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ABSTRACT: Combining quantum chemistry characterizations with generative
machine learning models has the potential to accelerate molecular discovery. In
this paradigm, quantum chemistry acts as a relatively cost-effective oracle for
evaluating the properties of particular molecules, while generative models
provide a means of sampling chemical space based on learned structure—
function relationships. For practical applications, multiple potentially
orthogonal properties must be optimized in tandem during a discovery
workflow. This carries additional difficulties associated with the specificity of
the targets and the ability for the model to reconcile all properties
simultaneously. Here, we demonstrate an active learning approach to improve
the performance of multi-target generative chemical models. We first
demonstrate the effectiveness of a set of baseline models trained on single
property prediction tasks in generating novel compounds (i.e., not present in
the training data) with various property targets, including both interpolative and extrapolative generation scenarios. For property
ranges where accurate targeting proves difficult, the novel compounds suggested by the model are characterized using quantum
chemistry and the new molecules closest to expressing the desired properties are fed back into the generative model for additional
training. This gradually improves the generative models’ understanding of targeted areas of chemical space and shifts the distribution
of the generated compounds toward the targeted values. We then demonstrate the effectiveness of this active learning approach in
generating compounds with multiple chemical constraints, including vertical ionization potential, electron affinity, and dipole
moment targets, and validate the results at the @B97X-D3/def2-TZVP level. This method requires no modifications to extant
generative approaches, but rather utilizes their inherent generative and predictive aspects for self-refinement, and can be applied to
situations where any number of properties with varying degrees of correlation must be optimized simultaneously.

B INTRODUCTION based chemical design. These methods often accomodate
property prediction that allows suggestions to be biased toward

Machine learning (ML) has emerged as a powerful tool for o
compounds with particular properties.~ Much effort has been

solving previously intractable problems by extracting latent

information from domain data and has been effectively directed to solving issues related to the ability of these models
employed in areas as distinct as manufacturing analytics1 and to generate valid chemistries,9’20_22 and they have been
cancer detection.” In recent years, ML has been proved successfully demonstrated in generating compounds with
particularly successful in the chemical sciences, where it is used specific properties such as the band gap™® and thermal
to predict interatomic potentials,” quantum chemical proper- conductivity.”*

ties,” and structural data of polymers™® and crystals.” Moving While models capable of optimizing one molecular property
beyond the “forward-problem” of predicting molecular proper- are compelling proof-of-principle demonstrations, multi-
ties from a given chemical structure, generative chemical property optimization is required in any practical chemical
models have garnered significant interest in solving the discovery application. Because of the exponential scaling of

“inverse-problem” of predicting a chemical structure from a
given descriptor. As a large body of research in chemistry is
devoted to creating novel compounds under functional
constraints, these generative models have the potential to
supplement and automate much of the often-laborious manual
optimization by providing reasonable chemical suggestions for
more expensive experimental synthesis and characterization.
Generative adversarial networks”™"" and various formulations
of autoencoder networks'>™'® have emerged as some of the
more popular frameworks for a generative machine-learning-

search spaces with respect to the number of properties, multi-
property chemical searches are fundamentally more challeng-

Received: September 16, 2021
Revised:  December 16, 2021
Published: January S, 2022

© 2022 American Chemical Society https://doi.org/10.1021/acs.jpca.1c08191

v ACS PUbl icatiOHS 333 J. Phys. Chem. A 2022, 126, 333-340


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicolae+C.+Iovanac"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+MacKnight"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brett+M.+Savoie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.1c08191&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jpcafh/126/2?ref=pdf
https://pubs.acs.org/toc/jpcafh/126/2?ref=pdf
https://pubs.acs.org/toc/jpcafh/126/2?ref=pdf
https://pubs.acs.org/toc/jpcafh/126/2?ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpca.1c08191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf

The Journal of Physical Chemistry A

pubs.acs.org/JPCA

ing because they will be typically operating in an extrapolative
regime (i.e., searching for properties outside the convex hull of
training data ranges) and training data density drops in high
dimensions. Several recent studies have highlighted the
challenges and potential solutions to pursuing multi-property
searches. Janet et al. balanced the solubility and redox potential
in the design of transition-metal complexes for redox flow
batteries using global optimization to explore an enumerated
space of 2.8 million candidate complexes.”> Domenico et al.
utilized reinforcement learning for the design of drug-like
molecules where the trade-offs among relevant physiochemical
properties like molecular weight and hydrogen bond donors/
acceptors, as well as similarity constraints to known drugs,
were minimized.”® Stihl et al. also used a reinforcement
learning approach to target and modify fragments in known
structures to develop novel structures similar to known lead
compounds but with an optimized molecular weight, log P, and
polar surface area.”” Nigam et al. recently proposed the
STONED algorithm, which side-steps the data limitations
associated with training deep generative models and instead
relies on string permutations of seed structures represented
with semantically robust SELFIES.”® Zhou et al. developed a
reinforcement learning method based on atom/bond addition/
removal to optimize compounds with respect to log P and a
quantitative estimate of drug likeliness (QED).” Interestingly,
they also note that common targets for generative models may
not be suitable for real world applications. Log P, for instance,
may be trivially improved by simply increasing the length of
carbon chains in a structure. Of interest is a method that can
be applied generally to experimental properties or computa-
tional analogues.

Despite the large data sets available (and in many cases
necessary) for training, certain combinations of properties are
difficult for a generative model to achieve, either because they
contradict basic physical relationships, or because they simply
have a limited representation within the training data. Rather
than filtering an enumerated set of compounds or guiding the
generation process with methods such as reinforcement
learning, we propose leveraging the generative aspect of
these models to enrich training data in the targeted regions of a
chemical space. Generative chemical models have the unique
feature that syntactically valid outputs are guaranteed to belong
within the chemical space, meaning that they are suitable
samples for further model training. By sampling under-
represented regions of chemical space, new compounds may
be discovered that are closer to the desired property space than
any elements in the training set. By introducing the model to
these new chemistries, the model can better learn which
features correlate with the designated figures of merit. This
framework falls under the paradigm of active learning. In active
learning, a model can ask an expert source (i.e., the oracle) to
annotate unlabeled training data that the model believes will be
helpful.®® This is particularly useful in situations where
generating labeled data is difficult, as is often the case with
chemical property data, because in an optimal case the model
will utilize as little data as possible. This method was exploited
by Konze et al. who used an active learning-based approach to
more efficiently screen a large set of ligands without
conducting expensive free-energy perturbations on the entire
set.”’ This approach was extended in their recent follow-up to
train a goal-directed generative model to generate promising
ligands for further screening.’> The approach of selecting
training samples based on proximity to an optimization
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objective is well represented in materials design applications,
such as a search for polymers with high glass transition
temperatures33 or CO adsorption sites in electrocatalysts.34
Other active learning strategies also include prediction
uncertainty as part of their acquisition function for prioritizing
samples for characterization. The cost of data generation has
led to a proliferation of similar approaches to efficiently select
optimal training data, all falling under the active learning
designation.

We propose formulating the entire goal of multi-target
chemical optimization as an active learning problem. Rather
than attempting to determine optimal regions of the chemical
space to sample or train on, we query the model to obtain its
suggestions for compounds with the desired properties. These
compounds are then screened via a semiempirical calculation
(i.e, the oracle), and the model is retrained on those new
compounds that actually match the target property profiles. In
this way, the model develops its own training data to better
understand new chemistries, and iterating on this procedure
provides an opportunity to continuously improve a model’s
ability to target compounds with under-represented properties.

Herein, we examine this active learning framework to
improve the performance of multi-objective generative
chemical models. Utilizing a subset of compounds from the
ZINC15 database,” we develop our own data set of quantum
chemical properties including the vertical ionization potential
(VIP), electron affinity (EA), and dipole moment (DM)
calculated at the semiempirical level for training. All three
properties are relatively unexplored in generative applications
and are essential characteristics in any organic electronics
application. In particular, VIP and EA determine redox
behaviors, while DM is an important contribution to the
bulk dielectric and impacts the creation of charge traps in
charge transport applications. Likewise, we wanted to
investigate properties besides the quantitative estimate of
drug likeness (QED) and the water—octanol partition
coefficient (log P), which are over-represented in the
generative literature due to their ease of calculation and data
abundance. We demonstrate the effectiveness of generative
chemical models trained to propose compounds with a single
targeted property, as well as multiple properties at once. We
also demonstrate the shortcomings of such models, particularly
when the combination of desired properties is not found in the
training data, and how they may be overcome with active
learning. We then validate the properties of the newly
suggested compounds at the wB97X-D3/def2-TZVP level.
This active learning scheme can be applied to both single
property and multi-property models to extrapolate to new
regions of chemical space.

B METHODOLOGY

Data Sets. All models were initially trained and evaluated
using structures from the ZINC1S data set. This data set
contains 3D structural data for hundreds of millions of small
molecules, from which we chose a subset of 250,000
compounds with a molecular weight between 200 and 500
Da and log P between —1 and 5. These compounds were
subjected to geometry optimization and electronic structure
calculation with GEN2-xTB*° (xTB) to obtain their DM, VIP,
and EA. After removing compounds that failed the initial
geometry optimization, we were left with 224,742 structures
and their associated properties. Eighty percent were utilized for
training, with the remaining 20 percent being withheld for
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validation. Additional structures generated during the active
learning step (see below) were subjected to the same property
calculation methods to expand the data set. The training data
and xTB calculated properties for all the sampled structures
from all of the generative active learning have been uploaded to
Zenodo with a persistent DOI (10.5281/zenodo.5512896).

In order to validate the properties of the structures
generated in the multi-objective active learning study, the
xTB-optimized geometries were used as inputs for density
functional theory (DFT) geometry optimizations at the
®wB97X-D3/def2-TZVP level to determine the DMs and
single-point energies of the neutral species.”” Using the
optimized neutral geometries, single-point calculations were
also performed for the cation and anion electronic states to
calculate the VIP and EA, respectively. All DFT calculations
were conducted using Orca 4.0.1.”

All properties were calculated based on a single conformer
that was initialized with all-trans relationships for the dihedrals
involving heavy atoms, followed by force-field geometry
optimization, then xTB optimization. It is significant that
DM, VIP, and EA can all be affected by conformation, whereas
the generative model used here is based on a graphical
representation that does not include geometric information.
Using a graphical representation amounts to coarse graining,
where the model is tasked with learning property trends
conditioned on the procedure used for generating the
conformers. In the current case, we have applied a systematic
procedure for generating the conformer of the structures, but
this is nevertheless a potentially important source of error for
any property prediction model based on a graphical
featurization.

Machine Learning Architecture. Three models were
developed for single target predictions and one model was
developed for multi-property prediction tasks. We utilized the
grammar variational autoencoder’® (GVAE) model architec-
ture to achieve the generation of molecules with the targeted
properties. The GVAE architecture uses grammar parse trees
to represent molecules, which are decoded to SMILES strings
with rules to reduce syntactically invalid outputs and increase
the reconstruction rate. We modified the baseline GVAE
approach by utilizing a sin§le linear predictor layer for each
property being predicted.*” A simple predictor has limited
capability to reduce prediction loss, and instead the encoder
must adjust its encodings to ensure that properties vary linearly
within the latent space. In particular, we have previously shown
how this architecture leads to effective transfer learning
between the correlated property prediction tasks in data scarce
scenarios.”” Additionally, the linear prediction tasks force the
encoder to map structures such that the principal components
of the latent encodings now have a direct, linear relationship
with the properties that the predictor is trained on. This allows
for a simple procedure to sample new candidate molecules, as
discussed in the next section. The implemented autoencoder
accepts one-hot inputs of grammar parse trees to an encoder
network comprising three one-dimensional convolutional
layers with filter sizes of 9, 9, and 10 and kernel sizes of 9,
9, and 11. The outputs from the convolutional layers are
passed to a fully connected layer of 435 units, which are then
separately connected to two fully connected layers of 56 units
(i.e., the dimensionality of the latent space) defining the mean
and log variance of the encoding distribution. The decoder
accepts samples from the encoding distributions and passes
them to a fully connected layer of 56 units that is connected to
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three gated recurrent units of 501 cells each before terminating
in a final fully connected layer that outputs the probability
distributions for the output sequence. The latent space
dimensionality determines the level of compression performed
by the autoencoder and cannot be set too small without
incurring a loss of accuracy in the property prediction tasks. A
56-dimensional latent space matches the original implementa-
tion by Kusner et al.*” and was adopted here for its sufficient
property prediction accuracy for the generated species. The
effect of this and other hyperparameters were investigated in
our earlier study for the interested reader.*” ReLU activation
functions were used for all units in the autoencoder. Property
prediction is performed by passing latent vectors to a single
linear unit producing a scalar output. An additional unit is
included for each property. Models were created using Keras*'
2.2.4 with Tensorflow"” 1.14.0 backend. A diagram summariz-
ing the model architecture has been included in Figure S1 of
the Supporting Information.

It is difficult to train a network on both encoding/decoding
and property prediction from scratch. It often proves much
easier to first train the network on the encoding/decoding task
first to obtain useful compressed chemical representations
before transferring those weights for fine-tuning in a joint
training task. For this purpose, the SMILES strings
corresponding to all training compounds in the original
GVAE data set were first converted into one-hot grammar
parse trees and used as both inputs and labeled outputs for
autoencoder pretraining. Pretraining followed the same routine
used in the original GVAE implementation.’ The pretrained
model was then utilized for the weight initialization of the
autoencoder for joint training on property prediction tasks,
where in addition to encoding and decoding, the model was
tasked with predicting up to three chemical properties from the
latent encodings. Training was conducted using the RMSprop
algorithm with a learning rate of 0.001, which was set to decay
by a factor of 0.3 in the case of a plateau in the validation loss.
In order to balance the performance across all tasks and to
ensure stable training, the loss weights assigned to the different
tasks were adjusted. Variational loss was scaled by 750, and the
categorical cross-entropy loss from encoding/decoding was set
to SO initially, before decaying to 1 according to a sigmoid
function. The MSE losses for the property predictors were not
scaled, but all properties were normalized to fall in the range
—20 to 20.

Sampling Paradigms. With a fully trained autoencoder,
new molecules may be decoded from arbitrary points in the
chemical latent space. Jointly training the autoencoder with a
property prediction task based on a linear prediction network
ensures that the property varies linearly along the first principal
component of the latent encodings.”” The use of a linear
predictor results in a simple, interpretable latent space and thus
obviates the need for a surrogate model to correlate latent
position with properties of interest; compounds with specific
properties can be generated by targeting regions of the latent
space based on univariate linear regression between the
property of interest and the position along the first principal
component. In the case of multi-property models, each
property will tend to vary linearly along a corresponding
principal component. Linear regression along each of these
axes determines the components of the sampled vector that
would correspond to a compound displaying those properties;
however, a correlation between the properties may lead to
latent space organization not being exactly orthogonal. To find
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Figure 1. Property histograms for molecules generated by models trained on (A) VIP, (B) EA, and (C) DM. For each model, 100,000 structures
were generated and subsequently characterized at the xTB level. Training distributions are shown in red with generated data in blue. Means of the
training distributions and generated distributions are indicated by green- and purple-dotted lines, respectively. Models are tasked with generating
compounds with properties ranges, shown in orange, that extrapolate beyond the values represented in the training data.

the directions to the sample, we linearly regress the angles that
the points must be rotated by to maximize the R* between the
position along a particular principal component and the
property of interest. When optimizing multiple properties, the
probabilities are jointly sampled to account for potential
correlations between the latent space directions of the
properties. All other latent dimensions are sampled normally
with the mean and standard deviation determined by the
training data. While this sampling approach only leverages
linear correlations between properties, we note that other
approaches involving surrogate models, like Gaussian processes
regression, can be utilized for the sampling step.'”*>** These
may be useful in situations where a linear predictor does not
provide sufficient prediction accuracy or where the uncer-
tainty-based sampling is desired.

Active Learning Technique. Depending on the property,
the range for which it is sampled, and whether the search is
extrapolative, the model may not accurately generate structures
with properties that match those suggested by the regression
outlined above. Nevertheless, structures sampled from the
regions of the latent space that the model predicts will yield the
targeted ranges are still potentially valuable for refining
structure-property relationships in the targeted region. The
molecules sampled from the targeted region were characterized
with xTB and used for retraining the model as follows. In each
iteration, 100,000 unique structures were sampled from the
targeted property region, as predicted by the model, screened
for validity, and the canonical SMILES of the valid structures
were checked against the training and validation data sets to
ensure the novelty of the generated structures. Novel structures
were subjected to xTB calculations for characterization.
Because the property prediction model is imperfect, these
compounds were filtered after the xTB characterizations to
ensure their properties were within the desired range before
use in retraining. In situations where no compounds displayed
properties within the desired range, we instead selected
molecules with properties that were above or below (depend-
ing on the extrapolated target region) the median value in the
training set, thus still providing the model with compounds
exhibiting properties that were closer to the targeted range
than the original training data. It was found that retraining the
model solely on this newly generated data significantly harmed
performance; this effect could be due to the significant
differences between the new data and the original training data
leading to catastrophic forgetting. Instead of only retraining
with the new data, which due to the screening process always
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contains less than 100,000 total structures, compounds from
the training set were randomly sampled and added to this new
data set until reaching 100,000 total training structures. Our
rationale for mixing in a fraction of the original training data is
to give the model examples of structures that do not fulfill the
targeted criteria while maintaining a training data size that
trains effectively with fixed model hyperparameters. Training
on all structures from all iterations is also a possible option but
was not explored here. Because each iteration is performed on
the same total number of structures, computational cost tends
to scale linearly with the number of iterations performed.
Depending on the specific number of properties being
optimized and the relationship between the initial training
data and the targeted property ranges, the data set size sampled
at each iteration might need to be modified to ensure effective
training and convergence. A minimum of five active learning
iterations were specified for each experiment. For the single-
property case, iterations were stopped after doubling the
percentage of generated structures within the target region. For
the multi-property case, iterations were stopped after obtaining
1500 molecules exhibiting the targeted property ranges at the
xTB level to provide a tractable number for further DFT
validation. These convergence criteria were selected out of
convenience; alternative stopping criteria could be based on
computational time, total number of iterations, or total number
of generated structures in addition to proximity to property
targets. All candidate rankings and subsequent trainings utilize
the xTB-computed properties rather than those predicted by
the model to provide external validation.

B RESULTS AND DISCUSSION

Single Property Searches. In previous work, we have
demonstrated that the use of chemical autoencoders for
targeted structure searching is effective for properties within
the GDB19 data set,* namely, internal energy, zero-point
vibrational energy, and HOMO—LUMO gap.*® To establish a
baseline performance on the new properties without active
learning, we investigated three models trained to individually
predict VIP, EA, and DM, and sampled 100,000 structures in
property ranges poorly represented in the training data. The
targeted ranges for VIP, EA, and DM were 10.0 to 11.0 €V,
—2.0 to —1.0 eV, and 0.0 to 1.0 debye, respectively (Figure 1).
According to the generation procedure, each model predicts
that all of the generated structures will exhibit properties
within the respective target ranges, whereas the histogram
represents the distribution of true values as characterized at the
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xTB level. Each histogram thus represents a simultaneous test
of the predictive ability of each model as well as its generative
capability.

For VIP and EA, the chosen property ranges are not found
within the training data at all, whereas for DM a poorly
represented range was instead selected due to the lower bound
on DM values and the long tail for compounds with very high
DM in the training data. The sampling technique proves very
effective for EA, with the mean and the majority of the
sampling distribution (57%) falling within the target region.
While the results for VIP and DM are not as favorable, both
distributions undergo a clear shift toward the targeted region,
with a high number of the generated structures (17 and 11%,
respectively) fulfilling the target criterion in both situations.
We also note for the case of DM that the lower bound on
possible values may impact the number of generated structures
in this regime. For all three properties, the model has learned
enough chemical information from the initial training set alone
to determine the relationship between the property of interest
and the targeted structures.

Single-Property Active Learning. For property ranges
that represent fundamentally different chemistries than those
found in the training data, the model may not have learned the
necessary structure—function relationships to effectively
generate new structures with the targeted properties. In such
a scenario, the proposed active learning strategy can be used to
incrementally sample regions of the latent space to enrich the
model’s understanding of structure—function relationships. As
a demonstration, we performed a generative search for
structures exhibiting EA values between 1.0 and 2.0 eV,
which is approximately one standard deviation higher than the
mean EA of the training data but still in the interpolative
regime (Figure 2). While 17% of structures sampled from the
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Figure 2. Property histograms for the model trained to predict EA.
Training distribution is shown in purple (TOP), means are indicated
by dashed green lines, and the target region of 1—2 eV is highlighted
in yellow. Initially, the model has difficulty generating structures with
the specified EA (iteration 1). After four iterations, the mean of the
generated EAs has shifted to be within the target range. After nine
iterations, the peak of the distribution is within the targeted range.

model are in the targeted EA range, this is only marginally
higher than the training distribution and reflects limited
specificity for high EA species. In contrast to the single-shot
learning results for negative EA values presented in Figure 1B,
it is also clear that the model has yet to resolve the structure—
function relationship for predicting positive EA values even
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though it has some representation in the training data.
Although the model has not yet learned a strong relationship
between the chemical structure and the targeted EA range, the
sampling still yields a large number of new structures exhibiting
EA within or near the targeted range. Using the iterative
approach outlined above, these new structures were incorpo-
rated into the training data to allow the network to resolve the
functional relationships in the targeted EA region. After four
iterations of sampling and retraining, the bulk of the sampled
distribution shifted, with 30% of structures falling within the
desired range. After nine iterations, the mean of the
distribution shifted squarely within the 1-2 eV range and
35% of the sampled structures exhibited EA values within the
target. Thus, even for single property optimization, the active
learning approach is effective in generating samples that teach
the model to understand and generate high EA compounds.
Figure SS illustrates the convergence of the generated property
distribution to the target range as a function of iterations.

Multi-Target Optimization. While one property may be
of primary interest in a particular molecular search (i.e., single-
target optimization), there are often multiple properties that
must be optimized simultaneously. This is often a much more
difficult task, as these properties may have varying degrees of
correlation and representation in the training data, an issue
that is further compounded when considering the exponential
growth of the property space with respect to the number of
optimized properties. For instance, the challenge of multi-
property optimization is apparent if we consider searching for
compounds with EA between 1.5 and 4.0 eV, DM between 4.0
and 5.0 debye, and VIP above 10.0 eV. The DM and EA ranges
are represented in the training data, and the property range for
VIP may be individually sampled effectively, as the experiment
in Figure 1 demonstrated. However, when considering all three
properties in tandem, no training structures simultaneously
exhibit this range of values. Moreover, attempting to sample
structures from this region of the latent space is unsuccessful
(Figure 3A), with none of the 100,000 sampled compounds
falling within the desired property ranges. Figure 3A also
demonstrates that simply retraining on new molecules
optimized for individual properties would be ineffective, as
their other properties are highly unlikely to fall within the
desired range. However, after 8 iterations of retraining and
resampling (Figure 3B), the sampled distribution shifted
toward the multi-dimensional property target, with over 1600
target structures that simultaneously satisfy all three criteria
being successfully generated. This demonstrates the potential
for active learning as a framework to effectively fill in a model’s
chemical understanding, particularly in the case of multi-target
extrapolative searching, where the increased dimensionality of
the search space decreases the potential coverage of the
training data. Figure S6 demonstrates the convergence of the
overall generated property distribution toward the targeted
ranges as a function of the number of iterations.

When performing any multi-objective optimization, there is
the possibility of intrinsic trade-offs between the optimization
targets. In the case of generative chemical models, these trade-
offs are governed by the underlying structure—function
relationships and will potentially vary dramatically across
combinations of properties. The trade-offs associated with the
current optimization of IP, EA, and DM are elucidated by the
three pairs of Pareto front plots shown in Figures S7—S9 as a
function of active learning iterations. After a single iteration,
the targeted DM—VIP ranges and DM—EA ranges lie within
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Figure 3. 2D property histogram for the model trained to predict VIP,
EA, and DM and tasked with the targeted structure generation for
these properties. For visualization, only compounds with VIP greater
than 10.0 eV are considered. The targeted region, with DM between 4
and S debye and EA between 1.5 and 4.0 eV, is indicated with a box.
The targeted range for VIP is extrapolated outside the training data,
while the EA range has little representation and the DM range is very
well represented. (A) Initially, the model is not effective in generating
compounds that fulfil all three criteria together. (B) After eight
iterations of the active learning procedure, the property distribution of
the proposed structures has shifted to cover the targeted region and
the model generates over 1600 structures fulfilling all three property
criteria as validated at the XTB level.

the respective Pareto fronts, whereas the VIP—EA Pareto front
has marginal penetration within the targeted range. Never-
theless, after three iterations all property combinations lie
within their respective Pareto fronts. We conclude that the
VIP—EA property combination exhibits the strongest trade-off
for this particular optimization problem. Looking beyond the
current study, we could envision pathological combinations of
properties that might require more active learning iterations to
discover satisfactory structures or even unphysical combina-
tions of properties that would not be reachable with realistic
molecules.

External Validation. In a practical scenario, the multi-
target search discussed above would be the first step in a
computational funnel to pare down the search space of viable
molecules to a promising set for experimental study. However,
we can further tighten this computational funnel through
additional screening at the DFT level. Given the discrepancy
between property calculations at the semi-empirical xTB and
DEFT levels, when selecting molecules from the final round of
multi-target optimization for further screening we allowed for a
soft-cutoff by adding +20% of the target range to the property
bounds in order to avoid screening out near-misses. To focus
only on those compounds with the potential to be easily
synthesized, we further reduced the list by screening out
radicals, charged species, zwitterions, and structures with
experimentally infeasible structures, such as those with linear
oxygen chains of more than two atoms. This resulted in 307
candidate structures, which were then characterized at the
wB97X-D3/def2-TZVP level. After DFT characterizations, 22
structures passed the soft-cutoff criteria for all properties
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learned to meet the targeted property ranges. We immediately
note that all of the proposed structures are oxygen-rich. This is
consistent with the high ionization potential target, which is
promoted by including highly electronegative atoms and
associated functional groups. Only one electronegative fluorine
substitution is present in the final structures, although several
examples occur in the structures that satisfy the relaxed criteria
(Figure S2). We provisionally interpret the preference for
oxygen substitutions over fluorine substitutions as being due to
the interplay between the DM and ionization potential targets.
In particular, we only observe isolated fluorine substitutions,
which is consistent with the relatively high DM target. The
high occurrence of oxygen, as well as nitrogen and fluorine,
also promotes high EA, the second targeted property. Finally,
we note that the model has also learned to avoid symmetric
structures, which is necessary for the generation of molecules
with a large DM.

As an additional demonstration, we conducted an analogous
study on multi-property optimization in an interpolative
regime with respect to the training data. The targeted property
values (VIP € [6.0, 7.0 V], EA € [0.5, 1.0 eV], and DM € [4,
5 D]), had some representation in the training data (~160
samples), but were shifted from the mean of each property
value (Figure S3). VIP was shifted downward by approximately
two standard deviations, while EA was shifted upward by
approximately one standard deviation. DM was not shifted
relative to the mean to ensure some representation of the
selected property ranges in the training data. After 6 iterations
of the active learning-based retraining, 1599 novel structures
(i.e., structures that were not present in the training data) were
sampled that satisfied the targeted property ranges at the xTB
level, and of these 16 matched all property ranges after
validation at the wB97X-D3/def2-TZVP level (Figure S4).
Intuitively, fewer cycles of retraining were required to find
more matching structures because the property ranges already
exhibited some representation with the training data set.

B CONCLUSIONS

Multi-objective chemical optimization presents unique chal-
lenges compared with single-objective optimization, such as
achieving simultaneous specificity for multiple targets, and data
sparsity due to the increased dimensionality of the property
search space. We have demonstrated that generative models
can be coupled with active learning-based retraining to predict
novel structures designed to have specific properties, even
when these properties may not be observed in the training

https://doi.org/10.1021/acs.jpca.1c08191
J. Phys. Chem. A 2022, 126, 333—-340


https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.1c08191/suppl_file/jp1c08191_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.1c08191/suppl_file/jp1c08191_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.1c08191/suppl_file/jp1c08191_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.1c08191/suppl_file/jp1c08191_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.1c08191?fig=fig4&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c08191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry A

pubs.acs.org/JPCA

data. For difficult targets, particularly multi-objective targets, a
generative chemical model can learn the prerequisite
chemistries by iteratively retraining on compounds it proposes
that are similar to those that are desired. In this way, the model
generates its own nascent structure—function relationships that
it refines by sampling the predicted structures. We have shown
the ability of this method to propose compounds with specific
VIP, EA, and DM individually and simultaneously and
anticipate its utility for other sets of chemical properties.
Nevertheless, we envision several potential challenges in
generalizing this approach to more urgent optimization
problems. In particular, the properties used in this study
were mainly selected out of convenience due to their ease of
calculation and data abundance. For data scarce scenarios, or
situations where querying an oracle involves performing an
experiment or a more expensive simulation, generative models
will likely remain prohibitively costly to train for multi-
objective searches, even with active learning strategies.
Additionally, the selected properties in the current study
exhibited relatively modest trade-offs in our multi-objective
optimization experiments. When adapting this approach to
other combinations of properties or property ranges, it is
possible that more severe trade-offs could be encountered. We
also note that the quality of training data is a critical factor to
ensure that the properties of the proposed molecules
accurately match their true values. The discrepancy noted
between the property values at the XTB and DFT levels could
be relieved by using an auxiliary difference model that predicts
the difference between the low- and high-accuracy computa-
tional methods and optimizing with respect to this variable
instead. This may allow for more efficient sampling and fewer
iterations of the active learning procedure. Exploiting higher
order correlations between properties by employing a more
complex predictor network along with a suitable algorithm for
searching within the latent space also holds the potential for
reducing training data requirements in data scarce scenarios.
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