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Abstract

We present a new approach to optimal design with state constraints based on active set optimization theory and implement
it using a phase-field model. Our primary focus is on compliance minimization subject to inner and outer obstacles. We
compare our approach to a classical penalization method and study the influence of initial guess, penalization parameters,

and discretization.
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1 Introduction

Topology optimization (see Bendsge and Sigmund (2003),
for a general survey) is traditionally concerned with finding
the distribution of one or several materials and void opti-
mizing some cost function subject to some constraint on
admissible designs.

The typical problem structure consists of finding a parti-
tionD :=(D,,D,,...,D,), often referred to as the design
variable, of a ground domain 2 minimizing an objective
function J depending on D and a set of state variables
u = (u,u, ..., u,)satisfying state equations. For the clas-
sical minimum compliance problem, the objective function
J is the compliance of a design where each D, corresponds
to the region of £2 occupied by specific material (or void)
and the state variable is the equilibrium displacement given
as the solution of the static elasticity equations associated
with the design D and a set of given loadings.

Unconstrained optimal design problems typically lead
to trivial solutions, so one typically considers additional
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restrictions on the design or state variable. The most com-
mon class of constraints applies to the design variable, for
instance, inclusions (i.e., prescribing the material occupy-
ing specific regions of the domain), bounds on the volume
fraction of each material, geometric features accounting
for limitations of classical or additive manufacturing tech-
niques. Constraints on the state variables include bounds
on the maximum pointwise stress in the minimum compli-
ance problem (Duysinx and Bendsge 1998; Allaire et al.
2004; Lipton and Stuebner 2006; Allaire and Jouve 2008),
or material non-linearities such as plasticity (Maute et al.
1998; Maury et al. 2018), fatigue Desmorat and Desmorat
(2008), or fracture (Hsueh and Bhattacharya 2018; Li et al.
2021) for instance.

This article is concerned with the specific case where the
state equations can be reformulated as a constrained opti-
mization problem:

min 7(D, u) (1a)
subject to
u = argmin ,.y&D, v), (1b)

where K denotes the set of admissible designs and V the
state of admissible states, 7 is the objective function and £
is an energy from which the state equations can be derived.

When V is a subset of the natural space for the state vari-
able, this class of problems is often referred to as Minimiza-
tion Problems with Equilibrium Constraints (MPEC) (Luo
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et al. 1996; Kocvara Outrata 1995; Outrata 1994; Outrata and
Zowe 1995; Baumrucker et al. 2008; Maury et al. 2018). In
this case, the first-order optimality conditions for (1b) take the
form of the system of Karush—Kuhn—Tucker (KKT) conditions
which can be written as variational inequalities of the first
kind (Kinderlehrer and Stampacchia 2000), and the classical
adjoint approach for PDE-constrained optimization cannot
be applied directly. Instead, some authors have proposed to
derive optimality conditions for MPEC problems in the sense
of weak directional differentiability (Mignot and Puel 1984;
Sokolowski and Zolesio 1992) for instance. Regularization and
penalization methods are also often used (Drabla et al. 1998;
Fukushima and Pang 1999; Scholtes 2001; Hu and Ralph
2004; Chouly 2013; Maury 2016; Maury et al. 2017, 2018).
One drawback of these approaches is that enforcing the con-
straints typically requires very large penalty factors which can
lead to numerical issues.

In this article, we introduce an active set approach for
MPEC problems, which allows us to leverage standard
adjoint methods without regularizing or penalizing the
state constraint. We focus on a simple problem of compli-
ance optimization under an obstacle problem similar to that
studied in Haslinger and Klarbring (1993), but we believe
that our approach is applicable to a wide range of situations
where the state equations can be formulated as a minimi-
zation problem under inequality constraint, noticing that
many problems in defect mechanics can be formulated this
way, including damage (Francfort and Marigo 1993), brittle
fracture (Francfort and Marigo 1998; Bourdin et al. 2008),
or plasticity (Dal Maso et al. 2006; Babadjian et al. 2012).

Section 2 introduces the problem settings and our active
set approach, after recalling some essential properties. Sec-
tion 3 is devoted to a critical study of the performance and
robustness of our approach, and comparison to classical
penalization methods. Finally, Sect. 4 includes conclusions
and perspectives.

2 A phase-field approach to optimal design
with obstacle constraints

Consider the well-known minimum compliance prob-
lem with perimeter penalization, written in variational
form (Ambrosio and Buttazzo 1993; Haber et al. 1996, see]
[for instance):

inf D = . D
52K{J( , ) /FNg udsS +#|D|

+xH"'(0D N Q)}

(2a)

subject to
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u = argmin {S(D, V) = / %(p(D)Ae(v) De(v)dx
Q

veV
(2b)
—/ g-vdS}.
Iy

Here D C £ denotes the design, i.e., a region of a back-
ground domain £ occupied by a material with Hooke’s law
A, where A is a symmetric tensor. K := {Qo cDc Q},
and £, denotes a region of £2 which must be contained
in all designs. u is the elastic equilibrium displacement,
D) =1 -06)yp+ 6, with 0 < 6 < 1 a small regulariza-
tion parameter, and 7 and k two positive constants. The pre-
scribed boundary force g acting on a part I, of the boundary
of Q is assumed regular enough, and H"~!(dD N 2) is the
n — 1 dimensional measure of dD, i.e., the perimeter of the
design in 2D and its surface area in 3D. The natural space for
admissible displacements is {u € H'(2:R"):;u =0 on FD},
with I'y = 0Q \ Ty,

We add an additional obstacle constraint by further
restricting the admissible displacements:

V:= {u EH‘(.Q;R”);u:OonFD,

S, cotu@)cs,), )

where Q, and , are given obstacles (see Fig. 1). Note that
owing to the injectivity of the displacement field, it is suf-
ficient to enforce that 2 + u(0R2) ¢ Q. Furthermore, in the
setting of small deformations, (3) can be reformulated as

V:={ueH (R")u=0o0nTIp,
4
uiSu'nSMeonFN}, @
where u; and u, are given scalar functions and n is the outer

normal to Q.

Following the phase-field approach devised in Bourdin
and Chambolle (2003, 2006), we introduce a small regulari-
zation variable # and a smooth function a taking its values

Q

Q.
Q+u(Q

Fig.1 Obstacle problem. The background domain in the reference
configuration is shown in gray and its deformed configuration is in
black. The inner and outer obstacles £2; and €2, are shown in blue and
red, respectively
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in [0, 1] representing the domain D. The elastic energy
becomes

Ea,u) 1= / l<15(05)Ae(u) - e(un) dx —/ g-udS, (5
Q2 I,

where @ is a continuous differentiable monotonically
increasing function with @(0) = 6 and @(1) = 1. A typical
choice is

D(a) =(1-6)a’ + 4, ©6)

where p > 1is a given parameter. The perimeter penalty
term H"~'(0D n Q) is approximated in the sense of I'-con-
vergence by

__1L [ W@ 2
Pf(a)_ZCW/Q o +¢|Val” dx, %

where W is a non-negative function vanishing only at 0
and 1, and ¢y = fol Vv W(#) dt is a normalization param-
eter (Braides 1998; Alberti 2000). Finally, the volume frac-
tion of the design is approximated by / o dx, whereg > 1
is a given parameter, so that the objective function becomes

Ty (a,u) 1= / g-udS +;1/ a? dx + kP,(a). (8)
Iy Q

The minimum compliance with obstacle constraints can
therefore be reformulated as

ol { T w) %)
subject to

u:= aréger‘rllin{cff(a, V)}, (9b)
where

K, :={p € H'([0,1]); p(x) = 1 ae. in Q }. (10)

2.1 State equations in strong form

Given an admissible design @ € K, let u € V be the solu-
tion of the state equations. We define

I i={x € M u®X)  -n=u(x)}, (11
and
I,:={x€eMiu®x)  n=u,x)} (12)

Consider v e H'(£2;R") such that v =0 on I, v-n>0on
I,andv-n <0Oon [, Foranyt > 0,u+ tvis an admissible
field for the state equations and

Ea,u+1v) — Ep(a,u) > 0.

Sending ¢ to 0, we get that

/ d(a)Ae(u) - e(v)dx — / g-vdS >0,
Q

Iy

and using Green’s formula that

- / div[@(a)Ae(u)] - vdx
Q

13)
+/ @ (a)Ae(u)n - vdS —/ g-vdS >0.
FN FN
Considering first an arbitrary function v vanishing on Iy,

and noticing that —v is also admissible, we quickly recover
that div[@(a)Ae(u)] = 0 in £2, so that (13) becomes

/cD(a)Ae(u)n‘VdS—/ g-vdS >0.
rN rN

Choosing then an arbitrary test function v vanishing on I
and I,, and repeating the same derivation procedure, we
get that

@(a)Ae(wn =gon Iy \ (I;UT,).

Finally, consider a test function v and decompose its trace v
onodQRasv = (V-n)n+ (V—(V-n)n). Using v and an exten-
sion of (V- n)n — (V — (V - n)n) as test functions in (13), we
obtain that

(@(a)Ae(u)n —g)-n>0on [},
and
(@(@)Ae(u)n —g))-n<O0on I,

Putting everything together, we obtain the following first-
order optimality conditions for the state equations:

div[@(a)Ae(w)] = 0in 2, (14a)
(D(@)Ae(un —g)-n > 0on [} (14b)
D(a)Ae(wn = gonly \ (I;U I,), (14c)
(@()Ae(wn —g)-n<O0on T, (14d)
u=0on I}, (14e)

2.2 Sensitivity analysis

In order to use a gradient or higher order method, one
needs to compute the sensitivity of the objective function
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with respect to design changes. Direct application of a the
chain rule requires the sensitivity of the state variable with
respect to the design variable. Because of the inequality
constraints (14b) and (14d) on the state variable, the well-
known adjoint method cannot be applied directly in our
case. Instead, we define the following active sets:

Il. = {XE FN;u(X)'HZMi(X)s

(@(ax)Ae(u)n — g) -n > 0}, (15)
7, :={x € Iy;u(x) - n = u,(x),

(D(@)Ae(u)n —g) -n <0}, (16)
and
T:=T,uT, -

Assuming that these active sets are known, the minimum
compliance problem (9a—9b) can be rewritten as

i {ew)

subject to

div[@(a)Ae(u)] = 0in £2, (18a)
@D(a)Ae(u)n = gon I'y \ Z, (18b)
u-n=iuonZ (18¢)
u=_0on I, (18d)
with

__ J u; onZ,

““1u, oni,.

As all inequality constraints have been replaced with equal-
ity constraints (again, assuming the knowledge of the active
sets Z; and Z,), we can follow the classical adjoint approach
to the computation of the sensitivity of the objective func-
tion. Let 4 € H'(£2;R") such that A =0 on I, UZ be the
Lagrange multiplier associated to the constraints (18a—18d).
We introduce the Lagrangian

L(a,u,A) = / g-udS +17/ a? dx + kP.(a)

v ? (19)

—/)»- div [@(a)Ae(u)] dx.
Q

Using Green’s formula, we get that
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L(a,u, ) = / g-(u—A)dS +11/ a? dx + kP,(a)

I @ (20)

+/ D(a)Ae(u) - e(A) dx.
Q

Note that if u satisfies the state equations (18a—18d), then
L(a,u,\) = J,(a,u), so that computing the Fréchet deriva-
tive of J, associated with a design change y is equivalent to
computing that of £:

DJ,(a,u)(y) = DL(a,u, M)(y) [©2))
0L(a,u, h aL(a,u, h
o Ju Ja 22)
+<a£(a,u,)») 2 >
o1 oa'l

As aresult of choosing Lagrange multiplier A, the last term
in Equation (22) disappears. In addition, computing g_u is
o

typically difficult. Instead, we search for A such that for any
v e H(Q) withv = OonI,HUZ,

< 0L(a,u, A)(y) v

> - / [D(a)Ae(W)n + g - vdS
Jdu W\T

(23)
—/ div [@(a)Ae(M)] - vdx = 0.
Q

Equation (23) is usually referred to as the adjoint equation
associated with the constraints, and given any solution 4,
then obtain

0L(a,u, A
DI (@ wp) = (LR )
a
!
=nq/aq_1ydx+L/ W(a)y+2fVa‘Vydx
0 2e Jo €

+ / @' (a)Ae(u) - e(N)y dx.
¢ 24

Remark 1 Note that (23) can be written in strong form as

—div[@(a)Ae(X)] =0 in £,
D(a)Ae(Mn = —g on Iy \Z (25)
A =0 onl,UZ

so that if neither of the obstacle constraints are active,
i.e., when 7 =17, =7, = (J, we recover the classical result
A=-—u
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2.2.1 Numerical implementation

Our numerical implementation uses FEniCS, a collection
of open-source projects for the solution of partial differ-
ential equations using a high-level description of the vari-
ational forms involved (Alnas et al. 2014, 2015; Alnas
2012; Alnees et al. 2009, 2012; Kirby 2004, 2012), (Kirby
and Logg 2006; Logg et al. 2012, 2012b; Logg and Wells
2010; Logg et al. 2012c; Mitusch et al. 2019; @Plgaard and
Wells 2010), and the TAO optimization package, now part
of PETSc (Balay et al. 1997, 2021b, a). In all that follows,
all fields are discretized using linear and quadratic Lagrange
simplicial finite elements. We limited our implementation to
rectangular domain so that the obstacle constraints become
simple box constraints on the state variable, and use the
BLMVM (bound limited-memory, variable-metric) algo-
rithm of TAO, which requires the objective function and its
gradient only.

Note that (24) assume that the active sets are known a pri-
ori, which is of course not the case. Instead, we use PETSc’s
variational inequality solvers (SNESVI) to solve the state
equations every time we need to evaluate the objective
function, and update the active sets. A classical approach
is to introduce a large number ¢ > 0, typically ¢ = 108, and
define

&,

gii=—(@,u)-n+c(y; —u-n) (26)
du

and
o0&,

8.i=——(a,u) -n+c(u, —u-n), 27
Ju

o€
a—f denoting the Fréchet derivative of the elastic energy &,
u

with respect to u. If g;(x) is strictly positive for some x on
I'y, then x belongs to the active set Z; associated to the lower
bound. Similarly, a point X on I, at which g,(x) is strictly
negative belongs to the active set Z, associated to the upper
bound. An alternative is to derive 7 from the Jacobian of the
state equations, if available in the solvers used. In practice,
we found it sufficient to determine the active sets as the
degree of freedom at which the displacement reaches obsta-
cles and ignore the sign of the reaction force (the second
terms in (15-16)).

Remark 2 Given a design a, evaluating the objective func-
tion requires recomputing the state and adjoint variables,
which is computationally intensive, while the computation
of its gradient is simple in comparison. In the context of an
optimization algorithm, this means that the computational
cost of a line search can be high. The BLMVM algorithm
uses a line search (Moré and Thuente 1994) which typically
converges in a few iterations. We have not tried to optimize

this part of the algorithm, or studied the impact of the accu-
racy of the line search on the overall computational effi-
ciency of our approach.

3 Numerical results

We present a series of numerical simulations illustrat-
ing the strengths of our approach. In all that follows, we
consider a two-dimensional rectangular domain £2 with
width L, = I and height L, = 0.3 in plane stress conditions.
We use the double-well function W(s) := s(1 —s) in (7),
hence ¢y, = /01 W(¢t)dt = /8. The structural material is
assumed isotropic with Young’s modulus E = 103 Pa and
Poison ratiov = 0.3. Weset p =2,¢g = 1,and 6 = 103in (6)
and (8). All computations were performed on 8 cores of a
dual socket Intel Xeon X5677 at 3.47 GHz workstation.

3.1 Compliance optimization without obstacles

We start with the simplest case of an optimal design without
obstacles described in Fig. 2.

A uniformly distributed traction force g = (0,—1) is
applied on a part of the boundary I'y of the domain £,
where (x,y) € 2and5/6 < x < land y = L,. On the bound-
ary I'y , the displacement u in the x-direction is fixed. In
addition, the left boundary I}, is clamped in both x-direction
and y-direction (see Fig. 2). The inner and outer obstacles
are set respectively to a very small and very large value so
that they are not active.

The domain is discretized with a structured mesh with
cell size h = 0.005, consisting of 48,000 triangular finite
elements. The regularization parameter is £ = 0.025, the
perimeter penalization parameter is k = 3 %1073, and the
volume penalization parameter # = 0.08. The initial density
field was chosen constant with value 1. The tolerance on
the gradient of the objective function was set to 5 X 1078 in
both approaches.

Note that as highlighted in Remark 1, in this case, the
minimum compliance problem becomes self-adjoint. We

Wil

T <

FD Q <« FNR

<
Tns <

h
<
NOONN NNANN
A

Ly

Fig.2 An optimization problem without obstacles
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Fig.3 Optimal design without obstacle. Designs produced by the proposed approach (left column) and a penalization approach (right column) in

the reference (top row) and deformed (bottom row)

did not modify our algorithm to account for the fact that the
computation of the adjoint state is technically not necessary.
Because solving the state and adjoint equations is the most
computationally intensive part of the algorithm, the times
reported below could therefore be significantly reduced.

For this problem, our algorithm attained the desired
tolerance in 986 iterations (leading to 1,375 evaluations
of the objective function) and 92 minutes. We compared
our result to that obtained with the penalization approach
implemented in the open-source code dolfin-adjoint (Farrell
et al. 2013; Mitusch et al. 2019), described in Appendix A.
This approach differs from ours in that the constraints on the
state variables are enforced through a penalty term, adjusted
during iterations. The penalization approach converged in
1019 iterations, with 1039 evaluations of the objective func-
tion, and 74 min. Note that a one-to-one comparison of the
number of iterations of both methods is not directly sig-
nificant as the penalization approach gradually solves the
direct and adjoint problems for decreasing values of the
penalty factor, €, from 107 to 6.25 x 107°. Despite the lack
of uniqueness caused but the non-convexity of the cost func-
tion, both approaches lead to essentially identical designs
(see Fig. 3). In the active set method the objective func-
tion decreased from 2.51948 x 1072 to 1.03486392 x 1072
vs.2.51948 x 1072 t01.03491319 x 1072 in the penalization
approach.

3.2 Compliance optimization with a single obstacle

In a second example, we apply a uniform distributed trac-
tion force, g = (0, —1) and prescribe the value of the den-
sity function to 1 on part of the boundary I'y . Again the
displacement u in the x-direction is fixed on the bound-
ary Iy, and the left boundary I}, is clamped in both

@ Springer
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Fig.4 A problem with one obstacle

" - — #
" — - oz
" " - — o0
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" " —" - o
" " -
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D (W (-
WD DO (T
CO D T T — = -,
F

Fig.5 Initial guess o = % + % sin (“L)ﬂ) sin (10&)

x-direction and y-direction. The upper bound is set to
be very large u, (x) = co and the lower bound on I'y is
ugz(x) =-0.02 —y.

In Fig. 4, the obstacle is shown as a blue box, and the
blue arrows represent the traction force. The initial design,
shown in Fig. 5, is

7 —1+lsin 107x sin 10my
7272 L L, )

x Y
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Using the same values of € as above, the penalization
method converged in 383.88 minutes after 3,028 iterations
with 3,436 evaluations of the objective function while our
approach converged in only 72.31 minutes and 886 itera-
tions which required solving the state and adjoint equa-
tions 1,010 times. Results are shown in the reference and
deformed configuration in Fig. 6. The obstacle is repre-
sented by a black line in the deformed configuration. The
displacement field in the y-direction along the line y =0
obtained by the active set and penalization method are

Fig.6 Optimal designs with one obstacle. Designs produced by the
proposed approach (left column) and a penalization approach (right
column) in the reference (top row) and deformed (bottom row) con-

-0.002
-0.004
-0.006
-0.008

-0.01
-0.012
-0.014
-0.016
-0.018

-0.02
-0.022
-0.024
-0.026
-0.028

-0.03

-0.032

shown as the red and black lines in Fig. 7, respectively.
We observe that obstacle constraints on the displace-
ment are satisfied exactly by the solution generated by the
active set approach, from around x = 0.6 to x = 1on I}y,
but not by that of the penalization approach. Even though
the constraint is satisfied exactly in our approach, so that
the set of admissible designs is smaller, the final value
of the objective function is smaller (2.04956574 x 1072 in
our approach vs. 2.57722763 x 1072 with the penalization
approach).

figurations. Note that the penalization approach produces a design
that does not satisfy the obstacle constraint (represented by a black
line)

—u_y_Active_Set_Method
—u_y_Penalty_Method

0 005 01 015 02 025 03 03 04 045

05 05 06 065 07 075 08 08 09 095

Fig.7 Vertical displacement of along the boundary I'y . The active set approach (shown in red) produces a design that satisfies the obstacle con-

straint exactly whereas the penalization approach (the black line) does not

@ Springer
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3.2.1 Robustness of the active set approach

While filtering techniques (Bourdin 2001) or perimeter
penalization (Ambrosio and Buttazzo 1993) can be used to
ensure the well-posedness of optimal design problems, mesh
independency is hard to achieve, owing in particular to the
non-convexity of the optimization problems.

In order to demonstrate the robustness of our approach,
we conducted series of computations on structured and
unstructured meshes with decreasing element size. The
unstructured meshes will be generated automatically by the
FEniCS component mshr, based on CGAL and Tetgen (Si
2015), while the structured meshes were built by subdivid-
ing each cell of a Cartesian grid into four triangles as shown
in Fig. 8.

L. . 1 1. . ,
The initial design was settoay = 5 + 5 sm(%) sm("Lﬂ ,
‘X y

and the tolerance on the gradient of the objective function
was set to 5 X 1073, Figure 9 shows the value of the objective
function upon convergence for as a function of the mesh size
varying varies from 4.33x 107 to 6.31x 1073 for
n=2, 8, 10, and Fig. 10 shows some of the associated
designs. We observe that structured meshes typically lead to
smaller values of the objective function at convergence, and
that while different initial guesses may lead to different
designs, the actual values of the objective function are very
close (see the range of y—values in Fig. 9).

Fig. 11 shows the final designs for structured meshes with
. =5 %1073 and different initial guesses of the form

"Lﬂ) sin("Lﬂ) withn=2,n=4, and n = 8.

The values of the objecti\)e function are 2.04855932 x 1072,
2.05590338 x 1072, and 2.04849720 x 1072, respectively.
Again, despite some minor differences in the actual designs,
the variations of the objective function are only approxi-
mately 0.36%.

hm
a —l+lsin(
072 "2

Fig.8 Typical unstructured and structured meshes
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Mesh convergence study

0.02085 1

0.02080 1

0.02075 1

0.02070 1

0.02065 A

Function value

0.02060 -

= Un-structured mesh, n = 2
== Structured mesh, n = 2
={p= Un-structured mesh, n = 8
=fr= Structured mesh, n = 8
@~ Un-structured mesh, n = 10
®- Structured mesh, n = 10

0.02055 4

0.02050

0.007 0.008 0.009 0.010

Mesh size h

0.005 0.006

Fig. 9 Convergence plot by the active set method with different mesh
types and sizes

3.2.2 Sensitivity upon the perimeter penalty term x

Since un-penalized problems are ill-posed, it is natural
to expect that the penalty term on the perimeter k has a
more significant impact on the designs. Figure 13 shows
designs obtained with extreme values ¥ = 7z X 10~ and
K= % x 10715, All other parameters are kept as in the
previous examples. As expected, a large weight on the
perimeter leads to a very simple design whose complexity
increases as k decreases. Figure 12 shows the evolution
of the whole objective function, the compliance, and the
perimeter penalty as a function of k. Surprisingly, one
observes that values of k as small as = X 10715 produced
well-defined designs exempt of large areas with intermedi-
ate density or checkerboard patterns.

3.3 Compliance optimization with two obstacles

Consider a problem involving two obstacles
uy(x) =-0.035-y on [ :=(04,06)x{0} and
uy(x) =0.25 -y on Iy := (0.1,0.3) X {L, }, and a down-

ward force g := (0,—10) on Iy := {L,} X (%’ %)While

the horizontal displacement on the right edge is blocked (see
Fig. 14 for a schematic representation of the load and obsta-
cles). The first obstacle infringes upon the reference configu-
ration and is therefore expected to be active. All of the mate-
rials, solvers, and model parameters are kept as in the
previous examples with the exception of the volume penali-
zation parameter #, which is set to 0.3. The initial guess for
Ly % sin (%) sin <2Lﬂ> (see

X v

the density field is a =3
Fig. 15).
The design produced by our active set algorithm is

shown in Fig. 16 in the reference and deformed con-
figuration. Convergence was attained in 1,532 iterations
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and 124 minutes, with 1,828 evaluations of the state
and adjoint equations. The objective function decreased
smoothly from 15.0867 x 1072 to 1.98317590 x 10~2. Our
design is reminiscent of a compliant mechanism using the

‘min
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+3 sm(L—X)sm(L—v) (first row), a = st+3 sin( Lx)sm( Lv) (second row), and

obstacles to provide mechanical advantage. The penaliza-
tion approach converged to a tolerance of 5 x 1078 in 566
iterations and 175 minutes to a design that does not satisfy
the upper obstacle constraint, shown in Fig. 16 (bottom
row).

@ Springer



112 Page100f 14 N.V.Tran, B. Bourdin

0.0225

0.0012

—A- Objective function 0.0066 | e Compliance % - Perimeter penalization /‘/0
- .
.
0.0220 0.0064 ’,,* 0.0010 v
- e
- _.
" o 0.0062 x> o 0.0008 - &
2 0.0215 2 %4 E -
> > 4 >
z < 0.0060 7 < 0.0006 ‘/.
g g s g "
g 0.0210 £ 0.0058 e g J
5 3 K Zooo0a] /
0.0056 4 /
4
0.0205 ’ 0.0002 "
0.0054 I
% ¢
0.0200 0.0000
0.00000.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.00000.00010.00020.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.00000.00010.00020.00030.0004 0.0005 0.0006 0.0007 0.0008
Parameter k Parameter k Parameter k
Fig. 12 Influence the parameter x. (left): objective function. (center): compliance. (right): perimeter penalization
Desiy

~ 100
050

080

Lo

— 050
—050
040
%030
020

[ 010
000

Fig. 13 Influence of the parameter . (left): x = 8 X 1074, (right): k = 10713

Ty,
<
Lyl Ao @ Tng
Ty
7/
Lz
. ps _ 1 1 . 27x - 2y
Fig.15 Initial guess ay = 5 + 5 sin ( 7= ) sin ( 7=

Fig. 14 A problem with two obstacles

As expected, increasing the weight penalty factor advantage, but the additional penalty on the weight term
leads to lighter designs shown in Fig. 17. Our active set  leads to a design that does not make contact with the left
method converges again toward a design that satisfies both ~ edge of the domain. Here again, the penalization method
constraints. It uses the obstacles to provide mechanical  fails to provide a design satisfying both constraints.
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Fig. 17 Optimal designs of a cantilever beam with two obstacles in the reference and deformed configurations, # = 0.35. Top row: active set

method, bottom row: penalization method

4 Discussion and conclusion

The proposed active set method performed similarly to a
classical penalization method for nonlinear optimization
without obstacles. In the general case, however, our active
set method is faster and more robust than the penalization
approach and produces designs with smaller objective
values. Furthermore, in the active set approach, the obsta-
cle constraints are always satisfied, whereas penalization

methods require a careful adjustment of the penalty terms
and may not always lead to design satisfying the con-
straints on the state variable.

In addition, our approach exhibits good robustness
properties upon mesh refinement or changes of initial
design. In all fairness, it can produce slightly different
designs for different initial designs, which is common in
non-convex optimization problems, but the objective value
of the computed designs are very close.

@ Springer



112 Page120f 14

N.V.Tran, B. Bourdin

Appendix: The penalization method

In order to use an adjoint-based method to compute the
sensitivity of the objective function subject to the vari-
ational inequality (14a-14e), one can approximate the
variational inequality by a family of nonlinear boundary
value problems. For the sake of simplicity, we restrict the
exposition to a lower bound on each component of the
state variable u; > Oon 2,i =1, 2.

Following the work of (Hintermiiller and Kopacka
2011), let = be the component-wise max operator

z(u,) : —max(0,-u,), Vu, €K (28)

For any given @ € K and for € > 0, consider the problem
(Q,) :Find u, € K such that

/ d(a)Ae(n) - e(v) dx + é(ﬂ(ue), v) =(T,v), (29)
Q

for any appropriate test function v. While, it is reasonable to
expect that the solution of (Q,) converge to the state equa-
tions as € — 0, the analysis of the implementation of (Q,) is
rendered difficult by the lack of smoothness of the max func-
tion. Instead, one can replace z by the smooth-max operator

x—g ifx>e,
rneax(O,x) : ’2‘—2 if0<x<e, 30)
0 if x <0,

and define (Q') :Find u, € K such that
/ P(a)Ae(u) - e(v) dx + é(n’e(us), v) =(T,v), 31
o

for any appropriate test function v.

Figure 18 shows the max and smooth-max functions
with e = 0.05. Because z, : V— V* is be continuous
and monotone and the penalized problem (QL) admits

— Max — Smooth max

0.06 -

0.04

0.02}

0.00

-0.02

-0.04+

-0.10 -0.05 0.00 0.05 0.10

Fig. 18 Max and smooth-max functions

@ Springer

a unique solution. As € — 0, z(u,) — 0, and the solu-
tion of (QL), converges to the solution of the variational
inequality (14a—14e). This approach is implemented in
the open-source code dolfin-adjoint (Farrell et al. 2013;
Mitusch et al. 2019), which we used as our reference
implementation.
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