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ABSTRACT

Facial expressions are important indicators of user needs that can
be used in many interactive computing applications to adapt the
system behaviors and settings. Current computing approaches to
recognizing human facial expressions, however, either rely on con-
tinuous camera recordings that are energy consuming, or require
custom sensing hardware that are expensive and difficult to use
on commodity systems. In this paper, we present FaceListener, a
new sensing system that recognizes human facial expressions by
only using commodity headphones. The basic idea of FaceListener
is to transform the commodity headphone into an acoustic sensing
device, which captures the face skin deformations caused by fa-
cial muscle movements with different facial expressions. To ensure
the recognition accuracy, FaceListener leverages the knowledge
distillation technique to learn the subtle correlation between face
skin deformation and the acoustic signal changes. Experiment re-
sults over multiple human beings demonstrate that FaceListener
can accurately recognize more than 80% of different facial expres-
sions. FaceListener is highly energy efficient, and can well adapt to
different headphone models, host systems and user activities.
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1 INTRODUCTION

In human communication and interaction, facial expressions serve
as natural and effortless signals to convey ourselves besides verbal
languages [23]. In many interactive computing applications such as
virtual reality [14], cognitive robotics [26] and customer analytics
[16], being able to timely and precisely recognize such facial ex-
pressions will be very useful for the computing system to capture
the current user need and adapt the system behaviors and settings
accordingly.

Most of current computing approaches to recognizing human
facial expressions use images of human faces as the input [17], and
can accept such images being taken from either front [25] or side
[5] of the user. However, their accuracy and reliability significantly
drop when the ambient light condition degrades [5, 6]. Continuous
camera use will also incur very high power consumption that is
not affordable on most battery-powered mobile devices.

Instead, some recent research seeks to exploit the correlation
between facial expressions and facial muscle movements, which
can be detected via either surface electromyography (EMG) [12, 28],
on-head strain sensor [21] and in-ear air pressure sensor [2]. Facial
expressions have also been considered as the outcome of human
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Figure 1: FaceListener recognizes facial expressions from
the acoustic signal transmitted above the face skin surface.

emotions, which can be monitored from different physiological
signals [11, 18, 43] and human activities [27, 42]. However, all these
techniques require custom sensing hardware, which are expensive
and difficult to be integrated into commodity systems in practical
use. The use of such custom hardware, on the other hand, also
make these systems highly sensitive to the random variations of
the human body, user mobility, and the surrounding environment.
For example, sensing electrodes may be misplaced due to human
body movements and hence result in substantial recognition er-
rors [13, 33]. Besides, other existing approaches utilize the Inertial
Measurement Unit (IMU) sensors on modern wireless earphones
to recognize various human expressions from facial muscle move-
ments. These techniques achieve fine-grained recognition on mul-
tiple facial expressions [8, 20, 36], but are only implemented on
custom prototypes [19] rather than commodity devices. Given that
IMU sensors are not always available on commodity off-the-shelf
earphones, these existing approaches may not be used as a generic
solution in practical application settings.

In this paper, we aim to address the aforementioned limita-
tions and instead propose FaceListener, a new sensing system that
achieves precise and reliable recognition of human facial expres-
sions by only using commodity headphones. As shown in Figure 1,
FaceListener transforms the commodity headphone into an acoustic
sensing device through simple audio jack re-wiring, which changes
one of the headphone speakers into a microphone. With the in-
audible ultrasound signal being transmitted from the headphone’s
speaker to microphone, our system design builds on the fact that dif-
ferent facial expressions correspond to different skin deformations
on the human face surface, which significantly affect the propaga-
tion of ultrasound signal above skin surface. This correlation, then,
allows us to precisely recognize human facial expressions from



the received ultrasound signal. Furthermore, since headphones are
usually attached to the user’s ear, they are less likely to move and
hence provide better reliability of continuous recognition over long
time.

The major challenge of such recognition, however, is that differ-
ent shapes of the face surface can only produce subtle changes on
the propagated ultrasound signal, but the acoustic signal received
by the microphone will contain the sound being produced by any
other sources nearby (e.g., human voice, body vibrations, etc). To
make sure that FaceListener can precisely capture the signal change
caused by different facial expressions, our solution is two-fold. First,
we consider the ultrasound signal’s propagation above the face skin
surface as an acoustic channel, and use the channel estimator as
the sensing output to ensure that even the smallest change of the
face surface can be captured.

Second, to ensure precise recognition of human facial expres-
sions, one intuitive approach is to use a neural network to learn
the correlation between acoustic sensory data and facial expres-
sions. However in practice, the accuracy of such recognition may
be impaired by the possible variation and uncertainty in each type
of facial expression, whose impact could be largely amplified over
the received ultrasound signal. Instead, our approach is to leverage
the existing knowledge distillation technique, more specifically,
the teacher-student learning framework [22, 39]. More specifically,
during the offline training, extra facial images are taken at the same
time with acoustic sensing for each facial expression, and are used to
train the teacher network with higher confidence. The teacher net-
work will then be used to supervise the training of student network
that takes acoustic sensory data as input, by transferring the latent
knowledge learned from facial images and using such knowledge
to eliminate the ambiguity and uncertainty in the acoustic sensory
data. Afterwards, when being used online, FaceListener only uses
the trained student network to recognize facial expressions, from
the acoustic sensory data.

FaceListener intends to provide an highly accessible solution to
recognizing facial expressions in casual settings so that any low-
cost commodity wired headphones can be turned into a sensor that
enables facial expression related applications (e.g., in-home mental
well-being tracking). Since the rewired headphones can still play
sounds using one speaker, the recognition of facial expression can
be operated at the same time with sound playback, with minor
degradation of user experience, especially in casual application
scenarios where the users are not sensitive to the audio quality.

To our best knowledge, FaceListener is the first system that
recognizes human facial expressions using only commodity head-
phones. We implemented FaceListener over headphones that attach
to human ears in different ways (e.g., on-ear, in-ear and over-ear),
and evaluated its recognition accuracy over 5 student volunteers in
various conditions, including lab-controlled settings and real-world
scenarios. From our experiment results, we have the following
conclusions:

e FaceListener is accessible. It can be implemented on widely
available low-cost headphones without dedicated sensors.
Users could capture their facial expressions and enable new

applications by simply wearing a off-the-shelf headphone.
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o Facelistener is accurate. It can achieve >80% accuracy when
recognizing 7 main categories of facial expressions (neutral,
joy, sad, surprise, anger, fear and disgust) over commodity
headphones.

FacelListener is adaptive. It is able to retain the recognition
accuracy when being used over different headphone models,
host systems (desktop PCs, laptops and smartphones) and
ultrasound frequency bands (15kHz-23kHz). It can also well
adapt to different human activities, body skin conditions or
even head accessories that the users may wear.
FaceListener is lightweight. On a commodity smartphone,
it only takes 135ms to recognize one facial expression, and
consumes <20% of smartphone battery after 3 hours of con-
tinuous use.

2 BACKGROUND & MOTIVATION

In this section, to motivate our design of FaceListener, we first
demonstrate how facial expressions relate to the skin deforma-
tion caused by facial muscle movements. Afterwards, we discuss
possible pathways of ultrasound signal propagation between the
headphone’s speaker and microphone, and demonstrate that the
airborne propagation above the skin surface is strong enough for
FaceListener’s acoustic sensing.
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Figure 2: Facial expressions are created by different move-
ments of facial muscles.

2.1 Facial Expressions and Facial Muscle
Movements

Facial expressions are induced by the contraction of different skele-
tal muscles laying underneath the facial skin. Unlike other muscles
on human body, facial muscles directly insert into the skin and
hence their contractions produce much more evident skin deforma-
tions. As shown in Figure 2 which lists the 7 main types of human
facial expressions, facial muscles are commonly divided into 3 cate-

gories: orbital, nasal and oral, which collectively produce different
facial expressions [41]. For example, the orbital muscles contribute



to the expressions of sadness and fear by changing the shapes of
mouth corner, eyebrows and eyelids. Nasal muscles control the
movements of nose and the skin around it. They are the main con-
tributors of disgust and contempt expressions, but also contribute
to producing anger and sadness expressions. Oral muscles decide
the shape of mouth and lips, from where expressions of joy, sadness
and surprise are being produced.

In practice, since every facial muscle is involved in producing
multiple types of facial expressions, we cannot recognize any spe-
cific facial expression by detecting the movements of individual fa-
cial muscles. This ambiguity, instead, motivates or design of FaceLis-
tener, in which the facial skin deformation as a cumulative effect
of all the facial muscle movements are reflected and sensed as the
variation of ultrasound signal being propagated above the skin
surface.
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Figure 3: Three possible pathways of ultrasound signal prop-
agation

2.2 Acoustic Signal Propagation

In FaceListener, a commodity headphone transmits ultrasound sig-
nal from one of its speakers to another that is transformed into
a microphone by audio jack re-wiring (details in Section 3.1). In
this case, the ultrasound signal could be possibly propagated along
three different pathways as shown in Figure 3 and listed below:

(1) The signal propagates through the facial skin tissue.

(2) The signal propagates first into the ear canal of the speaker
side, and then reaches the other ear canal of the microphone
side through the human head.

(3) The signal propagates through the airborne pathway above
the skin surface.

In the first pathway, the ultrasound signal will be greatly at-
tenuated whenever it passes through the boundary between air
and human tissue, in which the acoustic impedance decides such
attenuation. As listed in Table 1, since the impedance in air is much
smaller than that in human tissue, a significant amount of signal
energy (>99%) will be absorbed by the human tissue itself and the
remainder will hence have negligible impact on the microphone’s
received signal. Similarly, in the second pathway through the ear
canals, the majority of signal energy will be absorbed by the ear
drum that captures the air vibration.

To this end, we consider that the majority of signal being re-
ceived at the transformed microphone is transmitted through the
airborne pathway above the facial skin surface. In practice, when
the headphone is being worn by the user, such propagated signal is
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Media | Density | Velocity | Impedance
(kg/m®) | (m/s) | (10%kg/m?/s)
Air 1.16 344 0.0004
Water 998 1482 1.48
Muscle 1041 1580 1.65
Tissue 928 1430 1.33

Table 1: Acoustic impedance of different media

the outcome of the headphone sound leakage, which widely exists
on almost every commodity headphone [29]. To verify such leak-
age, we conducted preliminary experiments on different types of
headphone models! shown in Figure 4(a), by transmitting a sweep-
ing sine wave from 20 Hz to 24 kHz with the maximum volume.
Results in Figure 4b show that these commodity headphones are
able to greatly suppress signal leakage within the audible band,
but produce much higher signal leakage in the ultrasound band. In
particular, on all the headphone models, Figure 4(b) shows that the
sound pressure level (SPL) above 15 kHz is always above 30 dB and
at least 15 dB higher than that in the audible band. These results
verify that the ultrasound signal transmitted by commodity head-
phones, when being received by the transformed microphone on
the headphone, is strong enough for precise recognition of human
facial expressions.
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Figure 4: Measurements of acoustic signal leakage on com-
modity headphones

3 SYSTEM DESIGN

As shown in Figure 5, FaceListener recognizes facial expressions
when a wired headphone is worn regularly by the user, in a way that
one of the headphone speakers is transformed into a microphone.
From the received ultrasound signal, we estimate the acoustic chan-
nel between the headphone’s speaker and transformed microphone,
and use such channel estimation to recognize facial expressions.
To ensure accurate recognition of facial expressions, FaceLis-
tener uses knowledge distillation to train the neural network for
recognition through a teacher-student learning framework. During
the training phase, a camera is used in front of the user face to
capture the facial image corresponding to each facial expression
being made. These images will then be used to train the teacher

1On-ear: Sony MDR-ZX110, Over-ear: Audio-Technica ATH-M30x, In-ear: Samsung
EO-EG920BW.
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Figure 5: Overview of FaceListener system design

network. At the same time, the acoustic sensory data obtained for
each facial expression will be used to train the student network,
which is being supervised by the teacher network through both
the facial expression labels and individual facial keypoints being
detected. Afterwards, during the testing phase, only the student
network will be used for online recognition of facial expressions.

3.1 Re-Wiring over Commodity Headphones

Speakers and microphones are devices that generate or capture
propagated air vibrations as pressure waves. As shown in Figure
6(a), their physical structures and mechanisms share much in com-
mon. On the speaker, a diaphragm is moved by electromagnetic
induction to generate such vibrations. Reversely, a microphone
uses a diaphragm to capture air vibrations and then converts such
vibrations into electrical signal via the magnet and coil.

Based on such similarity, the hardware of a commodity speaker
can be used as a microphone, by simply using the speaker’s output
interface as input. In practice, existing work showed that the 3.5mm
socket of audio output can be converted to input via software,
because any audio port of the sound processing hardware (e.g., the
PC sound card) is designed to be configurable as either output or
input [31]. However, this software approach can only configure
both the left and right audio channels of a headphone as output or
input at the same time, and hence cannot be used to transform a
commodity headphone into an acoustic sensing device that consists
of both speaker (output) and microphone (input).

Instead, in FaceListener, we transform one speaker of the head-
phone into a microphone but retain another speaker unchanged, by
re-wiring the audio jack to split the left and right audio channels as
shown in Figure 6(b). On a tip/ring/sleeve (TRS) or tip/ring/ring/sleeve
(TRRS) audio jack, we separate its tip and ring into two separate
audio jacks, which are plugged into Line-out and Mic-in ports of
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the host system, separately. In this way, the sound will be played
through the right speaker and then recorded by the left speaker?.
In practice, unlike existing work that requires a custom IC board
[7], our approach can be easily implemented with 3.5mm male and
female TRRS balun connectors, which are shown in Figure 6(c) and
widely available on market with <$5 cost. On other systems with
an 2-in-1 audio socket (e.g., most laptops and smartphones), an
audio jack splitter can be used instead to implement such re-wiring.

3.2 Acoustic Channel Estimation

Since a speaker usually has a larger diaphragm than that on a micro-
phone, when being transformed into a microphone, it will produce
less vibrations from the incoming pressure waves, and may hence
record sounds with a lower volume. The speaker’s lack of noise
filters and amplifiers for the incoming signal could further reduce
the quality of the recorded sound. We experimentally investigated
the quality of sound being recorded by such a transformed micro-
phone, and Figure 7(a) shows that, when recording the same sound,
the transformed microphone produces smaller audio volume and
the received acoustic signal hence has a lower SNR.

To overcome this difficulty, in FaceListener we transmit a single-
tone ultrasound wave that carries a coded sequence of 60 bits being
modulated by BPSK. When the headphone is being worn by the
user and the sound is being recorded by the transformed micro-
phone, 7(b) shows that the bit sequence can always be correctly
detected via autocorrelation. This detectability, then, allows us to
use the received bit sequence to calculate the estimation of the
acoustic channel from the headphone’s speaker to transformed
microphone. More specifically, received signals first go through
a high-pass filter with cut-off frequency at 15kHz. This is to re-
move unnecessary signal components (e.g., audible sound) that
may affect the estimation results. Next, we compute the correlation

2Similarly, the audio jacks can be re-wired in a reverse way to propagate sound from
the left speaker to the right speaker.
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coefficients between the received signal in a sliding window with
the pre-known transmitted signal. A peak of such coeflicients indi-
cates that the microphone receives the coded sequence successfully.
After demodulating the received sequence Y with the transmitted
sequence X, the channel can be estimated as H = YX T(xxT)y!.In
practical systems, to achieve better estimation accuracy, we simul-
taneously transmit different bit sequences at multiple frequency
bands. The corresponding channel estimations at these frequency
bands, then, are collectively used as the raw features by the student
neural network for recognition of facial expressions.

3.3 Vision-based Teacher Network Design

With these acoustic channel estimations, an intuitive approach to
recognizing facial expressions is to apply these channel estimations
and the corresponding facial expression labels to train a neural
network. For example, a long short-term memory (LSTM) classifi-
cation model can be trained to learn from the time series data of
channel estimations. However, Figure 8 shows that using such as
simple classification model lead to very low recognition accuracy.
The main reason of such low accuracy is that the correlation be-
tween the acoustic channel and facial expressions is subtle, and
the acoustic channel is hence highly sensitive to the small changes

137

of face skin deformation, which could be heterogeneous among
different samples of the same type of facial expression. The capacity
of a simple classification model, then, is insufficient to represent
such subtle correlation.

On the other hand, existing work has demonstrated that using
neural networks can precisely recognize humans’ facial expres-
sions from their facial images. When using images of front faces,
the accuracy of recognition using a single deep neural network
(DNN) can achieve 95% [15, 38]. Based on such high accuracy, in
FaceListener we intend to transfer the latent knowledge about facial
expressions being learned from such vision-based teacher network
to the acoustic-based student network, to supervise the training of
student network and hence increase its capacity. The key insight of
this supervision structure is that, unlike images that carry intuitive
information about the facial muscle variations, acoustic samples are
less comprehensible and interpretable for a deep learning model to
extract representative features. To ensure recognition accuracy, a
deep learning model based on acoustic data may need more abstrac-
tion capacity. Instead of increasing the complexity of the neural
network itself as the most straightforward but unreliable approach,
a vision-based teacher network can reduce the required capacity for
feature extraction at the student model, which then only needs to
learn those representative features processed by the teacher model.
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Figure 8: Accuracy of recognizing facial expressions using a
simple LSTM classification model



Traditionally, such supervision is conducted by taking the teacher
network’s output as the target label for the student network dur-
ing the training procedure. This method, however, is ineffective in
FaceListener because many small changes on facial deformation
may not be captured by the teacher network from facial images
but could result in large variation in the acoustic channel. To ad-
dress this challenge and ensure appropriate supervision, as shown
in Figure 5, FaceListener divides both the teacher network and
the student network into two sub-networks: the first sub-network
detects the positions of a pre-defined set of facial keypoints (e.g.,
eyebrow ends, eye corners, nose and mouth corners, etc), and the
second sub-network further recognizes the facial expression from
the positions of these keypoints with respect to the human face
contour.

As a result, the teacher network can supervise the training of
both sub-networks in the student network. In particular, the teacher
network’s learned knowledge on individual facial keypoints can
be effectively transferred to the corresponding sub-network in the
student network, hence ensuring that any small changes on facial
deformation can be correspondingly mapped to the right keypoint.

3.3.1 Facial Keypoint Detection. In facial keypoint detection of the
teacher network, we first preprocess each facial image by resizing
and cropping it3, to make sure that the coordinates of facial key-
points in all facial images are consistent. This consistency, then,
allows us to universally compute the coordinates of facial keypoints
in each image as their relative positions from the nasal tip in the
image.

Afterwards, we need to decide the most appropriate set of key-
points being used, which should be the most important ones that
represent facial expressions. For example, as shown in Section 2.1,
the positions of nose and mouth corners are important indicators
of many facial expressions including joy, sadness, anger, disgust,
etc. We start from a well-established face mesh model that is devel-
oped by the Google MediaPipe project [9] and defines 468 facial
keypoints as shown in Figure 9(a), and then select 30 keypoints
with the highest importance in facial expression recognition to be
used in FaceListener for timely online inference?.

In FaceListener, such selection procedure is done by training a
regular fully-connected neural network over the collected facial
images. More specifically, we use Google MediaPipe to detect the
468 keypoints in each facial image and use their coordinates as the
neural network input. The facial expression labels of the images
are used as the neural network output. After that, we adopt the ex-
plainable Al technique [35] on this trained network to compute the
integrated gradient (IG) of each keypoint, which quantitatively mea-
sures how this keypoint contributes to correct recognition of facial
expressions. The top 30 keypoints with the highest contributions
are then selected.

Our selected 30 keypoints, as shown in Figure 9(b), mainly cover
the edges and corners of eyebrow, eye, nose and mouth, hence
depicting the contours of these important elements on human face.
Note that, the contributions of the x and y coordinates of these

3Such preprocessing can be done by simply using existing image processing tools such
as the YOLOface model [32].

“In practice, different numbers of keypoints can be selected to balance bewteen the
granularity and computing latency of facial expression recognition.
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keypoints are separately measured, and hence some keypoints may
only have one coordinate that is important to facial expression
recognition. Based on such selection, Table 2 shows that, when
being applied to the same set of facial images being used in training,
these 30 keypoints result in similar accuracy of facial expression
recognition, compared to that using all the 468 keypoints.

Expressions l N l J l Sa l Su l A l F l D
468 keypoints(%) | 96.5 | 95.3 | 95.9 | 95.2 | 94.9 | 95.3 | 95.1
30 keypoints(%) | 97.1 | 95.5 | 96.6 | 96.1 | 94.7 | 95.9 | 96.5

Table 2: Classification accuracy with different selections of
facial keypoints (N=neutral, J=joy, Sa=sadness, Su=surprise,
A=anger, F=fear, D=Disgust)

3.3.2  Facial Expression Classification. The second sub-network,
as the classifier of facial expressions, is being trained with the
coordinates of the 30 selected facial keypoints on each facial image
as input and the corresponding facial expression label as the output.
In particular, to ensure its reliability and accuracy, we first pre-train
this network using a public dataset of facial images with known
facial expression labels®. Afterwards, when being used on a specific
user, this classifier will be further improved with this user’s own
facial images.
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Figure 10: Student network design

SWe use the muxspace dataset: https:/github.com/muxspace/facial_expressions, which
contains 13,718 facial images with a resolution of 96x96. Images in this dataset will
be first applied to the facial keypoint detection sub-network, and the detected facial
keypoints are then used to train the facial expression classification network.



3.4 Acoustic-based Student Network Design

In order to facilitate the supervision from the teacher network, the
student network in FaceListener is also designed to be consisting
of two sub-networks: the first sub-network decides the positions
of the 30 selected facial keypoints from the input data of acous-
tic channel estimation as described in Section 3.2, and then the
second sub-network similarly recognizes facial expressions from
the detected facial keypoints. Since acoustic channel estimations
are produced as time series data, we use the LSTM model as the
basic processing kernel for facial keypoint detection. When mul-
tiple acoustic channel estimations from different frequency bands
are simultaneously used, they are being applied to separate LSTM
encoders and then merged together.

As shown in Figure 10, the supervision on the student network
is defined as a joint loss function that covers both facial keypoint
detection and facial expression classification. The supervision on
facial keypoint detection is designed as a regression task, which
minimizes the mean square difference (MSD) between the teacher
network’s and student network’s facial keypoint coordinates being
detected. The supervision on facial expression classification, on
the other hand, is done through the categorical cross entropy loss,
which ensures that the student network produces similar results of
facial expression recognition as the teacher network does.
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sion methods

Figure 11 shows the performance of training the student network
when being supervised by the teacher network. With the same
neural network complexity and parameter, the training of student
network cannot efficiently converge if it is only supervised by
the teacher network through the facial expression label. On the
other hand, the extra supervision through the regression of facial
keypoints’ coordinates ensures fast convergence of the student
network training.

4 PERFORMANCE EVALUATION

We implement FaceListener using different types of commodity
headphones, balun audio connectors and audio jack splitters, as
shown in Figure 6(c), and transmit ultrasound signals in multiple
frequency bands between 18 kHz and 21 kHz with an interval of 0.5
kHz. In our implementation, we allow FaceListener to monitor the
user’s facial expressions during normal uses of the headphones (e.g.,
playing music or watching videos). To allow simultaneous trans-
mission of ultrasound signal along with audible sound playback in
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these cases, we use build-in audio mixers on desktop OSes such as
Windows and Linux. For smartphone platforms, we realize such
sound mixing using Android Audio Focus [10] or iOS duckOthers
[4].

Figure 12: Evaluation setup

Based on this implementation, we evaluate the FaceListener’s
accuracy of recognizing the facial expressions over 5 student volun-
teers, in a 10mx10m lab office with regular furnitures. Due to the
large variation among different human faces, the neural network
models are separately trained and tested for each student volun-
teer, and the results are averaged over the 5 student volunteers. As
shown in Figure 12, in our experiments, a volunteer sits in front of
a camera and wears the re-wired headphone that connects to the
host system. The volunteer then follows the host system screen’s
instructions to make facial expressions in 7 different categories (neu-
tral, joy, sadness, surprise, anger, fear and disgust) and retain each
facial expression for 5 seconds before switching to the next. Each
experiment lasts for 10 minutes, during which the camera takes
facial images at 30 FPS and acoustic sensing is conducted simulta-
neously. Since the acoustic signal has much higher sampling rate
compared to the video frame rate, each video frame corresponds to
one segment of sound recording. In total, each experiment results
in 18k training samples of video frames and a similar number of
acoustic recordings for both the teacher network and the student
network.
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Figure 13: Accuracy of recognizing 7 categories of facial ex-
pressions

We train different models for each subject due to the heterogene-
ity of human facial muscle. The average accuracy of recognizing



the 7 categories of facial expressions over 5 student volunteers
is shown in Figure 13(a), and such accuracy is above 80% for all
the 7 categories. Furthermore, Figure 13(b) shows the recognition
accuracy over each individual student volunteer, and demonstrates
that such accuracy varies little and retains at the same level over
each student volunteer.

Next, Figure 14 shows results of the leave-one-user-out model
evaluation, in which we train the model using data collected from 4
users and report the recognition accuracy tested on the one left. The
model still achieves 70% of accuracy even when it is not tuned to
specific user. This proves that, even without user-specific training,
the teacher and student model can still work collaboratively to
extract effective acoustic features correlated with facial expressions.
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Figure 14: Leave-one-user-out accuracy of different facial ex-
pressions
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Figure 15: Confusion matrix of facial expression recognition

Furthermore, the confusion matrix of facial expression recog-
nition is shown in Figure 15. Note that recognitions on the anger
and fear expressions are less accurate when compared to those on
other expressions. To investigate the reason of such inaccuracy,
we inspected the acoustic channel estimations corresponding to
each category of facial expressions, and found that these two cate-
gories of facial expressions result in larger variations of the acoustic
channel, as shown in Table 3. The reason of such large variance
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is that maintaining the fear and anger expressions is more diffi-
cult for the users due to the involvement of more groups of facial
muscles. As a result, different samples of these expressions may be
largely heterogeneous and hence affect correct recognition of these
expressions.

Expressions[ N [ J [ Sa [ Su [ A [ F [ D
Var. [ 139178 [ 1.67 [ 231 [ 5.17 [ 5.89 | 2.75
Table 3: Channel estimation variance of different cate-

gories of facial expressions. (N=neutral, J=joy, Sa=sadness,
Su=surprise, A=anger, F=fear, D=Disgust)

4.1 Recognition Accuracy with Different
Headphone Models and Host Systems

The recognition accuracy of FaceListener could vary over different
types of headphone models (e.g., on-ear, over-ear, in-ear), which
have different ways of attachments to human ears. We evaluated
the recognition accuracy of FaceListener over the three headphone
models shown in Figure 4(a), and the evaluation results in Figure
16 show that FaceListener has the highest recognition accuracy
with on-ear headphones, but the accuracy loss on other types of
headphones is within 5% for all categories of facial expressions.
More specifically, for over-ear headphones, since the soft cush-
ion on the headphone can absorb the sound leakage and reduce
the transmitted signal strength, the performance of FaceListener
drops by 2%. In-ear headphones, on the other hand, lead to the
lowest accuracy because of two reasons: first, in-ear headphones
are inserted into the ear canal and hence result in less sound leak-
age to the skin surface; second, in-ear headphones have smaller
sound diaphragm and hence have more difficulty in capturing the
transmitted ultrasound after being re-wired into a microphone.
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Figure 16: Impact of different headphone models

FaceListener can be used on different host systems including
desktop PCs, laptops and smartphones. Figure 17 shows the recogni-
tion accuracy tested on these different host systems: a Dell Precision
5810 workstation, a Lenovo Legion 7 laptop and a Samsung S20
smartphone. Desktops and laptops have comparable performance
because sound cards with similar specifications are usually inte-
grated into their motherboards. On the other hand, FaceListener’s
recognition accuracy slightly drops on smartphones, due to the use



of an additional adapter that splits the 2-in-1 audio part but may
introduce extra noise.
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Figure 17: Accuracy on different host systems

4.2 Impact of Acoustic Signal Characteristics

The recognition accuracy of FaceListener depends on the strength
of ultrasound signal being received by the transformed microphone.
We evaluated the impact of such signal strength with different
volumes of the transmitted ultrasound, but the results in Figure 18
show that even when the sound volume at the transmitting speaker
is reduced to 50% of the maximum, the recognition accuracy only
slightly drops by 1.5%. In reality, as we transmit ultrasound that is
inaudible to most people, maximum volume can always be used in
most cases.

As discussed in Section 2.2, the sound leakage from commodity
headphones is the basic motivation of our system design. Since
such leakage varies over different frequency bands, we evaluate
the system performance by transmitting acoustic signal at different
frequency bands as shown in Figure 19. The results demonstrate
that our system has the similar recognition accuracy over different
ultrasound bands, but has slightly lower accuracy when the trans-
mitted signal falls closer to the audible sound (e.g., around 15 kHz).
Such accuracy drop is mainly because that commodity headphones
are designed suppress the sound leakage within the audible bands.

Our system transmits the ultrasound signal along an one-way
direction because the re-wiring only transforms one speaker into a
microphone. Given that some facial expressions may be asymmetric
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Figure 18: The impact of signal strength (measured as the
percentage of sound volume)
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Figure 19: The impact of signal frequency band

(e.g., contempt and fear as shown in Figure 2), the direction of ul-
trasound propagation may affect the accuracy of recognizing facial
expressions. We evaluated the impact of such direction of sound
propagation. As shown in Figure 20, the impact of different prop-
agation directions produce negligible impacts on the recognition
accuracy. The main reason is that in FaceListener, facial expressions
are recognized based on estimations of the acoustic channel that
covers the entire human face, and such a channel hence remains
the same in both directions of signal propagation.

4.3 Impact of Human Factors

As stated above, FaceListener is designed to recognize the user’s fa-
cial expressions with other concurrent user activities. We evaluated
the impact of different user activities on the recognition accuracy,
and evaluation results in Figure 21 show that FaceListener retains
high accuracy of recognizing facial expressions for most types of
user activities, even when the user is using the headphone to listen
to music or watch videos that mainly involve sounds in audible
bands. To verify its practical applications, we also test outdoor
scenarios including sitting on a bench and walking. Because most
outdoor noise can be filtered out by preprocessing, FaceListener
can still achieve similar accuracy. Besides, we notice a slight per-
formance drop when the user is walking, such difference is caused
by human walking motion may add movements on the receiver
side of the headphone, thus affecting the channel estimation re-
sults. However, FaceListener will experience 15% accuracy drop if
the user is talking while using FaceListener, because of the extra
movements of relevant facial muscles. Comparatively, we verified
that vision-based recognition methods [38] will also experience
10-15% accuracy drop in similar situations, hence demonstrating
the competitiveness of FaceListener to these existing methods.

Since the transmitted ultrasound signal propagates closely above
the facial surface, its propagation may also be impacted by different
skin conditions. To evaluate whether such factor can make an
impact, we train the model with data only collected on normal
faces, and test the system performance using data from other skin
conditions (without any re-training or fine-tuning on these new
data). We emulate these skin conditions by applying cream and
water onto the user face, and the accuracy of facial expression
recognition, as shown in Figure 22, remains nearly the same under
these different skin conditions.
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Figure 21: Impact of different user activities

Lastly, we evaluate some external wearing objects that can im-
pact our system’s practical usefulness. Figure 23 shows the recog-
nition accuracy when a user wears glasses or a hoodie hat. Objects
being worn may potentially change the acoustic channel charac-
teristics by incorporating additional signal propagations. However,
our results demonstrate that wearing accessories or clothes pro-
duces little impacts on the recognition accuracy. Essentially, as long
as the accessory does not cover the facial skin (e.g., masks) to hide
the face contour, FaceListener can retain the recognition accuracy
with little performance loss.
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Figure 22: Impact of different skin conditions

4.4 Overhead

We compared the computational costs of FaceListener with those of
a vision-based recognition system [38], both on a desktop PC with
an Intel 17-8700k CPU. As shown in Figure 24, both systems take
input data with a fixed interval of 33.33ms, and the computing times
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of FaceListener in acoustic channel estimation and neural network
model inference are both limited with 100ms and comparable to
those in the vision-based system.
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Figure 23: Impact of head accessories and clothes

We also evaluate the power consumption of FaceListener on a
Samsung S20 smartphone, with the screen off and any unnecessary
background apps being closed. Results in Figure 25 shows that by
avoiding the expensive camera use, FaceListener is much more
energy-efficient than existing vision-based recognition systems,
and consumes <20% of smartphone battery after 3 hours of contin-
uous use (being similar to normal smartphone usage such as music
playing).

Process Time (ms) Process Time (ms)
Acoustic sensing 33.33 Image capturing 33.33
Channel estimation 3.78 Data processing 5.15
Model inference 98.23 Model inference 87.26
Total 135.34 Total 125.74

(a) Our acoustic system (b) A vision-based system [38]

Figure 24: Computational costs of recognizing one facial ex-
pression
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Figure 25: System power consumption

5 REAL-WORLD EXPERIMENTATION

To better examine the performance of FaceListener in real-world
application scenarios, we further let the 5 student volunteers to
watch two live video clips on different topics: 1) the special Apple



Event on Sept 14, 2021° and 2) a talkshow by Seth Meyers’. Dur-
ing the playtime of these videos, we collect the facial images and
acoustic sensory data of the user using FaceListener.

First, we apply the collected facial images to two vision-based
recognizer of facial expressions, namely CK+ [15] and FERPlus [38],
to recognize the user’s facial expressions and use these facial expres-
sions as shown in Figure 26 to be our ground truth for evaluation.
Afterwards, we compare the recognition results of FaceListener
with such ground truth, and the evaluation results with respect to
CK+ and FERPlus are shown in Figure 27 and Figure 28, respec-
tively®. These results exhibit similar accuracy of facial expression
recognition when compared with that in lab-controlled settings
shown in Section 4, further verifying the usability of FaceListener
in practical application scenarios.
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Figure 26: Ground truth of facial expressions

6 RELATED WORK

Emotion and facial expression recognition. Conventional ways
to recognize human emotions require electrodes to be worn to
record biosignals such as ECG, EEG, EMG and GSR [11, 12], which
are inconvenient to be used on commodity systems. Besides, com-
puter vision based DNN models [5, 15, 38], although showing solid
performance after being well trained, are not always practically
useful due to the need of camera in front of the user. Other recent
research efforts exploit new sensing modalities such as wireless
signals tracking human heartbeat [43], motion sensors recording
facial muscle movements [20, 36] or acoustic signal modeling ear
canal [1], but require bulky, expensive or custom hardware that are
not affordable or available in many practical scenarios. In contrast,
FaceListener uses only commodity headphones with the minimum
audio jack re-wiring, but achieves comparable recognition accuracy
with the existing techniques.

There have been existing systems that can reach higher accura-
cies on facial expressions recognition than FaceListener. For exam-
ple, dedicated EMG and ear pressure sensors can achieve a classi-
fication accuracy of 85.2% and 87.5%, respectively. Using the IMU
sensors in eSense earables [19], a recent work [36] can classify 32
Shttps://www.youtube.com/watch?v=EvGOIAKLSLw&ab_channel=Apple
"https://www.youtube.com/watch?v=yYnXBRo9TVA&ab_channel=
LateNightwithSethMeyers

8Note that, since only some of our selected 7 categories of facial expressions are present
in CK+ and FERPlus, only these facial expressions are used in evaluation.
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facial action units with 89.9% of accuracy. By using camera captures
as the input, deep learning models can also achieve higher accuracy
using different online datasets [3, 15, 38]. Compared with these ex-
isting systems, although the recognition accuracy of FaceListener is
lower for 5% to 10%, it significantly lower the requirement on extra
hardware implementation and deployment. Instead, FaceListener
allows convenient development and usage of facial recognition
related applications in a more accessible and low-cost manner.
Smart health via acoustic sensing. Acoustic sensing has been
widely used in smart and wearable devices for health monitoring,
and can be categorized into passive sensing and active sensing. Pas-
sive sensing overhears and analyzes the sound produced during the
target human activities. For example, the toothbrushing activities
can be evaluated from the brushing sound to help maintain teeth
hygiene [30], and body sounds that people produce from normal
talking and walking can be analyzed to diagnose Parkinson diseases
[40].

Our design of FaceListener is related to prior work on active
acoustic sensing, in which the system transmits acoustic signals
and analyzes the received signal afterwards. Existing work has
demonstrated the possibility of using acoustic signals to monitor
humans’ heart rhythms [37], lung functions [34] and falling events
[24]. FaceListener, instead, targets on a completely different but
more challenging application scenario, in which recognizing the
subtle changes of facial skin deformation requires new acoustic
sensing methods.



7 DISCUSSIONS

Impact of head movements. Head movements have been proved
to largely affect the performance of vision-based system of facial
expression recognition, because the camera with a fixed position
can only capture the front view and the facial area and could hence
lose important information if the user head turns around. Compara-
tively, FaceListener suffers much less impact from head movements,
because the headphones being worn move accordingly with any
head movement. Such movements, on the other hand, may cause
slight changes on facial muscle movements, but evaluation results
in Section 4.4 have demonstrated that FaceListener can retain high
recognition accuracy in these cases.

User-dependent recognition model. The acoustic channel being
built and used in FaceListener may highly vary among different
human beings, due to their different face shapes and facial mus-
cle characteristics. In addition, even for the same type of facial
expression, different people tend to have their own patterns that
are unique from others. As a result, the neural network models
in FaceListener need to be individually trained for each user. In
our current system setup, each individual only needs to record a
10-minute video along with acoustic signal measurements. Since
such training is one-time effort for each user, we consider this per-
sonalized approach as practical. Possible solutions to this constraint
include transfer learning or self-supervised learning, which will be
explored further in our future work.

Implementation on other types of headphones. The key of
recognizing expressions reliably from acoustic signals is that the
acoustic signal must propagate above the facial surface. However,
this is not always a possible setup for some commodity headphones.
For wired headphone with build-in microphones, for instance, their
microphones do not locate on the ear side but always near the
mouth. Such configuration cannot guarantee that the acoustic sig-
nal can propagate over the entire facial area, possibly affecting the
accuracy of recognizing facial expressions. For wireless earbuds
such as Airpods, they always have multiple microphones on both
sides. Acoustic channel can only be ensured to cover the entire face
area if we could specifically select the earphone to use the micro-
phone on one side. However, such implementation is infeasible due
to the lack of programming APIs and documentation provided by
the device manufacturers.

8 CONCLUSION

In this paper, we present FaceListener, a new technique that rec-
ognizes human facial expressions using commodity headphones.
Our work uses active acoustic sensing to estimate the propagation
channel influenced by facial muscle deformation and classifies these
changes into corresponding expressions using a machine learning
network with teacher-student structural design. Our experiments
show that FaceListener can achieve more than 80% accuracy on 7
common categories of facial expressions.
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