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Abstract
We present a new approach to optimal design with state constraints based on active set optimization theory and implement 
it using a phase-field model. Our primary focus is on compliance minimization subject to inner and outer obstacles. We 
compare our approach to a classical penalization method and study the influence of initial guess, penalization parameters, 
and discretization.

Keywords  Topology optimization · Phase-field method · Active set method · Penalization method · State constraints · 
Obstacle

1  Introduction

Topology optimization (see Bendsøe and Sigmund (2003), 
for a general survey) is traditionally concerned with finding 
the distribution of one or several materials and void opti-
mizing some cost function subject to some constraint on 
admissible designs.

The typical problem structure consists of finding a parti-
tion � ∶= (D1,D2,… ,Dn) , often referred to as the design 
variable, of a ground domain � minimizing an objective 
function J  depending on � and a set of state variables 
� ∶= (u1, u2 … , um) satisfying state equations. For the clas-
sical minimum compliance problem, the objective function 
J  is the compliance of a design where each Di corresponds 
to the region of � occupied by specific material (or void) 
and the state variable is the equilibrium displacement given 
as the solution of the static elasticity equations associated 
with the design � and a set of given loadings.

Unconstrained optimal design problems typically lead 
to trivial solutions, so one typically considers additional 

restrictions on the design or state variable. The most com-
mon class of constraints applies to the design variable, for 
instance, inclusions (i.e., prescribing the material occupy-
ing specific regions of the domain), bounds on the volume 
fraction of each material, geometric features accounting 
for limitations of classical or additive manufacturing tech-
niques. Constraints on the state variables include bounds 
on the maximum pointwise stress in the minimum compli-
ance problem (Duysinx and Bendsøe 1998; Allaire et al. 
2004; Lipton and Stuebner 2006; Allaire and Jouve 2008), 
or material non-linearities such as plasticity (Maute et al. 
1998; Maury et al. 2018), fatigue Desmorat and Desmorat 
(2008), or fracture (Hsueh and Bhattacharya 2018; Li et al. 
2021) for instance.

This article is concerned with the specific case where the 
state equations can be reformulated as a constrained opti-
mization problem: 

subject to

where � denotes the set of admissible designs and � the 
state of admissible states, J  is the objective function and E 
is an energy from which the state equations can be derived.

When � is a subset of the natural space for the state vari-
able, this class of problems is often referred to as Minimiza-
tion Problems with Equilibrium Constraints (MPEC) (Luo 

(1a)min
�∈�

J(�, �)
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et al. 1996; Kočvara Outrata 1995; Outrata 1994; Outrata and 
Zowe 1995; Baumrucker et al. 2008; Maury et al. 2018). In 
this case, the first-order optimality conditions for (1b) take the 
form of the system of Karush–Kuhn–Tucker (KKT) conditions 
which can be written as variational inequalities of the first 
kind (Kinderlehrer and Stampacchia 2000), and the classical 
adjoint approach for PDE-constrained optimization cannot 
be applied directly. Instead, some authors have proposed to 
derive optimality conditions for MPEC problems in the sense 
of weak directional differentiability (Mignot and Puel 1984; 
Sokolowski and Zolesio 1992) for instance. Regularization and 
penalization methods are also often used (Drabla et al. 1998; 
Fukushima and Pang 1999; Scholtes 2001; Hu and Ralph 
2004; Chouly 2013; Maury 2016; Maury et al. 2017, 2018). 
One drawback of these approaches is that enforcing the con-
straints typically requires very large penalty factors which can 
lead to numerical issues.

In this article, we introduce an active set approach for 
MPEC problems, which allows us to leverage standard 
adjoint methods without regularizing or penalizing the 
state constraint. We focus on a simple problem of compli-
ance optimization under an obstacle problem similar to that 
studied in Haslinger and Klarbring (1993), but we believe 
that our approach is applicable to a wide range of situations 
where the state equations can be formulated as a minimi-
zation problem under inequality constraint, noticing that 
many problems in defect mechanics can be formulated this 
way, including damage (Francfort and Marigo 1993), brittle 
fracture (Francfort and Marigo 1998; Bourdin et al. 2008), 
or plasticity (Dal Maso et al. 2006; Babadjian et al. 2012).

Section 2 introduces the problem settings and our active 
set approach, after recalling some essential properties. Sec-
tion 3 is devoted to a critical study of the performance and 
robustness of our approach, and comparison to classical 
penalization methods. Finally, Sect. 4 includes conclusions 
and perspectives.

2 � A phase‑field approach to optimal design 
with obstacle constraints

Consider the well-known minimum compliance prob-
lem with perimeter penalization, written in variational 
form (Ambrosio and Buttazzo 1993; Haber et al. 1996, see]
[for instance): 

subject to

(2a)
inf
D∈�

{
J(D,�) ∶= ∫

𝛤N

� ⋅ � dS + 𝜂|D|
+𝜅Hn−1(𝜕D ∩ 𝛺̄)

}

Here D ⊂ 𝛺 denotes the design, i.e., a region of a back-
ground domain 𝛺̄ occupied by a material with Hooke’s law 
� , where � is a symmetric tensor. � ∶=

{
𝛺0 ⊂ D ⊂ 𝛺̄

}
 , 

and �0 denotes a region of � which must be contained 
in all designs. � is the elastic equilibrium displacement, 
�(D) = (1 − �)�D + � , with 0 < 𝛿 ≪ 1 a small regulariza-
tion parameter, and � and � two positive constants. The pre-
scribed boundary force � acting on a part �N of the boundary 
of � is assumed regular enough, and Hn−1(𝜕D ∩ 𝛺̄) is the 
n − 1 dimensional measure of �D , i.e., the perimeter of the 
design in 2D and its surface area in 3D. The natural space for 
admissible displacements is 

{
� ∈ H1(�;ℝn);� = 0 on �D

}
 , 

with �D = �� ⧵ �N.
We add an additional obstacle constraint by further 

restricting the admissible displacements:

where 𝛺̃i and 𝛺̃e are given obstacles (see Fig. 1). Note that 
owing to the injectivity of the displacement field, it is suf-
ficient to enforce that 𝜕𝛺 + �(𝜕𝛺) ⊂ 𝛺̃ . Furthermore, in the 
setting of small deformations, (3) can be reformulated as

where ui and ue are given scalar functions and � is the outer 
normal to �.

Following the phase-field approach devised in Bourdin 
and Chambolle (2003, 2006), we introduce a small regulari-
zation variable � and a smooth function � taking its values 

(2b)
� ∶= argmin

�∈�

{
E(D, �) = ∫

�

1

2
�(D)�e(�) ∶ e(�) d�

−∫
�N

� ⋅ � dS

}
.

(3)
� ∶=

{
� ∈ H1(𝛺;ℝn);� = 0 on 𝛤D,

𝛺̃i ⊂ 𝛺 + �(𝛺) ⊂ 𝛺̃e

}
,

(4)
� ∶=

{
� ∈ H1(�;ℝn);� = 0 on �D,

ui ≤ � ⋅ � ≤ ue on �N

}
,

Fig. 1   Obstacle problem. The background domain in the reference 
configuration is shown in gray and its deformed configuration is in 
black. The inner and outer obstacles �̃i and �̃e are shown in blue and 
red, respectively
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in [0, 1] representing the domain D. The elastic energy 
becomes

where � is a continuous differentiable monotonically 
increasing function with �(0) = � and �(1) = 1 . A typical 
choice is

where p ≥ 1 is a given parameter. The perimeter penalty 
term Hn−1(𝜕D ∩ 𝛺̄) is approximated in the sense of �–con-
vergence by

where W is a non-negative function vanishing only at 0 
and 1, and cW ∶= ∫ 1

0

√
W(t) dt is a normalization param-

eter (Braides 1998; Alberti 2000). Finally, the volume frac-
tion of the design is approximated by ∫

�
�q dx , where q ≥ 1 

is a given parameter, so that the objective function becomes

The minimum compliance with obstacle constraints can 
therefore be reformulated as 

subject to

 where

2.1 � State equations in strong form

Given an admissible design � ∈ �
�
 , let � ∈ � be the solu-

tion of the state equations. We define

and

Consider � ∈ H1(�;ℝn) such that � = 0 on �D , � ⋅ � ≥ 0 on 
�i , and � ⋅ � ≤ 0 on �e . For any t ≥ 0 , � + t� is an admissible 
field for the state equations and

(5)E
𝓁
(�, �) ∶= ∫

�

1

2
�(�)�e(�) ⋅ e(�) d� − ∫

�N

� ⋅ � dS,

(6)�(�) = (1 − �)�p + �,

(7)P
�
(�) =

1

2cW ∫
�

W(�)

�
+ �|∇�|2 d�,

(8)J
𝓁
(�, �) ∶= ∫

�N

� ⋅ � dS + � ∫
�

�q d� + �P
𝓁
(�).

(9a)inf
�∈�

�

{
J
�
(�, �)

}

(9b)� ∶= argmin
�∈�

{
E
�
(�, �)

}
,

(10)�
�
∶=

{
� ∈ H1(�;[0, 1]); �(�) = 1 a.e. in �0

}
.

(11)�i ∶=
{
� ∈ �N ; �(�) ⋅ � = ui(�)

}
,

(12)�e ∶=
{
� ∈ �N ; �(�) ⋅ � = ue(�)

}
.

Sending t to 0, we get that

and using Green’s formula that

Considering first an arbitrary function � vanishing on �N , 
and noticing that −� is also admissible, we quickly recover 
that div[�(�)�e(�)] = 0 in �, so that (13) becomes

Choosing then an arbitrary test function � vanishing on �i 
and �e , and repeating the same derivation procedure, we 
get that

Finally, consider a test function � and decompose its trace �̃ 
on �� as �̃ = (�̃ ⋅ �)� + (�̃ − (�̃ ⋅ �)�) . Using � and an exten-
sion of (�̃ ⋅ �)� − (�̃ − (�̃ ⋅ �)�) as test functions in (13), we 
obtain that

and

Putting everything together, we obtain the following first-
order optimality conditions for the state equations: 

2.2 � Sensitivity analysis

In order to use a gradient or higher order method, one 
needs to compute the sensitivity of the objective function 

E
�
(�, � + t�) − E

�
(�, �) ≥ 0.

�
�

�(�)�e(�) ⋅ e(�) d� − �
�N

� ⋅ � dS ≥ 0,

(13)
− �

�

div[�(�)�e(�)] ⋅ � d�

+ �
�N

�(�)�e(�)� ⋅ � dS − �
�N

� ⋅ � dS ≥ 0.

�
�N

�(�)�e(�)� ⋅ � dS − �
�N

g ⋅ � dS ≥ 0.

�(�)�e(�)� = � on �N ⧵
(
�i ∪ �e

)
.

(�(�)�e(�)� − �) ⋅ � ≥ 0 on �i,

(�(�)�e(�)� − �)) ⋅ � ≤ 0 on �e.

(14a)div[�(�)�e(�)] = 0 in �,

(14b)(�(�)�e(�)� − �) ⋅ � ≥ 0 on �i,

(14c)�(�)�e(�)� = � on�N ⧵ (�i ∪ �e),

(14d)(�(�)�e(�)� − �) ⋅ � ≤ 0 on �e,

(14e)� = 0 on �D.
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with respect to design changes. Direct application of a the 
chain rule requires the sensitivity of the state variable with 
respect to the design variable. Because of the inequality 
constraints (14b) and (14d) on the state variable, the well-
known adjoint method cannot be applied directly in our 
case. Instead, we define the following active sets:

and

Assuming that these active sets are known, the minimum 
compliance problem (9a–9b) can be rewritten as

subject to 

 with

As all inequality constraints have been replaced with equal-
ity constraints (again, assuming the knowledge of the active 
sets Ii and Ie ), we can follow the classical adjoint approach 
to the computation of the sensitivity of the objective func-
tion. Let � ∈ H1(�;ℝn) such that � = 0 on �D ∪ I  be the 
Lagrange multiplier associated to the constraints (18a–18d). 
We introduce the Lagrangian

Using Green’s formula, we get that

(15)
Ii ∶= {� ∈ �N ; �(�) ⋅ � = ui(�),

(�(�)�e(�)� − �) ⋅ � ≥ 0},

(16)
Ie ∶= {� ∈ �N ; �(�) ⋅ � = ue(�),

(�(�)�e(�)� − �) ⋅ � ≤ 0},

(17)I ∶= Ii ∪ Ie.

inf
�∈�

�

{
J
�
(�, �)

}

(18a)div[�(�)�e(�)] = 0 in �,

(18b)�(�)�e(�)� = � on �N ⧵ I,

(18c)� ⋅ � = ū on I,

(18d)� = 0 on �D,

ū =

{
ui on Ii,

ue on Ie.

(19)
L(�, �, �) = ∫

�N

� ⋅ � dS + � ∫
�

�q d� + �P
𝓁
(�)

−∫
�

� ⋅ div [�(�)�e(�)] d�.

Note that if � satisfies the state equations (18a–18d), then 
L(�, �, �) = J

�
(�, �) , so that computing the Fréchet deriva-

tive of J
�
 associated with a design change � is equivalent to 

computing that of L:

As a result of choosing Lagrange multiplier � , the last term 
in Equation (22) disappears. In addition, computing ��

��
 is 

typically difficult. Instead, we search for � such that for any 
� ∈ H1(�) with � = 0 on �D ∪ I ,

Equation (23) is usually referred to as the adjoint equation 
associated with the constraints, and given any solution � , 
then obtain

Remark 1  Note that (23) can be written in strong form as

so that if neither of the obstacle constraints are active, 
i.e., when I = Ii = Ie = � , we recover the classical result 
� = −�.

(20)
L(�, �, �) = ∫

�N

� ⋅ (� − �) dS + � ∫
�

�q d� + �P
𝓁
(�)

+∫
�

�(�)�e(�) ⋅ e(�) d�.

(21)DJ
�
(�, �)(�) = DL(�, �, �)(�)

(22)
=
⟨
�L(�, �, �)

��
, �

⟩
+
⟨
�L(�, �, �)

��
,
��

��
�

⟩

+
⟨
�L(�, �, �)

��
,
��

��
�

⟩
.

(23)

⟨
�L(�, �, �)(�)

��
, �
⟩
= ∫

�N⧵I

[�(�)�e(�)� + �] ⋅ � dS

−∫
�

div [�(�)�e(�)] ⋅ � d� = 0.

(24)

DJ
𝓁
(�, �)(�) =

⟨
�L(�, �, �)

��
, �

⟩

= �q∫
�

�q−1� d� +
�

2cW ∫
�

W �(�)

𝓁
� + 2𝓁∇� ⋅ ∇� d�

+ ∫
�

��(�)�e(�) ⋅ e(�)� d�.

(25)

⎧⎪⎨⎪⎩

−div [�(�)�e(�)] = 0 in �,

�(�)�e(�)� = −� on �N ⧵ I,

� = 0 on �D ∪ I.
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2.2.1 � Numerical implementation

Our numerical implementation uses FEniCS, a collection 
of open-source projects for the solution of partial differ-
ential equations using a high-level description of the vari-
ational forms involved  (Alnæs et al. 2014, 2015; Alnæs 
2012; Alnæs et al. 2009, 2012; Kirby 2004, 2012), (Kirby 
and Logg 2006; Logg et al. 2012, 2012b; Logg and Wells 
2010; Logg et al. 2012c; Mitusch et al. 2019; Ølgaard and 
Wells 2010), and the TAO optimization package, now part 
of PETSc (Balay et al. 1997, 2021b, a). In all that follows, 
all fields are discretized using linear and quadratic Lagrange 
simplicial finite elements. We limited our implementation to 
rectangular domain so that the obstacle constraints become 
simple box constraints on the state variable, and use the 
BLMVM (bound limited-memory, variable-metric) algo-
rithm of TAO, which requires the objective function and its 
gradient only.

Note that (24) assume that the active sets are known a pri-
ori, which is of course not the case. Instead, we use PETSc’s 
variational inequality solvers (SNESVI) to solve the state 
equations every time we need to evaluate the objective 
function, and update the active sets. A classical approach 
is to introduce a large number c ≫ 0 , typically c = 108 , and 
define

and

�E
�

��
 denoting the Fréchet derivative of the elastic energy E

�
 

with respect to � . If gi(�) is strictly positive for some � on 
�N , then � belongs to the active set Ii associated to the lower 
bound. Similarly, a point � on �N at which ge(�) is strictly 
negative belongs to the active set Ie associated to the upper 
bound. An alternative is to derive I  from the Jacobian of the 
state equations, if available in the solvers used. In practice, 
we found it sufficient to determine the active sets as the 
degree of freedom at which the displacement reaches obsta-
cles and ignore the sign of the reaction force (the second 
terms in (15–16)).

Remark 2  Given a design � , evaluating the objective func-
tion requires recomputing the state and adjoint variables, 
which is computationally intensive, while the computation 
of its gradient is simple in comparison. In the context of an 
optimization algorithm, this means that the computational 
cost of a line search can be high. The BLMVM algorithm 
uses a line search (Moré and Thuente 1994) which typically 
converges in a few iterations. We have not tried to optimize 

(26)gi∶=
�E

𝓁

��
(�, �) ⋅ � + c(ui − � ⋅ �)

(27)ge∶=
�E

𝓁

��
(�, �) ⋅ � + c(ue − � ⋅ �),

this part of the algorithm, or studied the impact of the accu-
racy of the line search on the overall computational effi-
ciency of our approach.

3 � Numerical results

We present a series of numerical simulations illustrat-
ing the strengths of our approach. In all that follows, we 
consider a two-dimensional rectangular domain � with 
width Lx = 1 and height Ly = 0.3 in plane stress conditions. 
We use the double-well function W(s) ∶= s(1 − s) in (7), 
hence cW = ∫ 1

0

√
W(t) dt = �∕8 . The structural material is 

assumed isotropic with Young’s modulus E = 103 Pa and 
Poison ratio � = 0.3 . We set p = 2 , q = 1 , and � = 10−3 in (6) 
and (8). All computations were performed on 8 cores of a 
dual socket Intel Xeon X5677 at 3.47 GHz workstation.

3.1 � Compliance optimization without obstacles

We start with the simplest case of an optimal design without 
obstacles described in Fig. 2.

A uniformly distributed traction force � = (0,−1) is 
applied on a part of the boundary �NT

 of the domain � , 
where (x, y) ∈ � and 5∕6 ≤ x ≤ 1 and y = Ly . On the bound-
ary �NR

 , the displacement � in the x-direction is fixed. In 
addition, the left boundary �D is clamped in both x-direction 
and y-direction (see Fig. 2). The inner and outer obstacles 
are set respectively to a very small and very large value so 
that they are not active.

The domain is discretized with a structured mesh with 
cell size h = 0.005 , consisting of 48,000 triangular finite 
elements. The regularization parameter is � = 0.025 , the 
perimeter penalization parameter is � =

5�

8
× 10−5 , and the 

volume penalization parameter � = 0.08 . The initial density 
field was chosen constant with value 1. The tolerance on 
the gradient of the objective function was set to 5 × 10−8 in 
both approaches.

Note that as highlighted in Remark 1, in this case, the 
minimum compliance problem becomes self-adjoint. We 

ΓD Ω

Lx

Ly

ΓNB

ΓNR

ΓNT

Fig. 2   An optimization problem without obstacles
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did not modify our algorithm to account for the fact that the 
computation of the adjoint state is technically not necessary. 
Because solving the state and adjoint equations is the most 
computationally intensive part of the algorithm, the times 
reported below could therefore be significantly reduced.

For this problem, our algorithm attained the desired 
tolerance in 986 iterations (leading to 1,375 evaluations 
of the objective function) and 92 minutes. We compared 
our result to that obtained with the penalization approach 
implemented in the open-source code dolfin-adjoint (Farrell 
et al. 2013; Mitusch et al. 2019), described in Appendix A. 
This approach differs from ours in that the constraints on the 
state variables are enforced through a penalty term, adjusted 
during iterations. The penalization approach converged in 
1019 iterations, with 1039 evaluations of the objective func-
tion, and 74 min. Note that a one-to-one comparison of the 
number of iterations of both methods is not directly sig-
nificant as the penalization approach gradually solves the 
direct and adjoint problems for decreasing values of the 
penalty factor, � , from 10−4 to 6.25 × 10−6 . Despite the lack 
of uniqueness caused but the non-convexity of the cost func-
tion, both approaches lead to essentially identical designs 
(see Fig. 3). In the active set method the objective func-
tion decreased from 2.51948 × 10−2 to 1.03486392 × 10−2 
vs. 2.51948 × 10−2 to 1.03491319 × 10−2 in the penalization 
approach.

3.2 � Compliance optimization with a single obstacle

In a second example, we apply a uniform distributed trac-
tion force, � = (0,−1) and prescribe the value of the den-
sity function to 1 on part of the boundary �NT

 . Again the 
displacement � in the x-direction is fixed on the bound-
ary �NR

 , and the left boundary �D is clamped in both 

x-direction and y-direction. The upper bound is set to 
be very large ue1(�) = ∞ and the lower bound on �NB

 is 
ue2(�) = −0.02 − y.

In Fig. 4, the obstacle is shown as a blue box, and the 
blue arrows represent the traction force. The initial design, 
shown in Fig. 5, is

�0 =
1

2
+

1

2
sin

(
10�x

Lx

)
sin

(
10�y

Ly

)
.

Fig. 3   Optimal design without obstacle. Designs produced by the proposed approach (left column) and a penalization approach (right column) in 
the reference (top row) and deformed (bottom row)

ΓD Ω

Lx

Ly

ΓNB

ΓNR

ΓNT

Fig. 4   A problem with one obstacle

Fig. 5   Initial guess �0 =
1

2
+

1

2
sin

(
10�x

Lx

)
sin

(
10�y

Ly

)
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Using the same values of � as above, the penalization 
method converged in 383.88 minutes after 3,028 iterations 
with 3,436 evaluations of the objective function while our 
approach converged in only 72.31 minutes and 886 itera-
tions which required solving the state and adjoint equa-
tions 1,010 times. Results are shown in the reference and 
deformed configuration in Fig. 6. The obstacle is repre-
sented by a black line in the deformed configuration. The 
displacement field in the y-direction along the line y = 0 
obtained by the active set and penalization method are 

shown as the red and black lines in Fig. 7, respectively. 
We observe that obstacle constraints on the displace-
ment are satisfied exactly by the solution generated by the 
active set approach, from around x = 0.6 to x = 1 on �NB

 
but not by that of the penalization approach. Even though 
the constraint is satisfied exactly in our approach, so that 
the set of admissible designs is smaller, the final value 
of the objective function is smaller ( 2.04956574 × 10−2 in 
our approach vs. 2.57722763 × 10−2 with the penalization 
approach).

Fig. 6   Optimal designs with one obstacle. Designs produced by the 
proposed approach (left column) and a penalization approach (right 
column) in the reference (top row) and deformed (bottom row) con-

figurations. Note that the penalization approach produces a design 
that does not satisfy the obstacle constraint (represented by a black 
line)

Fig. 7   Vertical displacement of along the boundary �NB
 . The active set approach (shown in red) produces a design that satisfies the obstacle con-

straint exactly whereas the penalization approach (the black line) does not
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3.2.1 � Robustness of the active set approach

While filtering techniques  (Bourdin 2001) or perimeter 
penalization (Ambrosio and Buttazzo 1993) can be used to 
ensure the well-posedness of optimal design problems, mesh 
independency is hard to achieve, owing in particular to the 
non-convexity of the optimization problems.

In order to demonstrate the robustness of our approach, 
we conducted series of computations on structured and 
unstructured meshes with decreasing element size. The 
unstructured meshes will be generated automatically by the 
FEniCS component mshr, based on CGAL and Tetgen (Si 
2015), while the structured meshes were built by subdivid-
ing each cell of a Cartesian grid into four triangles as shown 
in Fig. 8.

The initial design was set to �0 =
1

2
+

1

2
sin(

n�x

Lx
) sin(

n�y

Ly
) , 

and the tolerance on the gradient of the objective function 
was set to 5 × 10−8 . Figure 9 shows the value of the objective 
function upon convergence for as a function of the mesh size 
varying varies from 4.33 × 10−3 to 6.31 × 10−3 for 
n = 2, 8, 10 , and Fig. 10 shows some of the associated 
designs. We observe that structured meshes typically lead to 
smaller values of the objective function at convergence, and 
that while different initial guesses may lead to different 
designs, the actual values of the objective function are very 
close (see the range of y–values in Fig. 9). 

Fig. 11 shows the final designs for structured meshes with 
hmin = 5 × 10−3 and different initial guesses of the form 
�0 =

1

2
+

1

2
sin(

n�x

Lx
) sin(

n�y

Ly
) with n = 2 , n = 4 , and n = 8 . 

The values of the objective function are 2.04855932 × 10−2 , 
2.05590338 × 10−2 , and 2.04849720 × 10−2 , respectively. 
Again, despite some minor differences in the actual designs, 
the variations of the objective function are only approxi-
mately 0.36%.

3.2.2 � Sensitivity upon the perimeter penalty term �

Since un-penalized problems are ill-posed, it is natural 
to expect that the penalty term on the perimeter � has a 
more significant impact on the designs. Figure 13 shows 
designs obtained with extreme values � = � × 10−4 and 
� =

�

8
× 10−15 . All other parameters are kept as in the 

previous examples. As expected, a large weight on the 
perimeter leads to a very simple design whose complexity 
increases as � decreases. Figure 12 shows the evolution 
of the whole objective function, the compliance, and the 
perimeter penalty as a function of � . Surprisingly, one 
observes that values of � as small as �

8
× 10−15 produced 

well-defined designs exempt of large areas with intermedi-
ate density or checkerboard patterns.

3.3 � Compliance optimization with two obstacles

Consider  a  problem involving two obstacles 
u1(�) = −0.035 − y  o n  �NB

∶= (0.4, 0.6) × {0} a n d 
u2(�) = 0.25 − y on �NT

∶= (0.1, 0.3) × {Ly} , and a down-
ward force � ∶= (0,−10) on �NR

∶= {Lx} ×
(

Ly

3
,
2Ly

3

)
 while 

the horizontal displacement on the right edge is blocked (see 
Fig. 14 for a schematic representation of the load and obsta-
cles). The first obstacle infringes upon the reference configu-
ration and is therefore expected to be active. All of the mate-
rials, solvers, and model parameters are kept as in the 
previous examples with the exception of the volume penali-
zation parameter � , which is set to 0.3. The initial guess for 
the density field is �0 =

1

2
+

1

2
sin

(
2�x

Lx

)
sin

(
2�y

Ly

)
 (see 

Fig. 15).
The design produced by our active set algorithm is 

shown in Fig.  16 in the reference and deformed con-
figuration. Convergence was attained in 1,532 iterations Fig. 8   Typical unstructured and structured meshes

Fig. 9   Convergence plot by the active set method with different mesh 
types and sizes
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and 124 minutes, with 1,828 evaluations of the state 
and adjoint equations. The objective function decreased 
smoothly from 15.0867 × 10−2 to 1.98317590 × 10−2 . Our 
design is reminiscent of a compliant mechanism using the 

obstacles to provide mechanical advantage. The penaliza-
tion approach converged to a tolerance of 5 × 10−8 in 566 
iterations and 175 minutes to a design that does not satisfy 
the upper obstacle constraint, shown in Fig. 16 (bottom 
row).

Fig. 10   Structured mesh results with different minimum mesh size, hmin = 10−2, 9 × 10−3, 8 × 10−3, 7 × 10−3, 6 × 10−3 , and 5 × 10−3 , and 
n = 2

Fig. 11   Initial guesses and the corresponding designs for �0 =
1

2
+

1

2
sin(

2�

Lx
) sin(

2�

Ly
) (first row), �0 =

1

2
+

1

2
sin(

4�

Lx
) sin(

4�

Ly
) (second row), and 

�0 =
1

2
+

1

2
sin(

8�

Lx
) sin(

8�

Ly
) (third row)
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As expected, increasing the weight penalty factor � 
leads to lighter designs shown in Fig. 17. Our active set 
method converges again toward a design that satisfies both 
constraints. It uses the obstacles to provide mechanical 

advantage, but the additional penalty on the weight term 
leads to a design that does not make contact with the left 
edge of the domain. Here again, the penalization method 
fails to provide a design satisfying both constraints.

Fig. 12   Influence the parameter � . (left): objective function. (center): compliance. (right): perimeter penalization

Fig. 13   Influence of the parameter � . (left): � = 8 × 10−4 . (right): � = 10−15

ΓD Ω

Lx

Ly

ΓNB

ΓNR

ΓNT

Fig. 14   A problem with two obstacles
Fig. 15   Initial guess �0 =

1

2
+

1

2
sin

(
2�x

Lx

)
sin

(
2�y

Ly

)
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4 � Discussion and conclusion

The proposed active set method performed similarly to a 
classical penalization method for nonlinear optimization 
without obstacles. In the general case, however, our active 
set method is faster and more robust than the penalization 
approach and produces designs with smaller objective 
values. Furthermore, in the active set approach, the obsta-
cle constraints are always satisfied, whereas penalization 

methods require a careful adjustment of the penalty terms 
and may not always lead to design satisfying the con-
straints on the state variable.

In addition, our approach exhibits good robustness 
properties upon mesh refinement or changes of initial 
design. In all fairness, it can produce slightly different 
designs for different initial designs, which is common in 
non-convex optimization problems, but the objective value 
of the computed designs are very close.

Fig. 16   Optimal designs of a cantilever beam with two obstacles in the reference and deformed configurations, � = 0.3 . Top row: active set 
method, bottom row: penalization method

Fig. 17   Optimal designs of a cantilever beam with two obstacles in the reference and deformed configurations, � = 0.35 . Top row: active set 
method, bottom row: penalization method
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Appendix: The penalization method

In order to use an adjoint-based method to compute the 
sensitivity of the objective function subject to the vari-
ational inequality  (14a-14e), one can approximate the 
variational inequality by a family of nonlinear boundary 
value problems. For the sake of simplicity, we restrict the 
exposition to a lower bound on each component of the 
state variable ui ≥ 0 on � , i = 1, 2.

Following the work of  (Hintermüller and Kopacka 
2011), let � be the component-wise max operator

For any given � ∈ � and for 𝜖 > 0 , consider the problem
(Q�) ∶ Find �� ∈ � such that

for any appropriate test function � . While, it is reasonable to 
expect that the solution of (Q�) converge to the state equa-
tions as � → 0 , the analysis of the implementation of (Q�) is 
rendered difficult by the lack of smoothness of the max func-
tion. Instead, one can replace � by the smooth-max operator

and define (Q�
�
) ∶ Find �� ∈ � such that

for any appropriate test function �.
Figure 18 shows the max and smooth-max functions 

with � = 0.05 . Because �� ∶ � ⟶ �∗ is be continuous 
and monotone and the penalized problem (Q�

�
) admits 

(28)�(��) ∶ −max(0,−��), ∀�� ∈ �.

(29)∫
�

�(�)�e(�) ⋅ e(�) d� +
1

�
⟨�(��), �⟩ = ⟨T , �⟩,

(30)max
𝜖

(0, x) ∶

⎧
⎪⎨⎪⎩

x −
𝜖

2
if x ≥ 𝜖,

x2

2𝜖
if 0 < x < 𝜖,

0 if x ≤ 0,

(31)∫
�

�(�)�e(�) ⋅ e(�) d� +
1

�
⟨��(��), �⟩ = ⟨T , �⟩,

a unique solution. As � → 0 , �(��) → 0 , and the solu-
tion of (Q�

�
) , converges to the solution of the variational 

inequality (14a–14e). This approach is implemented in 
the open-source code dolfin-adjoint (Farrell et al. 2013; 
Mitusch et  al. 2019), which we used as our reference 
implementation.
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