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Department of Industrial Engineering & Management Sciences
2145 Sheridan Road

Northwestern University
Evanston, IL 60208 USA

ABSTRACT

In their 2004 seminal paper, Glynn and Juneja formally and precisely established the rate-optimal, probability-
of-incorrect-selection, replication allocation scheme for selecting the best of k simulated systems. In the
case of independent, normally distributed outputs this allocation has a simple form that depends in an
intuitively appealing way on the true means and variances. Of course the means and (typically) variances
are unknown, but the rate-optimal allocation provides a target for implementable, dynamic, data-driven
policies to achieve. In this paper we compare the empirical behavior of four related replication-allocation
policies: mCEI from Chen and Rzyhov and our new gCEI policy that both converge to the Glynn and
Juneja allocation; AOMAP from Peng and Fu that converges to the OCBA optimal allocation; and TTTS
from Russo that targets the rate of convergence of the posterior probability of incorrect selection. We find
that these policies have distinctly different behavior in some settings.

1 INTRODUCTION

Ranking and selection (R&S) is one of the fundamental methods for solving stochastic simulation optimization
problems. In the canonical version of the R&S problem, the aim is to identify the single best among a
finite number (k) of systems, where the performance of each system can only be estimated using simulation
output; here “best” means the maximum or minimum expected value of performance. The ideal R&S
procedure either (a) allocates a limited simulation budget so as to maximize the likelihood that the best
is identified, or (b) allocates simulation effort as efficiently as possible until a prespecified likelihood is
obtained. This paper addresses formulation (a).

The R&S literature contains many policies for version (a) that sequentially obtain replications from
systems and adapt as more and more output data are obtained. These policies tend to be Bayesian or
Bayesian-inspired, and include versions of optimal computing budget allocation (OCBA, Chen et al. 2000),
expected improvement (EI, Jones et al. 1998), knowledge gradient (KG, Frazier and Powell 2007), and
multi-armed bandits (MAB, Jamieson and Nowak 2014). In this paper, an allocation is the fraction of a
fixed budget of replications that is assigned to each simulated system, while a policy is an algorithm for
sequentially, and usually adaptively, allocating individual replications to systems.

Glynn and Juneja (2004) derived an expression for the asymptotically optimal static replication allocation
by using large-deviations theory. They represented the replications allocated to system i as αiR, where
R is the total budget of replications, αi > 0, and ∑

k
i=1 αi = 1. The policy is “optimal” in a sense that

the probability of incorrect selection (PICS) decays exponentially with the best possible exponent as R
increases; incorrect selection means choosing any of the k−1 inferior systems. Unfortunately, the optimal
allocation depends on the underlying output distributions and their parameters, which are typically unknown,
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and naive plug-in strategies tend not to work well. This leads to the idea of having adaptive policies that
aggressively pursue the best system in small samples but converge to an “optimal” allocation, such as that
of Glynn and Juneja (2004), in the limit.

Recently, several such policies have been proposed. The empirical allocation of the modified complete
expected improvement (mCEI) policy of Chen and Ryzhov (2019b) converges to the rate-optimal allocation
of Glynn and Juneja (2004) under certain conditions. The asymptotically optimal myopic allocation policy
(AOMAP) of Peng and Fu (2017) converges to the OCBA limiting allocation. And finally, the top-two
Thompson sampling (TTTS) policy of Russo (2020) seeks the optimal rate of convergence of the posterior
probability of incorrect selection to 0; TTTS is one of three “top-two” policies identified by Russo (2020).
Notice that AOMAP and TTTS do not converge to the Glynn and Juneja (2004) optimal allocation but
instead to limits that are arguably desirable.

To this list we add our new gradient of CEI (gCEI) policy that attains the same limit as mCEI. We
then empirically evaluate the fixed-budget behavior of all four policies under assumptions that support
all four: independent, normally distributed output with known variances. Fixed-budget, as opposed to
asymptotic behavior is what an analyst actually experiences in practice. It is worth stating that mCEI,
gCEI, AOMAP and TTTS can all be “beaten” in some sense by policies specifically designed for good
finite-sample performance, especially when the number of systems k is very large; such policies fully
eliminate apparently inferior systems quickly, while mCEI, gCEI, AOMAP and TTTS keep all systems in
play until the budget is consumed. Nevertheless, they are building blocks for more sophisticated policies
so the comparison is relevant.

The remainder of the paper is organized as follows: We provide a brief literature review in Section 2
and formulate the R&S problem in Section 3. We state the AOMAP, mCEI and TTTS policies in Section 4,
then introduce gCEI and sketch a proof of its convergence in Section 5. Empirical performance of all four
policies is given in Section 6. Finally, Section 7 concludes the paper.

2 ESSENTIAL LITERATURE

The EI criterion was first introduced by Jones et al. (1998) for Bayesian optimization of deterministic
simulations. Adapting EI to the R&S problem with independent normal observations, Ryzhov (2016)
derived the asymptotic sampling allocation implied by EI and showed that it is related to the OCBA
allocation of Chen et al. (2000). Since EI does not achieve an exponential convergence rate, Peng and Fu
(2017) proposed a variant of EI, called AOMAP. In the known-variance case, AOMAP achieves the OCBA
allocation of Chen et al. (2000) in the limit. Peng and Fu (2017) note that an adjustment can be made
to EI to achieve any well-defined limiting allocation, including that of Glynn and Juneja (2004), but this
requires solving for the limiting allocation on each iteration based on plug-in estimates.

Since EI was originally created for deterministic simulations, it does not directly account for the
uncertainty in the output from a stochastic simulation. To incorporate this uncertainty, Salemi et al.
(2019) proposed complete expected improvement (CEI). For the R&S problem with independent normal
observations, Chen and Ryzhov (2019b) presented a modified CEI policy. Similarly, under more general
sampling distributions, Chen and Ryzhov (2019a) proposed the balancing optimal large deviations policy
that evaluates the approximate individual large-deviation rate functions and balances them iteratively. Both
policies asymptotically achieve the optimal allocations of Glynn and Juneja (2004) when the variances are
known, or when variances are unknown but continually updated via plug-in estimators.

More recently, Russo (2020) proposed three different Bayesian policies for adaptively allocating
measurement effort in stochastic decision problems including simulation. On every iteration, these policies
use the posterior distribution of the output parameter (e.g., mean) to identify the top-two alternatives; one of
them is randomly chosen to measure (simulate). The selection probability is a tuning parameter, although
Russo (2020) found 1/2 had robust empirical performance. Top-two probability sampling identifies the
two alternatives with the largest posterior probabilities of being optimal. Similarly, top-two value sampling
considers the posterior expected value of the difference between the mean of each system and the best of
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the others. The third version is TTTS; see Thompson (1933) for the origins of Thompson sampling. We
employ TTTS with selection probabililty 1/2 in this paper, and describe it fully below. For the known
variances case, Russo (2020) showed that these policies attain the best exponential rate of convergence of
the posterior probability of incorrect selection for the true best system when the tuning parameter is set
optimally or adjusted adaptively toward the optimal value.

In addition to AOMAP, mCEI and TTTS, we propose a new policy called gCEI that makes replication-
allocation decisions based on the gradient of CEI with respect to the number of replications obtained from
each system, treating “number of replications” as if it were continuous-valued. Like mCEI, it achieves
the optimal allocation of Glynn and Juneja (2004). However, gCEI attains this limit without the need to
directly enforce the balance between simulating the best system and the inferior systems, as mCEI does.

3 PRELIMINARIES

Let S = {1,2, . . . ,k} be the set of systems. Each system i ∈S has an unknown mean µi. Bigger is better,
and unknown to us µ1 ≤ µ2 ≤ . . .≤ µk−1 < µk. Our goal is to find system k which is the unique best.

From a Bayesian perspective, the mean of each system i has a prior distribution µi ∼N(µ̄i(0),1/θi(0))
where µ̄i(0) and θi(0) are the prior mean and precision, respectively. The prior mean µ̄i(0) represents the
initial belief about the true value of µi whereas the prior precision θi(0) quantifies the confidence in this
belief. We assume that µi’s are independent of each other under this prior. Notice that we use µi to denote
the true, fixed means of the systems, and µ̄i(t) to denote the posterior mean through iteration t, which is a
random variable.

We consider a finite horizon problem with a fixed simulation budget: Let R be the length of our
finite horizon. At each iteration t = 0,1, . . . ,R, we obtain a single replication Y (t +1) by simulating x(t),
an independent and identically distributed N(µx(t),σ

2
x(t)) random variable with σ2

i > 0 being the variance
inherent to the stochastic simulation output for system i. In this paper we assume that σ2

i ’s are known and
that each system is simulated independently of the others (no common random numbers).

Let F t be the sigma-algebra generated by {x(τ),Y (τ +1)}t−1
τ=0. Using the recursive approach in

De Groot (1970), the posterior parameters for systems i ∈S at iteration t are

µ̄i(t +1) =


µ̄i(t)θi(t)+Y (t +1)/σ2

i

θi(t)+1/σ2
i

if x(t) = i (i.e., if system i is simulated at iteration t)

µ̄i(t) if x(t) 6= i,

θi(t +1) =

{
θi(t)+1/σ2

i if x(t) = i
θi(t) if x(t) 6= i.

Let ri(t) denote the total number of replications that have been obtained by simulating system i up to
iteration t, i.e., ri(t) = ∑

t−1
τ=0 I{x(τ)=i} where I{·} is the indicator function. We employ a non-informative

prior (i.e., θi(0) = 0). Thus, we have µ̄i(t) = Ȳi(t) and θi(t) = ri(t)/σ2
i where

Ȳi(t) =
1

ri(t)

t−1

∑
τ=0

I{x(τ)=i}Y (τ +1)

is the sample mean of system i.
Let k(t) be the sample-best system at iteration t, k(t) = argmaxi∈S {µ̄i(t)} = argmaxi∈S {Ȳi(t)}. We

define the (frequentist) probability of correct selection (PCS) at iteration t as P{k(t) = k}; thus, the
probability of incorrect selection (PICS) is P{k(t) 6= k}. These quantities are with respect to the fixed, true
means. We can also define corresponding quantities for the posterior probability that system i is or is not
the best, which is relevant for TTTS.

A generic adaptive policy is given in Algorithm 1. AOMAP, mCEI, gCEI and TTTS differ in how they
decide x(t) in Step 3 to obtain good finite-R and asymptotic R→ ∞ performance.
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Algorithm 1 Generic Adaptive Policy

1: Let x(0) = i for some i ∈S . Obtain Y (1) and update F 1. Also, let t← 1.
2: while t < R do
3: Decide to simulate x(t).
4: Obtain Y (t +1) by simulating x(t), update F t+1←F t ∪{x(t),Y (t +1)} and t← t +1.
5: end while
6: Return k(R) = argmaxi∈S {µ̄i(R)} as the selected best system.

4 POLICIES

In this section we summarize three different policies in the recent literature.

4.1 AOMAP

For our R&S problem, the EI for system i at iteration t is

EIi(t) = E
[
max{µi− µ̄k(t)(t),0}|F t]=√1/θi(t) f

(
µ̄i(t)− µ̄k(t)(t)√

1/θi(t)

)
where f (z) = zΦ(z)+φ(z) with φ and Φ being the standard normal probability density and cumulative
distribution functions, respectively. Ryzhov (2016) shows that EI does not precisely achieve the OCBA
allocation as the allocations to inferior systems converge to zero. Under a Bayesian framework, Peng and Fu
(2017) propose a myopic allocation policy, called AOMAP, as a new variant of EI, and show that AOMAP
does achieve the OCBA allocation when the variances are known. Under this policy Step 3 becomes

x(t) = argmaxi∈S {E
[
max{µi−Ai(t),0}|F t]}= argmaxi∈S

{√
1/θi(t) f

(
µ̄i(t)−Ai(t)√

1/θi(t)

)}
where Ai(t) = µ̄k(t)(t) I{µ̄i(t)6=µ̄k(t)(t)}+(µ̄k(t)(t)+ξk(t)(t)σk(t)) I{µ̄i(t)=µ̄k(t)(t)}, and

ξk(t)(t) =

(
∑

i∈S \{k(t)}

σ2
k(t)σ

2
i

[µ̄i(t)− µ̄k(t)(t)]4

)−1/4

.

Notice that if ξk(t)(t) = 0, then Ai(t) = µ̄k(t)(t), and thus the expectation becomes EIi(t). Since EI is too
greedy in allocating to the best system, the additional term adjusts the allocation to the best system to
make it less favorable as the number of iterations approaches infinity. This adjustment enables AOMAP
to achieve the OCBA limiting allocation.

4.2 mCEI Policy

Since EI does not fully capture the uncertainty in the output from a stochastic simulation, Salemi et al.
(2019) introduced CEI in a Gaussian Markov random field framework for discrete simulation optimization.
For our R&S problem, CEI for system i 6= k(t) at iteration t is

CEIi(t) = E
[
max{µi−µk(t),0}|F t]=√1/θi(t)+1/θk(t)(t) f

 µ̄i(t)− µ̄k(t)(t)√
1/θi(t)+1/θk(t)(t)

 .

Chen and Ryzhov (2019b) present the mCEI policy for R&S, which is a modified version of the original
CEI policy of Salemi et al. (2019). Under mCEI, x(t) = k(t) if(

rk(t)(t)
σk(t)

)2

< ∑
i∈S \{k(t)}

(
ri(t)
σi

)2

. (1)
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Otherwise, x(t) = c(t) where c(t) = argmaxi6=k(t)CEIi(t). Condition (1) enforces, in the limit, the balance
condition in the optimal allocation of Glynn and Juneja (2004).

4.3 TTTS Policy

As TTTS involves more than a simple substitution for Step 3 in Algorithm 1, we provide the new Step 3
as Algorithm 2. The asymptotically best performance of TTTS is obtained by tuning β toward an optimal
value. However, Russo (2020) obtained good empirical performance by the simple choice of β = 1/2.

Algorithm 2 TTTS Step 3

Sample µ̂i ∼ N(µ̄i(t),1/θi(t)) for i ∈S and set I← argmaxi∈S µ̂i. . Thompson sampling
Sample B∼ Bernoulli(β ).
if B = 1 then

x(t) = I.
else

repeat
Sample µ̂ j ∼ N(µ̄ j(t),1/θ j(t)) for j ∈S and set J← argmax j∈S µ̂ j.

until J 6= I
x(t) = J.

end if

5 gCEI POLICY

EI has been shown to be an effective search strategy in Bayesian optimization of deterministic simulations;
CEI extends EI to stochastic simulation; and mCEI tailors CEI to obtain optimal asymptotic performance
in R&S by insuring that the necessary balance between simulating the best system and the rest is achieved
in the limit; a pure CEI policy never simulates the current sample best in the next iteration.

One feature of CEI-based simulation-optimization methods such as GMIA in Salemi et al. (2019) is
that CEI identifies promising solutions, but not how many replications to expend on them. gCEI grew out
of an ongoing investigation of employing CEI for that purpose by exploiting its gradient with respect to the
number of replications treating the number of replications as if it was continuous. Here we use it simply
to decide how to allocate the next single replication, as with the other policies.

To derive an expression for the gradient of CEI, first notice that the derivative of f with respect to z
is f ′(z) = Φ(z). Then, for i 6= k(t),

∂

∂ ri(t)

(
1

θi(t)

)
=− σ2

i

(ri(t))2 and
∂ µ̄i(t)
∂ ri(t)

=
∂Ȳi(t)
∂ ri(t)

= 0.

To simplify notation, let νi = 1/θi(t)+1/θk(t)(t). Then we have

∂

∂ ri(t)

(
µ̄i(t)− µ̄k(t)(t)√

νi

)
=

(
Ȳi(t)− Ȳk(t)(t)

)
2νi
√

νi

σ2
i

(ri(t))2 .

Thus, the derivative of CEIi(t) with respect to ri(t) is

∂CEIi(t)
∂ ri(t)

= − σ2
i

2
√

νi(ri(t))2 f
(

Ȳi(t)− Ȳk(t)(t)√
νi

)
+
√

νi

[(
Ȳi(t)− Ȳk(t)(t)

)
2νi
√

νi

σ2
i

(ri(t))2

]
f ′
(

Ȳi(t)− Ȳk(t)(t)√
νi

)
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= − σ2
i

2
√

νi(ri(t))2

[
Ȳi(t)− Ȳk(t)(t)√

νi
Φ

(
Ȳi(t)− Ȳk(t)(t)√

νi

)
+φ

(
Ȳi(t)− Ȳk(t)(t)√

νi

)
−
(
Ȳi(t)− Ȳk(t)(t)

)
√

νi
Φ

(
Ȳi(t)− Ȳk(t)(t)√

νi

)]

= − σ2
i

(ri(t))2
1

2
√

νi
φ

(
Ȳi(t)− Ȳk(t)(t)√

νi

)
≤ 0.

Proceeding similarly,

∂CEIi(t)
∂ rk(t)(t)

=−
σ2

k(t)

(rk(t)(t))2
1

2
√

νi
φ

(
Ȳi(t)− Ȳk(t)(t)√

νi

)
≤ 0

whereas ∂CEIi(t)/∂ r j(t) = 0 for j ∈S \{i,k(t)} because ∂ (θi(t))−1/∂ r j(t) = 0.
Since simulating the sample best k(t) at iteration t affects all CEI’s, the total impact of simulating k(t)

is ∑i∈S \{k(t)} ∂CEIi(t)/∂ rk(t)(t). As lower CEI values are better, then from among the systems other than
k(t), simulating

g(t) = argmini∈S \{k(t)}
∂CEIi(t)

∂ ri(t)

has potentially the most improvement. To make a decision as to which system to simulate next, k(t) or
g(t), we propose the following condition:

∑
i∈S \{k(t)}

∂CEIi(t)
∂ rk(t)(t)

?
≤ min

i∈S \{k(t)}

∂CEIi(t)
∂ ri(t)

=
∂CEIg(t)(t)

∂ rg(t)(t)
.

If this condition holds, then the total impact of simulating k(t) is potentially greater than simulating g(t),
and thus we prefer simulating k(t) to g(t), i.e., x(t) = k(t). On the other hand, if the condition does not
hold, then we prefer simulating g(t), i.e., x(t) = g(t). This leads to the gCEI policy in Algorithm 3.

Algorithm 3 gCEI Policy

1: Let x(0) = i for some i ∈S . Obtain Y (1) and update F 1. Also, let t← 1.
2: while t < R do
3: if

∑
i∈S \{k(t)}

∂CEIi(t)/∂ rk(t)(t)≤ min
i∈S \{k(t)}

{∂CEIi(t)/∂ ri(t)}

then
4: x(t) = k(t).
5: else
6: x(t) = g(t) where g(t) = argmini∈S \{k(t)} {∂CEIi(t)/∂ ri(t)}.
7: end if
8: Obtain Y (t +1) by simulating x(t), update F t+1←F t ∪{x(t),Y (t +1)} and t← t +1.
9: end while

10: Return k(R) = argmaxi=1,...,k{µ̄i(R)} as the selected best system.

Here we provide a sketch of the proof that gCEI converges to the Glynn and Juneja (2004) rate-optimal
allocation. First, it is easy to show that as R→∞ the gCEI policy will simulate all systems infinitely often.



Avci, Nelson, and Wächter

Mimicing the analysis in Ryzhov (2016), we consider the deterministic behavior of gCEI with the true
means inserted for the estimates. This implies that k(t) = k for all t and

∂CEIi(t)
∂ ri(t)

=− σ2
i

(ri(t))2
1

2
√

νi
φ

(
µi−µk√

νi

)
and

∂CEIi(t)
∂ rk(t)

=−
σ2

k
(rk(t))2

1
2
√

νi
φ

(
µi−µk√

νi

)
.

Consider the empirical allocation {ri(t)/t, i = 1,2, . . . ,k}. We know that it must have a convergent
subsequence, ri(t)/t t→∞−→ αi ; we show that any such subsequence must converge to the rate-optimal
allocation (a complete proof includes showing that the limit of the subsequence is not 0). Let ν ′i =
(σ2

i /αi +σ2
k /αk) = limt→∞ tνi.

First consider the sub-subsequence on which the inequality in Step 3 holds. For such iterations

∑
i6=k

σ2
k /(rk(t))2

σ2
j /(r j(t))2

√
ν j

νi
× exp

{
−1

2

(
(µi−µk)

2

νi
−

(µ j−µk)
2

ν j

)}
≥ 1 for any j 6= k. (2)

However, as t→ ∞, the exponential term will go to 0 or ∞ unless

(µi−µk)
2

ν ′i
=

(µ j−µk)
2

ν ′j
, i 6= j 6= k. (3)

Thus, for Equation (2) to hold for any j, Equation (3) must hold, which is the first of two conditions for
the rate-optimal allocation of Glynn and Juneja (2004). Therefore, as t increases, Inequality (2) becomes
(after some manipulation)

∑
i6=k

σ2
k /(rk(t))2

σ2
j /(r j(t))2

√
1
νi
≥

√
1
ν j

for any j 6= k. (4)

Summing both sides over j = 1,2, . . . ,k−1, dividing out the common term, and letting t→ ∞ gives

∑
j 6=k

(
σk

αk

)2(
α j

σ j

)2

≥ 1. (5)

Next consider the sub-subsequence on which inferior system j 6= k is chosen in Step 3. This reverses
the inequality in (4), and must be true for each j 6= k. Then a similar argument shows that the left-hand
side of (5) must be ≤ 1. Therefore, equality is required, which is the second condition of Glynn and Juneja
(2004).

6 EMPIRICAL PERFORMANCE

We ran 16 experiments in total, including four different values of number of systems k ∈ {5,10,20,30}.
For each k, we set µi = cmi where the mi’s are prescaled true mean values provided in Table 1 and c is a
scaling constant we explain below. In the slippage and ascending means configurations, the systems have
equal variances. In the other two configurations the means are ascending, but the variances are proportional
to, and inversely proportional to, the prescaled mean values. Notice that Figure 1 cited below is found in
the body of the paper, while Figures 2—5 are in Appendix A.

In each experiment we first allocate 2 replications to each system before applying any policy. To
create sensible cases, we scaled the true means so that at least r0 replications will be consumed before
the difference between the best and second-best systems is one standard error of their estimated difference
under the Glynn and Juneja (2004) rate-optimal policy. Specifically,

µk−µk−1 = c(mk−mk−1) =

√
σ2

k−1

r0α?
k−1

+
σ2

k
r0α?

k
.
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Table 1: Configurations for experiments.

Configuration Prescaled true mean values True standard deviations

Slippage mi =−1 for i 6= k and mk = 0 σi = 1

Ascending mean mi = log(i) σi = 1

Ascending variance mi = log(i+1) σi =
√

mi

Descending variance mi = log(i+1) σi = 1/
√

mi

Thus, we control how quickly the best system becomes distinguishable from the others. To find c satisfying
the equation, we first calculate the α?

i by solving the expression for the rate-optimal allocation of Glynn
and Juneja (2004) with the mi’s from Table 1. The constant c does not change the optimal allocation
because scaling all µi’s or all σi’s does not have any impact. At the same time, we want our total simulation
budget R to be large enough so that we can observe the convergence behavior of the policies. We set
r0 = 20k and R = 100k. Lastly, we set the number of macro-replications M to 5000 to be able to estimate
PICS to two decimal places over a range of values. To measure the performance of each policy, we
report P̂ICS(t) = ∑

t
τ=1 I{k(τ)6=k}/t, α̂k(t) = rk(t)/t, and the mean and standard deviation of µk−µk(t), the

optimality gap, at each iteration t.
Figures 1–2 exhibit results for the slippage configurations with k = 5 and k = 30, respectively. To

observe the tail behavior more closely, Figure 3 shows the results with a larger budget of R = 5000 for k = 5.
We summarize our key observations: Under each policy, PICS converges to zero as expected. However, the
convergence behaviors are not always the same, and it appears that gCEI performs as well or better than
the other policies. Both gCEI and mCEI first overshoot the asymptotically optimal allocation of Glynn and
Juneja (2004) for the best system, but then converge as expected in the long run. gCEI tends to allocate
less to the best system than mCEI. On the other hand, TTTS allocates much more to the best system, which
makes sense given its heritage in MAB and minimizing regret. Remember that the limiting allocations for
AOMAP and TTTS are not those of Glynn and Juneja, so we do not expect the same allocations.

For the slippage configuration the mean optimality gap is a scaled version of PICS because the gap is
the same whenever any inferior system is selected as the best. The standard deviation of the optimality
gap shows what might be considered unexpected behavior as it first increases and then decreases. This is
because the best system is not distinguishable with a small budget and the inferior systems all have the
same mean values. As the best system becomes more recognizable, the variability increases up to a point,
then decreases as each policy becomes more sure of the identity of the best system.

To understand how the dynamic policies behave relative to employing the asymptotically optimal
allocation of Glynn and Juneja (2004) from the beginning, we compare gCEI with an unrealistic policy
where the Glynn and Juneja allocation is known and is applied starting from the first iteration in the
slippage configuration with k = 5. More specifically, under this unrealistic policy, two replications should
be allocated to the best system for each replication allocated to an inferior system. Figure 4 exhibits the
result of this comparison where we only report iterations that are a multiple of six. gCEI performs better
than this unrealistic policy even though it overallocates to the best system for a while. This emphasizes
that the rate-optimal allocations address large-sample, not small-sample, behavior.

Lastly, Figure 5 exhibits results for the ascending variance configuration with k = 10. We do not
report the results for the other configurations as they are so similar to this one. Here all policies perform
similarly, based on our metrics. The only difference appears in their allocations to the best system. Similar
to the slippage configuration, gCEI allocates less to the best system than mCEI. However, in contrast to the
slippage configuration, mCEI and gCEI do not overshoot the asymptotically optimal allocation of Glynn
and Juneja (2004).

The slippage configuration is certainly unrealistic, but it represents a situation in which there are many
close competitors to the best. In this setting gCEI seems to have some advantages. When the means are
ascending it appears to be easier for all policies to control the PICS and optimality gap because the inferior
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systems are easier to identify; we found that all policies tended to allocate the majority of their replications
to the top two systems in these settings.

Figure 1: The slippage configuration with k = 5, R = 500 and M = 5000. The dotted line in (b) is the
Glynn & Juneja optimal allocation to the best system.

7 CONCLUSIONS

In this paper we examined three recent policies, and one new policy, for assigning replications to systems
in the fixed-budget R&S problem. All of the policies adapt as they obtain additional simulation outputs,
and each policy achieves a form of optimal allocation as the budget increases; they differ in their definition
of “optimal” and their small-sample behavior. Looking at PICS, and the mean and standard deviation of the
optimality gap at termination, gCEI appears to perform as well or better than AOMAP, mCEI and TTTS.
Our comparisons did not consider computational effort (other than replications) or the ability to stop with
a prespecified PCS, measures that also distinguish R&S procedures.
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A FIGURES

Figure 2: The slippage configuration with k = 30, R = 3000 and M = 5000. The dotted line in (b) is the
Glynn & Juneja optimal allocation to the best system.

Figure 3: The slippage configuration with k = 5, R = 5000 and M = 5000. The dotted line in (b) is the
Glynn & Juneja optimal allocation to the best system.
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Figure 4: The slippage configuration with k = 5, R = 1000 and M = 5000. The dotted line in (b) is the
Glynn & Juneja optimal allocation to the best system.

Figure 5: The ascending variance configuration with k = 10, R = 1000 and M = 5000. The dotted line in
(b) is the Glynn & Juneja optimal allocation to the best system.
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