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ABSTRACT

We consider the problem of estimating common community structures in multi-layer stochastic block
models, where each single layer may not have sufficient signal strength to recover the full community
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structure. In order to efficiently aggregate signal across different layers, we argue that the sum-of-squared

adjacency matrices contain sufficient signal even when individual layers are very sparse. Our method uses
a bias-removal step that is necessary when the squared noise matrices may overwhelm the signal in the
very sparse regime. The analysis of our method relies on several novel tail probability bounds for matrix
linear combinations with matrix-valued coefficients and matrix-valued quadratic forms, which may be of
independent interest. The performance of our method and the necessity of bias removal is demonstrated
in synthetic data and in microarray analysis about gene co-expression networks. Supplementary materials

for this article are available online.

1. Introduction

A network records the interactions among a collection of
individuals, such as gene coexpression, functional connectivity
among brain regions, and friends on social media platforms. In
the simplest form, a network can be represented by a binary
symmetric matrix A € {0,1}"*" where each row/column
represents an individual and the (i, j)entry of A represents the
presence/absence of interaction between the two individuals. In
the more general case, A;; may take values in R! to represent
different magnitudes or counts of the interaction. We refer to
Kolaczyk (2009), Newman (2009), and Goldenberg et al. (2010)
for general introduction of statistical analysis of network data.
In many applications, the interaction between individuals
are recorded multiple times, resulting in multi-layer network
data. For example, in this article, we study the temporal gene
coexpression networks in the medial prefrontal cortex of rhesus
monkeys at 10 different developmental stages (Bakken et al.
2016). The medial prefrontal cortex is believed to be related to
developmental brain disorders, and many of the genes we study
are suspected to be associated with autism spectrum disorder at
different stages of development. Other examples of multi-layer
network data are brain imaging, where we may infer one set
of interactions among different brain regions from electroen-
cephalography (EEG), and another set of interactions using
resting-state functional magnetic resonance imaging (fMRI)
measures. Similarly, one may expect the brain regions to form
groups in terms of connectivity. The wide applicability and rich
structures of multi-layer networks make it an active research
area in the statistics, machine learning, and signal processing
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community. See Tang, Lu, and Dhillon (2009), Dong et al.
(2012), Kiveld et al. (2014), Xu and Hero (2014), Han, Xu, and
Airoldi (2015), Zhang and Cao (2017), Matias and Miele (2017)
and references within.

In this article, we study multi-layer network data through the
lens of multi-layer stochastic block models, where we observe
many simple networks on a common set of nodes. The stochas-
tic block model (SBM) and its variants (Holland, Laskey, and
Leinhardt 1983; Bickel and Chen 2009; Karrer and Newman
2011; Airoldi et al. 2008) are an important prototypical class of
network models that allow us to mathematically describe the
community structure and understand the performance of popu-
lar algorithms such as spectral clustering (McSherry 2001; Rohe,
Chatterjee, and Yu 2011; Jin 2015; Lei and Rinaldo 2015) and
other methods (Latouche, Birmele, and Ambroise 2012; Peixoto
2013; Abbe and Sandon 2015). Roughly speaking, in an SBM,
the nodes in a network are partitioned into disjoint communities
(i.e., clusters), and nodes in the same community have similar
connectivity patterns with other nodes. A key inference problem
in the study of SBM is estimating the community memberships
given an observed network.

Compared to an individual layer, a multi-layer network con-
tains more data and hopefully enables us to extract salient
structures, such as communities, more easily. On the other hand,
new methods must be developed in order to efficiently combine
the signal from individual layers. To demonstrate the necessity
for these methods, we plot the observed gene coexpression net-
works collected from Bakken et al. (2016) in Figure 1. The three
networks correspond to gene co-expression patterns within the
medial prefrontal cortex tissue of rhesus monkeys collected at
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Sub-network for time E40

Adjacency matrices

Networks

Sub-network Tor time ESD

Sub-network for time 48M

Figure 1. The adjacency matrix (top row, yellow denoting the presence of an edge and blue denoting the lack of) and the corresponding network (bottom row) for three
different developmental times of the rhesus monkey’s gene coexpression in the medial prefrontal cortex based on selected set of genes to visually demonstrate the varying
network structures. Likewise, the ordering of the genes in the adjacency matrices is chosen to visually demonstrate the clustering structure, and persist throughout all three
adjacency matrices. The three developmental times are E40, E90 (for 40 or 90 days in the embryo), and 48M (for 48 months after birth), corresponding to the pair of plots

on the left to the pair of plots on the right. The full dataset is analyzed in Section 6.

different stages of development. We plot only the sub-network
formed by a small collection genes for simplicity. A quick visual
inspection across the three networks suggests that the genes
can be approximately divided into four common communities
(i.e., clusters that persist throughout all three networks), where
genes in the same community exhibit similar connectivity pat-
terns. However, different gene communities are more visually
apparent in different layers. For example, in the layer labeled
as “E40” (for tissue collected 40 days of development in the
embryo), the last three communities are indistinguishable. In
contrast, in the layer labeled as “E90,” the first community is
less distinguishable, and in the layer labeled “48M” (for the
tissue collected 48 months after birth), nearly all of the com-
munities are indistinguishable. These qualitative observations
are of scientific interest since these time-dependent densely-
connected communities are evidence of “gene coordination,” a
biological concept that describes when a community of genes
is synchronized in ramping up or down in gene expression at
certain stages of development (Paul et al. 2012; Werling et al.
2020). Hence, we can infer two potential advantages of analyzing
such multi-layer network data in an aggregated manner. First, an
aggregated analysis is able to reveal global structures that are not
exhibited by any individual layer. Second, the common structure
across different layers can help us to better filter out the noise,
which allows us to obtain more accurate inference results. We
describe the analysis in more detail and return to analyze the
full dataset in Section 6.

The theoretical understanding of estimating common com-
munities in multi-layer SBMs is relatively limited compared to
those in single-layer SBMs. Bhattacharyya and Chatterjee (2018)
and Paul and Chen (2020) studied variants of spectral cluster-

ing for multi-layer SBMs, but the strong theoretical guarantee
requires a so-called layer-wise positivity assumption, meaning
each matrix encoding the probability of an edge among the
communities must have only positive eigenvalues bounded away
from zero. In contrast, Pensky and Zhang (2019) studied a differ-
ent variant of spectral clustering, but established estimation con-
sistency under conditions similar to those for single-layer SBMs.
These results only partially describe the benefits of multi-layer
network aggregation. Alternatively, Lei, Chen, and Lynch (2019)
considered a least-squares estimator, and proved consistency of
the global optima for general block structures without imposing
the positivity assumption for individual layers, but that method
is computationally intractable in the worst-case.

The first main contribution of this article is a simple, novel,
and computationally-efficient aggregated spectral clustering
method for multi-layer SBMs, described in Section 2. The
estimator applies spectral clustering to the sum of squared
adjacency matrices after removing the bias by setting the
diagonal entries to 0. In addition to its simplicity, this estimator
has two appealing features. First, summing over the squared
adjacency matrices enables us to prove its consistency without
requiring a layer-wise positivity assumption. Second, compared
with single-layer SBMs, the consistency result reflects a boost
of signal strength by a factor of L!/2, where L is the number of
layers. Such a L'/2 signal boost is comparable to that obtained
in Lei, Chen, and Lynch (2019), but is now achieved by a simple
and computationally tractable algorithm. The removal of the
diagonal bias in the squared matrices is shown to be crucial in
both theory (Section 3) and simulations (Section 5), especially
in the most interesting regime where the network density is too



low for any single layer to carry sufficient signal for community
estimation. Interestingly, similar diagonal-removal techniques
have also been discovered and studied in other contexts, such
as Gaussian mixture model clustering (Ndaoud 2018), principal
components analysis (Zhang, Cai, and Wu 2022), and centered
distance matrices (Székely and Rizzo 2014).

Another contribution of this article is a collection of concen-
tration inequalities for matrix-valued linear combinations and
quadratic forms. These are described in Section 4, which are an
important ingredient for the aforementioned theoretical results.
Specifically, an important step in analyzing our matrix-valued
data is to understand the behavior of the matrix-valued mea-
surement errors. Toward this end, many powerful concentra-
tion inequalities have been obtained for matrix operator norms
under various settings, such as random matrix theory (Bai and
Silverstein 2010), eigenvalue perturbation and concentration
theory (Feige and Ofek 2005; O’'Rourke, Vu, and Wang 2018; Lei
and Rinaldo 2015; Le, Levina, and Vershynin 2017; Cape, Tang,
and Priebe 2017), and matrix deviation inequalities (Bandeira
and Van Handel 2016; Vershynin 2011). The matrix Bernstein
inequality and related results (Tropp 2012) are also applicable
to linear combinations of noise matrices with scalar coeffi-
cients. In order to provide technical tools for our multi-layer
network analysis, we extend these matrix-valued concentration
inequalities in two directions. First, we provide upper bounds
for linear combinations of noise matrices with matrix-valued
coefficients. This can be viewed as an extension of the matrix
Bernstein inequality to allow for matrix-valued coefficients. Sec-
ond, we provide concentration inequalities for sums of matrix-
valued quadratic forms, extending the scalar case known as the
Hanson-Wright inequality (Hanson and Wright 1971; Rudelson
and Vershynin 2013) in several directions. A key intermediate
step in relating linear cases to quadratic cases is deriving a
deviation bound for matrix-valued U-statistics of order two.

2. Community Estimation in Multi-Layer SBM

Throughout this section, we describe the model, theoretical
motivation, and our estimator for clustering nodes in a multi-
layer SBM. Motivated by such multi-layer network data with
a common community structure as demonstrated in Figure 1,
we consider the L-layer SBM containing n nodes assigned to K
different communities,

Agij ~ Bernoulli(,oBg,gigj) for 1<i<j<n, 1<{<L,

(1)
where ¢ is the layer index, 6; € {1,...,K} is the membership
index of node i fori € {1,...,n}, p € (0,1] is an overall edge

density parameter, and B, € [0, 11X*X is a symmetric matrix of

community-wise edge probabilities in layer £. We assume Ay is
symmetricand A ;; = Oforall¢ € {1,...,L}andi € {1,...,n}.
Our statistical problem is to estimate the membership vector
0 = (01,...,0,) € {1,...,K}" given the observed adjacency
matrices Ag,...,Ar. Let 0 € {1,...,K}" be an estimated
membership vector, and the estimation error is the number of
mis-clustered nodes based on the Hamming distance,

d(,0) = min ) 1(6; # 7 (6)). ®

i=1
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for the indicator function 1(-), where the minimum is taken
over all label permutations 7 : {1,...,K} = {1,...,K}. An
estimator 6 is consistent if n1d(8,0) = op(1).

The assumption of a fixed common membership vector 6
can be relaxed to each layer having its own membership vector
but close to a common one. The theoretical consequence of this
relaxation is discussed in Remark 1, after the main theorem in
Section 3. We assume that K is known. The problem of selecting
K from the data is an important problem and will not be pursued
in this article. Further discussion will be given in Section 7.

When L = 1, the community estimation problem for single-
layer SBM is well-understood (Bickel and Chen 2009; Lei and
Rinaldo 2015; Abbe 2017). If K is fixed as a constant while n —
00, p — 0 with balanced community sizes lower bounded by a
constant fraction of n, and B is a constant matrix with distinct
rows, then the community memberships can be estimated with
vanishing error when np — o00. Practical estimators include
variants of spectral clustering, message passing, and likelihood-
based estimators.

Asmentioned in Section 1, in the multi-layer case, consistent
community estimation has been studied in some recent works.
The theoretical focus is to understand how the number of layers
L affects the estimation problem. Paul and Chen (2020) and
Bhattacharyya and Chatterjee (2018) show that consistency can
be achieved if Lnp diverges, but under the aforementioned posi-
tivity assumption, meaning that each By is positive definite with
a minimum eigenvalue bounded away from zero. Such assump-
tions are plausible in networks with strong associativity patterns
where nodes in the same communities are much more likely to
connect to one another than nodes in different communities.
But there are networks observed in practice that do not satisfy
this assumption, such as those in Newman (2002) and Litvak
and Van Der Hofstad (2013). See Lei (2018) and the references
within for additional discussion on such positivity assumptions
in a more general context. To remove the positivity assumption,
Lei, Chen, and Lynch (2019) considered a least-squares estima-
tor, and proved consistency when L'/2np diverges (up to a small
poly-logarithmic factor) and the smallest eigenvalue of ), B2
grows linearly in L. A caveat is that the least-squares estimator
is computationally challenging, and in practice, one may only be
able to find a local minimum using greedy algorithms.

In the following sections, we will motivate a spectral clus-
tering method from the least-squares perspective, investigate
its bias, and derive our estimator with a data-driven bias
adjustment.

2.1. From Least Squares to Spectral Clustering

In this section, we motivate how least-squares estimators is
well-approximated by spectral clustering, which lays down the
intuition of our estimator in Section 2.3. Let ¥ € {1,...,K}"
be a membership vector and ¥ = [Wy,...,Vk] be the
corresponding n x K membership matrix where each Wy =

Wi \Ifn,k)T isan n x 1 vector with W; = 1(y; = k). Let
L) ={i € {1,...,n} : ¢ = k} and m(Y) = |k ({)], the
size of the set I (V).

The least-squares estimator of Lei, Chen, and Lynch (2019)
seeks to minimize the residual sum of squares,
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L
0 =argming, x> O (A —Boyy,(9)? (3)

=1 1<i<j<n

where
Eijen ) At _
By = | mwmg-n  When k=1,
’ el jel(p) Abi
— ko=l when k#],

me(Y)m(¥r)

is the sample mean estimate of By under a given membership
vector 1. Recall that the total-variance decomposition implies
the equivalence between minimizing within-block sum of
squares and maximizing between-block sum of squares. Hence,
if we accept the approximation n(¥)(ni(y) — 1) =~ l’li(lﬂ),
then after multiplying the least-squares objective function (3)
by 2 and using the total-variance decomposition, the objective
function becomes

Jomas >y

=1 1<kI<K

(Vg Az‘lll)
mm(y)’

which is equivalent to

WE{I K}"Z Z Lp]erlpl —maxZ”\pTAZ\y”F,

=1 1<k,I<K

where || - ||[r denotes the matrix Frobenius norm, and U =
[\Ill, .. \IIK] with \I/k = Wi /+/nk(¥) is the column- normalized

version of W where each column of U has norm 1. This
means W is orthonormal, that is, UTW = Ik. The benefit of
considering orthonormal matrices is that for any orthonormal
matrix U € R"K and symmetric matrix A € R"*",
|UTAU||2 = tr(UTAUUTAU) < tr(UTA2U).

The right-hand side of the above inequality is maximized by
the leading K eigenvectors of A, where the eigenvalues ordered
by absolute value. For this U, the inequality becomes equality.
Additionally, under the multi-layer SBM, the expected values
of adjacency matrices {P;,...,Pr} (where P, = EA, for £ €
{1,...,L}) share roughly the same leading principal subspace
as determined by the common community structure. Putting
all these facts together, we intuitively expect U = O to corre-
spond to an approximate solution of the original least-squares
problem, where ® is the column-normalized version of the true
membership matrix ©.

Therefore, a relaxation of the approximate version of the
original problem (3) is

L
max tr| UT AZlU|, (4)
UeRmK.UyTU=Ig |: (; Z) :|

which is a standard spectral problem. For this reason, we often
call U the “spectral embedding” The community estimation is
then obtained by applying a clustering algorithm to the rows of
U, a solution to (4).

2.2. The Necessity of Bias Adjustment

Let Py = EA, denote the expected adjacency matrix, meaning
that Py is the matrix obtained by zeroing out the dlagonal entries
of Pg = pOB;OT. We now show that Zz 7 is a biased
estimate of ), P?, and that we can correct for this bias by simply
removing its diagonal entries. Let X, = Ay — P¢ be the noise
matrix. Then

iA% = (ipﬁ) + (i(xm +PX))+S, (5)
(=1 =1

=1

where § = Y, X7?. The first term is the signal term, with
each summand close to F% = p?©B20T, and will add up over
the layers, because each matrix B? is positive semidefinite. The
second term is a mean-0 noise matrix, which can be controlled
using matrix concentration inequalities developed in Section 4.
The third term § = )", X7 isa squared error matrix and will also
add up over the layers, which may introduce bias if the overall
edge density parameter p is too small.

We use a simple simulation study to illustrate the necessity
of bias adjustment in spectral clustering applied to the sum of
squared adjacency matrices. We set K = 2 and consider two
edge-probability matrices,

\528} , and B® = |:

g | 3/4 7/8
V/3/8 33/8

These two matrices are chosen such that spectral clustering
applied to the sum of the adjacency matrices and the sum of
squared adjacency matrices would be either sub-optimal or
inconsistent in the very sparse regime. We set n = 200 nodes
with 100 nodes in each community, the number of layers to be
L = 30, and for each layer ¢, By is randomly and indepen-
dently chosen from B and B® with equal probability. We
use five different values of the overall edge density parameter
p between 0.02 and 0.06. For each value of p, we generate a
multi-layer SBM according to (1) and apply spectral clustering
to three matrices: (a) the sum of adjacency matrices without
squaring (i.e., “Sum”), (b) the sum of squared adjacency matrices
(i.e., “SoS”), and (c) a bias-adjusted sum of squared adjacency
matrices (i.e., “Bias-adjusted SoS”), which will be introduced in
the next section. The results across 100 trials are reported in
Figure 2. By construction, the “Sum” method performs poorly
since the sum of adjacency matrices has only one significant
eigen-component, meaning the result is sensitive to noise when
K = 2 eigenvectors are used for spectral clustering. In fact, as
described in Example 1, it is also easy to generate cases in which
the sum of adjacency matrices carries no signal at all. The “SoS”
method also performs poorly. This is because although the sum
of squared adjacency matrices contains signal for clustering, the
aforementioned bias is large when p is small. In contrast, our
method “Bias-adjusted SoS” performs the best. A more detailed
simulation study is presented in Section 5.

3\/5/8]‘

1/8

2.3. Bias-Adjusted Sum-of-Squared Spectral Clustering

We are now ready to quantify the amount of bias, and to
describe our aforementioned bias-adjusted sum-of-squared
method to cluster nodes in a multi-layer SBM. From (5), we



Comparison against aggregation
methods (Two communities)

02 03 04

% mis-clustered nodes
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_|=*= Bias-adjusted SoS

1 1 T 1 1
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Figure 2. The average proportion of misclustered nodes for three methods (mea-
sured viaHamming distance n! d(@\, 6) shownin (2), averaged over 100 trials), with
n = 200 and two equal-sized communities among overall edge densites ranging
from p € [0.02,0.06] and L = 30 layers. Three methods’ performance are shown:
Sum (green squares), SoS (orange triangles), and Bias-adjusted SoS (blue circles).

see that the diagonal entries of the squared error term S have
positive expected value and hence may cause systematic bias
in the principal subspace of ", AZ. Now consider a further
decomposition S = S; + S, where S; and S; correspond to the
off-diagonal and diagonal parts of S, respectively. Observe that
only the diagonal entries of S have positive expected value, so
our effort will focus on removing the bias caused by S,. Toward
this end, observe that by construction, we have

L n
(S2)ii =Sii = Z ZXz?y
=1 j=1
L n
=Y PLil(Ar; =0)+ (1 — Py 1(Ag = 1)
=1 j=1
L
<Ln max Pzzzz] + Z dei (6)
Jj
=1

where dp; = Zj Ay,ij is the degree of node i in layer £. The
expected value of °, dy,i is 3y ; Pejj < Lnmaxy,j P, In the
very sparse regime, maxy,;j Py ;j is very small so ), d; is the
leading term in (S2);i.

Combining this calculation with a key observation that
> ¢ dei can be computed from the data, we arrive at the
following bias-adjusted sum-of-squared spectral clustering
algorithm. Let D, be the diagonal matrix consisting of the
degrees of Ay where (Dy);; = dg;. The bias-adjusted sum of
squared adjacency matrices is

L
So =Y (A} — D). )

(=1

The community membership is estimated by applying a cluster-
ing algorithm to the rows of the matrix whose columns are the
leading K eigenvectors of Sy given in (7).
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3. Consistency of Bias-Adjusted Sum-of-Squared
Spectral Clustering

We now describe our theoretical result characterizing how
multi-layer networks benefit community estimation. The
hardness of community estimation is determined by many
aspects of the problem, including number of communities,
community sizes, number of nodes, separation of communities,
and overall edge density. Here, we need to consider all of these
aspects jointly across the L layers. To simplify the discussion, we
primarily focus on the following setting but discuss additional
settings in later remarks.

Assumption 1. (a) The number of communities K is fixed and
community sizes are balanced. That is, there exists a con-
stant ¢ such that each community size is in [c~'n/K, cn/K].

(b) The relative community separation is constant. That is,
By = pByo where Byg is a K x K symmetric matrix
with constant entries in [0, 1]. Furthermore, the minimum
eigenvalue of ) , Bﬁ,o is at least cL for some constant ¢ > 0.

Part (a) simplifies the effect of the community sizes and the
number of communities. This setting has been well-studied in
the SBM literature for L = 1 (Lei and Rinaldo 2015). Part (b)
puts the focus on the effect of the overall edge density parameter
0, and requires a linear growth of the aggregated squared edge-
probability matrices in terms of the minimum eigenvalue. This
is much less restrictive than the layer-wise positivity assumption
used in other work mentioned in Section 2 which require each
By to be positive definite. We give two examples in which
Assumption 1(b) is satisfied but the layer-wise positivity is not.

Example 1 (Identically distributed random layers). Consider a
theoretical scenario in which the By ’s have iid Uniform(0, 1)
entries subject to symmetry. It is easy to verify that the expected
sum matrix E ) ", By is a constant matrix with each entry being
Lp /2. Therefore, it is impossible to reconstruct the block struc-
ture from the sum of adjacency matrices ) _, A¢ when p is small.

Example 2 (Community merge and split). Consider a more
realistic scenario in which for {By 1 < £ < L}, some
layers £ and community indices k, k" have Byyj = By for
all j. This can be interpreted as the merge of communities k
and K’ at layer £. In such cases, each layer may not contain full
community information, and we must aggregate the layers to
recover the full community structure. In our real data example,
we actually observe that in most layers, all but one or two
communities merge with a large, null community, and each
nonnull community is active in one or two layers.

Based on these assumptions, in the asymptotic regime n —
oo and p — 0, it is well-known that consistent community
estimation is possible for L = 1 when np — o0o. Hence, in the
multi-layer setting when L — 00, one should expect a lower
requirement on overall density as we aggregate information
across layers. This is shown in our following result.

Theorem 1. Under Assumption 1, if L'/2np > C; log"/*(L + n)
and np < C, for a large enough positive constant C; and a
positive constant C,, then spectral clustering with a constant
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factor approximate K-means clustering algorithm applied to S,
the bias-adjusted sum of squared adjacency matrices in (7),
correctly estimates the membership of all but a

c (i N log(L + n))

n2 Ln? p?

proportion of nodes for some constant C with probability at least
1—O((L+m™.

An immediate consequence of Theorem 1 is the Hamming
distance consistency of the bias-adjusted sum-of-squared spec-
tral clustering, provided that L'/2np/log"/?(L + n) — oo.
This demonstrates the boost of signal strength by a factor of
L'/? made possibly due to aggregating layers (up to a poly-
logarithmic factor) that we alluded to in Section 1.

The proof of Theorem 1 is given in Appendix D, supple-
mentary materials where the main effort is to establish sharp
operator norm bounds for the linear noise term ), X, Py and
the quadratic noise term ), (Xz — Dy). A refined operator
norm bound for the off-diagonal part of 3", (X7 — Dy) plays an
important role (Theorem 5). Once the operator norm bound is
established, the clustering consistency follows from a standard
analysis of the K-means algorithm (Lemma D.1, supplementary
materials). These concentration inequalities indeed hold for
more general classes of matrices, and we provide a systematic
development in the next section.

Theorem 1 is stated in a simple form for brevity. It can be
generalized in several directions to better suit practical scenarios
with more careful bookkeeping in the proof. We describe some
important extensions in the remarks below, where || - || denotes
the operator norm (i.e., largest singular value).

Remark 1 (Varying membership across layers). Theorem 1 can
be extended to accommodate varying membership across the
layers. In particular, assume that the £th layer has membership
matrix Wy € {0, 1}"*K, such that each W, is close to a common
membership matrix ¥ € {0, 1}"*X,

Wy — V| < €e/n, 8)

for some positive constant €. Then we have the following
generalization of Theorem 1.

Corollary 2 (Consistency under varying membership). Assume
the multilayer adjacency matrices Aj,..., AL are generated
from individual membership matrices Wy, . .., Wy, satisfying (8)
for some sequence €1, . . ., €, and common membership matrix
W. Under the same condition as in Theorem 1, if in addition
€ .= L71'Y ,e < C; for some positive constant C3, then
the error bound of the bias-adjusted sum of squared spectral
clustering is no more than

1, log(L+mn)
< <F tet Ln2p?
with high probability.
Remark 2 (Other regimes of network density). The condition
L'2np > Cylog"*(L + n) is required in order for the error

bound in Theorem 1 to imply consistency, and is suitable for
the linear squared signal accumulation assumed in Part (b) of

Assumption 1. If we assume a different growth speed of the
minimum eigenvalue of ), B%’O, this requirement needs to be
changed accordingly. Second, the condition np < 1 is used
for notational simplicity. The regime np > 1 would allow
for consistent community recovery even when L = 1. For
multilayer models, if np > C, for some constant C,, the error

bound in Theorem 1 becomes

1 log(L + n)
Cl—=4+—"—"].
<n2 g )

for some constant C with high probability. Detailed explanations
of this claim are given in Appendix D, supplementary materials.

Remark 3 (More general conditions on community sizes). Let
fmin = Minj<x<k || W k|l1 be the size of the smallest community,
and denote @« = npyin/n. Our analysis can also allow the
number of communities, K, and « to change with other model
parameters (1, L, p). In particular, the lower bound of the signal
term in (5) will be multiplied by « since the operator norm of ¥
is proportional to «. All the matrix concentration results, such as
Theorem 5 and Lemma C.1, supplementary materials still hold
as they do not rely on any block structures. Therefore, under
the same setting as Theorem 1, if we allow K and « to vary
with (1, L, p), but have «L'?np > C; logl/z(L + n) for some
constant Cj, then with high probability, Theorem 1 holds with
error bound

_ 1 log(L + n)
2
CKa (ﬁ + —Ln2p2 > .

4. Matrix Concentration Inequalities

We generically consider a sequence of independent matrices
Xi,..., X € R™7 with independent mean-0 entries. The
goal is to provide upper bounds for operator norms of linear
combinations of the form ), X,Hy with Hy € R™"™ for ¢ €
{1,...,L}, and quadratic forms ), X@G@XZT with G, € R™"
for ¢ € {1,...,L}. Here, H; and Gy are nonrandom. To connect
with the notations in previous sections, let H, = Py, then an
operator norm bound of ), Xy P, will help control the second
term in (5). Let G¢ = I, be the r x r identity matrix, then
e Xe Gng corresponds to the third term in (5). Our general
results cover both the symmetric and asymmetric cases, as well
as more general entries of Xy beyond the Bernoulli case.

Concentration inequalities usually require tail conditions on
the entries of X;. A standard tail condition for scalar random
variables is the Bernstein tail condition.

Definition 1. We say a random variable Y satisfies a (v,R)-
Bernstein tail condition (or is (v, R)-Bernstein), if E[|Y|¥] <
%k!Rk’2 for all integers k > 2.

The Bernstein tail condition leads to concentration inequali-
ties for sums of independent random variables (van der Vaart
and Wellner 1996, chap. 2). Since we are interested not only
in linear combinations of X,’s, but also the quadratic forms
involving X, G¢X, T we need the Bernstein condition to hold for
the squared entries of Xj, ..., X]. Specifically we consider the
following three assumptions.



Assumption 2. Each entry Xy ;; is (v1, Ry)-Bernstein, for all £ €
{1,...,L}and i, j € {1,...,n}.

Assumption 3. Each squared entry X?)ij is (v2, Ry)-Bernstein, for
all¢ e{l,...,L}andi,j e {1,...,n}.

Assumption 3’. The product Xg,g’)vfg’ij' is (v}, R})-Bernstein, for
all¢ € {1,...,L}and i,j € {1,...,n}, where Xy is an indepen-
dent copy of X,.

There are two typical scenarios in which such a squared
Bernstein condition in Assumption 3 holds. The first is the sub-
Gaussian case: If a random variable Y satisfies the sub-Gaussian
condition EeY’/o” < 2 for some o > 0, then we have EY2¢ <
20%(02)*2k), and hence Y2 is (40*, 02)-Bernstein. The second
scenario is centered Bernoulli: If a random variable Y satisfies
PY=1-p)=1—-PXY = —p) = p for some p € [0,1/2],
then we have EY?* = p(1 —p)** + (1—p)p** < p, and hence Y?
is (2p, 1)-Bernstein. Our proof will also use the fact that if Y2 is
(v2, Ry)-Bernstein, then the centered version Y2 —E(Y?) is also
(v2, R2)-Bernstein (Wang, Berthet, and Plan 2016, Lemma 3).

We require Assumption 3’ in order to use a decoupling
technique in establishing concentration of quadratic forms. One
can show that if Assumption 3 holds then Assumption 3’ holds
with (v3,R5) = (v2,R;). However, when X ;s are centered
Bernoulli random variables with parameters bounded by p <
1/2, then Assumption 3’ holds with v, = 2p? and R, =1,
while Assumption 3 holds with v, = 2p and R, = 1, so that v}
can potentially be much smaller than v,. We will explicitly keep
track of the Bernstein parameters in our results for the sake of
generality.

4.1. Linear Combinations with Matrix Coefficients

Theorem 3. Let X1, ..., X| be a sequence of independent n x r
matrices with mean-0 independent entries satisfying Assump-
tion 2, and Hy be any sequence of r x m nonrandom matrices.
Then for all t > 0,

|

L

ZXgHg

(=1

Zti| <2(m+n) x

2/2
exp | — .
v (| o HTHe|| v ¢ 1HeIZ) + Ry maxe | Hell20ot

&)

A similar result holds, with 2 /2 replaced by t?/8 and 2(m + n)
replaced by 4(m+n) in (9), for symmetric X¢’s of size n x n with
independent (v, R;)-Bernstein diagonal and upper-diagonal
entries and Hy of size n x m.

The proof of Theorem 3, given in Appendix B, supplemen-
tary materials, combines the matrix Bernstein inequality (Tropp
2012) for symmetric matrices and a rank-one symmetric dila-
tion trick (Lemma B.1, supplementary materials) to take care of
the asymmetry in X, H,.

Remark 4. If n = m = r = 1, then Theorem 3 recovers the well-
known Bernsteins inequality as a special case with a different
prefactor.
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Ifn > min{m, Lr}, thenn| ), HETHgH >3 ||H/g||12:andthe
probability upper bound in Theorem 3 reduces to

L
Pl > XeHe| > t| <2(m+mn) x
=1
2/2
exp [ - - o)
vin | g HT He | + Ry maxe [1Helz.cot

If n = 1, thenn| ), HZH@H <>y ||He||12; and the proba-
bility bound reduces to

|

t2/2
exp | — .
vi Y ¢ IHelI% + Ry maxg [|Hy 12,00t

L

ZXKHZ

(=1

zt:| <2(m+n) x

(1m)

Remark 5. When L = 1, the setting is similar to that considered
in Vershynin (2011). In the constant variance case (e.g., sub-
Gaussian), v}/ > < Ry < 1, Theorem 3 implies a high probability
upper bound of C,/log(m + n)(/n||H|| + ||H||r), which agrees
with Theorem 1.1 of Vershynin (2011). The extra ,/log(n + m)
factor in our bound is because our result is a tail probability
bound while Vershynin (2011) provides upper bounds on the
expected value. However, in the sparse Bernoulli setting, where
v1 < R; = 1, the upper bound in Theorem 3 is better because it
correctly captures the /vy factor multiplied by «/n||H||+ || H| r,

whereas the result in Vershynin (2011) leads to vi/ 4(ﬁ |HI| +
IHIF)-

4.2. Matrix U-statistics and Quadratic Forms

Let

L L
S = ZXEGEX{T = Z Z Xg,ing,,-/j/eie?Gg,ij (12)
=1 =1 (i), (7 f')

where the summation is taken over all pairs (i,)), (/,j) €
{1,...,n)? and ¢; is the canonical basis vector in R” with a
1 in the ith coordinate. In this section, we will focus on the
symmetric case because the bookkeeping is harder compared
to the asymmetric case. The treatment for the asymmetric case
is similar and the corresponding results are stated separately in
Appendix B, supplementary materials for completeness.

Because X; has centered and independent diagonal and
upper diagonal entries, a term in (12) has nonzero expected
value only if (i,5) = (,j) or (i,j) = (j,i) since this
would imply Xy ;X7 = X(%z] This motivates the following
decomposition of S into a quadratic component with nonzero
entry-wise mean value

L
2 T T T T
S = [Z Z X(,ij (e,-ei Gyjj + eje; Gy,ii + ei¢;j Guji + eje; G&,‘j) ]
{=11<i<j<n
L

+ [Z Z Xf,ﬁeie,-TGz,ii],

=1 1<i<n

13)

and a cross-term component with entry-wise mean-0 value

Si=8-5. (14)
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Itis easy to check that ES; = ESand ES; = 0. Intuitively, the
spectral norm of S; should be small since it is the sum of many
random terms with zero mean and small correlation, which
can be viewed as a U-statistic with a centered kernel function
of order two. This U-statistic perspective is a key component
of the analysis and will be made clearer in the proof. For a
similar reason, S, — ES, should also be small. Hence, the main
contributing term in S should be the deterministic term ES,. To
formalize this, define the following quantities,

L
of = Yy Gl

0, = max;max {[|Gellz,00, 1GF ll2,00 }
AV L n 2

(0% = iz 2= Gy
o3 = maxy ||Gelleos

where ||+ ||2,00 is the maximum L;-norm of each row, and || - || oo is
the maximum entry-wise absolute value. The following theorem
quantifies the random fluctuations of Sy, S, and S around their
expectations.

Theorem 4. If X;,...,Xy are independent n x »n symmetric
matrices with independent diagonal and upper diagonal entries
satisfying Assumptions 2 and 3’. Let Gy, . . ., G, be n X n matri-
ces.DefineS =), XgGgXlT and Sy, Sy asin (13) and (14). Then
there exists a universal constant C such that with probability at
least 1 — O((n+ L)™Y),

IS EC[vlnlog(L + n)oy + ViRV Lnlog¥ (L 4 n)os

+ Vs log(L + m(VIos + )

+ (R? + R,) log*(L + n)og] . (15)
If in addition Assumption 3 holds, then with probability at least
1-O0(L+m™,

IS2 — ES: | sC[m log(L + n)(v/Loz + 03) + Ry log(L + n)Ga] :
(16)

and consequently,
IS — ES| §C[v1nlog(L + n)oy + ViRV Lnlog¥ (L 4 n)os

+\/v5 + v2log(L + n) (vVLoy + 03)

+ (R} + Ry + Ry) log*(L + n)03:| : (17)

The proof of Theorem 4 is given in Appendix B, supple-
mentary materials, where the main effort is to control [|S;]|.
Unlike the linear combination case, the complicated depen-
dence caused by the quadratic form needs to be handled by
viewing S; as a matrix-valued U-statistic indexed by the pairs
(i,j), and using a decoupling technique due to de la Pefia and
Montgomery-Smith (1995). This reduces the problem of bound-
ing [|S1]| to that of bounding || )", X@G@XZTH, where X1,..., X1
are iid copies of X3, ..., X|.

The upper bounds in Theorem 4 look complicated. This is
because we do not make any assumption about the Bernstein

parameters or the matrices G;. The bound can be much sim-
plified or even improved in certain important special cases. In
the sub-Gaussian case, where R; = vi/z = R;/Z = v;/‘l,
the first term vynlog(L + n)o; in (15) dominates. This reflects
the L!/2 effect for sums of independent random variables. For
example, in the case Gy = Gy for all £ and X, are iid, we have
IES|| ~ L||X1G0X1T|| = v11nL||Gp||, but when we consider the
fluctuations contributed by S;, we have [|S;]| < vinL'?||Gol|
ignoring logarithmic factors. In other words, the signal is con-
tained in ES, whose operator norm may grow linearly as L,
while the fluctuation in the operator norm of S; only grows at a
rate of L'/2.

Additionally, in the Bernoulli case, the situation becomes
more complicated when the variance v; is vanishing, meaning
that vy < v, = (1/)5/2 & R; = R;. In the simple case of
Gy = I,, we have 07 = LY2, o, = o3 = 1. Thus, the second
term (v1Ln)Y20, in (15) may dominate the first term when
nv; < 1. In this case, we also have o) = (Ln)'/2. Therefore,
it is also possible that the term v;/ 205 in (16) may be large. It
turns out that in such very sparse Bernoulli cases, the bound on
the fluctuation term ||S;|| can be improved by a more refined
and direct upper bound for || ), X/ZXZT Il = |IS||. The details are
presented in the next section.

4.3. Sparse Bernoulli Matrices

In this section, we focus on the case where Gy = I,, for all £, and
the X¢’s are symmetric with centered Bernoulli entries whose
probability parameters are bounded by p. Here, p can be very
small. In this case, Assumptions 2, 3, and 3’ hold withv; = v, =
2p, Ry = Ry = R, = 1,v, = 2p?, and the matrices Gy satisfy
o1 =LY20y =03 =1,0} = (Ln)"/%

Ignoring logarithmic factors, the first part of Theorem 4
becomes

1111 < C[LY?np + (Lnp)' /> + 1],

where the second term (Lnp)'/? can be dominating when np

is small and Lnp is large. This is suboptimal since intuitively
we expect that the main variance term L!/?np is the leading
term as long as its value is large enough, which only requires
np > L7Y2. To investigate the cause of this suboptimal
bound, observe that (Lnp)!/? originates from the second term
Ri(v1Ln)'%05 in (15). Investigating the proof of Theorem 4,
this term is derived by bounding ", ||HgHg|| by >, IIHell%
which is suboptimal in this sparse Bernoulli case when applying
the decoupling technique. The following result shows a sharper
bound in this setting using a more refined argument.

Theorem 5. Assume G¢ = I, for all £ € {1,...,L} and
Xi,..., X are symmetric with centered Bernoulli entries whose
parameters are bounded by p. IfLY2np > C, logl/2 (L+n) and
np < C, for some constants Cj, C;, then with probability at
least 1 — O((n + L)™Y),

IS11l < CL2 pnlog"*(L + n) (18)
for some constant C.

The proof of Theorem 5 is given in Appendix C, supplemen-
tary materials where we modify our usage of the decoupling



technique. Ata high level, the decoupling technique reduces the
problem to controlling the operator norm of § = ), X/ZX
where X; is an iid copy of X;. Instead of directly applying
Theorem 3 with Hy = X, we instead sh1ft X, back to the
original Bernoulli matrix by considering S = Yoo XAy —
Z ¢ X¢ Py, where A ¢ is the original uncentered binary matrix and
EAg Then Theorem 3 isappliedto ), X¢Pgand Yoo XgA(
separately, where the entry-wise nonnegativity of Ay allows us to
use the Perron-Frobenius theorem to obtain a sharper bound

for | 3, A2].

5. Further Simulation Study

In the following simulation study, we show that bias-adjusting
sum of squared adjacency matrices constructed in (7) has a
measurable impact on the downstream spectral clustering accu-
racy, and that our method performs favorably against other
competing methods. This builds upon the simulation initially
shown in Section 2.2.

Data-generating process. We design the following simula-
tion setting to highlight the importance of bias adjustment for
> A%. We consider n = 500 nodes per network across K = 3
communities, with imbalanced sizes n; = 200, n, = 50, and
n3 = 250. We construct two edge-probability matrices that
share the same eigenvectors,

1/2 12 =22
1/2 1/2 V2/2

V2/2 —V2/2 0

The two edge-probability matrices are

W= (19)

15 0 o0 0.62 022 0.46
BV=w|o0o 02 o |wl~|022 062 046],
0 0 04 0.46 0.46 0.85
15 0 0 022 0.62 0.46
B=w|o0o 02 o0 |wlix|062 022 046
L0 0 -—o04 0.46 0.46 0.85

We then generate L = 100 layers of adjacency matrices, where
each layer is drawn by setting the edge-probability matrices
By = pBWY for ¢ € {1,...,L/2} and By = pB? for ¢ €
{L/2+1,...,L}. Using this, we generate the adjacency matrices
via (1), with p varying from 0.025 to 0.2.

We choose this particular simulation setting for two reasons.
First, the first two eigenvectors in W are not sufficient to dis-
tinguish between the first two communities. Hence, methods
based on ), A, are not expected to perform well since the third
eigen-component cancels out in the summation. Second, the
average degrees among the three communities are drastically
different, which are 251p, 191p, and 327p, respectively. This
means the variability of degree matrix D,’s diagonal entries will
be high, helping demonstrating the effect of our method’s bias
adjustment.

Methods we consider. We consider the following four ways to
aggregate information across all L layers, three of which were
used earlier in Figure 2: (a) the sum of adjacency matrices with-
out squaring (i.e., considering M = >, Ay, “Sum”), (b) the sum
of squared adjacency matrices (i.e., considering M = ", A7,
“S0S”), (¢) our proposed bias-adjusted sum of squared adjacency
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matrices (i.e., considering (7), or equivalently M = Y, A
and then zeroing out the diagonal entries, “SoS-Debias”), and
(d) column-wise concatenating the adjacency matrices together,
specifically, considering

M=[A A Ap] e R0,

(i.e., “Tensor matricization”). This method is commonly-used in
the tensor literature (see, e.g., Zhang and Xia 2018), where the L
adjacency matrices can be viewed as a n x n x L tensor, and the
column-wise concatenation converts the tensor into a matrix.
Then, using one of the four construction of the aggregated
matrix M, we then apply spectral clustering onto M, meaning we
first compute the matrix containing the leading K left singular
vectors of M and perform K-means on its rows.

Additionally, we consider two methods that developed in
Paul and Chen (2020) called Linked Matrix Factorization (i.e.,
“LMF”) and Co-regularized Spectral Clustering (i.e., “Co-reg”).
These two methods fall outside the framework of the four meth-
ods discussed above. Instead, they use optimization procedures
designed with different so-called fusion techniques to solve for
an appropriate low-dimensional embedding shared among all L
layers, and then perform K-means clustering on its rows.

Results. The results shown in Figure 3 demonstrate that
bias-adjusting the diagonal entries of Y, A? has a noticeable
impact on the clustering accuracy. Using the aforementioned
simulation setting and methods, we vary p from 0.025 to 0.2
in 15 equally spaced values, and compare the methods for each
setting of p across 100 trials by measuring the average Ham-
ming distance (i.e., n 1d(0 0) defined in (2)) between the true
memberships in 6 and the estimated membership 6. We observe
phenomenons in Figure 3 which all agree with our intuition and
theoretical results. Specifically, summing the adjacency matrices
hinders our ability to cluster the nodes due to the cancelation
of positive and negative eigenvalues (green squares), and the
diagonal bias induced by squaring the adjacency matrices has a
profound effect in the range of p € [0.08,0.17], which our bias-
adjusted sum-of-squared method removes (purple diamonds
verses blue circles). We also see that our bias-adjusted sum-of-
squared method out-performs Linked Matrix Factorization (red
circles) and Coregularized Spectral Clustering (gray squares).
While the LMF method and Coreg method show some improve-
ments over the Sum and SoS methods, respectively, they still
behave qualitatively similar. This observation suggests that these
two methods may have similar difficulty in aggregating layers
without positivity or removing the diagonal bias.

Intuition behind results. We provide additional intuition
behind the results shown in Figure 3 by visualizing the impact
of the diagonal terms on the overall spectrum and quantifying
the loss of population signal due to the bias.

First, we demonstrate in Figure 4 that the third leading
eigenvalue of Y, A2 when p = 0.15 is indistinguishable from
the remaining bulk “noise” eigenvalues if the diagonal bias is
not removed (left), but becomes well-separated if so (middle).
Recall by construction (19), all three eigenvectors are needed
for recovering the communities. Hence, if the third eigenvalue
of 3", A? is indistinguishable from fourth through last eigen-
values (i.e., the “noise”), then we should expect many nodes
to be mis-clustered. This is exactly what Figure 4(left) shows,
where the third eigenvalue (denoted by the left-most red vertical
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Figure 3. The average proportion of mis-clustered nodes for eight methods (mea-
sured viaHamming distance n~1 d(@, 6) shownin (2), averaged over 100 trials), with
n = 500 with three unequally sized communities among overall edge densities
ranging from p € [0.025,0.2] and L = 100 layers. Six methods’ performance are
shown: “Sum” (green squares), “SoS” (orange triangles), “Bias-adjusted SoS” (blue
circles), “Tensor matricization” (purple diamonds), “LMF” (red circles), and “Co-reg”
(gray squares).

line) is not separated from the remaining eigenvalues. How-
ever, when we appropriately bias-adjust Y, A? via (7), then
Figure 4(middle) shows that the third eigenvalue is now well-
separated from the remaining eigenvalues. This demonstrates
the importance of bias-adjustment for community estimation in
this regime of p.

Next, in Figure 4(right), we show that this lack-of-separation
between the third eigenvalue and the noise can be observed on
the population level. Specifically, we show that the population
counterpart of ), AZ has considerable diagonal bias that makes
the accurate estimation of the third eigenvector nearly impossi-
ble when p is too small. To show this, for a particular value of p,
recall from our theory that the population counterpart of ), A
is

L
Z(P% + INDg), for a diagonal matrix 13@ where
=1
n
5@),‘1' = ZP@),'J‘ forl <i<n,
j=1
and Py = [EAy. Let Ay,..., A, denote the n eigenvalues of

the above matrix, dependent on p. We then plot (A3 — A4) /A4
against p in Figure 4 (right). This plot demonstrates that when
p is too small, the diagonal entries (represented by D,’s) add a
disproportionally large amount of bias that makes it impossible
to accurately distinguish between the third and fourth eigenvec-
tors. Additionally, the raise in the eigengap in Figure 4(right)
at p = 0.15 corresponds to when “SoS” starts to improve
in Figure 3 (orange triangles). This means starting at p =
0.15, the effect of the diagonal bias starts to diminish, and
at larger values of p, the sum of squared adjacency matrices
contains accurate information for community estimation (both
with and without bias adjustment). We report additional results
in Appendix E, supplementary materials, where we report the
time needed for each method, visualize the lack of concentra-
tion in the nodes’ degrees in sparse graphs and its effect on

the spectral embedding, and also report that the qualitative
trends in Figure 3 remain the same when we either consider
the varying-membership setting (described in Corollary 2) or an
additional variant of spectral clustering where the eigenvectors
are reweighted by its corresponding eigenvalues.

6. Data Application: Gene Coexpression Patterns in
Developing Monkey Brain

We analyze the microarray dataset of developing rhesus mon-
keys tissue from the medial prefrontal cortex introduced in
Section 1 that was originally collected in Bakken et al. (2016)
to demonstrate the utility of our bias-adjusted sum-of-squared
spectral clustering method. As described in other work that
analyze this data (Liu et al. 2018; Lei, Chen, and Lynch 2019),
this is a suitable dataset to analyze as other work have well-
documented that the gene coexpression patterns in monkeys’
tissue from this brain region change dramatically over develop-
ment. Specifically, the data from Bakken et al. (2016) consists of
the gene co-expression network of 10 different developmental
times (starting from 40 days in the embryo to 48 months after
birth) derived from microarray data, where each of the develop-
mental time points corresponds to post-mortem tissue samples
of multiple unique rhesus monkeys. With this data, we aim to
show that our bias-adjusted sum-of-squared spectral clustering
method produces insightful gene communities.

Preprocessing procedure. The microarray dataset from
Bakken et al. (2016) contains n = 9173 genes measured among
many samples across the L = 10 layers, which we preprocess
into 10 adjacency matrices in the following way in line with
other work like Langfelder and Horvath (2008). We use these
specific set of n genes, following the analysis in Liu et al. (2018),
since they map to the human genome. First, for each layer
£ € {1,...,L}, we construct the Pearson correlation matrix.
Then, we convert each correlation matrix into adjacency matrix
by hard-thresholding at 0.72 in absolute value, resulting in
10 adjacency matrices Aj,...,Ar. We choose this particular
threshold since it yields sparse and scale-free networks that
have many disjoint connected components individually but
have one connected component after aggregation, as reported
in Appendix F, supplementary materials. Lastly, we remove all
the genes corresponding to nodes whose total degree across all
10 layers is less than 90. This value is chosen since the median
total degree among all nodes that do not have any neighbors
in five or more of the layers (i.e., a degree of zero in more
than half the layers) is 89. In the end, we have 10 adjacency
matrices Aj,...,A; € {0,1}783%7836 each representing a
network corresponding to 7836 genes. We note that the above
procedure of transforming correlation matrices into adjacency
matrices is unlikely to procedure networks that severely violate
the layer-wise positivity assumption commonly required by
other methods—this hypothetically could happen if many pairs
of genes display high negative correlations, but this is not typical
in genomic data. Nonetheless, we are interested in what insights
the bias-adjusted sum-of-squared spectral clustering method
can reveal for this dataset.

Results and interpretation The following results show that
bias-adjusted sum-of-squared spectral clustering finds mean-
ingful gene communities. Prior to using our method, we select
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Figure 4. (Left): For one realization of Ay, ..., A, given the setup described in the simulation with p = 0.15, a histogram of all 500 eigenvalues of 3, A%, where the
red vertical dashed lines denote the second and third eigenvalues. (The first eigenvalue is too large to be shown.) (Middle): Similar to the left plot, but showing the 500
eigenvalues of the bias-adjusted variant of ), A% (i.e., setting the diagonal to be all 0s). (Right): The population eigengap (3 — A4) /A3 computed from »_, P% + Dy for

varying values of p.
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Figure 5. Three of 10 adjacency matrices where the genes are ordered according to the estimated K = 8 communities. Blue pixels correspond to the absence of an edge
between the corresponding genes in Ay’s, while yellow pixels correspond to an edge. The dashed white lines denote the separation among the K = 8 gene communities.
The adjacency matrices shown in Figure 1 correspond to the same three developmental times (from left to right), and are formed by selecting only the genes in Communities

1,4,5and 7.

the dimensionality and number of communities to be K = 8
based on a scree plot of the singular values of the bias-adjusted
variant of ), A%. We perform our bias-adjusted spectral clus-
tering on this matrix with K = 8, and visualize three out of
the 10 adjacency matrices using the estimated communities in
Figure 5 (which are the full adjacency matrices corresponding
to the three adjacency matrices shown in Figure 1). We see
that as development occurs from 40 days in the embryo to 48
months after birth, there are different gene communities that are
most-connected. This visually demonstrates different biological
processes in brain tissue that are most active at different stages
of development. Labeling the communities 1-8 from top left
to bottom right, our results show that starting at 40 days in
the embryo, Community 1 is highly coordinated (i.e., densely
connected), and ending at 48 months after birth, Community 7
is highly coordinated. All the genes in Community 8 are sparsely
connected throughout all 10 adjacency matrices, suggesting that
these genes are not strongly correlated with many other genes
throughout development.

To interpret these K 8 communities, we perform a
gene ontology analysis, using the cluster- Profiler: :en

Table 1. Gene ontology of the estimated K = 8 communities of genes.

Community Description GOID p-value

1 RNA splicing G0:0008380  1.07 x 101
2 Nuclear transport GO:0051169  3.15 x 107>
3 Neuron development GO:0048666  2.08 x 108
4 Chromosome segregation G0:0007059 131 x 1078
5 Neuron projection development ~ G0:0031175 151 x 1072
6 Regulation of transporter activity ~ GO:0032409  5.68 x 10~
7 Anchoring junction G0:0070161 8.86 x 107>
8 None

NOTE: Here, “GO” denotes the gene ontology ID, and “p-value” denotes the Fisher’s
exact test to denote an enrichment (i.e,, significance or over-representation) of a
particular GO for the genes in said community compared to all other genes.

richGO function on the gene annotation in the Bioconductor
package org.Mmu . eg. db to analyze the scientific interpreta-
tion of each of the K communities of genes within rhesus mon-
keys. Table 1 shows the results. We see the first seven communi-
ties are highly enriched for cell processes closely related to brain
development—we can interpret Figure 5 and Table 1 together as
which biological systems are most active in a coordinated fash-
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ion at different developmental stage. Since genes in the eighth
community are sparsely connected across all developmental
time and is not enriched for any cell processes, we infer that
these genes are unlikely to be coordinated to drive any process
related to brain development. Together, these results demon-
strate that the bias-adjusted sum-of-squared spectral clustering
is able to find meaningful gene communities. Visualizations of
all 10 adjacency matrices, beyond those shown in Figure 5 and
explicit reporting of the edge densities, as well as stability analy-
ses that demonstrate how the results vary when different tuning
parameters are used, are included in Appendix F, supplementary
materials.

7. Discussion

While we establish community estimation consistency in this
article, there are two major additional theoretical directions we
hope our results will help shed light into for future work. First,
an important theoretical question in the study of stochastic
block models is the critical threshold for community estima-
tion. This involves finding a critical rate of the overall edge
density and/or the separation between rows of By, and proving
achievability of certain community estimation accuracy when
the density and/or separation are above this threshold, as well
as impossibility for nontrivial community recovery below this
threshold. For single-layer SBMs, this problem has been studied
by many authors, such as Massoulié (2014), Abbe and Sandon
(2015), Zhang and Zhou (2016), and Mossel, Neeman, and Sly
(2018). The case of multi-layer SBMs is much less clear, espe-
cially for generally structured layers. The upper bounds proved
in Paul and Chen (2020) and Bhattacharyya and Chatterjee
(2018) imply achievability of vanishing error proportion when
Lnp — oounder alayer-wise positivity assumption. Our results
requires a stronger L'/2np/log!/?(L 4+ n) — oo condition, but
does not require a layer-wise positivity assumption. Ignoring
logarithmic factors, is a rate of L'/? the right price to pay
for not having the layer-wise positivity assumption? The error
analysis in the proof of Theorem 1 seems to suggest a positive
answer, but a rigorous claim will require a formal lower bound
analysis. We note that the simplified constructions such as that
in Zhang and Zhou (2016) designed for single-layer SBMs are
unlikely to work, since they do not reflect the additional hard-
ness brought to the estimation problem by unknown layer-wise
structures.

Second, the consistency result for multi-layer SBMs also
makes it possible to extend other inference tools developed
for single-layer data to multi-layer data. One such example
is model selection and cross-validation (Chen and Lei 2018;
Li, Levina, and Zhu 2020). The probability tools developed
in this article, such as Theorems 3 and 4 and Theorem B.2,
supplementary materials, may be useful for other statistical
inference problems involving matrix-valued measurements and
noise. For example, our theoretical analyses could refine the
theoretical analyses for multilayer graphs that go beyond SBMs,
such as degree-corrected SBMs or random dot-product graphs
in general (Nielsen and Witten 2018; Arroyo et al. 2021). Alter-
natively, in dynamic networks where the network parameters
change smoothly over time, one may use nonparametric kernel
smoothing techniques in Pensky and Zhang (2019) and the

matrix concentration inequalities developed in this article to
control the aggregated noise and perhaps obtain more refined
analysis in those settings.

Supplementary Materials

The online supplementary file contains technical proofs of main theorems,
and further details about data access, simulation study, real data analysis.
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