{18}O$ and $\delta^{13}C$ are reported relative to the V-SMOW and V-PDB scales, respectively (Table A.2). Values of δ^{18} O for calcite in C1 veins mostly range between 9.4 and 13.9‰ and occasionally up to 22.3% (Fig. 7). The highest $\delta^{18}O$ values are commonly observed at the edges of large C1 veins (Fig. 3b). Analyses performed across one of the largest C1 veins (Fig. 3c, A.4a) showed a nearly symmetric edge-to-edge oxygen isotope zoning up to $\sim 3\%$ with the lowest δ^{18} O values in the core of the vein (Fig. A.4). Values of δ¹³C for C1 calcite veins vary between –0.6 and 2.4‰ but no systematic correlation is observed with textures (Fig. A.5). Calcite in C2 mesh textures shows the largest variability in oxygen isotope composition with δ^{18} O values ranging from 9.8 to 30.6% (Fig. 7), whereas δ^{13} C values vary between -2.6 and 1.9% (Fig. A.5). The highest δ^{18} O values in C2 calcite mesh are typically observed at the core of mesh textures, whereas the edges usually have lower δ^{18} O values (Fig. 3d-i). It is sometimes possible to observe resorption textures where calcite with low δ^{18} O values, similar to those measured in nearby C1 veinlets, replaces C2 calcite mesh cores with higher δ¹⁸O values (Fig. 3f-i). Calcite in C1' textures also shows a large variability in oxygen and carbon isotopes similar to C2 calcite mesh with $\delta^{18}O$ and $\delta^{13}C$ values of 10.6 to 24.9% and -1.1 to 1.6%, respectively (Fig. 7, A.5). Similar to calcite in C2 mesh textures, the highest δ^{18} O values in C1' textures are commonly observed in the cores of large calcite grains (Fig. 5 and Electronic Appendix B). Late C1'-veins

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

crosscutting or bounding C1' calcite grains have low δ^{18} O values of 10.9 to 11.8% 451 (Fig. 5c, 7 and Electronic Appendix B) and δ^{13} C values of -0.6 to 0.7% (Fig. A.5). 452 Similarly, calcite in the fine-grained C3 matrix and crosscutting C3-veins also have 453 low δ^{18} O values of 9.8-12.9% and 10.5-11.5%, respectively (Fig. 5d, 7 and B.1 in 454 Electronic Appendix B); δ^{13} C values vary from -0.1 to 2.2% and -0.6 to 0.6%, 455 456 respectively (Fig. A.5). Finally, calcite in the latest C4 vein has the highest average oxygen isotope composition (average $\delta^{18}O = 21.1\%$, Fig. 7) and carbon isotope 457 values similar to calcite in other textural locations (δ^{13} C = -0.7 to 1.7‰, Fig. A.5). 458 Dolomite associated with mesh textures in serpentinite clasts has δ^{18} O values of 10.7 459 460 to 14.1% (n = 20) that are comparable to the oxygen isotope composition of dolomite bordering C1 calcite veins ($\delta^{18}O = 10.1\text{-}11.9\%$, n = 9) and the C4 vein ($\delta^{18}O = 11.2\text{-}$ 461 12.5‰, n = 2) (Table A.2). Similar δ^{18} O values are also recorded in subhedral 462 463 dolomite associated with matrix serpentine in the layers at the boundary between serpentinite clasts and C3 calcite matrix ($\delta^{18}O = 11.4-13.2\%$, n = 5) (Table A.2). 464 465 SIMS analyses show a much larger variability (\sim 21‰) in calcite δ ¹⁸O values 466 relative to ~6‰ variation described in Lafay et al. (2017). Additionally, the ability to place SIMS data into a petrological context highlights that higher δ^{18} O values in 467 468 zoned C1 veins, C2 mesh and C1' calcite domains likely represent an older signature 469 that is progressively replaced by younger calcite generations with lower δ^{18} O values 470 (core of C1 veins, C1'-veins, C3 matrix and C3-veins). SEM-CL imaging linked to 471 oxygen isotope ratios also allowed distinguishing C1' domains from C1 open veins. Values of δ^{18} O increase again in the latest C4 calcite vein (average δ^{18} O = 21.1‰) 472 crosscutting serpentinite clasts and C3 calcite matrix (average $\delta^{18}O = 11.1\%$). Values 473 474 of δ^{13} C measured by SIMS vary by ~4.5% at most in C2 calcite mesh, similar to the 475 variation observed by Lafay et al. (2017). Nevertheless, SIMS analyses are generally

higher relative to those reported in Lafay et al. (2017) (-2.6 to +2.4% vs. -5.2 to +0.4%, respectively).

478

479

476

477

4.2.3. Magnetite

480

481 In situ oxygen isotope analyses in magnetite were performed in one analytical 482 session (S7; Table A.3). The extent of crystal orientation effects in magnetite was 483 determined by bracketing analyses of the M7-5830 magnetite reference material with 484 eight analyses of the UWQ-1 quartz reference material (Kelly et al., 2007) (Table 485 A.4). A grain-to-grain reproducibility of $\sim 1\%$ (2 standard deviations, 2SD) was 486 obtained (using the low-kV protocol of Kita et al., 2011) in both M7-5830 and UWQ-487 1 (Table A.4); hence this represents the maximum precision achievable during oxygen 488 isotope analyses of magnetite in this study. Magnetite analyses in the ophicarbonate 489 samples from the Chenaillet ophiolite were bracketed with eight analyses in the 490 UWC-3 calcite reference material (Kozdon et al., 2009) located in the same grain 491 mounts in order to monitor bias, drift and external precision (Table A.3). Magnetite 492 analyses were corrected for the bias between UWC-3 calcite and M7-5830 magnetite 493 reference materials measured in different mounts, and they are reported relative to the 494 V-SMOW scale (Tables A.3 and A.4). 495 Magnetite grains larger than ~10 µm located in different textures (mesh, V-1 and 496 V-2 veins, hourglass serpentine) were targeted for SIMS oxygen isotopes analysis in 497 samples RL6, RL3 and RL9 (Table A.3). Magnetite in mesh textures (Fig. 2b and A.6a) shows the largest variability in δ^{18} O values from -10.6 to -5.0% (n = 32). 498 499 Magnetite in V-1 veins (Fig. 2f and A.6b) and V-2 veins (Fig. 2g and A.6c) has oxygen isotope ratios varying from -8.5 to -7.3% (n = 3) and -7.7 to -10.6% (n = 2), 500

501	respectively. Magnetite associated with hourglass serpentine (Fig. 2d and A.6d) has
502	an oxygen isotope composition of -9.6 to -8.0% ($n = 4$).
503	
504	5. DISCUSSION
505	
506	5.1. Estimating alteration temperatures and water $\delta^{18}O$ values in co-crystallized
507	mineral pairs
508	
509	Based on textural observations, we identified seven pairs of minerals that appear to
510	be in textural equilibrium along the metasomatic sequence and, therefore, assumed to
511	have co-crystallized: (i) lizardite+magnetite in mesh textures with a single mesh core,
512	V-1 veins (Fig. 2e, f), V-2 veins (Fig. 2g), and in the hourglass matrix (Fig. 2d); (ii)
513	lizardite+dolomite in the layers at the boundary between serpentinite clast and
514	carbonate matrix (Fig. 2k and 4c) as well as with hourglass serpentine (Fig. 4b, d);
515	(iii) chrysotile+calcite in the C3 calcite matrix (Fig. 21). Coupled oxygen isotope
516	analysis by SIMS in these mineral pairs allows us to test whether isotopic equilibrium
517	was achieved during hydration and carbonation reactions, in which case equilibrium
518	temperatures and water $\delta^{18}O$ values are independently estimated.
519	
520	5.1.1. Serpentine-magnetite
521	
522	The majority of targeted serpentine-magnetite pairs ($n = 17$, Table 1) are in mesh
523	textures (sample RL6) because of the larger (>10 μm) size of magnetite grains. Only a
524	limited number of analyses was possible in V-1 veins $(n = 1)$, V-2 veins $(n = 2)$ and
525	hourglass matrix $(n = 4)$ because of the small grain size of magnetite (Table 1)

A large uncertainty exists on the serpentine-water oxygen isotope fractionation because different calibrations (Wenner and Taylor, 1971; Savin and Lee, 1988; Früh-Green et al., 1996; Zheng, 1993; Saccocia et al., 2009) disagree by >4% and up to ~20% when extrapolated to temperatures <200 °C (see Fig. 10 and discussion in Scicchitano et al., 2020). In this study, the preferred calibrations for calculating the equilibrium temperature for each serpentine-magnetite pair are the serpentine-water oxygen isotope fractionation factors of Früh-Green et al. (1996) and the magnetitewater oxygen isotope fractionation factors of Bottinga and Javoy (1973). The same calibrations were then used to calculate the oxygen isotope composition of water in equilibrium with both serpentine and magnetite at each equilibrium temperature (Table 1 and Fig. 8). For mesh cores, equilibrium temperatures vary from 204 °C to 132 °C and $\delta^{18}O_{\text{(water)}}$ values decrease with temperature from 5.2 to 1.8% (Fig. 8). For serpentine-magnetite pairs in V-1 veins, V-2 veins and hourglass textures, equilibrium temperatures vary from 173 °C, 169-215 °C and 162-198 °C, respectively, while water δ^{18} O values vary between ~1 and 3% (Fig. 8). For comparison, equilibrium temperatures and $\delta^{18}O_{(water)}$ values were also calculated using other calibrations. Estimates calculated by combining the serpentinewater oxygen isotope fractionation factors of Saccocia et al. (2009) with the magnetite-water oxygen isotope fractionation factors of Bottinga and Javoy (1973) differ by ~50 °C (from 261 to 191 °C) and ~1‰ (from ~4 to 0‰), respectively, relative to estimates derived from the calibration by Früh-Green et al. (1996) (Fig. 8 and Table 1). Temperatures calculated with the calibration of Saccocia et al. (2009) could be overestimated of up to 40 °C (at exchange fraction < 40%) due to a bias in their serpentine-water calibration resulting from extrapolation of equilibrium fractionation factors in three-exchange site systems using the methods described by

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

Northrop and Clayton (1966) or Zheng et al. (1994), which are valid for two-exchange site systems (Agrinier and Javoy, 2016). Equilibrium temperatures calculated by combining the serpentine-water and magnetite-water oxygen isotope fractionation factors of Zheng (1991, 1993) as well as the serpentine-magnetite calibration by Früh-Green et al. (1996; their Eq. 3) are \sim 50-70 °C lower than those estimated using the serpentine-water and magnetite-water calibrations by Früh-Green et al. (1996) and Bottinga and Javoy (1973) (Table A.5). Considering the maximum uncertainties derived from the various calibration equations and δ^{18} O measurements, we estimate a total uncertainty of ± 80 °C on the calculated equilibrium temperatures. The uncertainty on δ^{18} O_(water) values is estimated to be in the order of $\pm 1\%$.

5.1.2. Serpentine-dolomite

Lizardite and subhedral dolomite grains in the layers at the boundary between serpentinite clast and carbonate matrix are relatively homogenous in oxygen isotopes with average δ^{18} O values of $4.7\pm1.4\%$ (2SD, n=10) and $12.2\pm1.3\%$ (2SD, n=5), respectively, suggesting that they are in isotopic equilibrium. Using the average δ^{18} O values measured by SIMS, we calculated an oxygen isotope fractionation (Δ^{18} O_{Dol-Srp}) of 7.5%, which corresponds to an equilibrium temperature of 229 °C (Fig 9a). In order to calculate the temperature at which serpentine and dolomite formed, we used the empirical calibration of the serpentine-water oxygen isotope fractionation by Früh-Green et al. (1996) and the calibration of the dolomite-water oxygen isotope fractionation (experiments at T=252-292 °C, Matthews and Katz, 1977).

Extrapolation of the experimental calibration by Saccocia et al. (2009) would result in an unrealistically high equilibrium temperature (even if accounting for the bias

described by Agrinier and Javoy, 2016) given a maximum calculated $\Delta^{18}\mathrm{O}_{\mathrm{Dol-Srp}}$ of 5.6% is obtained assuming $T=500\,^{\circ}\mathrm{C}$, which is the maximum thermal stability of serpentine in oceanic settings (e.g., Mével, 2003). Consequently, we consider extrapolation of the empirical calibration by Früh-Green et al. (1996) more reliable. At a temperature of 229 °C, serpentine and dolomite would be in equilibrium with a fluid of 3.3% (Fig. 9b). Similar equilibrium temperature of 240 °C and water $\delta^{18}\mathrm{O}$ value of 3.3% are calculated using the average oxygen isotope ratios measured in hourglass serpentine and dolomite pairs (Table 2, Fig. 9). These estimates are within uncertainty of those calculated for lizardite+magnetite pairs in hourglass textures.

5.1.3. Serpentine-calcite

Calcite in the fine-grained C3 matrix and the co-crystallized fine-grained chrysotile have average δ^{18} O values of 11.1±1.2% (2SD, n=57) and 3.9±1.4% (2SD, n=22), respectively, corresponding to a Δ^{18} O_{Cal-Srp} of 7.2% (Fig. 9a). Combining the empirical calibration of the serpentine-water system by Früh-Green et al. (1996) with the experimental calibration of the calcite-water oxygen isotope fractionation (experiments at $T=0.500^{\circ}$ C, O'Neil et al., 1969), yields an equilibrium temperature of 208 °C and a δ^{18} O_(water) of 2.0% (Fig. 9). The calibration by O'Neil et al. (1969) is in good agreement with experimental calibrations by Golyshev et al. (1981) and Kim and O'Neil (1997). As for the dolomite-serpentine pair, the experimental calibration by Saccocia et al. (2009) for the calcite-serpentine pair would result in unrealistically high equilibrium temperature not consistent with seafloor serpentinization (T>500 °C).

5.2. Evolution model for the hydrothermal alteration in the Chenaillet ophiolite

In the following discussion, stable isotope data are combined with petrographic observations and well-documented geological context to reconstruct the main phases of fluid-rock interaction recorded in the Chenaillet ophicarbonates (Fig. 10, 11).

Alteration temperatures and water oxygen isotope compositions estimated independently from mineral-mineral pairs (see above) are used as anchor points for the interpretations.

carbonation

5.2.1. Exhumation to the seafloor: early serpentinization followed by low-T

Oxygen isotope values of serpentine increase from V-1 mesh veins ($\delta^{18}O = 3.5$ to 6.4‰) to mesh cores ($\delta^{18}O = 4.4$ to 8.5‰), with no distinction between carbonate-free and carbonate-bearing mesh textures (Fig. 6, 10). Additionally, serpentine in mesh textures associated with magnetite has similar oxygen isotope and chemical compositions as serpentine in magnetite-free mesh textures from the same sample. Hence, we assume that the formation of serpentine in different mesh cores (i.e., magnetite- and calcite-bearing versus magnetite- and calcite-free) is attributable to the same hydrothermal event. The physical-chemical conditions at which serpentine in V-1 mesh veins and mesh rims formed cannot be independently constrained, but it is likely that they record the earliest stages of alteration with V-1 veins acting as conduicts that allowed progressive fluid percolation and pervasive replacement in mesh cores. The variation in Mg# and Al₂O₃ observed in mesh textures from samples RL6, RL7 and RL9 versus samples RL10 and RL3 (Fig. A.2) suggests formation of

serpentine after olivine versus pyroxene, respectively (e.g., Deschamps et al., 2013). Because no relict pyroxene and olivine are observed in any of the investigated samples, it is possible that serpentinization started at T>400 °C (favoring rapid dissolution of orthopyroxene) and then proceeded at T<300 °C (favoring rapid dissolution of olivine), as documented by experimental studies (e.g., Martin and Fyfe, 1970; Allen and Seyfried, 2003). The limited occurrence of antigorite, chlorite and tremolite in the Chenaillet ophicarbonates (Lafay et al., 2017) is consistent, in fact, with greenschist facies conditions (T = 300-500 °C). The abundant precipitation of massive magnetites in mesh cores would explain the formation of serpentine with higher Mg# in response to changes in the conditions of hydrothermal alteration. It should be noted that the marked crystallization of magnetite in mesh cores could be a consequence of the combined variation in fluid temperature and δ^{18} O composition, water/rock ratio (W/R) and redox conditions (Klein et al., 2009, 2013). In light of the above assumptions, the physical-chemical conditions at which the serpentine-magnetite pairs in mesh textures formed (i.e., T = 204 to 132 °C and $\delta^{18}O_{(water)} = 5$ to 2‰) can be considered valid for serpentine in all mesh cores. It is worth noting that the concomitance between cooling and decrease in water δ^{18} O values results in a net variation of magnetite and serpentine δ^{18} O values by ~5.5% and $\sim 0.4\%$, respectively (Fig. A.7); this is consistent with the variability in δ^{18} O values measured by SIMS in serpentine-magnetite pairs (Table 1). The decrease in fluid δ^{18} O values during cooling is consistent with a progressive evolution from a rock-dominated system during early stages of serpentinization (or low W/R), with water δ^{18} O values similar to the oxygen isotopic composition of the upper mantle $(\delta^{18}O_{mantle} = 5.5\%, \delta^{18}O_{olivine} = 5.18 \pm 0.28\%$; e.g., Mattey et al., 1994; Chazot et al., 1997), to a fluid-dominated system during later stages of serpentinization (or high

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

W/R) and exhumation of the mantle near the seafloor. Calculated water δ^{18} O values of 651 ~2‰ agree well with δ^{18} O values of 1.2-1.5‰ (Logatchev hydrothermal field) and 652 653 2.2-2.4% (Nibelungen hydrothermal field) measured in hot (T = 192-365°C) 654 ultramafic-hosted vent fluids sampled along the Mid-Atlantic slow-spreading ridge 655 (e.g., Charlou et al., 2010 and references therein; Schmidt et al., 2011), which are higher in δ^{18} O than present-day pure seawater (0%) due to interaction with the 656 657 oceanic crust (e.g., Mével, 2003). Similar temperatures (T = 265-364°C) and δ^{18} O 658 values (1.1-2.4‰) are also recorded in mafic-hosted vent fluids (e.g., Jean-Baptiste et 659 al., 1997). 660 Our new in situ data are overall in agreement with the original suggestion of Lafay 661 et al. (2017) who, in continuity with the tectonic models proposed by Manatschal et 662 al. (2011), proposed that exhumation of oceanic units occurred along detachment 663 faults favoring hydration and carbonation of mantle rocks (Fig. 12a). The authors 664 proposed that serpentinization initiated in a shallow seafloor environment at 665 conditions of at least 150 °C, with reactive fluids assumed to have δ^{18} O values of 0-666 2‰. The new *in situ* data suggest comparable temperature estimates within 667 uncertainty, but independently constrain the composition and origin of the interacting 668 fluids as well as identify that early serpentinization was followed by early low-669 temperature carbonation due to exposure of the mantle rocks on the paleo seafloor and 670 interaction with low-temperature seawater (Fig. 12a). This is documented by the zonation in δ^{18} O values observed in some carbonate generations (Fig. 7, 10), with 671 texturally older calcite domains having high δ^{18} O values in zoned C2 calcite mesh 672 673 (18.0-30.6%), at the edges of zoned C1 veins (18.7-22.3%) and in the cores of zoned 674 C1' domains (18.2-24.9‰), which are comparable to those reported for marine 675 carbonates and metacarbonates from the Lago Nero unit (Lemoine et al., 1983). Such

carbonates likely formed at temperatures as low as 10 °C assuming interaction with pure seawater in an ice-free world ($\delta^{18}O = -1\%$). Such low carbonation temperatures relative to serpentinization are also consistent with the observation that calcite in mesh textures is clearly replacing (hence postdating) serpentine.

680

681

682

676

677

678

679

5.2.2. An active hydrothermal cell: coupled high-T carbonation and

serpentinization

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

An overall decrease in oxygen isotope values with textural progression is recorded by both serpentine and carbonate in all investigated samples (Fig. 6, 7, 10). In particular, δ^{18} O values of serpentine in V-2 veins (δ^{18} O = 3.2-4.2‰) and hourglass textures ($\delta^{18}O = 3.8-5.7\%$) are ~3\% lower on average relative to serpentine in mesh cores (Fig. 6). Similarly, texturally younger calcite in zoned C2 mesh, C1 veins and C1' domains has δ^{18} O values down to ~10% (Fig. 7, 10). Low oxygen isotope ratios are also recorded in lizardite at the boundary between serpentinite clast and carbonate matrix ($\delta^{18}O = 3.1-5.4\%$), chrysotile intergrown with fine-grained C3 calcite ($\delta^{18}O =$ 3.0-5.7‰), C3 calcite matrix ($\delta^{18}O = 9.8-12.8$ ‰), C3-veins ($\delta^{18}O = 10.7-11.4$ ‰) and C1'-veins (δ^{18} O = 10.9%). Oxygen isotope thermometry from mineral pairs (see above) suggests that such a drop in δ^{18} O values in both serpentine and carbonates is consistent with a crystallization temperature of up to 240 °C and water δ^{18} O value of 2±1%. The smooth oxygen isotope zoning in both C1 veins and C1' domains as well as the similarity in fluid $\delta^{18}O$ compositions between early and late stages of hydrothermal alteration point to a continuous process that likely occurred entirely in a seafloor environmental setting. The pervasive carbonation textures often overprint serpentinization ones, but we do not exclude that carbonation initiated while residual

anhydrous silicates were still present. The calculated oxygen isotope compositions of water are consistent with isotopically shifted seawater rather than indicative of interaction with meteoric water or metamorphic fluids in continental settings. Oxygen isotope values measured in serpentine fall in the range of oceanic serpentinites (Wenner and Taylor, 1973) and all values of δ^{13} C in carbonates (from –2.6 to +2.4‰) suggest a seawater origin for carbon. It is worth noting that in a δ^{18} O versus δ^{13} C plot, the carbonates from the Chenaillet ophiolite show a distinct horizontal trend parallel to the δ^{18} O axis (Fig. A.5) suggesting that the fraction of CO₂ in the fluid was not significant. Calcite can precipitate at a mole fraction of CO₂/(CO₂ + H₂O) as low as 0.01, but in such case a high water/rock ratio is required for a significant carbonation. Carbonate cements commonly form at low temperature from seawater (biogenic and abiogenic) and freshwater (calcretes and speleothems). High- δ^{18} O carbonates are assumed to form in equilibrium with very low-T seawater and our new thermometry estimates suggest that low- δ^{18} O carbonates in the Chenaillet ophicarbonates formed at high temperature. Consequently, both temperature and water δ^{18} O must have changed. The flat trend can result from the dissolution and reprecipitation of pre-existing carbonates that interacted with nearly pure water such that the δ^{13} C remained constant. This agrees with observations of dissolution and reprecipitation textures in the carbonates of the investigated samples. Heating associated with burial during oceanic spreading is an unlikely scenario to explain this high-T hydrothermal event due to the intense fracturing of the ophicarbonates that points to active tectonics, accordingly to Lafay et al. (2017) who also suggested that authigenic carbonation, partially replacing serpentinites and achieving mantle minerals alteration, occurred under brittle conditions favored by the likely fluid-dominated system and tectonic context. In fact, the authors hypothesized

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

that the composition of the fluid and the temperature conditions evolved in a hydrothermal environment comparable to that observed in the vicinity of mid-ocean hydrothermal vents, i.e. active tectonic and magmatic conditions. The occurrence of a warmer (200-240 °C) stage of hydrothermal alteration due to interaction with evolved seawater-derived fluids ($\delta^{18}O = 2-3\%$) documented by the new *in situ* data could be the result of burial by lavas causing reheating and channeling of upwelling hydrothermal fluids along high-angle faults (Fig. 12b). Such a scenario would be consistent with the tectonic models of Manatschal et al. (2011) for the Chenaillet ophiolite suggesting that a first stage of mantle exhumation along a detachment fault was followed by a stage of 'high-angle extrusion', when magma and fluids were remobilized along high-angle faults acting also as feeder channels for the overlying pillow basalts. A similar model of high-temperature hydrothermal discharge, driven by mafic intrusions, along normal faults lying at high angle to an oceanic detachment surface was proposed by Alt et al. (2018) in the northern Appenine ophiolites. The authors documented an evolution of the fault system at the paleo-seafloor from talc alteration and sulfide deposits, typical of high-temperature hydrothermal discharge (T \approx 350 °C), to carbonated serpentinites formed at $T \approx 100$ °C (Alt et al., 2018). Carbonates formed at temperatures as high as ~ 225 °C are observed also in the serpentinite basement of the Lost City Hydrothermal Field in the Mid-Atlantic Ridge, where they precipitate from warm hydrothermal fluids with high concentrations of methane and hydrogen derived from serpentinization (Früh-Green et al., 2003).

747

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

5.2.3. Late stage veining

749

The youngest C4 calcite vein records a large variability in δ^{18} O values (12.3 to 23.9%) and the highest average oxygen isotope composition among different carbonate generations (Fig. 7). No independent calculations of temperature and fluid oxygen isotope composition are possible due to the lack of mineral pairs. It is, therefore, necessary to assume that the variation in δ^{18} O values is due to a variation in temperature, fluid oxygen isotope composition or more likely a combination of both. Given the lowest δ^{18} O values are comparable to those measured in the "hightemperature" carbonates, it is plausible that formation of the C4 vein started in similar physical-chemical conditions and continued due to interaction with progressively cooler and low- δ^{18} O hydrothermal fluids (down to a minimum of ~40 °C, assuming $\delta^{18}O_{\text{(water)}}$ of -1%) due to mixing with fresh seawater channeled along fractures at shallower depths. Such estimates are comparable, for instance, to the active vent fluids sampled at the Lost City Hydrothermal Field characterized by low temperature $(T = 55-75 \, ^{\circ}\text{C})$ and $\delta^{18}\text{O}$ values (0-0.1‰), and are interpreted to result from mixing between seawater and high-pH fluids derived from subsurface serpentinization reactions (Früh-Green et al., 2003). The evolutionary model suggested here for the hydrothermal alteration of the Chenaillet ophicarbonates is consistent with the overall observation that this ophiolitic terrain was only partly affected by low-grade metamorphism during obduction.

769

770

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

6. CONCLUSIONS

771

772

773

774

We performed *in situ* analysis by SIMS of oxygen and carbon isotopes in serpentine, calcite, dolomite and magnetite from ophicarbonate samples from the Chenaillet ophiolitic complex (western Alps). SIMS analysis revealed unprecedented

zoning in oxygen isotope ratios of serpentine (3.0 to 8.8%), calcite (9.4 to 30.6%) and magnetite (-5.0 to -10.6%) relative to previous studies, which relied on conventional bulk analysis. To the best of our knowledge, we document the first evidence of 'cold carbonates' (i.e., carbonates with $\delta^{18}O > 25\%$; e.g., Fig. 6 in Picazo et al., 2020 and references therein) in Alpine ophiolites. The lack of such high oxygen isotope signatures in other Alpine ophiolitic terrains could be due to the much larger sampling scale of the bulk techniques that average δ^{18} O values of multiple mineral generations. The high spatial resolution of SIMS allowed direct quantification of oxygen isotope ratios in mineral pairs that are in textural equilibrium and are interpreted to have co-crystallized. The relative oxygen isotope homogeneity of the targeted mineral pairs is consistent with isotopic equilibrium allowing for the independent calculation of equilibrium temperatures and water oxygen isotope values. Considering that the temperature-pressure stabilities of serpentine minerals are not well constrained, in situ stable isotope thermometry presents a powerful tool to constrain the conditions at which alteration of ultramafic rocks occurs in various tectonic settings. Additionally, numerical models by Klein and Garrido (2011) show that temperature-dependent activity gradients of both aqueous carbon dioxide (aCO₂,aq) and aqueous silica (aSiO₂,aq) determine the carbonation potential of serpentinite. Independently constraining the formation temperature is therefore essential to estimating aSiO_{2(aq)}, aCO_{2(aq)}, oxygen fugacity and pH, which in turn would allow estimating the phase equilibria with implications for the monitoring of reaction progress during CO₂ sequestration of ultramafic rocks (Klein and Garrido, 2011). Nevertheless, a major source of uncertainty on the calculation of alteration temperatures, particularly for the serpentine-water system, remains the large discrepancy between different calibrations of the oxygen isotope fractionation at T <

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

200 °C, hence future studies should aim to improve such calibrations. The new dataset and thermometry estimates in the Chenaillet ophiolite are interpreted as indicative of a continuous hydrothermal alteration starting during uplift and exposure of the lithospheric mantle to the seafloor, subsequently followed by further carbonation and serpentinization induced by hot (up to 240 °C) and isotopically shifted (δ^{18} O ~2‰) seawater, and finally by channeling of and mixing with low-T and low- δ^{18} O seawater along fractures. This scenario is consistent with alteration occurring in long-lived hydrothermal systems controlled by tectonic activity where multiple metasomatic events can explain effective mantle hydration and carbonation over a few tens of thousands of years. Carbonation of ultramafic rocks in oceanic settings plays an important role for the global carbon cycle as abyssal peridotites and serpentinites might act as a sink for CO₂. Unraveling the complexity and sequence of reactions, temperatures and fluid compositions responsible for peridotite or serpentinite carbonation in oceanic and continental settings is important for correctly estimating rates of mineral carbonation and potential for CO₂ intake.

ACKNOWLEDGEMENTS

We thank Mike Spicuzza and Brian Hess for assistance with sample preparation, Bil Schneider and John Fournelle for assistance with SEM and EPMA analyses, Kouki Kitajima for assistance in the SIMS lab and data processing. We are grateful to Eugenio Piluso for fruitful discussions and for reading an earlier version of the manuscript. Jeffrey Alt, Frieder Klein and an anonymous reviewer are acknowledged for constructive reviews that helped improve the manuscript. We also thank Frieder Klein for editorial handling. This work is supported by the U.S.

Department of Energy, Office of Science, Office of Basic Energy Sciences

(Geosciences) under Awards Number DE-FG02-93ER14389 and DE-SC0020666.

WiscSIMS is supported by the U.S. National Science Foundation (EAR-1658823,
2004618) and the University of Wisconsin- Madison.

829	REFERENCES
830	
831	Agrinier P. and Cannat M. (1997) Oxygen-isotope constraints on serpentinization
832	processes in ultramafic rocks from the mid-atlantic ridge (23°N). Proc. Ocean
833	Drill. Program, Sci. Results 153, 381–388.
834	doi:10.2973/odp.proc.sr.153.033.1997
835	Agrinier P. and Javoy M. (2016) Unbiased isotope equilibrium factors from partial
836	isotope exchange experiments in 3-exchange site systems. Geochim. Cosmochim.
837	Acta 189, 197–213.
838	Allen D. E and Seyfried W. E. (2003) Compositional controls on vent fluids from
839	ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental
840	study at 400 °C, 500 bars. Geochim. Cosmochim. Acta 67, 1531–1542.
841	Alt J. C. and Shanks W. C. (2006) Stable isotope compositions of serpentinite
842	seamounts in the Mariana forearc: Serpentinization processes, fluid sources and
843	sulfur metasomatism. Earth Planet. Sci. Lett. 242, 272–285.
844	doi:10.1016/j.epsl.2005.11.063
845	Alt J. C., Garrido C. J., Shanks W. C., Turchyn A., Padrón-Navarta J. A., López
846	Sánchez-Vizcaíno V., Gómez Pugnaire M. T. and Marchesi C. (2012) Recycling
847	of water, carbon, and sulfur during subduction of serpentinites: A stable isotope
848	study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett. 327-328, 50-60.
849	doi:10.1016/j.epsl.2012.01.029
850	Alt J., Crispini L., Gaggero L., Levine D., Lavagnino G., Shanks P. and Gulbransen
851	C. (2018) Normal faulting and evolution of fluid discharge in a Jurassic seafloor
852	ultramafic-hosted hydrothermal system. Geology 46, 523–526.
853	Andreani M., Mével C., Boullier A. M. and Escartín J. (2007) Dynamic control on

854 serpentine crystallization in veins: Constraints on hydration processes in oceanic 855 peridotites. Geochemistry, Geophys. Geosystems 8, doi:10.1029/2006GC001373 856 Bach W., Rosner M., Jöns N., Rausch S., Robinson L. F., Paulick H. and Erzinger J. 857 (2011) Carbonate veins trace seawater circulation during exhumation and uplift 858 of mantle rock: Results from ODP Leg 209. Earth Planet. Sci. Lett. 311, 242-859 252. doi:10.1016/j.epsl.2011.09.021 860 Barnes I. and O'Neil J. R. (1969) The relationship between fluids in some fresh 861 Alpine-type ultramafics and possible modern serpentinization, Western United 862 States. Geol. Soc. Am. Bull. 80, 1947–1960. 863 Barnes I., O'Neil J. R. and Trescases J. J. (1978) Present day serpentinization in New 864 Caledonia, Oman and Yugoslavia. Geochim. Cosmochim. Acta 42, 144–145. Barnes J. D., Paulick H., Sharp Z. D., Bach W. and Beaudoin G. (2009) Stable isotope 865 866 $(\delta^{18}O, \delta D, \delta^{37}Cl)$ evidence for multiple fluid histories in mid-Atlantic abyssal 867 peridotites (ODP Leg 209). Lithos 110, 83–94. doi:10.1016/j.lithos.2008.12.004 Barnes J. D., Eldam R., Lee C.-T. A., Errico J. C., Loewy S. and Cisneros M. (2013) 868 869 Petrogenesis of serpentinites from the Franciscan Complex, western California, 870 USA. Lithos 178, 143–157. doi:10.1016/j.lithos.2012.12.018 871 Boillot G., Féraud G., Recq M. and Girardeau J. (1989) Undercrusting by serpentinite 872 beneath rifted margings. Nature 341, 523-525. 873 Bonatti E., Emiliani C., Ferrara G., Honnorez J. and Rydell H. (1974) Ultramafic-874 carbonate breccias from the equatorial mid atlantic ridge. Mar. Geol. 16, 83–102. 875 Bottinga Y. and Javoy M. (1973) Comments on oxygen isotope geothermometry. Earth Planet. Sci. Lett. 20, 250–265. 876 877 Boudier F., Baronnet A. and Mainprice D. (2010) Serpentine Mineral Replacements 878 of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus

879 Subduction-Related Antigorite. J. Petrol. 51, 495–512. 880 doi:10.1093/petrology/egp049 881 Charlou J. L., Donval J. P., Konn C., Ondréas H. and Fouquet Y. (2010) High 882 production and fluxes of H₂ and CH₄ and evidence of abiotic hydrocarbon 883 synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the 884 Mid-Atlantic Ridge. In Diversity of hydrothermal systems on slow spreading 885 ocean ridges (eds. P. A. Rona, C. W. Devey, J. Dyment and B. J. Murton), 886 American Geophysical Union 188, 265–296. 887 Chazot G., Lowry D., Menzies M. and Mattey D. (1997) Oxygen isotopic 888 composition of hydrous and anhydrous mantle peridotites. Geochim. 889 Cosmochim. Acta 61, 161–169. 890 Collins N. C., Bebout G. E., Angiboust S., Agard P., Scambelluri M., Crispini L. and 891 John T. (2015) Subduction zone metamorphic pathway for deep carbon cycling: 892 II. Evidence from HP/UHP metabasaltic rocks and ophicarbonates. Chem. Geol. 893 **412**, 132–150. doi:10.1016/j.chemgeo.2015.06.012 894 de Obeso J. C. and Kelemen P. B. (2018) Fluid rock interactions on residual mantle 895 peridotites overlain by shallow oceanic limestones: Insights from Wadi Fins, 896 Sultanate of Oman. Chem. Geol. 498, 139–149. 897 doi:10.1016/j.chemgeo.2018.09.022 898 Deschamps F., Godard M., Guillot S. and Hattori K. (2013) Geochemistry of 899 subduction zone serpentinites: A review. Lithos 178, 96–127. 900 doi:10.1016/j.lithos.2013.05.019 901 Dilek Y. and Furnes H. (2014) Ophiolites and their origins. *Elements* 10, 93–100. 902 Falk E. S. and Kelemen P. B. (2015) Geochemistry and petrology of listvenite in the 903 Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during

- ophiolite emplacement. *Geochim. Cosmochim. Acta* **160**, 70–90.
- 905 doi:10.1016/j.gca.2015.03.014
- Falk E. S., Guo W., Paukert A. N., Matter J. M., Mervine E. M. and Kelemen P. B.
- 907 (2016) Controls on the stable isotope compositions of travertine from
- hyperalkaline springs in Oman: Insights from clumped isotope measurements.
- 909 Geochim. Cosmochim. Acta 192, 1–28. doi:10.1016/j.gca.2016.06.026
- 910 Früh-Green G. L., Weissert H. and Bernoulli D. (1990) A multiple fluid history
- 911 recorded in Alpine ophiolites. J. Geol. Soc. London 147, 959–970.
- 912 doi:10.1144/gsjgs.147.6.0959
- 913 Früh-Green G. L., Plas A. and Lecuyer C. (1996) Petrologic and Stable Isotope
- Constraints on Hydrothermal Alteration and Serpentinization of the EPR
- 915 Shallow Mantle at Hess Deep (Site 895). Proc. Ocean Drill. Program, 147 Sci.
- 916 Results **147**, doi:10.2973/odp.proc.sr.147.016.1996
- 917 Früh-Green G. L., Connolly J. A. D., Plas A., Kelley D. S. and Grobety B. (2004)
- 918 Serpentinization of the oceanic peridotites: Implication for geochemical cycles
- and biological activity. *Geophys. Monogr. Ser.* **144**, 119–136.
- 920 Goffé B., Schwartz S., Lardeaux J. M. and Bousquet R. (2004) Metamorphic structure
- of the Western and Ligurian Alps. Mitt. Osterr. Miner. Ges. 149, 125–144.
- 922 Golyshev S. I., Padalko N. I. and Pechenkin S. A. (1981) Fractionation of stable
- isotopes in carbonate systems. *Geochem. Int'l.* **10**, 85–99.
- Huberty J. M., Kita N. T., Kozdon R., Heck P. R., Fournelle J. H., Spicuzza M. J., Xu
- H. and Valley J. W. (2010) Crystal orientation effects in δ^{18} O for magnetite and
- 926 hematite by SIMS. *Chem. Geol.* **276**, 269–283.
- 927 Jean-Baptiste P., Charlou J. L. and Stievenard M. (1997) Oxygen isotope study of
- 928 mid-ocean ridge hydrothermal fluids: Implication for the oxygen-18 budget of

- 929 the oceans. Geochim. Cosmochim. Acta 61, 2669–2677.
- 930 Kelemen P. B. and Matter J. (2008) In situ carbonation of peridotite for CO₂ storage.
- 931 *Proc. Natl. Acad. Sci.* **105**, 17295–17300.
- Welemen P. B., Matter J., Streit E. E., Rudge J. F., Curry W. B. and Blusztajn J.
- 933 (2011) Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural
- Processes and Recipes for Enhanced, in situ CO₂ Capture and Storage. *Annu.*
- 935 Rev. Earth Planet. Sci. **39**, 545–576. doi:10.1146/annurev-earth-092010-152509
- 936 Kelley D. S., Karson J. A., Früh-Green G. L., Yoerger D. R., Shank T. M., Butterfield
- D. A., Hayes J. M., Schrenk M. O., Olson E. J., Proskurowski G., Jakuba M.,
- 938 Bradley A., Larson B., Ludwig K., Glickson D., Buckman K., Bradley A. S.,
- Brazelton W. J., Roe K., Bernasconi S. M., Elend M. J., Lilley M. D., Baross J.
- A., Summons R. E. and Sylva S. P. (2005) A Serpentinite-Hosted Ecosystem:
- The Lost City Hydrothermal Field. *Science* **307**, 1428–1435.
- 942 Kelly J. L., Fu B., Kita N. T. and Valley J. W. (2007) Optically continuous silcrete
- quartz cements of the St. Peter Sandstone: High precision oxygen isotope
- analysis by ion microprobe. *Geochim. Cosmochim. Acta* 71, 3812–3832.
- 945 doi:10.1016/j.gca.2007.05.014
- 946 Kim S.-T. and O'Neil J. R. (1997) Equilibrium and nonequilibrium oxygen isotope
- effects in synthetic carbonates. *Geochim. Cosmochim. Acta* **61**, 3461–3475.
- 948 Kita N. T., Huberty J. M., Kozdon R., Beard B. L. and Valley J. W. (2011) High
- precision SIMS oxygen, sulfur and iron stable isotope analyses of geological
- materials: Accuracy, surface topography and crystal orientation. SIMS XVII
- Proceedings, Surface and Interface Analysis 43, 427-431, DOI 10.1002/sia.3424.
- 952 Klein F. and Garrido C. J. (2011) Thermodynamic constraints on mineral carbonation
- of serpentinized peridotite. *Lithos* **126**, 147–160.

954 Klein F., Bach W., Jöns N., McCollom T., Moskowitz B. and Berquó T. (2009) Iron 955 partitioning and hydrogen generation during serpentinization of abyssal 956 peridotites from 15 N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 957 **73(22)**, 6868–6893. 958 Klein F., Bach W. and McCollom T. M. (2013) Compositional controls on hydrogen 959 generation during serpentinization of ultramafic rocks. Lithos 178, 55–69. 960 Kozdon R., Ushikubo T., Kita N. T., Spicuzza M. and Valley J. W. (2009) Intratest 961 oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real vs. 962 apparent vital effects by ion microprobe. Chem. Geol. 258, 327–337. 963 doi:10.1016/j.chemgeo.2008.10.032 964 Lafay R., Baumgartner L. P., Schwartz S., Picazo S., Montes-Hernandez G. and 965 Vennemann T. (2017) Petrologic and stable isotopic studies of a fossil 966 hydrothermal system in ultramafic environment (Chenaillet ophicalcites, 967 Western Alps, France): Processes of carbonate cementation. Lithos 294–295, 968 319–338. doi:10.1016/j.lithos.2017.10.006 969 Lafay R., Baumgartner L. P., Putlitz B. and Siron G. (2019) Oxygen isotope 970 disequilibrium during serpentinite dehydration. Terra Nov. 31, 94–101. 971 doi:10.1111/ter.12373 972 Lagabrielle Y. and Cannat M. (1990) Alpine Jurassic ophiolites resemble the modern 973 central Atlantic basement. Geology 18, 319–322. 974 Lagabrielle Y. and Lemoine M. (1997) Alpine, Corsican and Apennine ophiolites: the 975 slow-spreading ridge model. C. R. Acad. Sci. Ser. IIA Earth Planet. Sci. 325, 976 909–920. 977 Lemoine M., Bourbon M., Graciansky P.-C. and Létolle R. (1983) Isotopes du 978 carbone et de l'oxygène de calcaires asociés à des ophiolites (Alpes Occidentales,

979 Corse, Apennin): indices possibles d'un hydrothermalisme océanique téthusien. 980 Revue de Géologie Dynamique et de Géographie Physiqie 24, 305–314. 981 Li X.-H., Faure M., Lin W. and Manatschal G. (2013) New isotopic constraints on 982 age and magma genesis of an embryonic oceanic crust: The Chenaillet Ophiolite 983 in the Western Alps. Lithos 160–161, 283–291. doi:10.1016/j.lithos.2012.12.016 984 Manatschal G. and Müntener O. (2009) A type sequence across an ancient magma-985 poor ocean-continent transition: the example of the western Alpine Tethys 986 ophiolites. Tectonophysics 473, 4–19. doi:10.1016/j.tecto.2008.07.021 Manatschal G., Sauter D., Karpoff A. M., Masini E., Mohn G. and Lagabrielle Y. 987 988 (2011) The Chenaillet Ophiolite in the French/Italian Alps: An ancient analogue 989 for an Oceanic Core Complex? Lithos 124, 169–184. 990 doi:10.1016/j.lithos.2010.10.017 991 Martin B. and Fyfe W. S. (1970) Some experimental and theoretical observations on 992 the kinetics of hydration reactions with particular reference to serpentinization. 993 Chem. Geol. 6, 185-202. 994 Mattey D., Lowry D. and Macpherson C. (1994) Oxygen isotope composition of the 995 mantle peridotite. Earth Planet. Sci. Lett. 128, 231–241. 996 Matthews A. and Katz A. (1977) Oxygen isotope fractionation during the 997 dolomitization of calcium carbonate. Geochim. Cosmochim. Acta 41, 1431– 998 1438. 999 Mével C. (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. C. R. 1000 Geosci. 335, 825–852. doi:10.1016/j.crte.2003.08.006 1001 Mével C., Caby R. and Kienast J.-R. (1978) Amphibolite facies conditions in the 1002 oceanic crust: example of amphibolitized flaser-gabbro and amphibolites from 1003 the Chenaillet ophiolite massif (Hautes Alpes, France). Earth Planet. Sci. Lett.

- **39**, 98–108.
- 1005 Miller H. M., Matter J. M., Kelemen P., Ellison E. T., Conrad M. E., Fierer N.,
- Ruchala T., Tominaga M. and Templeton A. S. (2016) Modern water/rock
- reactions in Oman hyperalkaline peridotite aquifers and implications for
- microbial habitability. *Geochim. Cosmochim. Acta* **179**, 217–241.
- doi:10.1016/j.gca.2016.01.033
- Neal C. and Stanger G. (1985) Past and present serpentinisation of ultramafic rocks;
- an example from the Semail ophiolite nappe of northern Oman. In *The Chemistry*
- of Weathering (eds. J. I. Drewer). D. Reidel Publishing Company, Holland, pp.
- 1013 249–275.
- Noël J., Godard M., Oliot E., Martinez I., Williams M., Boudier F., Rodriguez O.,
- 1015 Chaduteau C., Escario S. and Gouze P. (2018) Evidence of polygenetic carbon
- trapping in the Oman Ophiolite: Petro-structural, geochemical, and carbon and
- oxygen isotope study of the Wadi Dima harzburgite-hosted carbonates (Wadi
- Tayin massif, Sultanate of Oman). *Lithos* doi:10.1016/j.lithos.2018.08.020
- Northrop D. A. and Clayton R. N. (1966) Oxygen isotope fractionations in systems
- 1020 containing dolomite. *J. Geol.* **74**, 174–196.
- 1021 O'Hanley D. S. and Offler R. (1992) Characterization of multiple serpentinization,
- Woodsreef, New South Wales. Can. Mineral. 30, 1113–1126.
- 1023 O'Neil J. R., Clayton R. N. and Mayeda T. K. (1969) Oxygen Isotope Fractionation in
- Divalent Metal Carbonates. J. Chem. Phys. 51, 5547–5558.
- Pearce J. A. (2014) Immobile element fingerprinting of ophiolites. *Elements* 10, 101–
- 1026 108.
- Picazo S., Lafay R., Faucheux V. and Vennemann T. (2019) New constraints on
- carbonation associated with brecciation in hyperextended margins (example of

1029	Iberia and Newfoundland margins). Terra Nov. 31, 317–331.
1030	doi:10.1111/ter.12383
1031	Picazo S., Malvoisin B., Baumgartner L. and Bouvier Anne-Sophie (2020) Low
1032	temperature serpentinite replacement by carbonates during seawater influx in the
1033	Newfoundland Margin. <i>Minerals</i> 10, 184. doi:10.3390/min10020184
1034	Rouméjon S., Williams M. J. and Früh-Green G. L. (2018). In-situ oxygen isotope
1035	analyses in serpentine minerals: Constraints on serpentinization during tectonic
1036	exhumation at slow- and ultraslow-spreading ridges. Lithos 323, 156–173.
1037	doi:10.1016/j.lithos.2018.09.021
1038	Saccocia P. J., Seewald J. S. and Shanks W. C. (2009) Oxygen and hydrogen isotope
1039	fractionation in serpentine-water and talc-water systems from 250 to 450 °C, 50
1040	MPa. Geochim. Cosmochim. Acta 73, 6789–6804. doi:10.1016/j.gca.2009.07.036
1041	Savin S. M. and Lee M. (1988) Isotopic studies of phyllosilicates. <i>Rev. Mineral.</i> 19,
1042	189–223.
1043	Scambelluri M., Fiebig J., Malaspina N., Müntener O. and Pettke T. (2004)
1044	Serpentinite Subduction: Implications for Fluid Processes and Trace-Element
1045	Recycling. Int. Geol. Rev. 46, 595-613. doi:10.2747/0020-6814.46.7.595
1046	Schmidt K., Garbe-Schönberg D., Koschinsky A., Straus H., Jost C. L., Klevenz V.
1047	and Königer P. (2011) Fluid elemental and stable isotope composition of the
1048	Nibelungen hydrothermal field (8°18'S, Mid-Atlantic Ridge): Constraints on
1049	fluid-rock interaction in heterogeneous lithosphere. Chem. Geol. 280, 1–18.
1050	Schwarzenbach E. M., Früh-Green G. L., Bernasconi S. M., Alt J. C. and Plas A.
1051	(2013) Serpentinization and carbon sequestration: A study of two ancient
1052	peridotite-hosted hydrothermal systems. Chem. Geol. 351, 115–133.
1053	doi:10.1016/j.chemgeo.2013.05.016

1054 Scicchitano M. R., Rubatto D., Hermann J., Shen T., Padrón-Navarta J. A., Williams 1055 I. S. and Zheng Y.-F. (2018a) In Situ Oxygen Isotope Determination in 1056 Serpentine Minerals by Ion Microprobe: Reference Materials and Applications to 1057 Ultrahigh-Pressure Serpentinites. Geostand. Geoanalytical Res. 42, 459–479. 1058 doi:10.1111/ggr.12232 1059 Scicchitano M. R., Rubatto D., Hermann J., Majumdar A. S. and Putnis A. (2018b) 1060 Oxygen isotope analysis of olivine by ion microprobe: Matrix effects and 1061 applications to a serpentinised dunite. Chem. Geol. 499, 126–137. 1062 doi:10.1016/j.chemgeo.2018.09.020 1063 Scicchitano M. R., Spicuzza M. J., Ellison E. T., Tuschel D., Templeton A. S. and 1064 Valley J. W. (2020) In situ oxygen isotope determination in serpentine minerals 1065 by SIMS: Addressing matrix effects and providing new insights on 1066 serpentinisation at Hole BA1B (Samail ophiolite, Oman). Geostand. 1067 Geoanalytical Res. 45, 161-187. doi: 10.1111/ggr.12359 1068 Skelton A. D. L. and Valley J. W. (2000) The relative timing of serpentinisation and 1069 mantle exhumation at the ocean-continent transition, Iberia: Constraints from 1070 oxygen isotopes. Earth Planet. Sci. Lett. 178, 327-338. doi:10.1016/S0012-1071 821X(00)00087-X 1072 Śliwiński M. G., Kitajima K., Kozdon R., Spicuzza M. J., Fournelle J. H., Denny A. 1073 and Valley J. W. (2015a) Secondary Ion Mass Spectrometry Bias on Isotope Ratios in Dolomite–Ankerite, Part I: δ^{18} O Matrix Effects. *Geostand*. 1074 1075 Geoanalytical Res. 40, 157–172. doi:10.1111/j.1751-908X.2015.00364.x 1076 Śliwiński M. G., Kitajima K., Kozdon R., Spicuzza M. J., Fournelle J. H., Denny A. 1077 and Valley J. W. (2015b) Secondary Ion Mass Spectrometry Bias on Isotope Ratios in Dolomite–Ankerite, Part II: δ^{13} C Matrix Effects. *Geostand*. 1078

1079	Geoanalytical Res. 40, 173–184. doi:10.1111/j.1751-908X.2015.00380.x
1080	Staudigel H., Furnes H. and Smits M. (2014) Deep biosphere record of in situ oceanic
1081	lithosphere and ophiolites. <i>Elements</i> 10 , 121–126.
1082	Streit E., Kelemen P. and Eiler J. (2012) Coexisting serpentine and quartz from
1083	carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman.
1084	Contrib. to Mineral. Petrol. 164, 821-837. doi:10.1007/s00410-012-0775-z
1085	Turnier R. B., Katzir Y., Kitajima K., Orland I. J., Spicuzza M. J. and Valley J. W.
1086	(2020) Calibration of oxygen isotope fractionation and calcite-corundum
1087	thermometry in emery at Naxos, Greece. J. Metamorph. Geol. 38, 53-70.
1088	Valley J. W. and Kita N. T. (2009) In situ oxygen isotope geochemistry by ion
1089	microprobe. Mineral. Assoc. Canada Short Course Ser. 41, 19-63.
1090	Vitale Brovarone A., Martinez I., Elmaleh A., Compagnoni R., Chaduteau C., Ferraris
1091	C. and Esteve I. (2017) Massive production of abiotic methane during
1092	subduction evidenced in metamorphosed ophicarbonates from the Italian Alps.
1093	Nat. Commun. 8, 1–13. doi:10.1038/ncomms14134
1094	Wenner D. B. and Taylor H. P. (1971) Temperatures of serpentinization of ultramafic
1095	rocks based on O18/O16 fractionation between coexisting serpentine and
1096	magnetite. Contrib. to Mineral. Petrol. 32, 165–185. doi:10.1007/BF00643332
1097	Wenner D. B. and Taylor H. P. (1973) Oxygen and hydrogen isotope studies of the
1098	serpentinization of ultramafic rocks in oceanic environments and continental
1099	ophiolite complexes. Am. J. Sci. 273, 207-239. doi:10.2475/ajs.273.3.207
1100	Zheng YF. (1991) Calculation of oxygen isotope fractionation in metal oxides.
1101	Geochim. Cosmochim. Acta 55, 2299–2307.
1102	Zheng YF. (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing
1103	silicates. Earth Planet. Sci. Letters 120, 247–263.

1104	Zheng YF., Metz P., Satir M. and Sharp Z. D. (1994) An experimental calibration of
1105	oxygen isotope fractionation between calcite and forsterite in the presence of a
1106	CO ₂ -H ₂ O fluid. Chem. Geol. 116, 17–27.
1107	
1108	

FIGURE AND TABLE CAPTIONS

1111	Fig. 1. (a) Tectonic map of the Piemont domain of the western Alps. (b). Geological
1112	map of the Chenaillet massif (star in Fig 1a, modified after Lafay et al., 2017) showing
1113	the location of the ophicarbonate outcrops and investigated samples.
1114	Fig. 2. SEM-BSE images of representative textures observed in the Chenaillet
1115	ophicarbonates. (a) Serpentine mesh textures with and without C2 calcite partially
1116	replacing serpentine in mesh cores (sample RL6). (b) Complex mesh textures showing
1117	inner and outer cores surrounded by magnetite; inner cores are locally fully replaced by
1118	C2 calcite (sample RL6). (c) Mesh inner and outer cores completely replaced by C2
1119	calcite (sample RL6). (d) Hourglass serpentine associated with magnetite (sample
1120	RL9). (e, f) Lizardite+magnetite veinlets (V-1) following original grain boundaries
1121	(samples RL3 and RL10). (g) Large lizardite+magnetite vein (V-2) crosscutting mesh
1122	textures (sample RL6). (h) C1 calcite vein crosscutting V-2 veins (sample RL6). (i)
1123	Textural link between C2 calcite in mesh textures and C1 calcite veins (sample RL10).
1124	(j, k) Lizardite+dolomite layers within the C3 calcite matrix containing a relict spinel
1125	(Spl); C3 calcite matrix is associated with small chrysotile grains (Ctl) and sometimes
1126	crosscut by calcite veins free of serpentine (C3-vein) (sample RL6). (l) Chrysotile
1127	grains in C3 calcite matrix (sample RL6). White and red circles are oxygen ($\delta^{18}O_{VSMOW}$,
1128	%) and carbon ($\delta^{13}C_{VPDB}$, %, in parentheses) isotope SIMS pits, respectively. Srp =
1129	serpentine, Ctl = chrysotile, Lz = lizardite, Cal = calcite, Dol = dolomite, Mag =
1130	magnetite, Spl = Cr-spinel.
1131	Fig. 3. SEM-CL images showing representative CL features in (a-c) C1 calcite veins
1132	(samples RL9, RL3 and RL10) and (d-i) C2 calcite mesh (samples RL6, RL10 and
1133	RL9). C1 veins are sometimes rimmed by a distinct brighter (b) or darker (c) CL layer.

- 1134 C2 calcite mesh have marked euhedral (g, i) to anhedral (f, h) CL zonation. Resorption
- features are sometimes observed in C2 calcite mesh (f-i). White and red circles are
- locations of oxygen ($\delta^{18}O_{VSMOW}$, %) and carbon ($\delta^{13}C_{VPDB}$, %, in parentheses) isotope
- 1137 SIMS pits, respectively.
- 1138 Fig. 4. SEM-BSE images of representative dolomite textures in the Chenaillet
- ophicarbonates. Dolomite is observed as (a) rims around C2 calcite mesh (sample RL9),
- 1140 (b) borders along C1 calcite veins at the contact with serpentine (sample RL7), (c)
- subhedral grains in the lizardite layers at the boundary between serpentinite clasts and
- 1142 C3 calcite matrix (sample RL6), (d) borders between C4 calcite vein and serpentinite
- clast (sample RL9). White and red circles are oxygen (δ^{18} O_{VSMOW}, %) and carbon
- 1144 ($\delta^{13}C_{VPDB}$, ‰, in parentheses) isotope SIMS pits, respectively.
- 1145 Fig. 5. SEM-CL images showing representative CL features in the carbonate matrix
- surrounding serpentinite clasts (samples RL6 and RL10). Domains with large calcite
- grains (C1') showing concentric (a-b) or oscillatory CL zoning (c) are surrounded by
- an aggregate of fine-grained calcite+chrysotile (a-b). (a, c) Large calcite grains in C1'
- domains are crosscut or bounded by calcite veinlets (C1'-veins). (d) Sharp contact
- between a calcite C3-vein and the surrounding fine-grained calcite matrix (C3). White
- and red circles in (c) and (d) are locations of oxygen (δ^{18} O_{VSMOW}, %) and carbon
- 1152 ($\delta^{13}C_{VPDB}$, %, in parentheses) isotope SIMS pits, respectively. Dashed lines in (a) to
- 1153 (c) are locations of SIMS oxygen and carbon isotope traverses (see Electronic Appendix
- 1154 B).
- 1155 Fig. 6. Summary of oxygen isotope data in serpentine from the Chenaillet
- ophicarbonates measured by SIMS.
- 1157 Fig. 7. Summary of oxygen isotope data in carbonate from the Chenaillet
- ophicarbonates measured by SIMS.

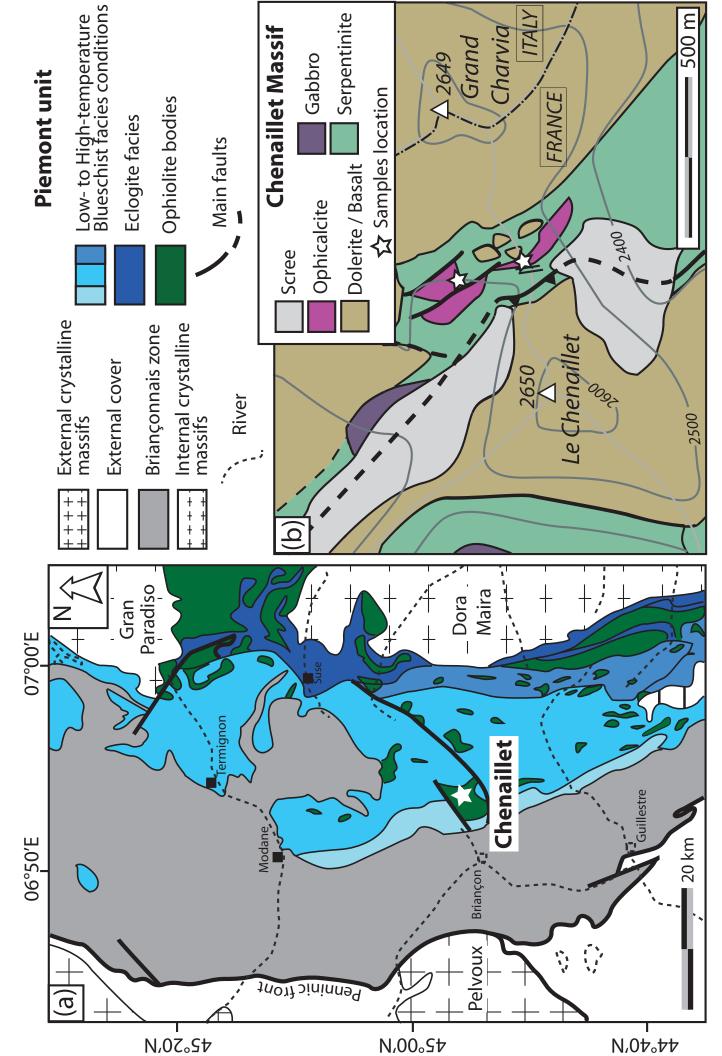
1159 Fig. 8. Serpentine-magnetite thermometry. (a) Calculation of equilibrium 1160 temperatures for serpentine-magnetite pairs in different textures based on SIMSmeasured mineral δ^{18} O values. (b) Calculation of water oxygen isotope values in 1161 1162 equilibrium with both serpentine and magnetite in different textures based on 1163 calculated equilibrium temperatures. Solid and dashed lines are calculated equilibrium 1164 temperatures based on serpentine-water oxygen isotope fractionation factors by Früh-1165 Green et al. (1996) and Saccocia et al. (2009), respectively. Magnetite-water oxygen 1166 isotope fractionation factors are after Bottinga and Javoy (1973). 1167 Fig. 9. Serpentine-carbonate thermometry. (a) Calculation of equilibrium 1168 temperatures for lizardite+dolomite and chrysotile+calcite pairs based on SIMSmeasured mineral δ^{18} O values. (b) Calculation of water oxygen isotope values in 1169 1170 equilibrium with serpentine, dolomite and calcite in each pair based on calculated 1171 equilibrium temperatures. Solid and dashed lines are calculated equilibrium 1172 temperatures for dolomite-serpentine (Matthews and Katz, 1977; Früh-Green et al., 1173 1996) and calcite-serpentine (O'Neil et al., 1969; Früh-Green et al., 1996), 1174 respectively. Fig. 10. Summary of the different mineral generations and corresponding δ^{18} O values 1175 1176 (‰). Formation is attributed to four stages of hydrothermal alteration in the Chenaillet 1177 ophicarbonates. **Fig. 11.** Schematic illustration showing the progression of textural and T- $\delta^{18}O_{(water)}$ 1178 variations in the Chenaillet ophicarbonates. Ol = olivine, Opx = orthopyroxene, Cr-1179 Spl = Cr-spinel, Srp_C = serpentine mesh core, Srp_R = serpentine mesh rim, Mag = 1180 magnetite, Lz = lizardite, Dol = dolomite, Ctl = chrysotile. $\delta^{18}O_W$ = oxygen isotope 1181 values of water. 1182

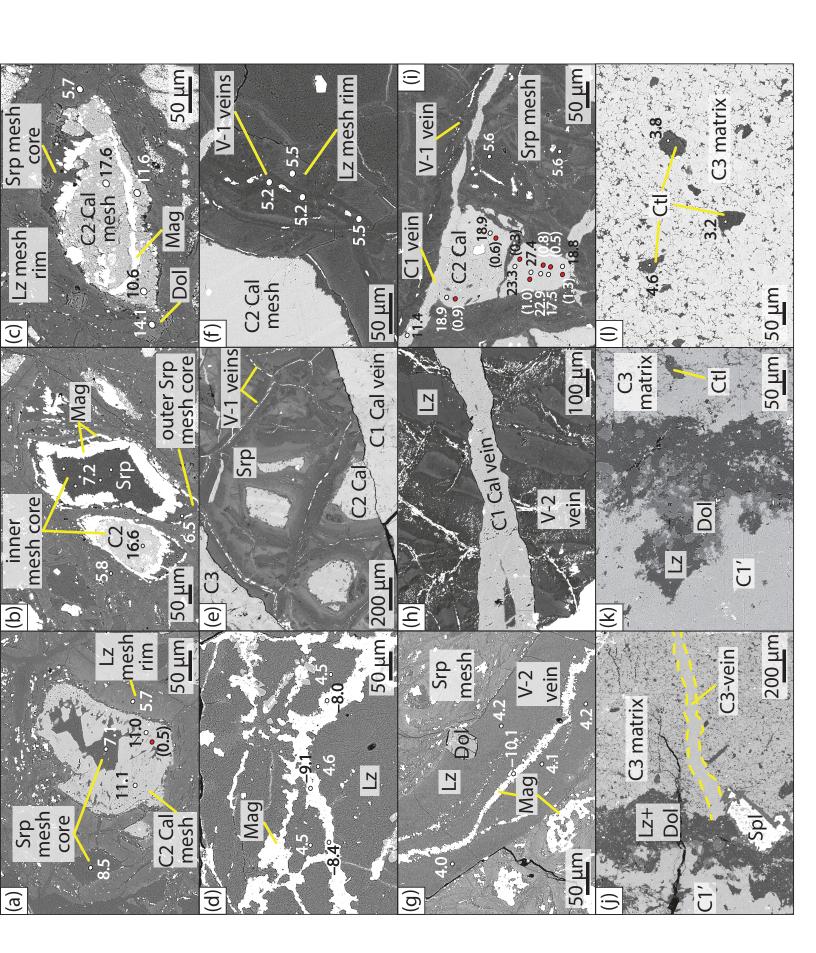
1183	Fig. 12. Simplified cross section showing the evolution of the hydrothermal system
1184	presented in this study in a seafloor tectonic setting (modified after Manatschal et al.,
1185	2011 and Lafay et al., 2017). Numbers correspond to the stages of alteration shown in
1186	Fig. 11.
1187	
1188	Table 1. Serpentine-magnetite thermometry for ophicarbonates from the Chenaillet
1189	ophiolite.
1190	Table 2. Serpentine-dolomite thermometry in hourglass textures for ophicarbonates
1191	from the Chenaillet ophiolite.
1192	
1193	SUPPLEMENT FIGURE AND TABLE CAPTIONS
1194	
1195	Fig. A.1. SEM-BSE maps of thin sections from the investigated samples from the
1196	Chenaillet ophiolite.
1197	Fig. A.2. Diagrams showing the major and minor element chemical composition of
1198	serpentine in different textural locations in the various investigated samples. Cal =
1199	calcite, Srp = serpentine.
1200	Fig. A.3. SEM-BSE images showing "turbid" calcite domains associated with
1201	chrysotile grains (C3) and "clear" calcite domains lacking chrysotile (C1') in the
1202	carbonate matrix surrounding serpentinite clasts (Chenaillet ophicarbonates).
1203	Fig. A.4. (a) SIMS oxygen isotope edge-to-edge traverse across a large (~1 mm) C1
1204	calcite vein shown in Fig. 3c. SEM-CL (b) and SEM-BSE (c) images in a different
1205	area of the same vein showing $\sim 3\%$ variation in $\delta^{18}O$ values. White and red circles
1206	are locations of oxygen ($\delta^{18}O_{VSMOW}$, ‰) and carbon ($\delta^{13}C_{VPDB}$, ‰, in parentheses)
1207	isotope SIMS pits, respectively.

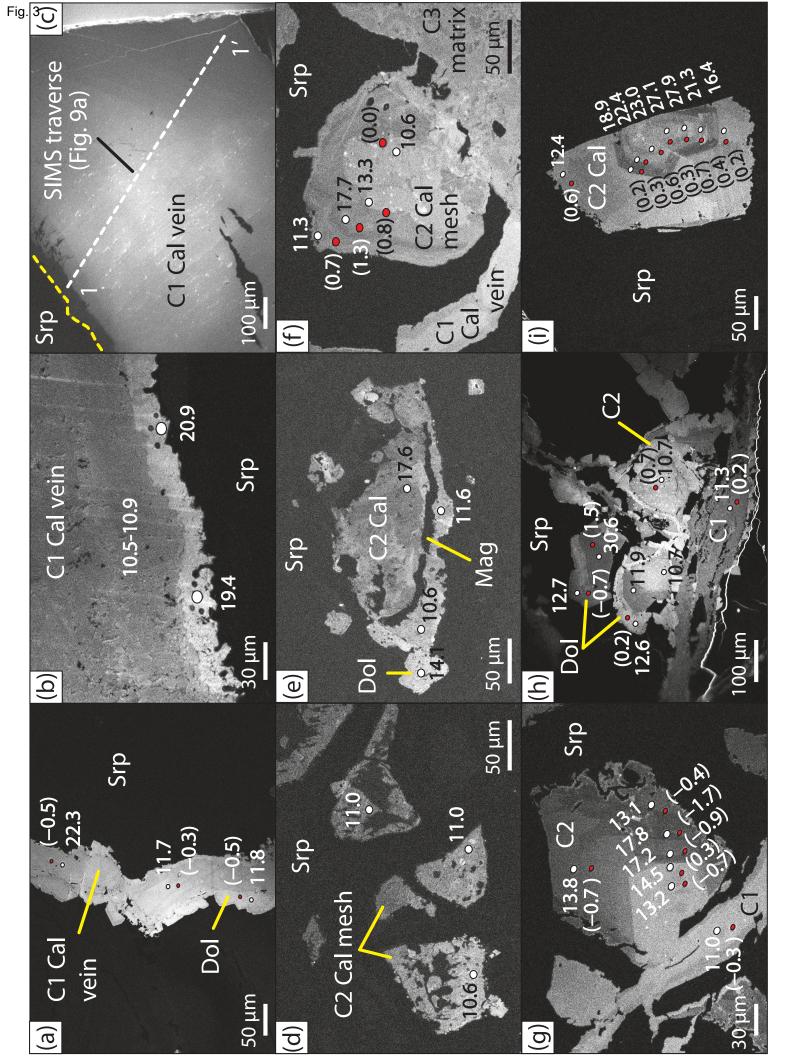
- 1208 Fig. A.5. Plot of δ^{18} O versus δ^{13} C in different calcite generations from the Chenaillet
- 1209 ophicarbonates.
- 1210 Fig. A.6. BSE-SEM images of SIMS pits on magnetite from the Chenaillet
- ophicarbonates. (a) Mesh texture (sample RL6), (b) V-1 vein (sample RL3), (c) V-2
- vein (sample RL6), and (d) hourglass texture (sample RL9). White areas are remnants
- of Au coating. White circles are locations of oxygen ($\delta^{18}O_{VSMOW}$, %) isotope SIMS
- 1214 pits.
- 1215 Fig. A.7. Model showing the net variation in oxygen isotope ratios in both serpentine
- and magnetite as a function of a contemporary variation in temperature and water δ^{18} O.
- 1217 Serpentine-water and magnetite-water oxygen isotope fractionation factors are after
- 1218 Früh-Green et al. (1996) and Bottinga and Javoy (1973), respectively.
- 1219 Fig. A.8. Representative SEM-BSE images of SIMS pits in serpentine (a), calcite (b),
- dolomite (c) and magnetite (d).
- 1221
- 1222 **Table A.1**. Complete data table for oxygen isotope analyses by SIMS (A.1a) and
- 1223 corresponding EPMA (A.1b) in serpentine from the Chenaillet ophicarbonates.
- 1224 **Table A.2**. Complete data table for oxygen (A.2a) and carbon (A.2b) isotope analyses
- by SIMS as well as representative EPMA (A.2c) in carbonate from the Chenaillet
- 1226 ophicarbonates.
- 1227 **Table A.3**. Complete data table for oxygen isotope analyses in magnetite by SIMS
- 1228 (A.3a) and representative EPMA (A.3b) from the Chenaillet ophicarbonates.
- **Table A.4**. Complete data table for oxygen (A.4a) and carbon (A.4b) isotope analyses
- by SIMS in carbonate and magnetite (A.4c) reference materials. Data on serpentine
- reference materials are published in Scicchitano et al. (2020) in supplementary Table
- 1232 S2 (sessions S6 and S8).

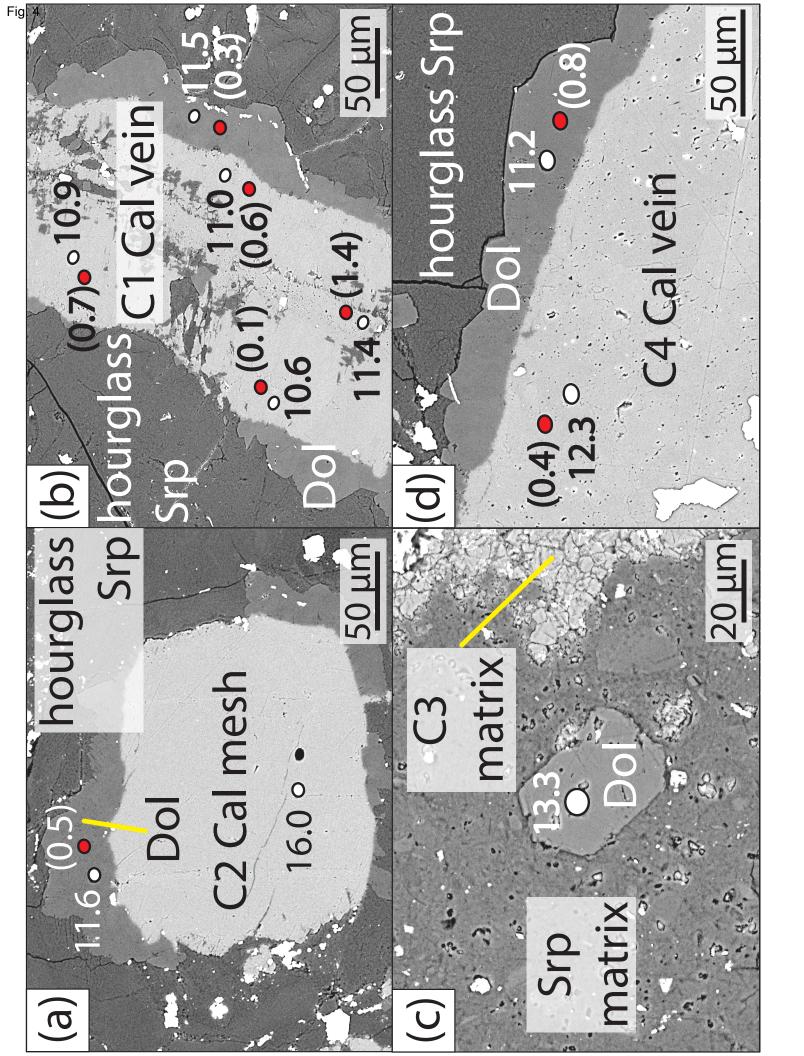
- **Table A.5**. Serpentine-magnetite thermometry for ophicarbonates from the Chenaillet
- ophiolite using different serpentine-magnetite calibrations.

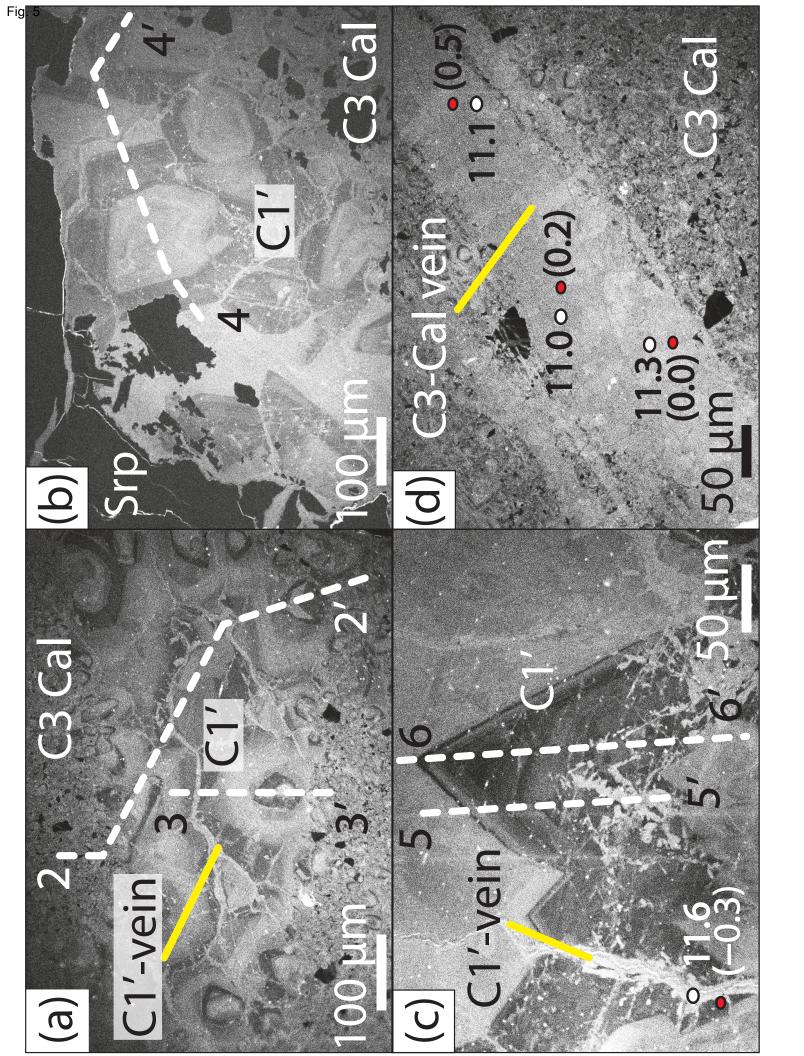
Table 1. Serpentine-magnetite thermometry for ophicarbonates from the Chenaillet ophiolite.

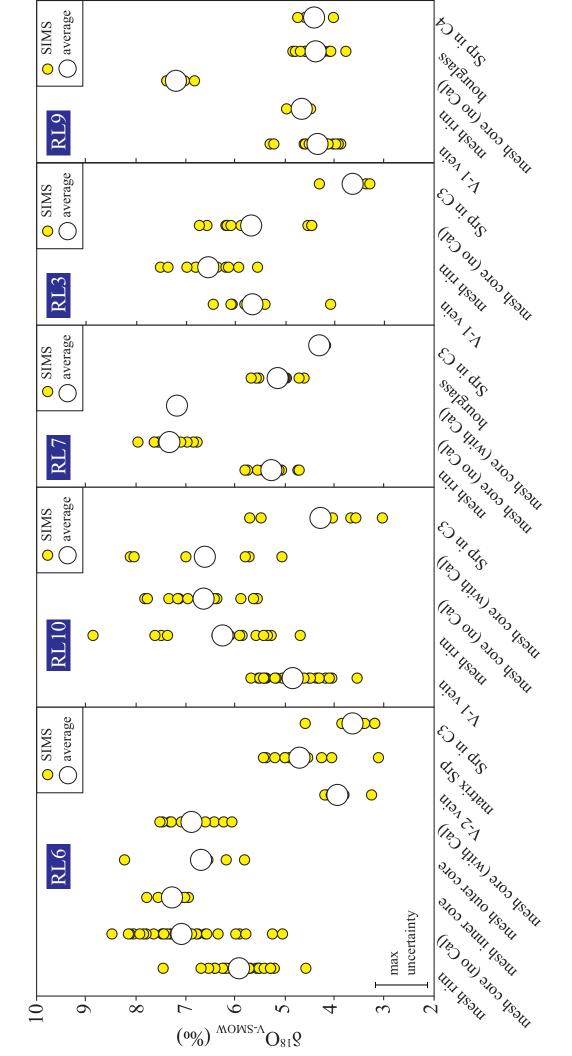

Analysis ID	Texture	$\delta^{18}O$ (%) serpentine	δ ¹⁸ O (‰) magnetite	$\Delta^{18}O(Srp-Mag)$	T (°C)* calculated	$\delta^{18} O_w (\%)^*$ calculated	T (°C)** calculated	$\delta^{18}\mathrm{O_w}(\%)^{**}$ calculated
RL6-1-(Srp-18b/Mag-1)	mesh	6.6	-6.0	12.7	196	4.3	245	3.1
RL6-1-(Srp-18b/Mag-2)	mesh	6.6	-5.6	12.2	204	4.5	252	3.4
RL6-1-(Srp-20/Mag-3)	mesh	6.7	-5.7	12.5	199	4.5	248	3.4
RL6-1-(Srp-34/Mag-4)	mesh	6.6	-10.2	16.9	136	2.1	194	0.0
RL6-1-(Srp-24/Mag-5)	mesh	7.8	-6.3	14.2	172	4.7	225	3.2
RL6-1-(Srp-25/Mag-7)	mesh	7.4	-5.5	12.9	192	5.0	242	3.7
RL6-1-(Srp-27/Mag-8)	mesh	6.3	-9.8	16.3	144	2.2	201	0.3
RL6-1-(Srp-29/Mag-9)	mesh	6.8	-6.3	13.2	188	4.2	239	2.9
RL6-1-(Srp-41/Mag-17)	mesh	7.2	-5.1	12.3	202	5.1	250	3.9
RL6-1-(Srp-42/Mag-18)	mesh	7.4	-5.6	13.1	188	4.9	239	3.6
RL6-1-(Srp-50/Mag-19)	mesh	5.2	-9.6	15.0	161	1.8	216	0.1
RL6-1-(Srp-49/Mag-21)	mesh	6.9	-10.2	17.3	132	2.2	191	0.1
RL6-1-(Srp-49/Mag-22)	mesh	6.9	-9.5	16.5	141	2.6	198	0.6
RL6-2-(Srp-28/Mag-13)	mesh	7.4	-5.0	12.6	198	5.2	247	4.0
RL6-2-(Srp-27/Mag-14)	mesh	7.2	-7.6	14.9	162	3.7	217	2.1
RL6-2-(Srp-26/Mag-15)	mesh	7.5	-7.9	15.5	154	3.7	210	2.0
RL6-2-(Srp25/Mag-16)	mesh	7.4	-8.0	15.6	153	3.7	209	1.9
RL6-2-(Srp-13/Mag-5)	V-2 vein	4.1	-10.1	14.4	169	1.0	223	-0.6
RL6-2-(Srp-18/Mag-10)	V-2 vein	3.8	-7.7	11.6	215	2.0	261	1.1
RL3-(Srp-43/Mag-5)	V-1 vein	5.8	-8.2	14.1	173	2.8	226	1.3
RL9-(Srp-54/Mag-16)	hourglass Srp	5.2	-9.6	14.9	162	1.8	216	0.1
RL9-(Srp-58/Mag-18)	hourglass Srp	4.5	-8.4	13.1	190	2.0	240	0.7
RL9-(Srp-57/Mag-19)	hourglass Srp	4.6	-9.1	13.8	178	1.7	230	0.3
RL9-(Srp-56/Mag-20)	hourglass Srp	4.5	-8.0	12.5	198	2.3	247	1.1

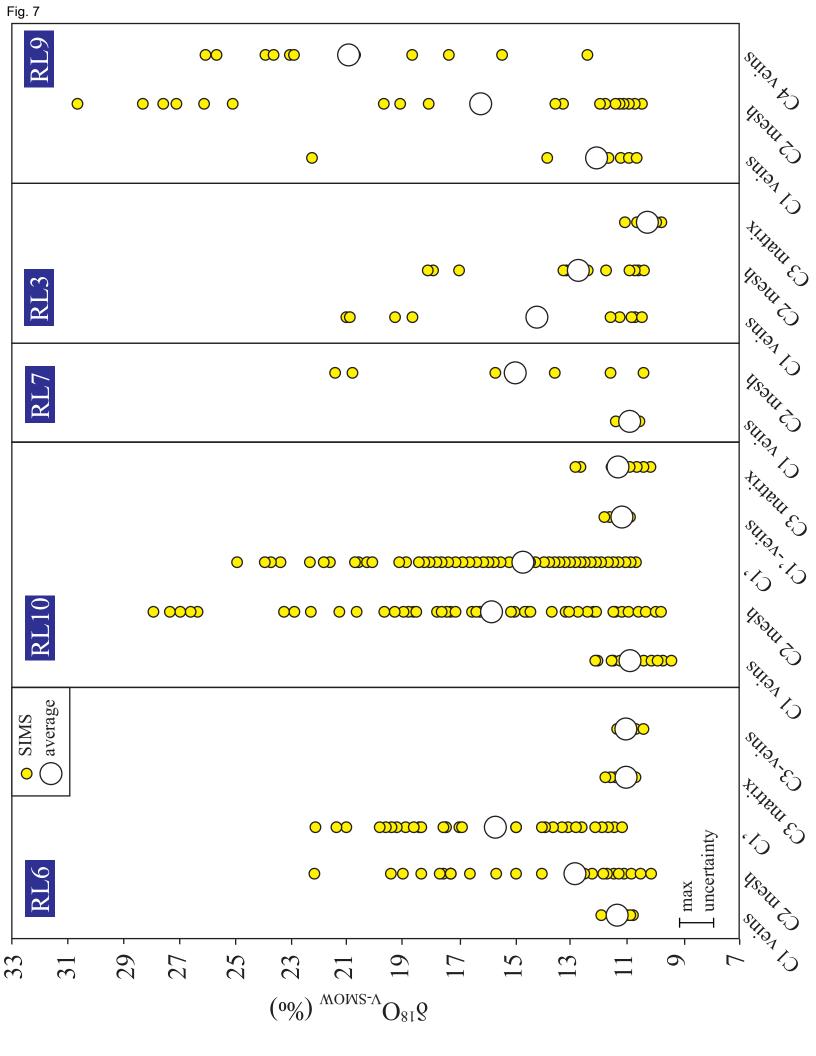

^{*} Srp-water after Früh-Green et al. (1996), ** Srp-water after Saccocia et al. (2009). Mag-water are after Bottinga and Javoy (1973). $\delta^{18}O_w$ = calculated oxygen isotope value of water in equilibrium with serpentine and magnetite.

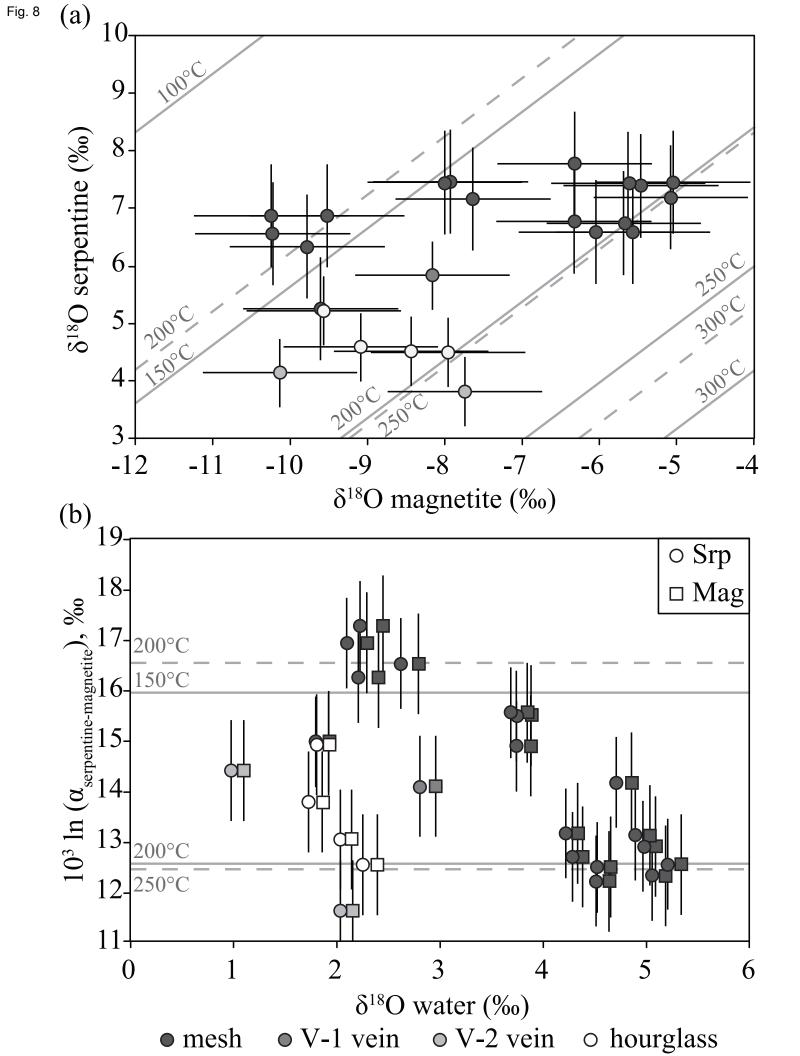

Table 2. Serpentine-dolomite thermometry in hourglass textures for ophicarbonates from the Chenaillet ophiolite.

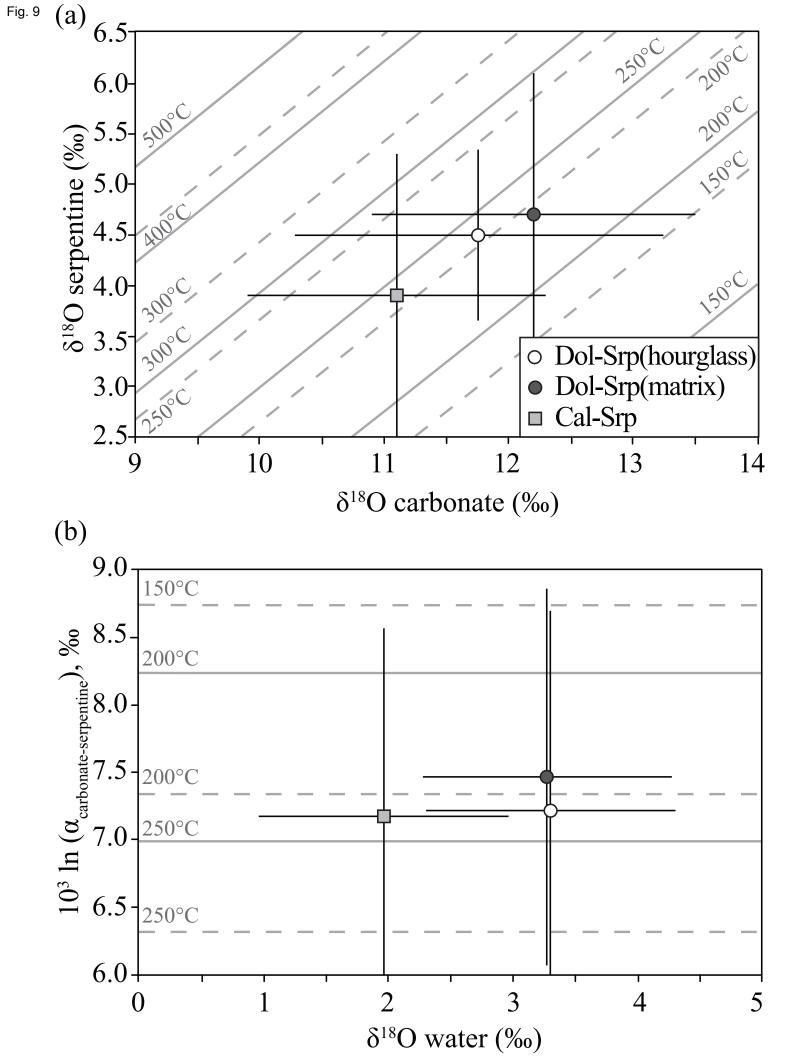

Analysis ID	Texture	δ ¹⁸ O (‰)	δ ¹⁸ O (‰)	$\Delta^{18}O(Dol\text{-}Srp)$	T(°C)	$\delta^{18}O_{\mathrm{w}}$ (%)
		serpentine	dolomite		calculated	calculated
RL9-1-(Srp-1/Dol-1)	hourglass	4.3	11.8	7.5	228	2.9
RL9-1-(Srp-4/Dol-2)	hourglass	4.4	11.7	7.3	235	3.1
RL9-1-(Srp-6/Dol-4)	hourglass	4.1	12.6	8.5	190	1.6
RL9-1-(Srp-10/Dol-5)	hourglass	4.3	12.0	7.6	220	2.7
RL9-1-(Srp-26/Dol-6)	hourglass	4.8	12.6	7.8	215	3.0
RL9-1-(Srp-29/Dol-10)	hourglass	4.3	12.2	7.9	213	2.5
RL9-1-(Srp-46/Dol-14)	hourglass	4.3	10.1	5.8	315	4.5
RL9-1-(Srp-51/Dol-15)	hourglass	4.3	12.5	8.2	200	2.1
RL9-1-(Srp-59/Dol-19)	hourglass	4.2	11.2	7.0	250	3.2
RL7-(Srp-4/Dol-4)	hourglass	4.6	10.9	6.3	285	4.3
RL7-(Srp-10/Dol-2)	hourglass	5.6	11.8	6.2	290	5.4
RL7-(Srp-9/Dol-1)	hourglass	5.0	11.6	6.6	270	4.4

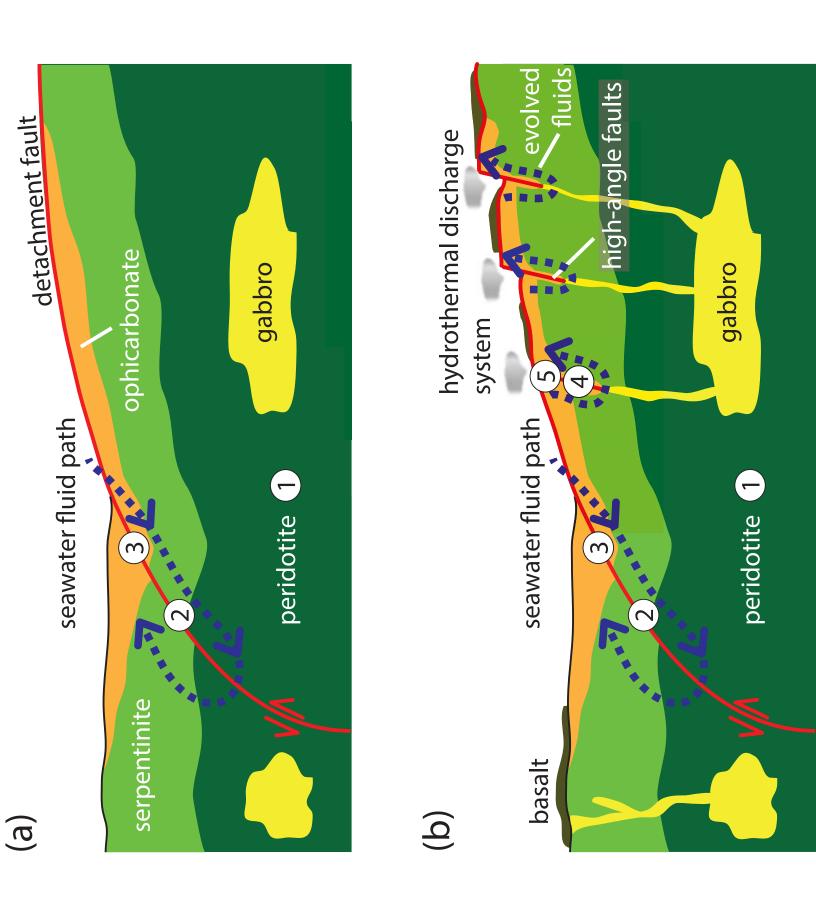

Srp-water after Früh-Green et al. (1996), Dol-water after Matthews and Katz (1977). δ¹⁸O_w = calculated oxygen isotope value of water in equilibrium with serpentine and dolomite.











Stages	Early	Low-T	High-T Serpentiniza-	Late Carbonate
Minerals	Serpentinization:	Carbonation:	tion & Carbonation:	Veining:
1VIIIICI UIS	$T_{\min} = 130-200 ^{\circ}\text{C}$	$T_{\rm min} = 10 ^{\circ}{ m C}$	T = 160-240 °C	$T_{\min} = 40-70 ^{\circ}\text{C}$
Serpentine V-1 veins	3.5 to 6.4‰			
-	4.5 to 8.8‰			
Serpentine mesh rims	1.5 to 0.0700			
Serpentine mesh cores	4.4 to 8.5‰			
Magnetite V-1 veins	-8.5 to -7.3‰			
Magnetite mesh	-10.6 to -5.0‰			
Calcite C1 veins		22.3 to	9.4‰	
Calcite C2 mesh		30.6 to	9.8‰	
Calcite C1'		24.9 to	10.6‰	
Serpentine V-2 veins			3.2 to 4.2‰	
Serpentine hourglass			3.8 to 5.7‰	
Magnetite V-2 veins			-10.6 to -7.7‰	
Magnetite hourglass			-9.6 to -8.0‰	
Serpentine matrix			3.1 to 5.4‰	
Serpentine in C3 matrix			3.0 to 5.7‰	
Calcite C3 matrix			9.8 to 12.9‰	
Calcite C3-veins			10.5 to 11.5‰	
Calcite C1'-veins			10.9 to 11.8‰	
Dolomite		10.1 to 14.1‰	11.4 to 13.2‰	_ 11.2 to 12.5‰
Calcite C4 vein				12.3 to 26.0‰
Serpentine in C4 vein				4.0 to 4.8‰

serpentinite 1 peridotite (mesh texture + V-1 veins) seafloor serpentinization Mag $T_{\rm min}$ ~200 to 130 °C Орх **bastite** $\delta^{18}O_w$ ~5 to 2‰ Ol cooling Cr-Spl ophicarbonate **(5)** (high δ^{18} O carbonate) late stage veining $T_{\rm min}$ ~70 to 40 °C low-T carbonation $\delta^{18}O_w \sim 3 \text{ to } -1\%$ C4 T_{min} ~10 °C $\delta^{18}O_w \sim -1\%$ ophicarbonate ophicarbonate (high δ^{18} O carbonate) (low δ^{18} O carb+srp) high-T carbonation+hydration T ~160 to 240 °C C3 vein $\delta^{18}O_w \sim 2-3\%$ z+De **C**1½ heating C3+Ctl hourglass

