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ABSTRACT

Facial expressions are important indicators of user needs that can

be used in many interactive computing applications to adapt the

system behaviors and settings. Current computing approaches to

recognizing human facial expressions, however, either rely on con-

tinuous camera recordings that are energy consuming, or require

custom sensing hardware that are expensive and difficult to use

on commodity systems. In this paper, we present FaceListener, a

new sensing system that recognizes human facial expressions by

only using commodity headphones. The basic idea of FaceListener

is to transform the commodity headphone into an acoustic sensing

device, which captures the face skin deformations caused by fa-

cial muscle movements with different facial expressions. To ensure

the recognition accuracy, FaceListener leverages the knowledge

distillation technique to learn the subtle correlation between face

skin deformation and the acoustic signal changes. Experiment re-

sults over multiple human beings demonstrate that FaceListener

can accurately recognize more than 80% of different facial expres-

sions. FaceListener is highly energy efficient, and can well adapt to

different headphone models, host systems and user activities.

KEYWORDS

Human Facial Expressions, Acoustic Sensing, Headphone, Face Skin
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1 INTRODUCTION

In human communication and interaction, facial expressions serve

as natural and effortless signals to convey ourselves besides verbal

languages [23]. In many interactive computing applications such as

virtual reality [14], cognitive robotics [26] and customer analytics

[16], being able to timely and precisely recognize such facial ex-

pressions will be very useful for the computing system to capture

the current user need and adapt the system behaviors and settings

accordingly.

Most of current computing approaches to recognizing human

facial expressions use images of human faces as the input [17], and

can accept such images being taken from either front [25] or side

[5] of the user. However, their accuracy and reliability significantly

drop when the ambient light condition degrades [5, 6]. Continuous

camera use will also incur very high power consumption that is

not affordable on most battery-powered mobile devices.

Instead, some recent research seeks to exploit the correlation

between facial expressions and facial muscle movements, which

can be detected via either surface electromyography (EMG) [12, 28],

on-head strain sensor [21] and in-ear air pressure sensor [2]. Facial

expressions have also been considered as the outcome of human
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Figure 1: FaceListener recognizes facial expressions from

the acoustic signal transmitted above the face skin surface.

emotions, which can be monitored from different physiological

signals [11, 18, 43] and human activities [27, 42]. However, all these

techniques require custom sensing hardware, which are expensive

and difficult to be integrated into commodity systems in practical

use. The use of such custom hardware, on the other hand, also

make these systems highly sensitive to the random variations of

the human body, user mobility, and the surrounding environment.

For example, sensing electrodes may be misplaced due to human

body movements and hence result in substantial recognition er-

rors [13, 33]. Besides, other existing approaches utilize the Inertial

Measurement Unit (IMU) sensors on modern wireless earphones

to recognize various human expressions from facial muscle move-

ments. These techniques achieve fine-grained recognition on mul-

tiple facial expressions [8, 20, 36], but are only implemented on

custom prototypes [19] rather than commodity devices. Given that

IMU sensors are not always available on commodity off-the-shelf

earphones, these existing approaches may not be used as a generic

solution in practical application settings.

In this paper, we aim to address the aforementioned limita-

tions and instead propose FaceListener, a new sensing system that

achieves precise and reliable recognition of human facial expres-

sions by only using commodity headphones. As shown in Figure 1,

FaceListener transforms the commodity headphone into an acoustic

sensing device through simple audio jack re-wiring, which changes

one of the headphone speakers into a microphone. With the in-

audible ultrasound signal being transmitted from the headphone’s

speaker to microphone, our system design builds on the fact that dif-

ferent facial expressions correspond to different skin deformations

on the human face surface, which significantly affect the propaga-

tion of ultrasound signal above skin surface. This correlation, then,

allows us to precisely recognize human facial expressions from

133

2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

978-1-6654-9624-7/22/$31.00 ©2022 IEEE
DOI 10.1109/IPSN54338.2022.00019



the received ultrasound signal. Furthermore, since headphones are

usually attached to the user’s ear, they are less likely to move and

hence provide better reliability of continuous recognition over long

time.

The major challenge of such recognition, however, is that differ-

ent shapes of the face surface can only produce subtle changes on

the propagated ultrasound signal, but the acoustic signal received

by the microphone will contain the sound being produced by any

other sources nearby (e.g., human voice, body vibrations, etc). To

make sure that FaceListener can precisely capture the signal change

caused by different facial expressions, our solution is two-fold. First,

we consider the ultrasound signal’s propagation above the face skin

surface as an acoustic channel, and use the channel estimator as

the sensing output to ensure that even the smallest change of the

face surface can be captured.

Second, to ensure precise recognition of human facial expres-

sions, one intuitive approach is to use a neural network to learn

the correlation between acoustic sensory data and facial expres-

sions. However in practice, the accuracy of such recognition may

be impaired by the possible variation and uncertainty in each type

of facial expression, whose impact could be largely amplified over

the received ultrasound signal. Instead, our approach is to leverage

the existing knowledge distillation technique, more specifically,

the teacher-student learning framework [22, 39]. More specifically,

during the offline training, extra facial images are taken at the same

timewith acoustic sensing for each facial expression, and are used to

train the teacher network with higher confidence. The teacher net-

work will then be used to supervise the training of student network

that takes acoustic sensory data as input, by transferring the latent

knowledge learned from facial images and using such knowledge

to eliminate the ambiguity and uncertainty in the acoustic sensory

data. Afterwards, when being used online, FaceListener only uses

the trained student network to recognize facial expressions, from

the acoustic sensory data.

FaceListener intends to provide an highly accessible solution to

recognizing facial expressions in casual settings so that any low-

cost commodity wired headphones can be turned into a sensor that

enables facial expression related applications (e.g., in-home mental

well-being tracking). Since the rewired headphones can still play

sounds using one speaker, the recognition of facial expression can

be operated at the same time with sound playback, with minor

degradation of user experience, especially in casual application

scenarios where the users are not sensitive to the audio quality.

To our best knowledge, FaceListener is the first system that

recognizes human facial expressions using only commodity head-

phones. We implemented FaceListener over headphones that attach

to human ears in different ways (e.g., on-ear, in-ear and over-ear),

and evaluated its recognition accuracy over 5 student volunteers in

various conditions, including lab-controlled settings and real-world

scenarios. From our experiment results, we have the following

conclusions:

• FaceListener is accessible. It can be implemented on widely

available low-cost headphones without dedicated sensors.

Users could capture their facial expressions and enable new

applications by simply wearing a off-the-shelf headphone.

• FaceListener is accurate. It can achieve >80% accuracy when

recognizing 7 main categories of facial expressions (neutral,

joy, sad, surprise, anger, fear and disgust) over commodity

headphones.

• FaceListener is adaptive. It is able to retain the recognition

accuracy when being used over different headphone models,

host systems (desktop PCs, laptops and smartphones) and

ultrasound frequency bands (15kHz-23kHz). It can also well

adapt to different human activities, body skin conditions or

even head accessories that the users may wear.

• FaceListener is lightweight. On a commodity smartphone,

it only takes 135ms to recognize one facial expression, and

consumes <20% of smartphone battery after 3 hours of con-

tinuous use.

2 BACKGROUND & MOTIVATION

In this section, to motivate our design of FaceListener, we first

demonstrate how facial expressions relate to the skin deforma-

tion caused by facial muscle movements. Afterwards, we discuss

possible pathways of ultrasound signal propagation between the

headphone’s speaker and microphone, and demonstrate that the

airborne propagation above the skin surface is strong enough for

FaceListener’s acoustic sensing.
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Figure 2: Facial expressions are created by different move-

ments of facial muscles.

2.1 Facial Expressions and Facial Muscle
Movements

Facial expressions are induced by the contraction of different skele-

tal muscles laying underneath the facial skin. Unlike other muscles

on human body, facial muscles directly insert into the skin and

hence their contractions produce much more evident skin deforma-

tions. As shown in Figure 2 which lists the 7 main types of human

facial expressions, facial muscles are commonly divided into 3 cate-

gories: orbital, nasal and oral, which collectively produce different

facial expressions [41]. For example, the orbital muscles contribute
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to the expressions of sadness and fear by changing the shapes of

mouth corner, eyebrows and eyelids. Nasal muscles control the

movements of nose and the skin around it. They are the main con-

tributors of disgust and contempt expressions, but also contribute

to producing anger and sadness expressions. Oral muscles decide

the shape of mouth and lips, from where expressions of joy, sadness

and surprise are being produced.

In practice, since every facial muscle is involved in producing

multiple types of facial expressions, we cannot recognize any spe-

cific facial expression by detecting the movements of individual fa-

cial muscles. This ambiguity, instead, motivates or design of FaceLis-

tener, in which the facial skin deformation as a cumulative effect

of all the facial muscle movements are reflected and sensed as the

variation of ultrasound signal being propagated above the skin

surface.

Ultrasound signal

Ultrasound signal

Ultrasound signal

Pathway #1 Pathway #2 Pathway #3

Facial Muscle

Figure 3: Three possible pathways of ultrasound signal prop-

agation

2.2 Acoustic Signal Propagation

In FaceListener, a commodity headphone transmits ultrasound sig-

nal from one of its speakers to another that is transformed into

a microphone by audio jack re-wiring (details in Section 3.1). In

this case, the ultrasound signal could be possibly propagated along

three different pathways as shown in Figure 3 and listed below:

(1) The signal propagates through the facial skin tissue.

(2) The signal propagates first into the ear canal of the speaker

side, and then reaches the other ear canal of the microphone

side through the human head.

(3) The signal propagates through the airborne pathway above

the skin surface.

In the first pathway, the ultrasound signal will be greatly at-

tenuated whenever it passes through the boundary between air

and human tissue, in which the acoustic impedance decides such

attenuation. As listed in Table 1, since the impedance in air is much

smaller than that in human tissue, a significant amount of signal

energy (>99%) will be absorbed by the human tissue itself and the

remainder will hence have negligible impact on the microphone’s

received signal. Similarly, in the second pathway through the ear

canals, the majority of signal energy will be absorbed by the ear

drum that captures the air vibration.

To this end, we consider that the majority of signal being re-

ceived at the transformed microphone is transmitted through the

airborne pathway above the facial skin surface. In practice, when

the headphone is being worn by the user, such propagated signal is

Media Density Velocity Impedance

(kд/m3) (m/s) (106kд/m2/s)

Air 1.16 344 0.0004

Water 998 1482 1.48

Muscle 1041 1580 1.65

Tissue 928 1430 1.33

Table 1: Acoustic impedance of different media

the outcome of the headphone sound leakage, which widely exists

on almost every commodity headphone [29]. To verify such leak-

age, we conducted preliminary experiments on different types of

headphone models1 shown in Figure 4(a), by transmitting a sweep-

ing sine wave from 20 Hz to 24 kHz with the maximum volume.

Results in Figure 4b show that these commodity headphones are

able to greatly suppress signal leakage within the audible band,

but produce much higher signal leakage in the ultrasound band. In

particular, on all the headphone models, Figure 4(b) shows that the

sound pressure level (SPL) above 15 kHz is always above 30 dB and

at least 15 dB higher than that in the audible band. These results

verify that the ultrasound signal transmitted by commodity head-

phones, when being received by the transformed microphone on

the headphone, is strong enough for precise recognition of human

facial expressions.
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Figure 4: Measurements of acoustic signal leakage on com-

modity headphones

3 SYSTEM DESIGN

As shown in Figure 5, FaceListener recognizes facial expressions

when a wired headphone is worn regularly by the user, in a way that

one of the headphone speakers is transformed into a microphone.

From the received ultrasound signal, we estimate the acoustic chan-

nel between the headphone’s speaker and transformed microphone,

and use such channel estimation to recognize facial expressions.

To ensure accurate recognition of facial expressions, FaceLis-

tener uses knowledge distillation to train the neural network for

recognition through a teacher-student learning framework. During

the training phase, a camera is used in front of the user face to

capture the facial image corresponding to each facial expression

being made. These images will then be used to train the teacher

1On-ear: Sony MDR-ZX110, Over-ear: Audio-Technica ATH-M30x, In-ear: Samsung
EO-EG920BW.
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Figure 5: Overview of FaceListener system design

network. At the same time, the acoustic sensory data obtained for

each facial expression will be used to train the student network,

which is being supervised by the teacher network through both

the facial expression labels and individual facial keypoints being

detected. Afterwards, during the testing phase, only the student

network will be used for online recognition of facial expressions.

3.1 Re-Wiring over Commodity Headphones

Speakers and microphones are devices that generate or capture

propagated air vibrations as pressure waves. As shown in Figure

6(a), their physical structures and mechanisms share much in com-

mon. On the speaker, a diaphragm is moved by electromagnetic

induction to generate such vibrations. Reversely, a microphone

uses a diaphragm to capture air vibrations and then converts such

vibrations into electrical signal via the magnet and coil.

Based on such similarity, the hardware of a commodity speaker

can be used as a microphone, by simply using the speaker’s output

interface as input. In practice, existing work showed that the 3.5mm

socket of audio output can be converted to input via software,

because any audio port of the sound processing hardware (e.g., the

PC sound card) is designed to be configurable as either output or

input [31]. However, this software approach can only configure

both the left and right audio channels of a headphone as output or

input at the same time, and hence cannot be used to transform a

commodity headphone into an acoustic sensing device that consists

of both speaker (output) and microphone (input).

Instead, in FaceListener, we transform one speaker of the head-

phone into a microphone but retain another speaker unchanged, by

re-wiring the audio jack to split the left and right audio channels as
shown in Figure 6(b). On a tip/ring/sleeve (TRS) or tip/ring/ring/sleeve

(TRRS) audio jack, we separate its tip and ring into two separate

audio jacks, which are plugged into Line-out and Mic-in ports of

the host system, separately. In this way, the sound will be played

through the right speaker and then recorded by the left speaker2.

In practice, unlike existing work that requires a custom IC board

[7], our approach can be easily implemented with 3.5mm male and

female TRRS balun connectors, which are shown in Figure 6(c) and

widely available on market with <$5 cost. On other systems with

an 2-in-1 audio socket (e.g., most laptops and smartphones), an

audio jack splitter can be used instead to implement such re-wiring.

3.2 Acoustic Channel Estimation

Since a speaker usually has a larger diaphragm than that on a micro-

phone, when being transformed into a microphone, it will produce

less vibrations from the incoming pressure waves, and may hence

record sounds with a lower volume. The speaker’s lack of noise

filters and amplifiers for the incoming signal could further reduce

the quality of the recorded sound. We experimentally investigated

the quality of sound being recorded by such a transformed micro-

phone, and Figure 7(a) shows that, when recording the same sound,

the transformed microphone produces smaller audio volume and

the received acoustic signal hence has a lower SNR.

To overcome this difficulty, in FaceListener we transmit a single-

tone ultrasound wave that carries a coded sequence of 60 bits being

modulated by BPSK. When the headphone is being worn by the

user and the sound is being recorded by the transformed micro-

phone, 7(b) shows that the bit sequence can always be correctly

detected via autocorrelation. This detectability, then, allows us to

use the received bit sequence to calculate the estimation of the

acoustic channel from the headphone’s speaker to transformed

microphone. More specifically, received signals first go through

a high-pass filter with cut-off frequency at 15kHz. This is to re-

move unnecessary signal components (e.g., audible sound) that

may affect the estimation results. Next, we compute the correlation

2Similarly, the audio jacks can be re-wired in a reverse way to propagate sound from
the left speaker to the right speaker.
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Figure 6: Transforming a commodity headphone speaker into a microphone via audio jack re-wiring
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Figure 7: Quality of sound recorded by the transformed mi-

crophone, when being worn by a user

coefficients between the received signal in a sliding window with

the pre-known transmitted signal. A peak of such coefficients indi-

cates that the microphone receives the coded sequence successfully.

After demodulating the received sequence Y with the transmitted

sequence X , the channel can be estimated as H = YXT (XXT )−1. In

practical systems, to achieve better estimation accuracy, we simul-

taneously transmit different bit sequences at multiple frequency

bands. The corresponding channel estimations at these frequency

bands, then, are collectively used as the raw features by the student

neural network for recognition of facial expressions.

3.3 Vision-based Teacher Network Design

With these acoustic channel estimations, an intuitive approach to

recognizing facial expressions is to apply these channel estimations

and the corresponding facial expression labels to train a neural

network. For example, a long short-term memory (LSTM) classifi-

cation model can be trained to learn from the time series data of

channel estimations. However, Figure 8 shows that using such as

simple classification model lead to very low recognition accuracy.

The main reason of such low accuracy is that the correlation be-

tween the acoustic channel and facial expressions is subtle, and

the acoustic channel is hence highly sensitive to the small changes

of face skin deformation, which could be heterogeneous among

different samples of the same type of facial expression. The capacity

of a simple classification model, then, is insufficient to represent

such subtle correlation.

On the other hand, existing work has demonstrated that using

neural networks can precisely recognize humans’ facial expres-

sions from their facial images. When using images of front faces,

the accuracy of recognition using a single deep neural network

(DNN) can achieve 95% [15, 38]. Based on such high accuracy, in

FaceListener we intend to transfer the latent knowledge about facial

expressions being learned from such vision-based teacher network

to the acoustic-based student network, to supervise the training of

student network and hence increase its capacity. The key insight of

this supervision structure is that, unlike images that carry intuitive

information about the facial muscle variations, acoustic samples are

less comprehensible and interpretable for a deep learning model to

extract representative features. To ensure recognition accuracy, a

deep learning model based on acoustic data may need more abstrac-

tion capacity. Instead of increasing the complexity of the neural

network itself as the most straightforward but unreliable approach,

a vision-based teacher network can reduce the required capacity for

feature extraction at the student model, which then only needs to

learn those representative features processed by the teacher model.

0 200 400 600 800 1000
Epochs

0

2

4

6

8

0

20

40

60

80

100

Va
lid

at
io

n 
ac

cu
ra

cy

C
ro

ss
 e

nt
ro

py
 lo

ss

Training loss
Validation loss
Validation accuracy

Figure 8: Accuracy of recognizing facial expressions using a

simple LSTM classification model
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Traditionally, such supervision is conducted by taking the teacher

network’s output as the target label for the student network dur-

ing the training procedure. This method, however, is ineffective in

FaceListener because many small changes on facial deformation

may not be captured by the teacher network from facial images

but could result in large variation in the acoustic channel. To ad-

dress this challenge and ensure appropriate supervision, as shown

in Figure 5, FaceListener divides both the teacher network and

the student network into two sub-networks: the first sub-network

detects the positions of a pre-defined set of facial keypoints (e.g.,

eyebrow ends, eye corners, nose and mouth corners, etc), and the

second sub-network further recognizes the facial expression from

the positions of these keypoints with respect to the human face

contour.

As a result, the teacher network can supervise the training of

both sub-networks in the student network. In particular, the teacher

network’s learned knowledge on individual facial keypoints can

be effectively transferred to the corresponding sub-network in the

student network, hence ensuring that any small changes on facial

deformation can be correspondingly mapped to the right keypoint.

3.3.1 Facial Keypoint Detection. In facial keypoint detection of the

teacher network, we first preprocess each facial image by resizing

and cropping it3, to make sure that the coordinates of facial key-

points in all facial images are consistent. This consistency, then,

allows us to universally compute the coordinates of facial keypoints

in each image as their relative positions from the nasal tip in the

image.

Afterwards, we need to decide the most appropriate set of key-

points being used, which should be the most important ones that

represent facial expressions. For example, as shown in Section 2.1,

the positions of nose and mouth corners are important indicators

of many facial expressions including joy, sadness, anger, disgust,

etc. We start from a well-established face mesh model that is devel-

oped by the Google MediaPipe project [9] and defines 468 facial

keypoints as shown in Figure 9(a), and then select 30 keypoints

with the highest importance in facial expression recognition to be

used in FaceListener for timely online inference4.

In FaceListener, such selection procedure is done by training a

regular fully-connected neural network over the collected facial

images. More specifically, we use Google MediaPipe to detect the

468 keypoints in each facial image and use their coordinates as the

neural network input. The facial expression labels of the images

are used as the neural network output. After that, we adopt the ex-

plainable AI technique [35] on this trained network to compute the

integrated gradient (IG) of each keypoint, which quantitatively mea-

sures how this keypoint contributes to correct recognition of facial

expressions. The top 30 keypoints with the highest contributions

are then selected.

Our selected 30 keypoints, as shown in Figure 9(b), mainly cover

the edges and corners of eyebrow, eye, nose and mouth, hence

depicting the contours of these important elements on human face.

Note that, the contributions of the x and y coordinates of these

3Such preprocessing can be done by simply using existing image processing tools such
as the YOLOface model [32].
4In practice, different numbers of keypoints can be selected to balance bewteen the
granularity and computing latency of facial expression recognition.

(a) 468 keypoints in
MediaPipe

Individual coordinate is important
Both coordinates are important

Eyebrow inner and outer ends
Eyelids and eye corners
Nose edges and wrinkles
Lip and mouth corners

(b) 30 keypoints with the top contributions to
facial expressions

Figure 9: Keypoints on human faces

keypoints are separately measured, and hence some keypoints may

only have one coordinate that is important to facial expression

recognition. Based on such selection, Table 2 shows that, when

being applied to the same set of facial images being used in training,

these 30 keypoints result in similar accuracy of facial expression

recognition, compared to that using all the 468 keypoints.

Expressions N J Sa Su A F D

468 keypoints(%) 96.5 95.3 95.9 95.2 94.9 95.3 95.1

30 keypoints(%) 97.1 95.5 96.6 96.1 94.7 95.9 96.5

Table 2: Classification accuracy with different selections of

facial keypoints (N=neutral, J=joy, Sa=sadness, Su=surprise,

A=anger, F=fear, D=Disgust)

3.3.2 Facial Expression Classification. The second sub-network,

as the classifier of facial expressions, is being trained with the

coordinates of the 30 selected facial keypoints on each facial image

as input and the corresponding facial expression label as the output.

In particular, to ensure its reliability and accuracy, we first pre-train

this network using a public dataset of facial images with known

facial expression labels5. Afterwards, when being used on a specific

user, this classifier will be further improved with this user’s own

facial images.
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Figure 10: Student network design

5We use the muxspace dataset: https://github.com/muxspace/facial_expressions, which
contains 13,718 facial images with a resolution of 96x96. Images in this dataset will
be first applied to the facial keypoint detection sub-network, and the detected facial
keypoints are then used to train the facial expression classification network.
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3.4 Acoustic-based Student Network Design

In order to facilitate the supervision from the teacher network, the

student network in FaceListener is also designed to be consisting

of two sub-networks: the first sub-network decides the positions

of the 30 selected facial keypoints from the input data of acous-

tic channel estimation as described in Section 3.2, and then the

second sub-network similarly recognizes facial expressions from

the detected facial keypoints. Since acoustic channel estimations

are produced as time series data, we use the LSTM model as the

basic processing kernel for facial keypoint detection. When mul-

tiple acoustic channel estimations from different frequency bands

are simultaneously used, they are being applied to separate LSTM

encoders and then merged together.

As shown in Figure 10, the supervision on the student network

is defined as a joint loss function that covers both facial keypoint

detection and facial expression classification. The supervision on

facial keypoint detection is designed as a regression task, which

minimizes the mean square difference (MSD) between the teacher

network’s and student network’s facial keypoint coordinates being

detected. The supervision on facial expression classification, on

the other hand, is done through the categorical cross entropy loss,

which ensures that the student network produces similar results of

facial expression recognition as the teacher network does.
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Figure 11 shows the performance of training the student network

when being supervised by the teacher network. With the same

neural network complexity and parameter, the training of student

network cannot efficiently converge if it is only supervised by

the teacher network through the facial expression label. On the

other hand, the extra supervision through the regression of facial

keypoints’ coordinates ensures fast convergence of the student

network training.

4 PERFORMANCE EVALUATION

We implement FaceListener using different types of commodity

headphones, balun audio connectors and audio jack splitters, as

shown in Figure 6(c), and transmit ultrasound signals in multiple

frequency bands between 18 kHz and 21 kHz with an interval of 0.5

kHz. In our implementation, we allow FaceListener to monitor the

user’s facial expressions during normal uses of the headphones (e.g.,

playing music or watching videos). To allow simultaneous trans-

mission of ultrasound signal along with audible sound playback in

these cases, we use build-in audio mixers on desktop OSes such as

Windows and Linux. For smartphone platforms, we realize such

sound mixing using Android Audio Focus [10] or iOS duckOthers

[4].

Figure 12: Evaluation setup

Based on this implementation, we evaluate the FaceListener’s

accuracy of recognizing the facial expressions over 5 student volun-

teers, in a 10m×10m lab office with regular furnitures. Due to the

large variation among different human faces, the neural network

models are separately trained and tested for each student volun-

teer, and the results are averaged over the 5 student volunteers. As

shown in Figure 12, in our experiments, a volunteer sits in front of

a camera and wears the re-wired headphone that connects to the

host system. The volunteer then follows the host system screen’s

instructions tomake facial expressions in 7 different categories (neu-

tral, joy, sadness, surprise, anger, fear and disgust) and retain each

facial expression for 5 seconds before switching to the next. Each

experiment lasts for 10 minutes, during which the camera takes

facial images at 30 FPS and acoustic sensing is conducted simulta-

neously. Since the acoustic signal has much higher sampling rate

compared to the video frame rate, each video frame corresponds to

one segment of sound recording. In total, each experiment results

in 18k training samples of video frames and a similar number of

acoustic recordings for both the teacher network and the student

network.
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Figure 13: Accuracy of recognizing 7 categories of facial ex-

pressions

We train different models for each subject due to the heterogene-

ity of human facial muscle. The average accuracy of recognizing
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the 7 categories of facial expressions over 5 student volunteers

is shown in Figure 13(a), and such accuracy is above 80% for all

the 7 categories. Furthermore, Figure 13(b) shows the recognition

accuracy over each individual student volunteer, and demonstrates

that such accuracy varies little and retains at the same level over

each student volunteer.

Next, Figure 14 shows results of the leave-one-user-out model

evaluation, in which we train the model using data collected from 4

users and report the recognition accuracy tested on the one left. The

model still achieves 70% of accuracy even when it is not tuned to

specific user. This proves that, even without user-specific training,

the teacher and student model can still work collaboratively to

extract effective acoustic features correlated with facial expressions.
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Figure 14: Leave-one-user-out accuracy of different facial ex-

pressions
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Figure 15: Confusionmatrix of facial expression recognition

Furthermore, the confusion matrix of facial expression recog-

nition is shown in Figure 15. Note that recognitions on the anger

and fear expressions are less accurate when compared to those on

other expressions. To investigate the reason of such inaccuracy,

we inspected the acoustic channel estimations corresponding to

each category of facial expressions, and found that these two cate-

gories of facial expressions result in larger variations of the acoustic

channel, as shown in Table 3. The reason of such large variance

is that maintaining the fear and anger expressions is more diffi-

cult for the users due to the involvement of more groups of facial

muscles. As a result, different samples of these expressions may be

largely heterogeneous and hence affect correct recognition of these

expressions.

Expressions N J Sa Su A F D

Var. 1.39 1.78 1.67 2.31 5.17 5.89 2.75

Table 3: Channel estimation variance of different cate-

gories of facial expressions. (N=neutral, J=joy, Sa=sadness,

Su=surprise, A=anger, F=fear, D=Disgust)

4.1 Recognition Accuracy with Different
Headphone Models and Host Systems

The recognition accuracy of FaceListener could vary over different

types of headphone models (e.g., on-ear, over-ear, in-ear), which

have different ways of attachments to human ears. We evaluated

the recognition accuracy of FaceListener over the three headphone

models shown in Figure 4(a), and the evaluation results in Figure

16 show that FaceListener has the highest recognition accuracy

with on-ear headphones, but the accuracy loss on other types of

headphones is within 5% for all categories of facial expressions.

More specifically, for over-ear headphones, since the soft cush-

ion on the headphone can absorb the sound leakage and reduce

the transmitted signal strength, the performance of FaceListener

drops by 2%. In-ear headphones, on the other hand, lead to the

lowest accuracy because of two reasons: first, in-ear headphones

are inserted into the ear canal and hence result in less sound leak-

age to the skin surface; second, in-ear headphones have smaller

sound diaphragm and hence have more difficulty in capturing the

transmitted ultrasound after being re-wired into a microphone.
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Figure 16: Impact of different headphone models

FaceListener can be used on different host systems including

desktop PCs, laptops and smartphones. Figure 17 shows the recogni-

tion accuracy tested on these different host systems: a Dell Precision

5810 workstation, a Lenovo Legion 7 laptop and a Samsung S20

smartphone. Desktops and laptops have comparable performance

because sound cards with similar specifications are usually inte-

grated into their motherboards. On the other hand, FaceListener’s

recognition accuracy slightly drops on smartphones, due to the use
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of an additional adapter that splits the 2-in-1 audio part but may

introduce extra noise.
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Figure 17: Accuracy on different host systems

4.2 Impact of Acoustic Signal Characteristics

The recognition accuracy of FaceListener depends on the strength

of ultrasound signal being received by the transformed microphone.

We evaluated the impact of such signal strength with different

volumes of the transmitted ultrasound, but the results in Figure 18

show that even when the sound volume at the transmitting speaker

is reduced to 50% of the maximum, the recognition accuracy only

slightly drops by 1.5%. In reality, as we transmit ultrasound that is

inaudible to most people, maximum volume can always be used in

most cases.

As discussed in Section 2.2, the sound leakage from commodity

headphones is the basic motivation of our system design. Since

such leakage varies over different frequency bands, we evaluate

the system performance by transmitting acoustic signal at different

frequency bands as shown in Figure 19. The results demonstrate

that our system has the similar recognition accuracy over different

ultrasound bands, but has slightly lower accuracy when the trans-

mitted signal falls closer to the audible sound (e.g., around 15 kHz).

Such accuracy drop is mainly because that commodity headphones

are designed suppress the sound leakage within the audible bands.

Our system transmits the ultrasound signal along an one-way

direction because the re-wiring only transforms one speaker into a

microphone. Given that some facial expressions may be asymmetric
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Figure 18: The impact of signal strength (measured as the

percentage of sound volume)
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Figure 19: The impact of signal frequency band

(e.g., contempt and fear as shown in Figure 2), the direction of ul-

trasound propagation may affect the accuracy of recognizing facial

expressions. We evaluated the impact of such direction of sound

propagation. As shown in Figure 20, the impact of different prop-

agation directions produce negligible impacts on the recognition

accuracy. The main reason is that in FaceListener, facial expressions

are recognized based on estimations of the acoustic channel that

covers the entire human face, and such a channel hence remains

the same in both directions of signal propagation.

4.3 Impact of Human Factors

As stated above, FaceListener is designed to recognize the user’s fa-

cial expressions with other concurrent user activities. We evaluated

the impact of different user activities on the recognition accuracy,

and evaluation results in Figure 21 show that FaceListener retains

high accuracy of recognizing facial expressions for most types of

user activities, even when the user is using the headphone to listen

to music or watch videos that mainly involve sounds in audible

bands. To verify its practical applications, we also test outdoor

scenarios including sitting on a bench and walking. Because most

outdoor noise can be filtered out by preprocessing, FaceListener

can still achieve similar accuracy. Besides, we notice a slight per-

formance drop when the user is walking, such difference is caused

by human walking motion may add movements on the receiver

side of the headphone, thus affecting the channel estimation re-

sults. However, FaceListener will experience 15% accuracy drop if

the user is talking while using FaceListener, because of the extra

movements of relevant facial muscles. Comparatively, we verified

that vision-based recognition methods [38] will also experience

10-15% accuracy drop in similar situations, hence demonstrating

the competitiveness of FaceListener to these existing methods.

Since the transmitted ultrasound signal propagates closely above

the facial surface, its propagation may also be impacted by different

skin conditions. To evaluate whether such factor can make an

impact, we train the model with data only collected on normal

faces, and test the system performance using data from other skin

conditions (without any re-training or fine-tuning on these new

data). We emulate these skin conditions by applying cream and

water onto the user face, and the accuracy of facial expression

recognition, as shown in Figure 22, remains nearly the same under

these different skin conditions.
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Figure 20: The impact of signal propagation direction
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Figure 21: Impact of different user activities

Lastly, we evaluate some external wearing objects that can im-

pact our system’s practical usefulness. Figure 23 shows the recog-

nition accuracy when a user wears glasses or a hoodie hat. Objects

being worn may potentially change the acoustic channel charac-

teristics by incorporating additional signal propagations. However,

our results demonstrate that wearing accessories or clothes pro-

duces little impacts on the recognition accuracy. Essentially, as long

as the accessory does not cover the facial skin (e.g., masks) to hide

the face contour, FaceListener can retain the recognition accuracy

with little performance loss.
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Figure 22: Impact of different skin conditions

4.4 Overhead

We compared the computational costs of FaceListener with those of

a vision-based recognition system [38], both on a desktop PC with

an Intel i7-8700k CPU. As shown in Figure 24, both systems take

input data with a fixed interval of 33.33ms, and the computing times

of FaceListener in acoustic channel estimation and neural network

model inference are both limited with 100ms and comparable to

those in the vision-based system.
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Figure 23: Impact of head accessories and clothes

We also evaluate the power consumption of FaceListener on a

Samsung S20 smartphone, with the screen off and any unnecessary

background apps being closed. Results in Figure 25 shows that by

avoiding the expensive camera use, FaceListener is much more

energy-efficient than existing vision-based recognition systems,

and consumes <20% of smartphone battery after 3 hours of contin-

uous use (being similar to normal smartphone usage such as music

playing).

(a) Our acoustic system (b) A vision-based system [38]

Figure 24: Computational costs of recognizing one facial ex-

pression
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Figure 25: System power consumption

5 REAL-WORLD EXPERIMENTATION

To better examine the performance of FaceListener in real-world

application scenarios, we further let the 5 student volunteers to

watch two live video clips on different topics: 1) the special Apple
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Event on Sept 14, 20216 and 2) a talkshow by Seth Meyers7. Dur-

ing the playtime of these videos, we collect the facial images and

acoustic sensory data of the user using FaceListener.

First, we apply the collected facial images to two vision-based

recognizer of facial expressions, namely CK+ [15] and FERPlus [38],

to recognize the user’s facial expressions and use these facial expres-

sions as shown in Figure 26 to be our ground truth for evaluation.

Afterwards, we compare the recognition results of FaceListener

with such ground truth, and the evaluation results with respect to

CK+ and FERPlus are shown in Figure 27 and Figure 28, respec-

tively8. These results exhibit similar accuracy of facial expression

recognition when compared with that in lab-controlled settings

shown in Section 4, further verifying the usability of FaceListener

in practical application scenarios.
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Figure 26: Ground truth of facial expressions

6 RELATEDWORK

Emotion and facial expression recognition.Conventional ways

to recognize human emotions require electrodes to be worn to

record biosignals such as ECG, EEG, EMG and GSR [11, 12], which

are inconvenient to be used on commodity systems. Besides, com-

puter vision based DNN models [5, 15, 38], although showing solid

performance after being well trained, are not always practically

useful due to the need of camera in front of the user. Other recent

research efforts exploit new sensing modalities such as wireless

signals tracking human heartbeat [43], motion sensors recording

facial muscle movements [20, 36] or acoustic signal modeling ear

canal [1], but require bulky, expensive or custom hardware that are

not affordable or available in many practical scenarios. In contrast,

FaceListener uses only commodity headphones with the minimum

audio jack re-wiring, but achieves comparable recognition accuracy

with the existing techniques.

There have been existing systems that can reach higher accura-

cies on facial expressions recognition than FaceListener. For exam-

ple, dedicated EMG and ear pressure sensors can achieve a classi-

fication accuracy of 85.2% and 87.5%, respectively. Using the IMU

sensors in eSense earables [19], a recent work [36] can classify 32

6https://www.youtube.com/watch?v=EvGOlAkLSLw&ab_channel=Apple
7https://www.youtube.com/watch?v=yYnXBRo9TVA&ab_channel=
LateNightwithSethMeyers
8Note that, since only some of our selected 7 categories of facial expressions are present
in CK+ and FERPlus, only these facial expressions are used in evaluation.
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Figure 27: Performance of recognizing facial expressions

when watching the Apple Event
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Figure 28: Performance of recognizing facial expressions

when watching the Talkshow

facial action units with 89.9% of accuracy. By using camera captures

as the input, deep learning models can also achieve higher accuracy

using different online datasets [3, 15, 38]. Compared with these ex-

isting systems, although the recognition accuracy of FaceListener is

lower for 5% to 10%, it significantly lower the requirement on extra

hardware implementation and deployment. Instead, FaceListener

allows convenient development and usage of facial recognition

related applications in a more accessible and low-cost manner.

Smart health via acoustic sensing. Acoustic sensing has been

widely used in smart and wearable devices for health monitoring,

and can be categorized into passive sensing and active sensing. Pas-

sive sensing overhears and analyzes the sound produced during the

target human activities. For example, the toothbrushing activities

can be evaluated from the brushing sound to help maintain teeth

hygiene [30], and body sounds that people produce from normal

talking and walking can be analyzed to diagnose Parkinson diseases

[40].

Our design of FaceListener is related to prior work on active

acoustic sensing, in which the system transmits acoustic signals

and analyzes the received signal afterwards. Existing work has

demonstrated the possibility of using acoustic signals to monitor

humans’ heart rhythms [37], lung functions [34] and falling events

[24]. FaceListener, instead, targets on a completely different but

more challenging application scenario, in which recognizing the

subtle changes of facial skin deformation requires new acoustic

sensing methods.
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7 DISCUSSIONS

Impact of head movements. Head movements have been proved

to largely affect the performance of vision-based system of facial

expression recognition, because the camera with a fixed position

can only capture the front view and the facial area and could hence

lose important information if the user head turns around. Compara-

tively, FaceListener suffers much less impact from head movements,

because the headphones being worn move accordingly with any

head movement. Such movements, on the other hand, may cause

slight changes on facial muscle movements, but evaluation results

in Section 4.4 have demonstrated that FaceListener can retain high

recognition accuracy in these cases.

User-dependent recognitionmodel. The acoustic channel being

built and used in FaceListener may highly vary among different

human beings, due to their different face shapes and facial mus-

cle characteristics. In addition, even for the same type of facial

expression, different people tend to have their own patterns that

are unique from others. As a result, the neural network models

in FaceListener need to be individually trained for each user. In

our current system setup, each individual only needs to record a

10-minute video along with acoustic signal measurements. Since

such training is one-time effort for each user, we consider this per-

sonalized approach as practical. Possible solutions to this constraint

include transfer learning or self-supervised learning, which will be

explored further in our future work.

Implementation on other types of headphones. The key of

recognizing expressions reliably from acoustic signals is that the

acoustic signal must propagate above the facial surface. However,

this is not always a possible setup for some commodity headphones.

For wired headphone with build-in microphones, for instance, their

microphones do not locate on the ear side but always near the

mouth. Such configuration cannot guarantee that the acoustic sig-

nal can propagate over the entire facial area, possibly affecting the

accuracy of recognizing facial expressions. For wireless earbuds

such as Airpods, they always have multiple microphones on both

sides. Acoustic channel can only be ensured to cover the entire face

area if we could specifically select the earphone to use the micro-

phone on one side. However, such implementation is infeasible due

to the lack of programming APIs and documentation provided by

the device manufacturers.

8 CONCLUSION

In this paper, we present FaceListener, a new technique that rec-

ognizes human facial expressions using commodity headphones.

Our work uses active acoustic sensing to estimate the propagation

channel influenced by facial muscle deformation and classifies these

changes into corresponding expressions using a machine learning

network with teacher-student structural design. Our experiments

show that FaceListener can achieve more than 80% accuracy on 7

common categories of facial expressions.
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