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and overall heat loss through window components in the different 
models. It demonstrates that the photothermal window can significantly 
reduce the heat loss, ranging from 34.9 to 40.8% depending on different 
climates, relative to the baseline window models. Compared with the 
Low-E window models, the photothermal windows also obviously out
performed, with about 12.2–20.1% heat loss reductions, as indicated in 
Fig. 12. The solar heat gain differences between them are also aligned 
with this observation. Although the transmitted solar radiations be
tween the Low-E window and the photothermal window are almost the 
same, the PPE-enhanced inward-flowing heat of the photothermal 
windows enabled 14.2–16.7% more solar heat gains than that of the 
Low-E windows. The reduced heat loss and enhanced solar heat gains 
contributed to the resulting energy savings of the photothermal 
windows. 

4.3. Discussion 

Adhesive Low-E films are considered as one of the effective single- 
pane window retrofitting technologies, which could be installed as re
placements for existing windowpanes without necessitating replace
ment of the sash in which the pane is mounted. Adding the nanoscale 
photothermal layer may further reduce the overall building heating 
energy use and window heat loss, which is mainly because of the 
nanoscale LSPR-driven PPE and the solar infrared energy utilization. In 
the conventional understanding, absorbing the solar radiation energy on 
the building windows, especially with the low-emissivity effect, is 
considered as the solar heat gain reduction strategy. Here we demon
strated a different perspective that was to enhance the solar heat gains. 
This conclusion is built upon two major facts: the strong NIR reflection 
by the Low-E coating and the presence of the interfacial insulation by the 
nanoscale PPE. These findings cast doubts on the conventional macro
scopic heat transfer models and hypothesized a significant thermal 
barrier presence between the heating NPs and the substrate. Bearing this 
in mind, the photothermal procedure described and examined in this 
work is different from the conventional building materials’ light-to-heat 
conversion but induced from the NPs, which led to a relatively larger 
fraction of inward-flowing heat converted from the solar infrared 
radiation. 

Photothermal windows may increase summer cooling loads because 
of the possibility of overheating under solar radiation. However, with 
the overhang design in response to the high solar angles in summer, the 
incident solar irradiance may be dramatically reduced in summer but 
with no or small reduction in winter. Then, the decreased incident solar 
irradiance in the high outdoor temperature range may largely reduce 
SHGCPPE, which can be explained by Eq. (10). As shown in Table 4, the 
simulation results show the annual cooling loads of the photothermal 
window models by using the overhang systems are only slightly higher 
than that of the single-pane Low-E window models of these four cities, 
which demonstrates the effectiveness of the overhang systems to control 
the overheating issues when using the photothermal window. Although 
the addition of overhangs would somehow reduce the heating energy, 

the annual energy saving would be still expected. There is a trade-off 
between the heating energy decrease and the cooling energy increase 
when it comes to the nanoscale PPE, so the optimal overhang depth and 
the nanoscale PPE intensity would exist. However, the optimization 
potion was not included in this research scope and could be explored in 
the future. 

Also, the surface plasmon mode has a hybrid nature – propagating 
surface plasmon polaritons and localized surface plasmons, providing 
additional pathways for harvesting the energy of below-gap photons (e. 
g., below the semiconductor bandgap) to generate photocurrent with 
metal–insulator-metal structure design [10,11,12]. So, it is possible to 
design specific multilayer structures and some electronic wiring to 
exhibit switchable photothermal and photoelectrical features, achieving 
the seasonal dependent dynamic NIR modulation. In the meantime, 
other studies have identified the angular features of nanoscale PPE, 
which indicates much stronger temperature increases under smaller 
incident angles (e.g., low solar positions in winter) relative to the greater 
incident angles (e.g., high solar positions in summer) [37,49]. The 
research team will incorporate a previous study of seasonal solar NIR 
modeling into this angular-dependent model and examine the potential 
energy performance [50]. 

Furthermore, it is no doubt that the thermal performance of double- 
pane windows leads to more energy savings for both summer and winter 
relative to the photothermal windows. However, the use of double-pane 
windows slightly reduced the VT, so the interior lighting energy use 
could be relatively higher than that when the single-pane photothermal 
window is used. Considering both the heating and lighting energy re
sults, the photothermal single-pane windows might have very similar 
energy performances in relation to the performance of the double-pane 
windows. Also, as mentioned in the introduction, upgrading a single- 
pane window to a double-pane window in an existing building re
quires replacing the entire window, including frame, sash, glazing, and 
possibly the wall structure, due to the weight being doubled. Therefore, 
theretrofitting technology that can be used with existing single-pane 
window systems has long been sought after. Developing and adding 
the adhesive photothermal film may be an effective retrofitting solution 
for the single-pane window sector. In addition, as for new buildings, 
considering the relatively simpler installation, lighter weight, and lower 
cost, the single-pane photothermal window may still be preferable from 
the economical perspective. To make accurate decisions, some 
comprehensive cost-benefit analyses, taking different weather condi
tions, building typologies, durability, and maintenance into account, 
should be performed. 

Last, in winter, the temperature of the single-pane window’s inner 
surface could be nearly as low as the outdoor temperature. The conse
quence is that the near-window zone will be uncomfortably chilly 
compared to the rest of the heated interior. Also, the cold temperature of 
the windowpane will have high condensation risks, which may be 
degraded by applying the inner Low-E coating. This is possibly 
addressed by using the photothermal fim as well. The window’s inner 
surface will be warm upon solar radiation because of the presence of the 
photothermal materials, which may not only mitigate the programs of 
Low-E coated single-panes with comfort but also enhance the conden
sation resistance. 

5. Conclusion 

This research examined the energy savings potential of surface 
plasmon-induced NP photothermal effects used on single-pane windows, 
which are believed to address one of the major retrofit-related issues in 
the building energy sector. Previous studies have shown the possible 
effects of using photothermal films to coat windows on building energy; 
however, a comprehensive energy analysis had never been conducted. 

To resolve this gap, a simplified analytical model incorporated with 
interfacial insulation that addresses the surface localized heating on one 
surface of the glass pane was developed and validated via photothermal 

Table 4 
Cooling energy use comparison between Low-E and photothermal windows.  

Zone City Single- 
pane 
Low-E 
(GJ) 

Singe-pane 
photothermal w/o 
overhangs (GJ) 

Singe-pane 
photothermal w 
overhangs (GJ) 

3 Atlanta, 
GA  

77.1  84.9  77.9 

4 Seattle, 
WA  

40.5  45.9  41.4 

5 Chicago, 
IL  

52.5  58.1  53.4 

6 Great 
Falls, MT  

43.2  49.5  43.5  
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experiments in the lab. This model can be used to compute the tem
perature profiles of photothermal windows under various design con
ditions and boundaries. Subsequently, the validated analytical model 
was used to analyze the improved thermal performance relative to the 
Low-E single-panes. In particular, the dynamic SHGC (i.e., SHGCPPE in 
this work) features were characterized and a physics-based mathemat
ical model was obtained based on a series of numerical analyses and 
representative boundary combinations (outdoor temperature and solar 
irradiance). Last, to understand the overall energy performance of the 
photothermal windows, we employed a parametric energy simulation 
method to take the temperature- and solar irradiance- dependent SHGC 
into account. The results show the photothermal coating can be used as a 
new energy-efficient retrofit technology for single-pane windows, with 
an energy saving potential 16.2–20.8%. Compared to the Low-E tech
nology, 12.2–20.1% heat loss reduction and 14.2–16.7% more solar heat 
gains through the windows and 7.6–13.2% energy savings on the whole 
building’s heating energy scale can be still obtained by using the pho
tothermal windows, which appear very close to the thermal perfor
mance of the double-pane windows in winter seasons under 
conventional solar radiation. Most importantly, these research findings 
open up a wide range of innovative solar energy utilization in building 
window systems. When considering potential condensation effects and 
local discomfort driven by the Low-E coated single-panes, the photo
thermal windows may achieve more benefits. The photothermal win
dows also showed very similar energy-saving performance relative to 
the double-pane windows, especially when the lighting energy use was 
also considered in this comparison. Notably, the energy savings were not 
achieved by increasing the thermal insulation through the additional air 
layer or the insulating materials, but rather by the NP’s surface plasmon- 
induced photothermal effect and utilization of solar NIR energy. This 
was also achieved without compensating for VT. 
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