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Abstract

In bandit multiple hypothesis testing, each arm corresponds to a different null hypothesis that we
wish to test, and the goal is to design adaptive algorithms that correctly identify large set of interesting
arms (true discoveries), while only mistakenly identifying a few uninteresting ones (false discoveries).
One common metric in non-bandit multiple testing is the false discovery rate (FDR). We propose a
unified, modular framework for bandit FDR control that emphasizes the decoupling of exploration and
summarization of evidence. We utilize the powerful martingale-based concept of “e-processes” to ensure
FDR control for arbitrary composite nulls, exploration rules and stopping times in generic problem settings.
In particular, valid FDR control holds even if the reward distributions of the arms could be dependent,
multiple arms may be queried simultaneously, and multiple (cooperating or competing) agents may be
querying arms, covering combinatorial semi-bandit type settings as well. Prior work has considered in
great detail the setting where each arm’s reward distribution is independent and sub-Gaussian, and a
single arm is queried at each step. Our framework recovers matching sample complexity guarantees in
this special case, and performs comparably or better in practice. For other settings, sample complexities
will depend on the finer details of the problem (composite nulls being tested, exploration algorithm, data
dependence structure, stopping rule) and we do not explore these; our contribution is to show that the
FDR guarantee is clean and entirely agnostic to these details.
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1 Introduction to bandit multiple hypothesis testing
Scientific experimentation is often a sequential process. To test a single null hypothesis — with “null”
capturing the setting of no scientific interest, and the alternative being scientifically interesting — scientists
typically collect an increasing amount of experimental data in order to gather sufficient evidence such that
they can potentially reject the null hypothesis (i.e. make a scientific discovery) with a high degree of statistical
confidence. As long as the collected evidence remains thin, they do not reject the null hypothesis and do not
proclaim a discovery. Since executing each additional unit of data (stemming from an experiment or trial)
has an associated cost (in the form of time, money, resources), the scientist would like to stop as soon as
possible. This becomes increasingly prevalent when the scientist is testing multiple hypotheses at the same
time, and investing resources into testing one means divesting it from another.

For example, consider the case of a scientist at a pharmaceutical company who wants to discover which
of several drug candidates under consideration are truly effective (i.e. testing a hypothesis of whether each
candidate has greater than baseline effect) through an adaptive sequential assignment of drug candidates to
participants. Performing follow up studies on each discovery is expensive, so the scientist does not want to
make many “false discoveries” i.e. drugs that did not have an actual effect, but were proclaimed to have one
by the scientist. To achieve these goals, one could imagine the scientist collecting more data for candidates
whose efficacy is unclear but appear promising (e.g. drugs with nontrivial but inconclusive evidence), and
stop sampling candidates that have relatively clear results already (e.g. drugs that have a clear and large
effect, or seemingly no effect).

Past work. This problem combines the challenges of multiple hypothesis testing with multi-arm bandits
(MABs). In a “doubly-sequential” version of the problem studied by Yang et al. [46], one encounters a
sequence of MAB problems over time. Each MAB was used to test a single special placebo arm against
several treatment arms, and if at least one treatment dominated the placebo, then they aimed to return the
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best treatment. Thus each MAB was itself a single adaptive sequential hypothesis test, and the authors
aimed not to make too many false discoveries over the sequence of MAB instances.

This paper instead considers the formulation of Jamieson and Jain [19], henceforth called JJ, but our
techniques apply equally well to the above setup. To avoid confusions, note that our setup is very different
from the active classification work of the same authors [17]. To recap, JJ consider a single MAB instance
without a placebo arm (or rather, leaving it implicit), and try to identify as many treatments that work
better than chance as possible, without too many false identifications. To clarify, we associate each arm with
one (potentially composite) null hypothesis — for example, the hypothesis that corresponding drug has no
(significant) effect. A single observed reward when pulling an arm corresponds to a statistic that summarizes
the results of one experiment with the corresponding drug, and the average reward across many experiments
could correspond to an estimate of the average treatment effect, which would be (at most) zero for null arms
and positive for non-nulls. Thus, a strategy for quickly finding the arms with positive means corresponds to a
strategy for allocating trial patients to drug candidates that allows the scientists to rapidly find the effective
drugs.

However, the above corresponds to only the simplest problem setting. In more complex settings, it may
be possible to pull multiple arms in each round, and observe correlated rewards. Further, the arms may have
some combinatorial structure that allows only certain subsets of arms to be pulled. There could be multiple
agents (eg: hospitals) pulling the same set of arms and seeing independent rewards (eg: different patients) or
dependent rewards (eg: patient overlap or interference). Further, if some set of experiments by one scientist
yielded suggestive but inconclusive evidence, another may want to follow up, but not start from scratch,
instead picking up from where the first left off. Last, the MAB may be stopped for a variety of reasons that
may or may not be in the control of the scientist (eg: a faster usage of funding than expected, or additional
funding is secured). We dive in the details of these scenarios in Appendix D.3.

Our contribution. We introduce a modular meta-algorithm for bandit multiple testing with provable
FDR control that utilizes “e-values” — or, more appropriately, their sequential analog, “e-processes” — a
recently introduced alternative to p-values (or p-processes) by Ramdas et al. [32] for various testing problems,
that are inherently related to martingales, gambling and betting [33, 14, 15, 44]. This work is the first to
carefully study e-processes in general MAB settings, building on prior work that studied a special case [44].
We also are the first to extend the bandit multiple testing problem to the combinatorial bandit setting
— JJ had previously only analyzed the problem in the single-arm, independent reward setting. Utilizing
e-processes provide our meta-algorithm with several benefits. (a) For composite nulls, it is typically easier to
construct e-processes than p-processes; the same holds when data from a single source is dependent. When
combining evidence from disparate (independent or dependent) sources, it is also more straightforward to
combine e-values than p-values (see Appendix D.3). (b) The same multiple testing step applies in all bandit
multiple testing problems, regardless of all the various details of the problem setup mentioned in the previous
paragraph. Consequently, FDR control in our meta-algorithm is agnostic to much of problem setup and
can be proved in a vast array of settings. This is not true when working for p-values. In particular, the
techniques for proving FDR control in JJ are highly reliant on the specific bandit setup in their paper. (c)
The exploration step can be — but does not have to be — decoupled from the multiple testing (combining
evidence) step. This results in a modular procedure that can be easily ported to new problem settings to
yield transparent guarantees on FDR control.

By virtue of being a meta-algorithm, we do not (and cannot) provide “generic” sample complexity
guarantees: these will depend on all of the finer problem details mentioned above, on the exploration
algorithm employed, on which e-processes are constructed. Our emphasis is on the flexibility with which FDR
control can be guaranteed in a vast variety of problem setups. Further research can pick up one problem at a
time and design sensible exploration strategies and stopping rules, developing sampling complexity bounds
for each, and these bounds will be inherited by the meta-algorithm. However, we do formulate some generic
exploration algorithms in Appendix C based on best arm identification algorithms [1, 22, 11, 18, 23, 10, 20].

When instantiated to the particular problem setup studied by JJ (independent, sub-Gaussian rewards, one
arm in each round, etc.), we get a slightly different algorithm from them — the exploration strategy can be
inherited to stay the same, but the multiple testing part differs. JJ use p-processes for each arm to determine
whether that arm should be added to the rejection set, and correct for testing multiple hypotheses by using
the BH procedure [6] to ensure that the false discovery rate (FDR), i.e. the proportion of rejections that
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are false discoveries in expectation, is controlled at some fixed level 𝛿. Adaptive sampling induces a peculiar
form of dependence amongst the p-values, for which the BH procedure provides error control at an inflated
level; in other words, one has to use BH at a more stringent level of approximately 𝛿/ log(16/𝛿) to ensure
that the FDR is less than 𝛿. On the other hand, we use the e-BH procedure [44], an analogous procedure
for e-values, which can ensure the FDR is less than 𝛿 without any inflation, regardless of the dependence
structure between the e-values of each arm. Our algorithm has improved sample efficiency in simulations and
the same sample complexity in theory.

Formal problem setup. We define the bandit as having 𝑘 arms, and 𝜈𝑖 as the (unknown) reward
distribution for arm 𝑖 ∈ [𝑘] = {1, . . . , 𝑘}. Every arm 𝑖 is associated with a null hypothesis, which is
represented by a known, prespecified set of distributions 𝒫𝑖. If |𝒫𝑖| = 1, it is a ‘point null hypothesis’, and
otherwise it is a ‘composite null hypothesis’. Examples of the latter include “all [0, 1]-bounded distributions
with mean ≤ 0.5” or “all 1-sub-Gaussian distributions with mean ≤ 0” or “all distributions that are symmetric
around 0” or “all distributions with median ≤ 0”. While we assume by default that all rewards from an arm
are i.i.d., we also formulate tests for hypotheses on reward distributions that may violate this assumption in
Appendix G. If 𝜈𝑖 ∈ 𝒫𝑖, then we say that the 𝑖-th null hypothesis is true and we call 𝑖 a null arm; else, we say
𝑖-th null hypothesis is false and we call it a non-null arm. Thus, the set of arms are partitioned into two
disjoint sets: nulls ℋ0 ⊆ [𝑘] and non-nulls ℋ1 := [𝑘] ∖ ℋ0.

Let 𝒦 ⊆ 2[𝑘] denote the subsets of arms that can be jointly queried in each round. At each time 𝑡, the
algorithm chooses a subset of arms ℐ𝑡 ∈ 𝒦 to sample jointly from. The special choice of 𝒦 = {{1}, {2}, . . . , {𝑘}}
recovers the standard bandit setup, but otherwise this setting is known as combinatorial bandits with semi-
bandit feedback [12]. We also consider the special case of full-bandit feedback (the algorithm sees all rewards
at each time step) in Appendix D.1. We denote the reward sampled at time 𝑡 from arm 𝑖 ∈ ℐ𝑡 as 𝑋𝑖,𝑡. Let
𝑇𝑖(𝑡) denote the number of times arm 𝑖 has been sampled by time 𝑡, and 𝑡𝑖(𝑗) be the time of the 𝑗th sample
from arm 𝑖.

We now define a canonical “filtration” for our bandit problem. A filtration (ℱ𝑡)𝑡≥0 is a series of nested
sigma-algebras that encapsulates what information is known at time 𝑡. (We drop the subscript and just write
(ℱ𝑡) for brevity, and drop the parentheses when just referring to a single sigma-algebra at time 𝑡.) Define
the canonical filtration as follows for 𝑡 ∈ N: ℱ𝑡 := 𝜎 (𝑈 ∪ {(𝑖, 𝑠,𝑋𝑖,𝑗) : 𝑠 ≤ 𝑡, 𝑖 ∈ ℐ𝑠}) and we let ℱ0 := 𝜎(𝑈)
where 𝑈 is uniformly distributed on [0, 1] and its bits capture all private randomness used by the bandit
algorithm that are independent of all observed rewards. Let (𝜆𝑡) be a sequence of random variables indexed
by 𝑡 ∈ N. (𝜆𝑡) is said to be predictable w.r.t. (ℱ𝑡) if 𝜆𝑡 is measurable w.r.t. ℱ𝑡−1 i.e. 𝜆𝑡 is fully specified given
the information in ℱ𝑡−1. An N-valued random variable 𝜏 is a stopping time (or stopping rule) w.r.t. to (ℱ𝑡)
if {𝜏 = 𝑡} ∈ ℱ𝑡 — in other words, at each time 𝑡, we know whether or not to stop collecting data. Let 𝒯
denote the set of all possible stopping times/rules w.r.t. (ℱ𝑡), potentially infinite. Technically, the algorithm
must not just specify a strategy to select ℐ𝑡, but also specify when sampling will stop. This is denoted by the
stopping rule or stopping time 𝜏* ∈ 𝒯 .

Once the algorithm halts at some time 𝜏 , it produces a rejection set 𝒮𝜏 ⊆ [𝑘]. We consider two metrics
w.r.t. 𝒮: the FDR as discussed prior, and true positive rate (TPR), which is the proportion of non-nulls that
are discovered in expectation. These two metrics are defined as follows:

FDR(𝒮𝜏 ) := E
[︂
|ℋ0 ∩ 𝒮𝜏 |
|𝒮𝜏 | ∨ 1

]︂
, TPR(𝒮𝜏 ) := E

[︂
|ℋ1 ∩ 𝒮𝜏 |

|ℋ1|

]︂
.

We consider algorithms that always satisfy FDR(𝒮𝜏 ) ≤ 𝛿 for any number and configuration of nulls ℋ0

and any choice of null and non-null distributions. In fact, our algorithm will produce a sequence of candidate
rejection sets (𝒮𝑡) that satisfies sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿. This is a much stronger guarantee than the typical
setting considered in the multiple testing literature. On the other hand, TPR is a measurement of the power
of the algorithm i.e. how many of the non-null hypotheses does the algorithm discover. Our implicit goal
in the multiple testing problem is to maximize the number of true discoveries while not making too many
mistakes i.e. keep the FDR controlled.

In hypothesis testing, the set of null distributions 𝒫𝑖 for each arm 𝑖 is known, because the user defines the
null hypothesis they are interested in testing. When the null hypothesis is false, the non-null distribution
can be arbitrary. Consequently, we can prove results about FDR, but we cannot prove guarantees about
TPR without several further assumptions on the non-null distributions, dependence across arms, etc. For a
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particular setting where we make such a set of assumptions, we demonstrate in Section 4 that we can prove
TPR guarantees for algorithms within our framework. Hence, our FDR controlling framework is not vacuous
as it includes powerful algorithms i.e. algorithms which make many true discoveries. However, our focus is
primarily to show that the FDR control of our framework is robust to a wide range of conditions.

Finally, note that in bandit multiple testing, one does not care about regret. The problem is more akin to
pure exploration, where we aim to find a 𝒮 with FDR(𝒮𝜏*) ≤ 𝛿 and large TPR as quickly as possible.

Now that we have specified the problem we are interested in, we can introduce our main technical tools
for ensuring FDR control at stopping times: e-processes and p-processes.

2 Technical preliminaries

2.1 E-processes versus p-processes
An e-variable, 𝐸, is a nonnegative random variable where E[𝐸] ≤ 1 when the null hypothesis is true. In
contrast, the more commonly used p-variable, 𝑃 , is defined to have support on (0, 1) and satisfy P (𝑃 ≤ 𝛼) ≤
𝛼 for all 𝛼 ∈ (0, 1) when the null hypothesis is true. To clearly delineate when we are discussing solely the
properties of a random variable, we also use the terms “e-value” 𝑒 and “p-value” 𝑝 to refer to the realized
values of a e-variable 𝐸 and a p-variable 𝑃 (their instantiations on a particular set of data). E-variables and
p-variables are connected through Markov’s inequality, which implies that 1/𝐸 is a p-variable (but 1/𝑃 is not
in general an e-variable). Rejecting a null hypothesis is usually based on observing a small p-value or a large
e-value. For example, to control the false positive rate at 0.05 for a single hypothesis test, we reject the null
when 𝑝 ≤ 0.05 or when 𝑒 ≥ 20.

Since bandit algorithms operate over time, we define sequential versions of p-variables and e-variables.
A p-process, denoted (𝑃𝑡)𝑡≥1, is a sequence of random variables such that sup𝜏∈𝒯 P (𝑃𝜏 ≤ 𝛼) ≤ 𝛼 for any
𝛼 ∈ (0, 1). In contrast, an e-process (𝐸𝑡)𝑡≥1 must satisfy sup𝜏∈𝒯 E[𝐸𝜏 ] ≤ 1 (let 𝐸∞ := lim sup𝑡∈N 𝐸𝑡 and
𝑃∞ := lim inf𝑡∈N 𝑃𝑡). These sequentially valid forms of p-variables and e-variables are crucial since we allow
the bandit algorithm to stop and output a rejection set in a data-dependent manner. Thus, we must ensure
the respective properties of p-variables and e-variables hold over all stopping times.

These concepts are intimately tied to sequential testing and sequential estimation using confidence
sequences [31], but most importantly, nonnegative (super)martingales play a central role in the construction
of efficient e-processes. To summarize, (a) for point nulls, all admissible e-processes are simply nonnegative
martingales, and the safety property follows from the optional stopping theorem, (b) for composite nulls,
admissible e-processes are either nonnegative martingales, or nonnegative supermartingales, or the infimum
(over the distributions in the null) of nonnegative martingales. Associated connections to betting [45] are
also important for the development of sample efficient algorithms and we discuss how we use betting ideas
in Appendix F. We also discuss some useful equivalence properties of p-processes in Appendix A.1, while
Appendix A.2 introduces supermartingales for the unfamiliar reader.

Why use e-processes over p-processes? Wang and Ramdas [44] describe a multitude of advantages
outside of the bandit setting; these advantages also apply to the bandit setting but we do not redescribe them
here for brevity. However, we will describe multiple ways in which using e-variables instead of p-variables as
a measure of evidence in the bandit setting allows for both better flexibility and sample complexity of the
algorithm. While this question has been the focus of a recent line of work for hypothesis tests in general
[33, 41, 14, 44], we will explore how the properties of e-variables allow us to consider novel bandit setups
and algorithms. In particular, e-variables allow us to be robust to arbitrary dependencies between statistics
computed for each arm without additional correction. Further, we explore how e-processes can be merged
under different conditions in Appendix D.3 to facilitate incorporation of existing evidence and cooperation
between multiple agents and present concrete ways to construct e-processes in Appendices B.3 and F.

Since any non-trivial bandit algorithm will base its sampling choice on the rewards attained so far for
every arm, average rewards of each arm are biased and dependent on each other in complex ways even if
the algorithm is stopped at a fixed time [27, 35, 36, 37]. Even under a non-adaptive uniform sampling rule,
an adaptive stopping rule can induce complex dependencies between reward statistics of each arm. When
using both adaptive sampling and stopping, the dependence effects are only compounded. Nevertheless,
e-variable based algorithms enable us to prove FDR guarantees without assumptions on the sampling method.
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In contrast, procedures involving p-variables, such as the ones used in JJ, require the test level of 𝛼 to be
corrected by a factor of at least log(1/𝛼) when rewards are independent across arms, and a factor of log 𝑘
otherwise. We expand on this in Section 2.2.

2.2 Multiple testing procedures with FDR control
We now introduce two multiple testing procedures that output a rejection set with provable FDR control.
We will first describe the guarantees provided by the BH procedure [6], a classic multiple testing procedure
that operates on p-variables. Then, we will describe e-BH, the e-variable analog of BH. Our key message in
this section is that classical BH will have looser or tighter control of the FDR based upon the dependence
structure of the p-variables it is operating on. On the other hand, e-BH provides a consistent guarantee on
the FDR even when the e-variables are arbitrarily dependent. Both procedures take an input parameter
𝛼 ∈ (0, 1) that controls the degree of FDR guarantee (i.e. test level).

Benjamini-Hochberg (BH) requires corrections for dependence and self-consistency. A set 𝒮
of p-values is called p-self-consistent [9] at level 𝛼 iff:

max
𝑖∈𝒮

𝑝𝑖 ≤
|𝒮|𝛼
𝑘

. (1)

The BH procedure with input 𝑝1, . . . , 𝑝𝑘 outputs the largest p-self-consistent set w.r.t. the input, which we
denote BH[𝛼](𝑝1, . . . , 𝑝𝑘). We must also define a condition on the joint distribution of 𝑃1, . . . , 𝑃𝑘, which is
called positive regression dependence on subset (PRDS). A formal definition is provided in Benjamini and
Yekutieli [7], and it is sufficient for our purposes to think of this condition as positive dependence between
𝑃1, . . . , 𝑃𝑘, with independence being a special case. Now, we describe the FDR control of the BH procedure.

Fact 1 (BH FDR control. Benjamini and Hochberg [6], Benjamini and Yekutieli [7]). Let 𝒮 = BH[𝛼](𝑝1, . . . , 𝑝𝑘).
If 𝑃1, . . . 𝑃𝑘 are PRDS, then FDR(𝒮) ≤ 𝛼. Otherwise, under arbitrary dependence amongst 𝑃1, . . . 𝑃𝑘, the
BH procedure ensures FDR(𝒮) ≤ 𝛼ℓ𝑘, where ℓ𝑘 ≡

∑︀𝑘
𝑖=1 1/𝑘 ≈ log 𝑘.

Thus, in the case of arbitrary dependence, the FDR control of BH is larger by a factor of ℓ𝑘 ≈ log 𝑘. A
larger FDR guarantee is provided for arbitrary p-self-consistent sets.

Fact 2 (P-self-consistent FDR control. Su [38], Blanchard and Roquain [9], Wang and Ramdas [44]). If 𝒮 is
p-self-consistent at level 𝛼 and 𝑃1, . . . , 𝑃𝑘 satisfy PRDS, 1 then FDR(𝒮) ≤ 𝛼(1 + log(1/𝛼)). Otherwise, when
there is arbitrary dependence among 𝑃1, . . . , 𝑃𝑘, FDR(𝒮) ≤ 𝛼ℓ𝑘 (consequence of Propositions 2.7 and 3.7
from Blanchard and Roquain [9] and Proposition 5.2 from Wang and Ramdas [44]).

These two facts do not imply each other; the BH procedure outputs the largest self-consistent set and has
a stronger or equivalent error guarantee under either type of dependence. While it may seem like we should
always use BH and the guarantee from Fact 1 to form a rejection set, we elaborate in Section 3.1 on how
we can use Fact 2 to provide FDR control for BH when the p-variables are not necessarily PRDS, and in
settings where we may not directly use BH.

e-BH needs no correction for dependence or self-consistency. The e-BH procedure created by Wang
and Ramdas [44] uses e-variables instead of p-variables and proceeds similarly to the BH procedure. In this
case, let 𝑒1, . . . , 𝑒𝑘 be the realized e-values for a set of e-variables 𝐸1, . . . , 𝐸𝑘. Define 𝑒[𝑖] to be the 𝑖th largest
e-value for 𝑖 ∈ [𝑘]. A set 𝒮 is e-self-consistent at level 𝛼 iff 𝒮 satisfies the following:

min
𝑖∈𝒮

𝑒𝑖 ≥
𝑘

𝛼|𝒮|
. (2)

The e-BH procedure outputs the largest e-self-consistent set, which we denote by eBH[𝛼](𝑒1, . . . , 𝑒𝑘). For
e-variables, the same guarantee applies for all e-self-consistent sets and under all dependence structures.

1Su [38] technically employs a slightly weaker condition which implies PRDS, and refers to self-consistency as “compliance”
(or, better said, compliance is a special case of self-consistency).
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Fact 3 (E-variable self-consistency FDR control. Wang and Ramdas [44]). If 𝒮 is e-self-consistent at level 𝛼,
then FDR(𝒮) ≤ 𝛼 regardless of the dependence structure.

All FDR bounds discussed in Facts 1 to 3 are optimal, in the sense that there exist e-variable/p-variable
distributions with an FDR that is arbitrarily close or equivalent to the stated bound. Consequently, e-variables
are more advantageous, since their FDR control does not change under different types of dependence as
opposed to the factor of 1 + log(1/𝛼) or log 𝑘 p-variables pay on the FDR for different settings.

In the case where p-variables can only be constructed as 𝑃 = 1/𝐸, where 𝐸 is an e-variable, the rejection
sets output by BH and e-BH are identical. However, the e-self-consistency guarantee in Fact 3 provides
identical or tighter FDR control than the BH procedure guarantee in Fact 1 or p-self-consistency guarantee
in Fact 2. Thus, e-variables and e-BH offer a degree of robustness against arbitrary dependence, since any
algorithm using e-BH does not have to adjust 𝛼 to guarantee the same level of FDR(𝒮) ≤ 𝛿 for a fixed 𝛿
under different dependence structures. We now provide a meta-algorithm that utilizes p-self-consistency and
e-self-consistency to guarantee FDR control in the bandit setting.

3 Decoupling exploration and evidence: a unified framework
We propose a framework for bandit algorithms that separates each algorithm into an exploration component
and an evidence component; Algorithm 1 specifies a meta-algorithm combining the two.

Algorithm 1: A meta-algorithm for bandit multiple testing that decouples exploration and evidence.
The evidence component can track p-processes or e-processes for each arm and use BH or e-BH.

Input: Exploration component (𝒜𝑡), stopping rule 𝜏*, Let (𝑝1,𝑡), . . . , (𝑝𝑘,𝑡) and (𝑒1,𝑡), . . . , (𝑒𝑘,𝑡)
denote the realized values of p-processes and e-processes, respectively. Let the desired level of
FDR control be 𝛿 ∈ (0, 1). Let 𝛿′ be the correction of 𝛿 for BH based upon the dependencies
of 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡. Set 𝐷0 = ∅.

for 𝑡 in 1 . . . do
ℐ𝑡 := 𝒜𝑡(𝐷𝑡−1) ⊆ [𝑘]
Obtain rewards for each 𝑖 ∈ ℐ𝑡, and update data 𝐷𝑡 := 𝐷𝑡−1 ∪ {(𝑖, 𝑡,𝑋𝑖,𝑡) : 𝑖 ∈ ℐ𝑡}.
Update e-process or p-process for each queried arm (summarizing evidence against each null).

𝒮𝑡 :=

{︃
BH[𝛿′](𝑝1,𝑡, . . . , 𝑝𝑘,𝑡) or arbitrary p-self-consistent set if using p-variables
eBH[𝛿](𝑒1,𝑡, . . . , 𝑒𝑘,𝑡) or arbitrary e-self-consistent set if using e-variables

if 𝜏* = 𝑡 then stop and return 𝒮𝑡;
end

Exploration component. This is a sequence of functions (𝒜𝑡), where 𝒜𝑡 : ℱ𝑡−1 ↦→ 𝒦 specifies the queried
arms ℐ𝑡 := 𝒜𝑡(𝐷𝑡−1), and 𝐷𝑡 := {(𝑖, 𝑗,𝑋𝑖,𝑗) : 𝑗 ≤ 𝑡, 𝑖 ∈ ℐ𝑗} is the observed data. 𝒜𝑡 is “non-adaptive” if it
does not depend on the data, but only on some external randomness 𝑈 . Regardless of how the exploration
component (𝒜𝑡) is constructed, our framework guarantees that FDR(𝒮) ≤ 𝛿 for a fixed 𝛿. Similarly, 𝜏* is
adaptive if it depends on the data, and is not determined purely by 𝑈 .

Evidence component. The FDR control provided by Algorithm 1 is solely due to the formulation of
the candidate rejection set, 𝒮𝑡 ⊆ [𝑘], at each time 𝑡 ∈ N in the evidence component. This construction is
completely separate from (𝒜𝑡). Critically, (𝒮𝑡) satisfies FDR(𝒮𝜏 ) ≤ 𝛿 for any stopping time 𝜏 ∈ 𝒯 . This is
accomplished by applying BH or e-BH to p-processes or e-processes, respectively. At stopping time 𝜏 , 𝑃𝑖,𝜏 is
a p-variable when (𝑃𝑖,𝑡) is a p-process, and similarly 𝐸𝑖,𝜏 is an e-variable when (𝐸𝑖,𝑡) is an e-process. Thus,
𝒮𝜏 is the result of applying BH to p-variables or e-BH to e-variables.

Consequently, the aforementioned framework allows us to guarantee sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿 in a way that is
agnostic to the exploration component. For completeness, we do discuss some generic exploration strategies
in Appendix C. In the next section, we will formalize these guarantees and discuss the benefits afforded by
using e-variables and e-BH in this framework instead of p-variables and BH.
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3.1 FDR control under different dependence structures
In the general combinatorial bandit setting, different dependence structures affect the choice of 𝛿′ that
ensures FDR control at 𝛿 in the p-variable and BH case. Table 1 summarizes the guarantees and choices
of 𝛿′ for each type of dependence. Prior work on hypothesis testing in the bandit setting by JJ has only
considered the non-combinatorial bandit case where 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 are independent. Critically, JJ employ BH
and p-variables in their algorithm, and the FDR guarantee of BH changes based on the dependencies between
reward distributions. On the other hand, choosing 𝛼 = 𝛿 for e-BH is sufficient to guarantee FDR control at
level 𝛿 for any type of dependence between e-variables, but only sufficient for BH in the non-adaptive, PRDS
𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 setting. We show that there is a wide range of dependence structures that require different
degrees of correction for BH. Specifically, we will set an appropriate choice of 𝛿′ in each of these situations
such that Algorithm 1 with p-variables can ensure FDR control level 𝛿. We include proofs of all results in
this section in Appendix B.1.

Table 1: FDR control for BH, and the 𝛿′ to ensure 𝛿 control of FDR in Algorithm 1 under different dependence
structures and adaptivity of (𝒜𝑡). Adaptivity and arbitrary dependence both require extra correction for BH,
but any e-self-consistent procedure provides FDR(𝒮) ≤ 𝛼 in all settings in the table.

Dependence of 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡

Adaptivity of (𝒜𝑡) and 𝜏* independent arbitrarily dependent

non-adaptive
FDR(𝒮) ≤ 𝛼

𝛿′ = 𝛿 FDR(𝒮) ≤ 𝛼 log 𝑘

adaptive
FDR(𝒮) ≤ 𝛼((1 + log(1/𝛼)) ∧ log 𝑘) 𝛿′ = 𝛿/ log 𝑘 (Prop. 2)
𝛿′ = 𝑐𝛿 ∨ (𝛿/ log 𝑘) (Prop. 1)

Any e-self-consistent procedure ensures FDR(𝒮) ≤ 𝛼 in all settings and sets 𝛼 = 𝛿.

Adaptive (𝒜𝑡) and independent 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡. JJ consider this case in the non-combinatorial bandit
setting, but their insights and techniques also can be extended to the combinatorial setting. We give a sketch
of their proof here, and produce the full proof in Appendix B.1. In the language of self-consistency (not
explicitly used in JJ), JJ make the key insight that running BH on the p-variables for each arm produces a
rejection set that is actually p-self-consistent with a different set of independent p-variables. Define 𝑃 *

1 , . . . , 𝑃
*
𝑘 ,

where 𝑃 *
𝑖 = inf𝑡∈N 𝑃𝑖,𝑡 for each 𝑖 ∈ [𝑘] i.e. each arm’s p-variable in the infinite sample limit. Since (𝑃𝑖,𝑡) is a

p-process for each arm 𝑖 ∈ [𝑘], the corresponding 𝑃 *
𝑖 is a p-variable (Proposition 6 in Appendix A.1). Further,

𝑃 *
1 , . . . , 𝑃

*
𝑘 are independent because 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 are independent. By definition of 𝑃 *

1 , . . . , 𝑃
*
𝑘 , 𝑝*𝑖 ≤ 𝑝𝑖,𝑡

for any 𝑖 ∈ [𝑘] and any 𝑡 ∈ N. Thus, 𝒮𝜏* is p-self-consistent w.r.t. 𝑝*1, . . . , 𝑝*𝑘, and has its FDR bounded by
𝛼(1 + log(1/𝛼)) due to Fact 2. At the same time, the arbitrary dependence guarantee from Fact 1 still applies.
Combining these facts, we achieve the following guarantee:

Proposition 1. When (𝒜𝑡) is adaptive and 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 are independent, Algorithm 1 with p-processes and
an arbitrary p-self-consistent set guarantees sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿 if 𝛿′ ≤ 𝑐𝛿 ∨ 𝛿/ℓ𝑘, where for any 𝛿 ∈ (0, 1),
define 𝑐𝛿 ≤ 𝛿 as the solution to 𝑐𝛿(1 + log(1/𝑐𝛿)) = 𝛿.

Note that Proposition 1 is valid for any p-self-consistent set since p-self-consistency is the only property
required of the output set to prove the result. JJ prove a similar bound to Proposition 1. However, they
used a larger FDR bound for p-self-consistent sets with worse constants (which was subsequently improved
by Su [38] as presented earlier), and they only considered the non-combinatorial case. Proposition 1 uses an
optimal bound on p-self-consistent sets from Fact 2, and is valid in our combinatorial bandit setup.

Adaptive (𝒜𝑡) and arbitrarily dependent 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡. In the general combinatorial bandit setting,
where the algorithm chooses a subset of arms or “superarm” at each time to jointly sample from, we will have
multiple samples from multiple arms in the same time step, and 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 can be arbitrarily dependent.
Consequently, the p-variables corresponding to each arm can also be arbitrarily dependent. For example,
a superarm could consist of all arms, and the sampling rule could be to just sample this superarm that
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encompasses all arms. Then, the p-variable distribution would directly depend on the reward distribution of
the arms. Thus, we can provide the following guarantee by Fact 1 when using p-variables as a result of Fact 3.

Proposition 2. When (𝒜𝑡) is adaptive and 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 are dependent, Algorithm 1 with p-variables and
BH guarantees sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿 if 𝛿′ ≤ 𝛿/ℓ𝑘.

Finally, consider a setting structured setting where we cannot output the rejection set of BH. Such a
constraint often occurs in directed acyclic graph (DAG) settings where there is a hierarchy among hypotheses
that restricts which rejection sets are allowed [30, 25]. Instead, we would like to output the largest self-
consistent set that respects the structural constraints. By Fact 2, we get the following FDR control.

Proposition 3. If (𝒜𝑡) is adaptive and 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 are dependent, Algorithm 1 with p-variables that
outputs an arbitrary p-self-consistent 𝒮𝑡 guarantees sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿 if 𝛿′ ≤ 𝑐𝛿/ℓ𝑘.

We explore the structured setting with greater depth in Appendix D.2. Unlike p-variables, e-variables do
not need correction in any of the aforementioned settings.

Proposition 4. When (𝒜𝑡) is adaptive and 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 are dependent, Algorithm 1 with e-variables, which
runs e-BH at level 𝛿 or outputs a e-self-consistent set at level 𝛿, guarantees sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿.

Thus, running e-BH (or any e-self-consistent procedure) at level 𝛿 is valid for any choice of (𝒜𝑡) and type
of dependence. Now, we give an example where 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 might be arbitrarily dependent.

3.2 Illustrative examples to demonstrate flexibility of the framework
Below, we briefly describe a set of nontrivial illustrative examples to showcase the flexibility of our framework.
In most of the cases below, a p-process approach would have to correct for dependence and/or self-consistency
in different case-specific ways, rendering it more conservative and requiring careful arguments to justify FDR
control. However, working with our unified framework is easy, handling both self-consistency and dependence
issues in the same breath and without any changes to the algorithm or analysis. The data scientist can focus
on designing powerful e-processes for each arm separately and let the modular framework correct for the
multiplicity aspect.

Example: sampling nodes on a graph. A scenario where 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 may naturally have dependence
is when each arm corresponds to a node on a graph. The superarms in this situation could be defined w.r.t.
to a graph constraint e.g. “two nodes connected by an edge” or “a node and its neighbors”. Graph bandits
has been studied in the regret setting [26] and have many real world applications [39]. We could imagine a
scenario where low power sensors in a sensor network can only communicate locally. A centralized algorithm
is tasked with querying the sensors to find those with high activity. A sensor may only provide activity
information about itself and nearby sensors, and this data can be arbitrarily dependent across the sensors.
Figure 1 illustrates a superarm in this situation.

Figure 1: A superarm consists of a node and all its neighbors. The dotted line captures ℐ𝑡, the superarm
around node 1.
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In such a setting, if Proposition 2 is used to guarantee FDR(𝒮) ≤ 𝛿 with p-variables, it pays a log 𝑘
correction, while Proposition 4 can guarantee e-variables need no correction. We simulate this setting in
Appendix E.2, and show these differences empirically. We also discuss some other examples in the appendix
that we will summarize here.

• Multiple agents (Appendix D.3): Consider the setting where multiple agents are operating on the same
bandit, and we want to aggregate the evidence for rejection across agents. For e-processes, we present an
algorithm for merging e-values that maintains FDR control.

• Structured rejection sets (Appendix D.2): We illustrate the difference between self-consistency guaran-
tees for p-variables and e-variables when a DAG hierarchy is imposed upon the hypotheses.

• Multi-arm hypotheses (Appendix D.4) A hypothesis may concern the reward distributions of multiple
arms e.g. are the means of two different arms equivalent? We provide FDR guarantees even when hypotheses
and arms are not matched one-to-one.

• Streaming data setting (Appendix D.1) Our methods also naturally extend to the streaming setting
when the algorithm views the rewards of every at each time step.

Now that we have shown FDR is controlled using e-variables in a way that is robust to the underlying
dependence structure, we analyze the sample complexity of achieving a high TPR using e-variables when the
rewards are independent and sub-Gaussian.

4 E-process sample complexity guarantees for sub-Gaussian arms
We provide sample complexity guarantees for the sub-Gaussian setting that has been the focus of existing
methodology by JJ in bandit multiple testing. We explicitly define e-processes and an exploration component
(𝒜𝑡) that will have sample complexity bounds matching those of the algorithm in JJ, which uses p-variables.
Specifically, we will consider the standard bandit setting where |ℐ𝑡| = 1 and 𝜈𝑖 is 1-sub-Gaussian for each
𝑖 ∈ [𝑘]. Denote the means of each arm 𝑖 ∈ [𝑘] as 𝜇𝑖 = E[𝑋𝑖,𝑡] for all 𝑡 ∈ N. The goal is to find many arms
where 𝜇𝑖 > 𝜇0, where we set 𝜇0 = 0 to be the mean of a reward distribution under the null hypothesis. Thus,
we define ℋ0 = {𝑖 ∈ [𝑘] : 𝜇𝑖 ≤ 𝜇0} and ℋ1 = {𝑖 ∈ [𝑘] : 𝜇𝑖 > 𝜇0}. Our framework ensures that FDR(𝒮) ≤ 𝛿,
and we also want to achieve TPR(𝒮) ≥ 1 − 𝛿 with small sample complexity. Proofs of the results from this
section are in Appendices B.2 and B.3. As an aside, we also discuss what hypotheses we can test when
the reward distribution is not necessarily independent across 𝑡 ∈ N, but the conditional distribution of the
rewards still satisfy certain sub-Gaussian guarantees in Appendix G.

Our e-process of choice is the discrete mixture e-process from Howard et al. [16]:

𝐸DM
𝑖,𝑡 (𝜇0) :=

∞∑︁
ℓ=0

𝑤ℓ exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆ℓ(𝑋𝑖,𝑡𝑖(𝑗) − 𝜇0) − 𝜆2
ℓ/2

⎞⎠ , (3a)

where 𝜆ℓ := 1
𝑒ℓ+5/2 and 𝑤ℓ := 2(𝑒−1)

𝑒(ℓ+2)2 for ℓ ∈ N0. (3b)

Proposition 5. 𝐸DM
𝑖,𝑡 is an e-process when 𝜈𝑖 is 1-sub-Gaussian and 𝑖 ∈ ℋ0.

Denote ∆𝑖 ≡ 𝜇𝑖 − 𝜇0 for 𝑖 ∈ ℋ1 and ∆ ≡ min𝑖∈ℋ1 ∆𝑖. When 𝑖 ∈ ℋ0, let ∆𝑖 ≡ min𝑗∈ℋ1 𝜇𝑖 − 𝜇0 =
∆ + (𝜇𝑖 − 𝜇0). First, we recall a time-uniform bound on the sample mean ̂︀𝜇𝑡.

Fact 4 (JJ, Kaufmann et al. [23], Howard et al. [16]). Let 𝑋1, 𝑋2, . . . be i.i.d. draws from a 1-sub-Gaussian
distribution with mean 𝜇. Consider the boundaries defined in (4). Let 𝜙 be one of these boundaries. Then,

P (∃𝑡 ∈ N : |̂︀𝜇𝑡 − 𝜇| > 𝜙(𝑡, 𝛿)) ≤ 𝛿

for any 𝛿 ∈ (0, 1) if 𝜙 ∈ {𝜙0, 𝜙IS} and any 𝛿 ∈ (0, 0.1] if 𝜙 = 𝜙JJ.
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𝜙0(𝑡, 𝛿) :=

√︁
4 log(log2(2𝑡)/𝛿)

𝑡 , (4a)

𝜙JJ(𝑡, 𝛿) :=

√︁
2 log(1/𝛿)+6 log log(1/𝛿)+3 log(log(𝑒𝑡/2))

𝑡 , (4b)

𝜙IS(𝑡, 𝛿) :=

√︂
2.89 log log(2.041𝑡)+2.065 log( 4.983

𝛿 )
𝑡 . (4c)

We will use 𝜙 to refer to an arbitrary boundary from Fact 4. All of the 𝜙 are time-uniform boundaries
that yield confidence sequences for the mean. Note that 𝜙0 is generally larger than the other boundaries, so
we use 𝜙0 as the default boundary in our proofs, and we explore how different choices of 𝜙 affect empirical
performance in Appendix E.1. Now, we can define the algorithm from JJ in (5), which consists of an
exploration policy based on an upper confidence bound (UCB) of the mean reward (specified by a singleton
set ℐ𝑡 = {𝐼𝑡}) and a p-variable derived from Fact 4.

In (5a), we denote the sample mean at time 𝑡 of each arm 𝑖 ∈ [𝑘] by ̂︀𝜇𝑖,𝑡. Let 𝑓 . 𝑔 denote 𝑓 asymptotically
dominates 𝑔 i.e. there exist 𝑐 > 0 that is independent of the problem parameters such that 𝑓 ≤ 𝑐𝑔. JJ prove
the following sample complexity guarantee for their algorithm.

𝐼𝑡 = argmax𝑖∈[𝑘]∖𝒮𝑡−1
̂︀𝜇𝑖,𝑡−1 + 𝜙(𝑇𝑖(𝑡− 1), 𝛿), (5a)

𝑃𝑖,𝑡 ≡ inf{𝜌 ∈ [0, 1] : |̂︀𝜇𝑖,𝑡 − 𝜇0| > 𝜙(𝑡, 𝜌)}. (5b)

Fact 5 (From JJ). Let (𝒜𝑡) output ℐ𝑡 = {𝐼𝑡}, and let 𝐼𝑡 and 𝑃𝑖,𝑡 be specified by Alg. 5 with 𝜙 = 𝜙0. Then,
Algorithm 1 will always guarantee sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿. With at least 1 − 𝛿 probability, there will exist

𝑇 .

(︃
𝑘∑︁

𝑖=1

∆−2
𝑖 log log ∆−2

𝑖 + ∆−2
𝑖 log(𝑘/𝛿)

)︃
∧ 𝑘∆−2 log(log(∆−2)/𝛿)

such that TPR(𝒮𝑡) ≥ 1 − 𝛿 for all 𝑡 ≥ 𝑇 .

We show that we can match the sample complexity bounds of Fact 5 with e-variables.

Theorem 1. Let 𝜈𝑖 be 1-sub-Gaussian for 𝑖 ∈ [𝑘]. Set (𝒜𝑡) so 𝒜𝑡 outputs {𝐼𝑡} from (5a) for all 𝑡 ∈ N and
𝐸𝑖,𝑡 to 𝐸DM

𝑖,𝑡 . Algorithm 1 ensures sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿 and, with at least 1 − 𝛿 probability, there exists

𝑇 .

(︃
𝑘∑︁

𝑖=1

∆−2
𝑖 log log ∆−2

𝑖 + ∆−2
𝑖 log(𝑘/𝛿)

)︃
∧ 𝑘∆−2 log(log(∆−2)/𝛿)

such that TPR(𝒮𝑡) ≥ 1 − 𝛿 for all 𝑡 ≥ 𝑇 .

In addition to matching theoretical guarantees, we show in the following section that e-variables and e-BH
perform empirically as well or better than p-variables and BH through numerical simulations.

5 Numerical simulations
We perform simulations for the sub-Gaussian setting discussed in Section 4 to demonstrate that our version
of Algorithm 1 using e-variables is empirically as efficient as the algorithm of JJ, which uses p-variables
(code available here) . However, unlike JJ, our algorithm does not use a corrected level 𝛿′ based upon
the dependence assumptions among 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 to guarantee FDR is controlled at level 𝛿. We explore
additional simulations of combinatorial semi-bandit settings with dependent 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 in Appendix E
that show the benefit of using e-variables over p-variables in our framework.
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Simulation setup Let 𝜈𝑖 = 𝒩 (𝜇𝑖, 1) where 𝜇𝑖 = 𝜇0 = 0 if 𝑖 ∈ ℋ0 and 𝜇𝑖 = 1/2 if 𝑖 ∈ ℋ1. We consider 3
setups, where we set the number of non-null hypotheses to be |ℋ1| = 2, log 𝑘, and

√
𝑘, to see the effect of

different magnitudes of non-null hypotheses on the sample complexity of each method. We set 𝛿 = 0.05 and
compare 4 different methods. We compare the same two different exploration components for both e-variables
and p-variables. The first exploration component we consider is simply uniform sampling across each arm
(Uni). The second is the UCB sampling strategy described in (5a). When using BH, our formulation for
p-variables is (5b), which is the same as JJ. Like JJ, we set 𝜙 = 𝜙JJ in our simulations. When using e-BH,

we set our e-variables to 𝐸PM-H
𝑖,𝑡 :=

∏︀𝑇𝑖(𝑡)
𝑗=1 exp(𝜆𝑖,𝑡𝑖(𝑗)(𝑋𝑖,𝑡𝑖(𝑗) − 𝜇0)− 𝜆2

𝑖,𝑡𝑖(𝑗)
/2) with 𝜆𝑖,𝑡 =

√︁
2 log(2/𝛼)

𝑇𝑖(𝑡) log(𝑇𝑖(𝑡)+1) ,
which is the default choice of 𝜆𝑖,𝑡 suggested in Waudby-Smith and Ramdas [45]. We show that this is a valid
e-process in Appendix F and maintains FDR control.

Results We plot the relative performance of each method to e-BH with UCB sampling in Figure 2. For
uniform sampling, e-BH and e-variables seem to outperform BH and p-variables, although by a decreasing
margin for more arms, especially in the case where |ℋ1| = ⌊

√
𝑘⌋. For the UCB sampling algorithm, we see

that e-variables and p-variables have relatively similar performance, with the gap narrowing as the number of
arms increase as well. Thus, e-variables and e-BH empirically perform on par or better than p-variables with
regards to sample complexity. This shows that using e-variables does not require any sacrifice in performance
in simple cases where p-variables also work well. Further, e-variables do not require the same log 𝑘 correction
that p-variables need for situations where 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 are arbitrarily dependent to guarantee FDR control
at the same level. Thus, e-variables are preferable to p-variables as they are more flexible w.r.t. assumptions.

(a) |ℋ1| = 2 (b) |ℋ1| = ⌊log 𝑘⌋ (c) |ℋ1| = ⌊
√
𝑘⌋

Figure 2: Relative comparison of time 𝑡 to obtain a rejection set, 𝒮𝑡, that has a TPR(𝒮𝑡) ≥ 1 − 𝛿 and
FDR(𝒮𝑡) ≤ 𝛿 where 𝛿 = 0.05. This plot compares e-BH vs. BH for both uniform (Uni) and UCB sampling
over different numbers of arms (choices of 𝑘) and densities of non-null hypotheses (sizes of ℋ1). Time is
reported as a ratio to the time taken by UCB e-BH method. Note that the methods using e-variables perform
on par or better than methods using p-variables for both sampling strategies.

6 Conclusion
In this paper, we developed a unified framework for bandit multiple hypothesis testing. We demonstrated
that applying the e-BH procedure to stopped e-processes guarantees FDR control without assumptions on the
the dependency between 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡, exploration strategy, stopping time of the algorithm, ability to query
multiple arms, etc. In contrast, existing algorithms using BH and p-variables have FDR guarantees that vary
with the problem setting and dependence structure among the p-variables. We argued that control of the
FDR with p-variables can blow up by a factor of log 𝑘, and any p-self-consistent algorithm must decrease
its threshold for discovery correspondingly to maintain FDR control at the desired level. We provide more
detailed explanations of these observations in Appendix D.2. In addition to demonstrating the generality of
our meta-algorithm, we showed that in the standard sub-Gaussian reward setting, the instantiated algorithm
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matches the sample complexity bounds of the p-variable algorithm by JJ for achieving high TPR, and has
better practical performance than JJ’s algorithm, despite the fact that we improve JJ’s guarantees by invoking
the self-consistency results of Su [38].

The appendices have additional examples of problem settings and simulations that show the utility of
e-processes and our general framework. In fact, we can address an even more general setting where the
null hypotheses do not have a one-to-one correspondence with the arms; in other words, despite the queries
being at the arm-level, the hypotheses being tested could combine arms (for example, comparing different
arms). We also discuss the multi-agent setting where there could be multiple agents that operate the same
bandit. We avoided these scenarios in the main paper for simplicity of exposition, since there were enough
generalizations to describe in the simpler setup already.
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A Miscellaneous technicalities
Here, we collect some definitions and properties concerning p-process and supermartingales for the unfamiliar
reader, and restate a technical lemma necessary for upcoming proofs.

Lemma 1 (Lemma 8 from JJ). Let 𝑎 ∈ R𝑛
+ be a 𝑛-dimensional vector with positive real entries, and for

𝑖 = 1, . . . , 𝑛 let 𝑍𝑖 be independent random variables where

P (𝑍𝑖 ≥ 𝑡) ≤ exp(−𝑡/𝑎𝑖).

Then for any 𝛿 ∈ (0, 1),

𝑛∑︁
𝑖=1

𝑍𝑖 ≤ 5 log(1/𝛿)
𝑛∑︁

𝑖=1

𝑎𝑖.

occurs with at least probability 1 − 𝛿.
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A.1 Equivalence property of p-processes
We note the following equivalence proposition for p-processes. Lemma 3 in Howard et al. [16] and Lemmas 1
and 2 in Ramdas et al. [31] makes similar statements regarding sequential processes, but do not additionally
characterize the behavior of the infimum of a p-process.

Proposition 6. The following statements are equivalent for a discrete-time process (𝑃𝑡)𝑡≥1:

(i) (𝑃𝑡)𝑡≥1 is a p-process i.e. P (𝑃𝜏 ≤ 𝛼) ≤ 𝛼 for all (possibly infinite) 𝜏 ∈ 𝒯 and all 𝛼 ∈ (0, 1);

(ii) P (𝑃𝜏 ≤ 𝛼) ≤ 𝛼 for all finite 𝜏 ∈ 𝒯 and all 𝛼 ∈ (0, 1);

(iii) P (∃𝑡 ≥ 1 : 𝑃𝑡 ≤ 𝛼) ≤ 𝛼 for all 𝛼 ∈ (0, 1);

(iv) inf𝑡≥1 𝑃𝑡 is superuniformly distributed (its distribution is stochastically larger than uniform).

Proof. In what follows, let 𝜏𝛼 ∈ 𝒯 be defined as 𝜏𝛼 := inf{𝑡 ≥ 1 : 𝑃𝑡 ≤ 𝛼}, which is defined to be infinite if
𝑃𝑡 never drops below 𝛼.

(i)⇒(ii) is trivial by definition.
(ii)⇒(iii): Fix 𝛼 ∈ (0, 1). By (ii), we have P (𝑃𝜏𝛼∧𝑛 ≤ 𝛼) ≤ 𝛼 for all 𝑛 ≥ 1. It follows that

P (∃𝑡 ≥ 1 : 𝑃𝑡 ≤ 𝛼) = lim
𝑛→∞

P (∃𝑡 ∈ {1, . . . , 𝑛} : 𝑃𝑡 ≤ 𝛼) = lim
𝑛→∞

P (𝑃𝜏𝛼∧𝑛 ≤ 𝛼) ≤ 𝛼.

(iii)⇒(iv): For each 𝜖 > 0, since inf𝑡≥1 𝑃𝑡 ≤ 𝛼 implies 𝜏𝛼+𝜖 < ∞, we have

P
(︂

inf
𝑡≥1

𝑃𝑡 ≤ 𝛼

)︂
≤ P (𝜏𝛼+𝜖 < ∞) ≤ 𝛼 + 𝜖.

As 𝜖 > 0 is arbitrary, we get P (inf𝑡≥1 𝑃𝑡 ≤ 𝛼) ≤ 𝛼, i.e., inf𝑡≥1 𝑃𝑡 is superuniformly distributed.
(iv)⇒(i): For any 𝜏 ∈ 𝒯 and 𝛼 ∈ (0, 1), since 𝑃𝜏 ≥ inf𝑡≥1 𝑃𝑡, we have P (𝑃𝜏 ≤ 𝛼) ≤ P (inf𝑡≥1 𝑃𝑡 ≤ 𝛼) ≤ 𝛼,

thus showing that (𝑃𝑡) is a p-process.

As a direct consequence of Proposition 6, if (𝑃𝑡) is a p-process and 𝑃𝑠 is uniformly distributed on [0, 1]
for some 𝑠 ≥ 1, then we have P (𝑃𝑠 ≤ 𝑃𝑡) = 1 for all 𝑡 ≥ 1, since 𝑃𝑠 is as small as min𝑡≥1 𝑃𝑡. Therefore,
if a p-process does not always take its minimum at a deterministic point 𝑠, then 𝑃𝑠 cannot be uniformly
distributed on [0, 1]. In other words, for all deterministic 𝑡, the random variables 𝑃𝑡 are, in general, not
“precise” (i.e., uniform on [0, 1]) p-variables, but conservative ones. In contrast, the random variables 𝐸𝑡 from
an e-process (𝐸𝑡) are “precise” (i.e., have expectation 1) as soon as (𝐸𝑡) is a nonnegative martingale starting
at 1.

A.2 Nonnegative supermartingales
A real-valued process (𝑀𝑡)𝑡≥0 is a supermartingale w.r.t. a filtration (ℱ𝑡) if it satisfies:

E[𝑀𝑡|ℱ𝑡−1] ≤ 𝑀𝑡−1 for 𝑡 ∈ N. (6)

For nonnegative supermartingales, we typically assume 𝑀0 = 1 for simplicity; they possess two useful
properties. The first is the optional stopping theorem.

Fact 6 (Optional stopping theorem. Durrett [13], Ramdas et al. [31]). Let (𝑀𝑡) be a nonnegative super-
martingale w.r.t. (ℱ𝑡). Then, for any stopping time 𝜏 ∈ 𝒯 :

E[𝑀𝜏 ] ≤ 𝑀0.

The second is Ville’s inequality.

Fact 7 (Ville’s inequality). Let (𝑀𝑡) be a nonnegative supermartingale w.r.t. (ℱ𝑡). Let 𝑠 ∈ R+ be a number
in the positive reals.

P (∃𝑡 ∈ N : 𝑀𝑡 ≥ 𝑠) ≤ 𝑀0

𝑠
.

16



B Proofs

B.1 Proofs of results in Section 3.1
The proofs of Propositions 1 to 4 all follow from the application of one of Facts 1 to 3.

First, we note that (𝑃1,𝑡), . . . , (𝑃𝑘,𝑡) being p-processes implies that 𝑃1,𝑡, . . . , 𝑃𝑘,𝑡 are p-variables for all
𝑡 ∈ N. Thus, for any choice of stopping time 𝜏* ∈ 𝒯 for the algorithm, 𝑃1,𝜏* , . . . , 𝑃𝑘,𝜏* are p-variables.

Consequently, Proposition 2 for the adaptive and dependent p-variables case and Proposition 3 for the
adaptive and dependent p-variables with constrained rejection sets case follow from Fact 1 and Fact 2,
respectively.

Similarly, we note that 𝐸1,𝜏* , . . . 𝐸𝑘,𝜏* are e-variables, since (𝐸1,𝑡), . . . , (𝐸𝑘,𝑡) are e-processes. As a result,
Proposition 4 follows from Fact 3.

Now, we prove Proposition 1 in a slightly different manner than JJ, using the notion of self-consistency.

Proof of Proposition 1. Consider an arbitrary 𝑖 ∈ [𝑘]. Recall that each 𝑃𝑖,𝑡 is determined only by
𝑋𝑖,𝑡𝑖(1), . . . , 𝑋𝑖,𝑡𝑖(𝑇 (𝑖)). By independence of 𝑋𝑖,𝑡 across 𝑖 ∈ [𝑘] and 𝑡 ∈ N, we rename 𝑋𝑖,𝑡𝑖(𝑗) as 𝑋𝑖,𝑗 ,
since they are identically distributed. Thus, 𝑃𝑖,𝑡 is now constructed from 𝑋𝑖,1, . . . , 𝑋𝑖,𝑡. We perform this
transformation so we can consider 𝑃𝑖,𝑡 in the infinite-sample limit. Under our renaming, 𝒮𝜏* is the output of
running BH on 𝑃1,𝑇1(𝜏*), . . . , 𝑃𝑘,𝑇𝑘(𝜏*).

Define 𝑃 *
𝑖 := inf𝑡≥1 𝑃𝑖,𝑡. Note that 𝑃 *

𝑖 are independent p-variables across 𝑖 ∈ [𝑘] by Proposition 6
since 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 are independent for all 𝑡 ∈ N and (𝑃1,𝑡), . . . , (𝑃𝑘,𝑡) are p-processes. We can derive
self-consistency w.r.t. 𝑃 *

𝑖 as follows.

max
𝑖∈𝒮𝜏*

𝑃 *
𝑖 ≤ max

𝑖∈𝒮𝜏*
𝑃𝑖,𝑇𝑖(𝜏*) def. of 𝑃 *

𝑖

≤ |𝒮𝜏* |𝛿′

𝑘
. p-self-consistency of 𝒮𝜏*

Combined with Fact 2, we can show that FDR(𝒮𝜏*) ≤ 𝛿′ log(1 + log(1/𝛿′)).
Separately, we can also apply the FDR guarantee on the output of BH on arbitrarily dependent p-variables

from Fact 1. Consequently, we can guarantee FDR(𝒮𝜏*) ≤ 𝛿′ log(1 + log(1/𝛿′)) ∧ 𝛿′ log 𝑘. Thus, our choice of
𝛿′ implies FDR(𝒮𝜏*) ≤ 𝛿, which is our desired result.

B.2 Proof of Proposition 5
Howard et al. [16] actually specifiy a more general form for 𝜆ℓ and 𝑤ℓ for the discrete mixture e-process, 𝐸DM

𝑖,𝑡 .
Let 𝑓 be a probability density over (0, 𝜆max] and nonincreasing over that interval, 𝜆 ∈ R+ satisfy 𝜆 ≤ 𝜆max,
and 𝜂 > 1 be a step size. Howard et al. [15] define 𝜆ℓ, 𝑤ℓ as follows:

𝜆ℓ :=
𝜆

𝜂ℓ+1/2
and 𝑤𝑘 :=

𝜆(𝜂 − 1)𝑓(𝜆ℓ
√
𝜂)

𝜂ℓ+1
. (7)

Let,

𝑓LIL
𝑠 :=

(𝑠− 1)𝑠𝑠−1I {0 ≤ 𝜆 ≤ 1/𝑒𝑠}
𝜆 log𝑠 𝜆−1

,

17



for any 𝑠 > 1. We will now connect these definitions to (3b). Set 𝜆 = 1/𝑒, 𝜂 = 𝑒, and 𝑓 = 𝑓LIL
2 . Then,

𝜆ℓ =
1

𝑒ℓ+3/2
,

𝑤ℓ =
1
𝑒 (𝑒− 1)𝑓LIL

2 ( 1
𝑒ℓ+3/2 ·

√
𝑒)

𝑒ℓ+1

=
(𝑒− 1)𝑓LIL

2 ( 1
𝑒ℓ+1 )

𝑒ℓ+2

=
(𝑒− 1) 2I{ℓ≥1}

1

𝑒ℓ+1 log2(𝑒ℓ+1)

𝑒ℓ+2

=
2(𝑒− 1)I {ℓ ≥ 1}

( 1
𝑒ℓ+1 )(𝑒ℓ+2) log2(𝑒ℓ+1)

=
2(𝑒− 1)I {ℓ ≥ 1}

𝑒(ℓ + 1)2
.

By reindexing ℓ, we can redefine the variables as follows:

𝜆ℓ =
1

𝑒ℓ+5/2
and 𝑤ℓ =

2(𝑒− 1)

𝑒(ℓ + 2)2
.

To prove Proposition 5, we prove the following more general proposition which is derived from existing
results in Howard et al. [16].

Proposition 7 (Derived from equations (49) and (82) of Howard et al. [16]). Let,

𝐸𝑖,𝑡 :=
∞∑︁
ℓ=0

𝑤ℓ exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆ℓ(𝑋𝑖,𝑡𝑖(𝑗) − 𝜇0) − 𝜆2
ℓ

2

⎞⎠ .

If
∞∑︀
ℓ=0

𝑤ℓ ≤ 1, then (𝐸𝑖,𝑡) is a nonnegative supermartingale, and consequently an e-process, if the conditional

distribution 𝑋𝑖,𝑡 | ℱ𝑡−1 is 1-sub-Gaussian and E[𝑋𝑖,𝑡 | ℱ𝑡−1] ≤ 𝜇0 for all 𝑡 ∈ N.

Proof. Let

𝑀𝜆
𝑖,𝑡 := exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆(𝑋𝑖,𝑡𝑖(𝑗) − 𝜇0) − 𝜆2

2

⎞⎠ ,

where 𝜆 ∈ R. (𝑀𝑖,𝑡) is a nonnegative supermartingale because of the sub-Gaussian and bounded conditional

mean assumptions on 𝑋𝑖,𝑡. Let, 𝑤sum =
∞∑︀
ℓ=0

𝑤ℓ. Now, we show that 𝐸𝑖,𝑡 is a supermartingale:

E [𝐸𝑖,𝑡 | ℱ𝑡−1] = E

[︃ ∞∑︁
ℓ=0

𝑤ℓ𝑀
𝜆ℓ
𝑖,𝑡 | ℱ𝑡−1

]︃

=
∞∑︁
ℓ=0

𝑤ℓE
[︁
𝑀𝜆ℓ

𝑖,𝑡 | ℱ𝑡−1

]︁
≤

∞∑︁
ℓ=0

𝑤ℓ𝑀
𝜆ℓ
𝑖,𝑡−1

= 𝐸𝑖,𝑡−1.

The sole inequality is by the supermartingale property of (𝑀𝜆ℓ
𝑖,𝑡 ). Thus, we have shown our desired result.
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B.3 Proof of Theorem 1
We follow a similar path as the sample complexity proof (i.e. Theorem 2) from JJ for Theorem 1. Our goal is
to show that we reject the following set with at least 1 − 𝛿 probability:

ℛ = {𝑖 ∈ ℋ1 : ̂︀𝜇𝑖,𝑡 + 𝜙(𝑡, 𝛿) ≥ 𝜇𝑖 for all 𝑡 ∈ N}. (8)

Lemma 2. E[|ℛ|] ≥ (1 − 𝛿)|ℋ1|.

Proof. We have the following:

E[|ℛ|] =
∑︁
𝑖∈ℋ1

P (̂︀𝜇𝑖,𝑡 + 𝜙(𝑡, 𝛿) ≥ 𝜇𝑖)

≥
∑︁
𝑖∈ℋ1

P (|̂︀𝜇𝑖,𝑡 − 𝜇𝑖| ≤ 𝜙(𝑡, 𝛿))

≥ (1 − 𝛿)|ℋ1|. Fact 4

Lemma 2 shows that rejecting ℛ is sufficient to produce rejection sets that have TPR(𝒮) ≥ 1 − 𝛿. Thus,
our goal in this proof is to show a bound on 𝑇 := min{𝑡 ∈ N : ℛ ⊆ 𝒮𝑡} with at least 1 − 𝛿 probability, where
𝑇 = ∞ if ℛ ̸⊆ 𝒮𝑡 for all 𝑡 ∈ N. Note that for all 𝑡 ≥ 𝑇 , 𝒮𝑇 ⊆ 𝒮𝑡 by the way (5a) is defined — it does not
sample arms that have already been rejected.

We note that we can use any 𝜙 defined in Fact 4 in this proof and still achieve the desired result. For
simplicity, we use 𝜙 to denote 𝜙0 in this proof. First we define a notion of inverse for 𝜙. Let

𝜙−1(𝜖, 𝛿) := min{𝑡 : 𝜙(𝑡, 𝛿) ≤ 𝜖}. (9)

JJ and other work [18] show that for some absolute constant 𝑐 > 0,

𝜙−1(𝜖, 𝛿) ≤ 𝑐𝜖−2 log(log(𝜖−2)/𝛿) for all 𝜖 ∈ R+, 𝛿 ∈ (0, 1). (10)

Also, recall that 𝑓 . 𝑔 denotes 𝑓 asymptotically dominates 𝑔 i.e. there exist 𝑐 > 0 that is independent of the
problem parameters such that 𝑓 ≤ 𝑐𝑔.

We decompose 𝑇 into the number of time steps the algorithm samples a null arm, and the number of
time steps the algorithm samples a non-null arm:

𝑇 =
∞∑︁
𝑡=1

I {ℛ ̸⊆ 𝒮𝑡} =
∞∑︁
𝑡=1

I {𝐼𝑡 ∈ ℋ0,ℛ ̸⊆ 𝒮𝑡} + I {𝐼𝑡 ∈ ℋ1,ℛ ̸⊆ 𝒮𝑡} . (11)

Our first goal is to prove a sample complexity bound on
∞∑︀
𝑡=1

I {𝐼𝑡 ∈ ℋ0,ℛ ̸⊆ 𝒮𝑡}. We define the following

variables for each 𝑖 ∈ [𝑘].

𝜌𝑖 := inf{𝜌 ∈ [0, 1] : |̂︀𝜇𝑖,𝑡 − 𝜇𝑖| > 𝜙(𝑡, 𝜌) for all 𝑡 ∈ N} ∪ {1}. (12)

Lemma 3. For each 𝑖 ∈ [𝑘], P (𝜌𝑖 ≤ 𝑠) ≤ 𝑠 for 𝑠 ∈ (0, 1) i.e. 𝜌𝑖 is superuniformly distributed.

The above lemma follows directly from Fact 4. We also define a concentration bound for independent
superuniformly distributed variables.

Lemma 4. For any fixed positive reals 𝑎1, . . . , 𝑎𝑑, independent superuniformly distributed random variables
𝑟1, . . . , 𝑟𝑑, and 𝛽 ∈ (0, 1), the following event occurs with probability at least 1 − 𝛽:

𝑑∑︁
𝑖=1

𝑎𝑖 log(1/𝑟𝑖) ≤ 5 log(1/𝛽)
𝑑∑︁

𝑖=1

𝑎𝑖.
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This lemma follows directly from recognizing 𝑎𝑖 log(1/𝑟𝑖) satisfies the requirements for 𝑍𝑖 in Lemma 1.
Now, we will show that the UCB for each 𝑖 ∈ ℛ will be above 𝜇𝑖.

Lemma 5. Let 𝜈𝑖 be sub-Gaussian for each 𝑖 ∈ [𝑘]. Any algorithm with (𝒜𝑡) that outputs ℐ𝑡 = {𝐼𝑡} as
defined in (5a) has the following property:

∞∑︁
𝑡=1

I {𝐼𝑡 ∈ ℋ0,ℛ ̸⊆ 𝒮𝑡} .
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿𝜌𝑖).

Proof. The following is true for any 𝑖 ∈ ℛ and 𝑡 ∈ N:

̂︀𝜇𝑖,𝑡 + 𝜙(𝑇𝑖(𝑡), 𝛿)) ≥ 𝜇𝑖 − 𝜙(𝑇𝑖(𝑡), 𝜌𝑖) + 𝜙(𝑇𝑖(𝑡), 𝛿)) by def. of 𝜌𝑖 and ℛ
≥ 𝜇𝑖. by def. of ℛ

Thus, {ℛ ̸⊆ 𝒮𝑡} implies for any 𝑡 ∈ N:

argmax𝑖∈[𝑘]∖𝒮𝑡
̂︀𝜇𝑖,𝑡 + 𝜙(𝑇𝑖(𝑡), 𝛿)

(i)
≥ min

𝑖∈ℛ
𝜇𝑖

≥ min
𝑖∈ℋ1

𝜇𝑖, (13)

where inequality (i) is by the definition of ℛ.
In addition, we argue that the UCB for 𝑖 ∈ ℋ0 will shrink below min𝑖∈ℋ1

𝜇𝑖 quickly. For 𝑖 ∈ ℋ0, the
following is true for any 𝑡 ∈ N:

̂︀𝜇𝑖,𝑡 + 𝜙(𝑇𝑖(𝑡), 𝛿) ≤ 𝜇𝑖 + 𝜙(𝑇𝑖(𝑡), 𝜌𝑖) + 𝜙(𝑇𝑖(𝑡), 𝛿)

≤ 𝜇𝑖 + 2𝜙(𝑇𝑖(𝑡), 𝛿𝜌𝑖). (14)

Thus, {∀𝑖 ∈ ℋ0 : 𝜇𝑖 + 2𝜙(𝑇𝑖(𝑡), 𝛿𝜌𝑖) ≤ min𝑖∈ℋ1
𝜇𝑖, ℛ ̸⊆ 𝒮𝑡} =⇒ {𝐼𝑡 ∈ ℋ1} for all 𝑡 ∈ N by (13) and

(14).
Subsequently, we argue the following:

∞∑︁
𝑡=1

I {𝐼𝑡 ∈ ℋ0,ℛ ̸⊆ 𝒮𝑡} ≤
∞∑︁
𝑡=1

I

{︂
∃𝑖 ∈ ℋ0 : 𝜇𝑖 + 2𝜙(𝑇𝑖(𝑡), 𝛿𝜌𝑖) > min

𝑖∈ℋ1

𝜇𝑖,ℛ ̸⊆ 𝒮𝑡

}︂
≤

∑︁
𝑖∈ℋ0

𝜙−1(∆𝑖/2, 𝛿𝜌𝑖) 𝜇𝑖 ≤ 𝜇0 for all 𝑖 ∈ ℋ0

.
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿𝜌𝑖).

Thus, we have shown our desired result.

Now, we proceed to show a bound on
∞∑︀
𝑡=1

I {𝐼𝑡 ∈ ℋ1,ℛ ̸⊆ 𝒮𝑡}. Denote 𝜋 as an arbitrary mapping from

ℋ1 to [|ℋ1|]. Let (𝑥)+ = 𝑥 ∨ 0 for any 𝑥 ∈ R. We define additional variables as follows:

ℓ′𝑖 := (⌈log(2∆−1
𝑖 ) − 5/2⌉)+,

𝜌DM
𝑖 := min

𝑡∈N

1

exp

(︃
𝑇𝑖(𝑡)∑︀
𝑗=1

𝜆ℓ′𝑖
(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗)) − 𝜆2

ℓ′𝑖
/2

)︃ .

Lemma 6. P
(︀
𝜌DM
𝑖 ≤ 𝑠

)︀
≤ 𝑠 for 𝑠 ∈ (0, 1) i.e. 𝜌DM

𝑖 is superuniformly distributed for each 𝑖 ∈ ℋ1.
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Proof. First, we prove an underlying process is a nonnegative supermartingale. Let

𝑀𝑡 = exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆ℓ′𝑖
(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗)) − 𝜆2

ℓ′𝑖
/2

⎞⎠ .

Assume that arm 𝑖 is selected at time 𝑡 — otherwise the supermartingale property is directly satisfied.

E[𝑀𝑡 | ℱ𝑡−1] = E

⎡⎣exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆ℓ′𝑖
(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗)) − 𝜆2

ℓ′𝑖
/2

⎞⎠ | ℱ𝑡−1

⎤⎦
= E

[︁
exp

(︁
𝜆ℓ′𝑖

(𝜇𝑖 −𝑋𝑖,𝑡) − 𝜆2
ℓ′𝑖
/2

)︁
| ℱ𝑡−1

]︁
exp

⎛⎝𝑇𝑖(𝑡−1)∑︁
𝑗=1

𝜆ℓ′𝑖
(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗)) − 𝜆2

ℓ′𝑖
/2

⎞⎠
≤ 𝑀𝑡−1,

where the final inequality holds because 𝑋𝑖,𝑡 are i.i.d. across 𝑡 ∈ N, have mean 𝜇𝑖, and are 1-sub-Gaussian.
Thus, 𝜌DM

𝑖 is a superuniform random variable by applying Ville’s inequality to (𝑀𝑡).

Proposition 8 (Growth of 𝐸DM
𝑖,𝑡 ). When 𝑖 ∈ ℋ1 and 𝜈𝑖 is 1-sub-Gaussian,

log𝐸𝑖,𝑡 & ∆2
𝑖𝑇𝑖(𝑡) − log log(∆−2

𝑖 ) − log(1/𝜌DM
𝑖 ).

Proof. We show the following lower bound on 𝐸DM
𝑖,𝑡 :

𝐸DM
𝑖,𝑡 =

∞∑︁
ℓ=0

𝑤ℓ exp(𝑇𝑖(𝑡)(𝜆ℓ∆𝑖 − 𝜆2
ℓ)) exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆2
ℓ/2 − 𝜆ℓ(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗))

⎞⎠
≥ 𝑤ℓ′𝑖

exp(𝑇𝑖(𝑡)(𝜆ℓ′𝑖
∆𝑖 − 𝜆2

ℓ′𝑖
)) exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆2
ℓ′𝑖
/2 − 𝜆ℓ′𝑖

(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗))

⎞⎠
≥ exp

(︂
1

4𝑒
∆2

𝑖𝑇𝑖(𝑡) − log(1/𝑤ℓ′𝑖
) − log(1/𝜌DM

𝑖 )

)︂
. by def. of ℓ′𝑖 and 𝜌DM

𝑖

Thus, plugging in 𝑤ℓ′𝑖
, we get our desired result.

Proof of Theorem 1. By Proposition 8,

𝑇𝑖(𝑡) & ∆−2
𝑖 log(𝜀 log(∆−2

𝑖 )/𝜌DM
𝑖 )

implies 𝐸𝑖,𝑡 ≥ 𝜀 for 𝜀 > 0.
Now, we can derive the following bound:

∞∑︁
𝑡=1

I {ℛ ̸⊆ 𝒮𝑡} =
∞∑︁
𝑡=1

I {𝐼𝑡 ∈ ℋ0,ℛ ̸⊆ 𝒮𝑡} +
∞∑︁
𝑡=1

I {𝐼𝑡 ∈ ℋ1,ℛ ̸⊆ 𝒮𝑡}

.
∑︁
𝑖∈ℋ0

∆−2
𝑖 log log(∆−2

𝑖 ) + ∆−2
𝑖 log(1/𝜌𝑖) + ∆−2

𝑖 log(1/𝛿)

+ max
𝜋

∑︁
𝑖∈ℋ1

∆−2
𝑖 log log(∆−2

𝑖 ) + ∆−2
𝑖 log(1/𝜌DM

𝑖 ) + ∆−2
𝑖 log(𝑘/𝜋(𝑖)𝛿). by Lemma 5
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Algorithm 2: An generic algorithm that uses a BAI subroutine to find a best arm that is not in
the rejection set for the algorithm to then repeatedly sample and eventually reject.
Input: A BAI algorithm ℬ that takes in 𝐵 ⊆ [𝑘], and a history of samples and initial randomness

𝐷𝑡(𝐵) := 𝑈 ∪ {(𝑖, 𝑗,𝑋𝑖,𝑗) : 𝑗 ≤ 𝑡, 𝑖 ∈ ℐ𝑗 ∩𝐵}. At each step, ℬ outputs a superarm ℐ ∈ 𝒦 to
sample next, or a best arm 𝑖 ∈ 𝐵. Let 𝛿 ∈ (0, 1) be the level of FDR control and 𝛿′ ∈ (0, 1) be
the corrected level for p-variables. Let (𝑒𝑖,𝑡) and (𝑝𝑖,𝑡) be realized values of e-processes and
p-processes, respectively, for each 𝑖 ∈ [𝑘]. Let 𝜏* ∈ 𝒯 be the stopping time for the algorithm.

Initialize 𝒮0 := ∅
Initialize bestarm := none
for 𝑡 ∈ 1, . . . , do

𝐵 := [𝑘] ∖ 𝒮𝑡−1

if bestarm is none or bestarm ∈ 𝒮𝑡−1 then
ℐ𝑡 := ℬ(𝐵,𝐷𝑡−1(𝐵))
if ℬ(𝐵,𝐷𝑡−1(𝐵)) terminated with best arm 𝐼𝑡 then bestarm := 𝐼𝑡;

else
ℐ𝑡 := {bestarm} (or an arbitrary ℐ ∈ 𝒦 such that bestarm ∈ 𝒦).

end
Update e-process or p-process for each queried arm not in 𝒮𝑡−1.

𝒮𝑡 :=

{︃
BH[𝛿′](𝑝1,𝑡, . . . , 𝑝𝑘,𝑡) or arbitrary p-self-consistent set if using p-variables
eBH[𝛿](𝑒1,𝑡, . . . , 𝑒𝑘,𝑡) or arbitrary e-self-consistent set if using e-variables

if 𝜏* = 𝑡 then stop and return 𝒮𝑡;
end

Recall that 𝜌𝑖, by Lemma 3, and 𝜌DM
𝑖 , by Lemma 6, are superuniform random variables that are

independent across 𝑖 ∈ [𝑘] and 𝑖 ∈ ℋ1, respectively. Consequently, we can apply Lemma 4 at level 𝛽 = 𝛿/2 to
𝜌𝑖 for 𝑖 ∈ [𝑘] and 𝜌DM

𝑖 for 𝑖 ∈ ℋ1. Then, the following happens with at least 1 − 𝛿 probability:

∞∑︁
𝑡=1

I {ℛ ̸⊆ 𝒮𝑡} .
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿)

+ max
𝜋

∑︁
𝑖∈ℋ1

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿) + ∆−2
𝑖 log(𝑘/𝜋(𝑖)).

We can derive two different bounds. The first is using the fact that
|ℋ1|∑︀
𝑖=1

log(𝑘/𝑖) ≤ 𝑘. As a result,

∞∑︁
𝑡=1

I {ℛ ̸⊆ 𝒮𝑡} . 𝑘∆−2 log(log(∆−2)/𝛿).

The second comes from dropping the 𝜋(𝑖) term, which is as follows:

∞∑︁
𝑡=1

I {ℛ ̸⊆ 𝒮𝑡} .
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿) +
∑︁
𝑖∈ℋ1

∆−2
𝑖 log(𝑘 log(∆−2

𝑖 )/𝛿).

Thus, we have shown both sample complexity bounds as desired.

C Generic algorithms for (𝒜𝑡)

We propose two generic algorithms that can be used for the exploration component in Algorithm 1 regardless
of the type of hypotheses tested or what the joint distribution of 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 is. For simplicity, we assume
that the algorithm can always sample each arm separately, i.e. {{1}, . . . , {𝑘}} ⊆ 𝒦.
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Algorithm 3: An generic algorithm applicable to any combinatorial bandit and set of hypotheses
that utilizes the evidence itself (i.e. p-variables or e-variables) to select arms to sample.
Input: Let 𝛿 ∈ (0, 1) be the level of FDR control and 𝛿′ ∈ (0, 1) be the corrected level for p-variables.

(𝑒𝑖,𝑡) and (𝑝𝑖,𝑡) be realized values of e-processes and p-processes, respectively, for each 𝑖 ∈ [𝑘].
Let 𝜏* ∈ 𝒯 be the stopping time for the algorithm.

Initialize 𝒮0 := ∅
Initialize 𝑒𝑖,0 = 1 or 𝑝𝑖,0 = 1 for all 𝑖 ∈ [𝑘]
for 𝑡 ∈ 1, . . . , do

if 𝑡 ≤ 𝑘 then
𝐼𝑡 := 𝑡
ℐ𝑡 := {𝐼𝑡} or an arbitrary ℐ ∈ 𝒦 where 𝐼𝑡 ∈ ℐ

else

𝐼𝑡 ∈

{︃
argmin𝑖∈[𝑘]∖𝒮𝑡−1

𝑝𝑖,𝑡−1 if using p-variables
argmax𝑖∈[𝑘]∖𝒮𝑡−1

𝑒𝑖,𝑡−1 if using e-variables
(an arbitrary element of argmin/argmax).

ℐ𝑡 := {𝐼𝑡} or an arbitrary ℐ ∈ 𝒦 where 𝐼𝑡 ∈ ℐ
end
Update e-process or p-process for each queried arm not in 𝒮𝑡−1.

𝒮𝑡 :=

{︃
BH[𝛿′](𝑝1,𝑡, . . . , 𝑝𝑘,𝑡) or arbitrary p-self-consistent set if using p-variables
eBH[𝛿](𝑒1,𝑡, . . . , 𝑒𝑘,𝑡) or arbitrary e-self-consistent set if using e-variables

if 𝜏* = 𝑡 then stop and return 𝒮𝑡;
end

Reduction to best arm identification (BAI) The first relies on having access to a best arm identification
(BAI) algorithm. BAI is well studied problem, and there exist many algorithms for it in both the standard
bandit setting [1, 22, 18, 23] and combinatorial bandit settings [12, 10, 20]. A BAI algorithm returns the “best
arm” i.e. the arm with the highest mean reward, with high probability. Thus, we can employ a BAI algorithm
as a subroutine to repeatedly find the best arm out of arms not in the rejection set, and then repeatedly
sample that best arm until it is rejected. Algorithm 2 formulates an algorithm using a BAI subroutine
that fits the meta-algorithm introduced in Algorithm 1 . Consequently, we can immediately have access to
algorithms for multiple testing that have non-trivial exploration components for a wide variety of settings.

Largest e-process (or smallest p-process) If no apparent exploration strategy exists, we can always
select the arm that currently has the most evidence for rejection, but has not yet been rejected. Algorithm 3
illustrates this algorithm — our exploration strategy is to simply pick the superarms that contains the arm
that already has the “most” evidence (largest e-value or smallest p-value). Thus, simply having e-variables or
p-variables for the hypotheses we are testing can be used to inform the sampling strategy.

Both of the aforementioned algorithms guarantee FDR control due to being instances of Algorithm 1.

Proposition 9. Algorithms 2 and 3 guarantee that sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿.

As a result, we always have a default choice of exploration component if we are unaware of any domain
specific strategies for sampling.

D Extensions on the bandit setting
In this section, we consider some special cases and extensions on the bandit settings. This includes settings
involving streaming data, constrained rejection sets, multiple agents, and hypotheses involving multiples arms.
Critically, we show how our framework can be easily adaptable to each of these settings to still maintain
valid FDR guarantees.
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D.1 Streaming data setting
A unique instance of the combinatorial bandits is the streaming data setting, where the algorithm has access
to the all rewards at each time step. Instead of choosing a sampling policy, the algorithm can choose a
stopping time 𝜏𝑖 for each arm 𝑖 ∈ [𝑘] that marks when the algorithm will cease observing arm 𝑖. Although
𝑋1,𝑡, . . . , 𝑋𝑘,𝑡 may be arbitrarily dependent, Algorithm 1 with e-variables can still use all the observations
from each arm at each time step. This is because e-BH on e-variables maintains the same FDR control
irrespective of dependence structure. Thus, we can propose a simple strategy in Algorithm 4 that stops
the monitoring of an arm once that arm has been rejected by e-BH, and can limit the amount of time
between rejections or total time run before the algorithm stops. By Proposition 4, we have the following
FDR guarantee.

Proposition 10. Algorithm 4 ensures sup𝜏∈𝒯 FDR(𝒮*
𝜏 ) ≤ 𝛿.

Bartroff and Song [5] also study multiple testing in the streaming data setting, and prove FDR guarantees
similar to Proposition 10 for an algorithm that is virtually identical to Algorithm 4 with p-variables and BH.
A key difference between their results and ours is that they use test statistics in their algorithm instead of
p-variables, and make assumptions about the power of the test statistics that also allow them to provide
guarantees about the false negative rate i.e. the expected proportion of hypotheses that are not rejected which
are true discoveries. Thus, our framework for FDR control subsumes existing methods for the streaming
setting. Other error metrics such as family-wise error rate and probabilistic bounds on the FDP have also
been studied in the sequential setting [3, 4, 2].

Algorithm 4: An algorithm for monitoring in the streaming data setting. This algorithm stops
when the maximum time 𝑡max has been reached, or more than 𝑡gap steps have passed since the last
rejection. Once an arm is added to 𝒮𝑡, the algorithm stops monitoring it.
𝒮0 = ∅
𝑡prev.rejection = 0
for 𝑡 ∈ 1, . . . , 𝑡max do

ℐ𝑡 := [𝑘] ∖ 𝒮𝑡−1

𝒮𝑡 :=

{︃
eBH[𝛿](𝑒1,𝑡, . . . , 𝑒𝑘,𝑡) if using e-variables
BH[𝛿′](𝑝1,𝑡, . . . , 𝑝𝑘,𝑡) if using p-variables

if 𝑡− 𝑡prev.rejection > 𝑡gap or 𝒮𝑡 = [𝑘] then return 𝒮𝑡;
end
return 𝒮𝑡

D.2 Structured rejection sets
Structured rejection sets arise in problems where there is a fixed hierarchy that restrict the sets of hypotheses
that can be rejected e.g. hypothesis 2 can only be rejected if hypothesis 1 is rejected also. Recent work in
multiple testing with FDR control has studied settings with general structural constraints [25] and when the
constraints have been restricted to form a directed acyclic graph (DAG) [30]. A DAG constraint requires
all predecessors of a hypothesis in the DAG to be rejected before the hypothesis itself can be rejected.
Thus, the algorithm does not necessarily output the result of BH or e-BH, but rather a p-self-consistent or
e-self-consistent set, respectively. Table 2 illustrates the FDR guarantees for p-variables in the structured
setting for different dependence relationsips between 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡. In case with adaptive (𝒜𝑡) and 𝜏* when
𝑋1,𝑡 . . . , 𝑋𝑘,𝑡 are independent — the guarantee in that setting remains unchanged due to the proof of FDR
control already being based upon the fact that the output of BH was p-self-consistent to 𝑃 *

1 , . . . , 𝑃
*
𝑘 . Similarly,

e-variables still do not pay a penalty when moving from e-BH to an arbitrary e-self-consistent set. The FDR
when using e-variables remains below 𝛿 after setting 𝛼 = 𝛿.

We show an example in Figure 3 of a set of hypotheses in a DAG structure. Thus, a hypothesis can only
be rejected if its predecessors in the DAG are also rejected. We compare the output of BH, e-BH, and both
the largest e-self-consistent set and p-self-consistent set that respect the DAG constraints. The e-values are
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Table 2: FDR control guaranteed by an arbitrary p-self-consistent set, and the 𝛿′ to ensure 𝛿 control of FDR
in Algorithm 1 under different dependence structures and adaptivity of (𝒜𝑡). Adaptive and non-adaptive
strategies no longer have different guarantees when outputting a p-self-consistent set. On the other hand, the
FDR control of an e-self-consistent set remains unchanged at 𝛼 = 𝛿.

Dependence of 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡

Adaptivity of
independent arbitrarily dependent

(𝒜𝑡) and 𝜏*

adaptive FDR(𝒮) ≤ 𝛼((1 + log(1/𝛼)) ∧ log 𝑘) FDR(𝒮) ≤ 𝛼 log 𝑘

non-adpative 𝛿′ = 𝑐𝛿 ∨ (𝛿/ log 𝑘) (Prop. 1) 𝛿′ = 𝑐𝛿/ log 𝑘

calculated assuming that the p-variables are reciprocals of e-variables. We assume the p-variables are all
arbitrarily dependent. The largest e-self-consistent set and the largest p-self-consistent set are simply the
largest subset of e-BH and BH, respectively, that satisfies the DAG constraints.

D.3 Multiple agents
There are many scenarios where multiple agents are interacting with the same bandit and we hope to have the
agents cooperatively accumulate evidence. For example, a research group could be interested in resuming the
study of a hypothesis that previous researchers have run experiments on, and would like to combine existing
evidence with the new evidence they collect from their own experiments. A cooperative situation could also
arise when there are multiple groups that each work on a subset of some overarching set of hypotheses —
the groups can combine the evidence they have for each hypothesis. In these cases, the evidence shared,
either from previous studies or concurrent collaborators, might only be in the form of an e-value or p-value —
the actual samples may be obfuscated for privacy reasons. Thus, each of the scenarios require the merging
of multiple statistics (from each agent) into a single statistic representing the total amount of evidence for
rejecting a hypothesis.

Assume we have 𝑚 agents and let 𝐸1, . . . , 𝐸𝑚 denote the e-variables all testing the same hypothesis. If the
e-variables are all independent, we can define an ie-merging function (outputs an e-variable from independent
e-variables) 𝑓prod as follows:

𝑓prod(𝐸1, . . . , 𝐸𝑚) :=
𝑚∏︁
𝑖=1

𝐸𝑖.

Proposition 11. If 𝐸1, . . . , 𝐸𝑚 are independent e-variables, then 𝑓prod(𝐸1, . . . , 𝐸𝑚) is also an e-variable.

The above proposition follows from the fact that the expectation of the product is the product of
expectation for independent random variables.

If 𝐸1, . . . 𝐸𝑚 are dependent, then we can define the following e-merging function (outputs an e-variable
from arbitrarily dependent e-variables):

𝑓mean(𝐸1, . . . , 𝐸𝑚) :=
1

𝑚

𝑚∑︁
𝑖=1

𝐸𝑚.

Proposition 12. If 𝐸1, . . . , 𝐸𝑚 are arbitrarily dependent e-variables, then 𝑓mean(𝐸1, . . . , 𝐸𝑚) is also an
e-variable.

Vovk and Wang [41] show that the set of functions corresponding to all convex combinations of 𝑓mean

and 1 are the only admissible e-merging functions in the class of all symmetric e-merging functions. They
also show a weaker sense of dominance for 𝑓prod — they prove it outputs a larger e-value than any other
symmetric ie-merging function if all the input e-values are at least 1. Thus, e-variables can be merged in a
relatively simple fashion without many assumptions.
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Figure 3: Example set of p-values for hypotheses that have a DAG constraint upon them and rejection sets
that ensure FDR(𝒮) ≤ 𝛿 = 0.05. We assume the p-variables are arbitrarily dependent, and are reciprocals of
e-variables for the sake of comparing e-variable vs. p-variable procedures. The e-self-consistent and p-self-
consistent rejection sets are the largest such sets that satisfy the FDR guarantee and the DAG constraints.
The e-BH and BH rejection sets violate the DAG constraints, i.e. they are not valid rejection sets, but they
do maintain FDR(𝒮) ≤ 𝛿. The largest valid e-self-consistent rejection set and p-self-consistent rejection set
are simply the largest subsets that satisfy the DAG constraints of e-BH and BH, respectively.

On the other hand, merging p-variables is difficult. When the p-variables are independent, Birnbaum
[8] show that any valid merging function which is monotonic w.r.t. to the p-values is admissible. When the
p-variables are arbitrarily dependent, Vovk et al. [43] prove that there are also many admissible symmetric
p-merging functions. Consequently, the p-variable picture is much less clear about how to optimally merge
p-variables, particularly when there is arbitrary dependence among them. To illustrate these e-merging/ie-
merging functions can be used in a bandit setting, we consider an example multi-agent problem where many
research groups are submitting studies to the same journal.

D.3.1 Example: controlling the FDR of results in a journal

We consider a situation where the editors of a journal are interested in guaranteeing the accuracy of the results
published within the journal. Specifically, they aim to ensure FDR control on the discoveries within the
papers accepted to the journal. The journal requires that each study that is submitted is also accompanied
by an e-value. Since many groups can be testing the same hypothesis, the journal can use the aforementioned
merging techniques to combine the e-values reported by different groups and produce a valid, aggregate
e-variable.

Formalizing the multi-agent setup The reward of the 𝑖th arm on the 𝑡th day for the ℓth agent is
denoted as 𝑋

(ℓ)
𝑖,𝑡 for all 𝑡, ℓ ∈ N and 𝑖 ∈ [𝑘]. We let the index for agents, ℓ, be in N to allow for arbitrarily

large, but finite, number of agents at each time step. We let the joint distribution of 𝑋
(ℓ)
1,𝑡 , . . . , 𝑋

(ℓ)
𝑘,𝑡 be

identically distributed across ℓ, 𝑡 ∈ N. Consequently, the rewards 𝑋
(ℓ)
1,𝑡 , . . . , 𝑋

(ℓ)
𝑘,𝑡 corresponding to each agent

ℓ are identical in a marginal sense across all ℓ ∈ N. However, there can be arbitrary dependencies between the

26



Figure 4: An illustration of how 𝑒𝑖,𝑡 changes in relation to each 𝑒
(ℓ)
𝑖,𝑡 for a case where ℓ = 3 in Algorithm 5.

We see that 𝑒𝑖,𝑡 and 𝑒
(1)
𝑖,𝑡 are identical up to 𝜏 start𝑖,2 − 1, where agent 2 begins to sample arm 𝑖. Agent 2’s

process starts at 𝑒𝑖,𝜏start
𝑖,2 −1. Similarly, Agent 3’s process starts at 𝑒𝑖,𝜏start

𝑖,3 −1 when it starts to sample 𝑖 as well.

Validity of Algorithm 5 arises from the fact that each new agent ℓ has its own 𝑒
(ℓ)
𝑖,𝑡 scaled by the 𝑒𝑖,𝑡 that has

been achieved already.

rewards of different agents. Thus, we allow for a setting where, for each 𝑖 ∈ [𝑘] and 𝑡 ∈ N, 𝑋(ℓ)
𝑖,𝑡 is the same

reward across all ℓ ∈ N, and a setting where 𝑋
(ℓ)
𝑖,𝑡 are independent across ℓ ∈ N. Each agent ℓ ∈ N outputs

ℐ(ℓ)
𝑡 ∈ 𝒦 ∪ {∅} for each 𝑡 ∈ N. Let the set of agents (e.g. set of studies) on day 𝑡 that are testing hypothesis 𝑖

be 𝐴𝑖,𝑡 for each 𝑡 ∈ N and 𝑖 ∈ [𝑘]. Critically, we require that 𝐴𝑖,𝑡 be of finite cardinality almost surely and
predictable w.r.t. the new canonical filtration (𝒢𝑡). We define the canonical filtration for the multi-agent
setting as follows:

𝒢𝑡 := 𝜎(𝑈 ∪ {(𝑖, 𝑠, ℓ,𝑋
(ℓ)
𝑖,𝑠 ) : 𝑖 ∈ ℐ(ℓ)

𝑠 , 𝑠 ≤ 𝑡, ℓ ∈ 𝐴𝑖,𝑠}).

We denote the e-process of the ℓth agent for hypothesis 𝑖 to be (𝐸
(ℓ)
𝑖,𝑡 ), where 𝐸

(ℓ)
𝑖,𝑡 = 1 if ℓ ̸∈ 𝐴𝑖,𝑡. Implicitly,

there exists a stopping time 𝜏 start𝑖,ℓ w.r.t. (𝒢𝑡) that denotes the time when the ℓth agent begins testing the 𝑖th
hypothesis for ℓ ∈ N and 𝑖 ∈ [𝑘] (i.e. the time of the first sample of arm 𝑖 by agent ℓ). Algorithm 5 explicitly
formulates the algorithm for dealing with e-values coming from multiple agents.

Figure 4 illustrates how 𝑒𝑖,𝑡 behaves w.r.t. to the 𝑒
(ℓ)
𝑖,𝑡 of each agent in Algorithm 5. Algorithm 5 uses

a merging approach that is in between 𝑓prod and 𝑓mean. Intuitively, we know the rewards across 𝑡 ∈ N are
independent, and consequently we can merge e-values by taking the product. When merging across different
ℓ ∈ N, 𝑖 ∈ [𝑘], however, there may be arbitrary dependence between rewards. Consequently, we must take the
mean of those e-values. From a betting perspective as discussed in Shafer [33], we can view our algorithm as
splitting the current wealth (current 𝑒𝑖,𝑡) evenly across each agent whenever a new agent is introduced before
allowing each agent to continue or begin its own strategy. Regardless, we can show the following guarantee
concerning Algorithm 5.

Proposition 13. Let (𝐸
(ℓ)
𝑖,𝑡 ) be upper bounded by some nonnegative supermartingale (𝑀

(ℓ)
𝑖,𝑡 ) w.r.t. (𝒢𝑡) for

𝑖 ∈ [𝑘], ℓ ∈ N where 𝐸
(ℓ)
𝑖,𝑡 = 𝑀

(ℓ)
𝑖,𝑡 = 1 for 𝑡 < 𝜏 start𝑖,ℓ . Algorithm 5 ensures that sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿.

Proof. Define 𝑀𝑖,𝑡 := 1
|𝐴𝑖,𝑡|

∑︀
ℓ∈𝐴𝑖,𝑡

𝑀
(ℓ)
𝑖,𝑡 ·𝑀𝑖,𝜏start

𝑖,ℓ −1 when 𝑖 ̸∈ 𝒮𝑡−1 and 𝑀𝑖,𝑡 := 𝑀𝑖,𝑡−1 otherwise. We can see
that 𝑀𝑖,𝑡 upper bounds 𝐸𝑖,𝑡 for all 𝑡 ∈ N, 𝑖 ∈ [𝑘]. We will show that (𝑀𝑖,𝑡) is a nonnegative supermartingale.
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Algorithm 5: An algorithm for aggregating evidence in the form of e-values from many agents.
The algorithm takes the mean of the e-values for each hypothesis on each day and applies an
e-self-consistent procedure to these aggregated e-values to maintain valid FDR control at 𝛿.

Input: A level of control 𝛿 in (0, 1). (𝑒
(ℓ)
𝑖,𝑡 ) are the realized values of an e-process for ℓ ∈ N, 𝑖 ∈ [𝑘].

Initialize 𝑒𝑖,0 := 1 for 𝑖 ∈ [𝑘]
𝒮0 := ∅
for 𝑡 ∈ 1, . . . do

Receive new results from new or existing agents and update 𝑒
(𝑗)
𝑖,𝑡 for 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑎𝑡]

for 𝑖 ∈ [𝑘] do

𝑒𝑖,𝑡 :=

⎧⎨⎩
1

|𝐴𝑖,𝑡|
∑︀

𝑗∈𝐴𝑖,𝑡

𝑒𝑖,𝜏start
𝑖,𝑗 −1 · 𝑒

(ℓ)
𝑖,𝑡 if 𝑖 ̸∈ 𝒮𝑡−1

𝑒𝑖,𝑡−1 else
.

end
𝒮𝑡 := eBH[𝛿](𝑒1,𝑡, . . . , 𝑒𝑘,𝑡) or an arbitrary e-self-consistent set.

end

Assume that we have not rejected the 𝑖th hypothesis yet, since otherwise 𝑀𝑖,𝑡 = 𝑀𝑖,𝑡−1, which satisfies the
supermartingale property.

E[𝑀𝑖,𝑡 | 𝒢𝑡−1] = E

⎡⎣ 1

|𝐴𝑖,𝑡|
∑︁

ℓ∈𝐴𝑖,𝑡

𝑀
(ℓ)
𝑖,𝑡 ·𝑀𝑖,𝜏start

𝑖,ℓ −1 | 𝒢𝑡−1

⎤⎦
=

1

|𝐴𝑖,𝑡|

⎛⎝ ∑︁
ℓ∈𝐴𝑖,𝑡−1

E
[︁
𝑀

(ℓ)
𝑖,𝑡 ·𝑀𝑖,𝜏start

𝑖,ℓ −1 | 𝒢𝑡−1

]︁
+

∑︁
ℓ∈𝐴𝑖,𝑡∖𝐴𝑖,𝑡−1

E
[︁
𝑀

(ℓ)
𝑖,𝑡 ·𝑀𝑖,𝑡−1 | 𝒢𝑡−1

]︁⎞⎠
=

1

|𝐴𝑖,𝑡|

⎛⎝ ∑︁
ℓ∈𝐴𝑖,𝑡−1

𝑀
(ℓ)
𝑖,𝑡 ·𝑀𝑖,𝜏start

𝑖,ℓ −1 +
∑︁

ℓ∈𝐴𝑖,𝑡∖𝐴𝑖,𝑡−1

E
[︁
𝑀

(ℓ)
𝑖,𝑡 | 𝒢𝑡−1

]︁
·𝑀𝑖,𝑡−1

⎞⎠
≤ 1

|𝐴𝑖,𝑡|

⎛⎝ ∑︁
ℓ∈𝐴𝑖,𝑡−1

𝑀
(ℓ)
𝑖,𝑡−1 ·𝑀𝑖,𝜏start

𝑖,ℓ −1 +
∑︁

ℓ∈𝐴𝑖,𝑡∖𝐴𝑖,𝑡−1

𝑀𝑖,𝑡−1

⎞⎠
=

1

|𝐴𝑖,𝑡|
(|𝐴𝑖,𝑡−1| ·𝑀𝑖,𝑡−1 + |𝐴𝑖,𝑡 ∖𝐴𝑖,𝑡−1| ·𝑀𝑖,𝑡−1)

= 𝑀𝑖,𝑡−1.

The sole inequality is because (𝑀
(ℓ)
𝑖,𝑡 ) is a supermartingale, and 𝑀

(ℓ)
𝑖,𝑡 = 1 when 𝑡 < 𝜏 start𝑖,ℓ . Thus,

sup𝜏∈𝒯 E[𝐸𝑖,𝜏 ] ≤ sup𝜏∈𝒯 E[𝑀𝑖,𝜏 ] ≤ 1 where the final inequality is by optional stopping. Consequently,
(𝐸𝑖,𝑡) are e-processes for 𝑖 ∈ [𝑘] so sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿 by Fact 3, which achieves our desired result.

Nonnegative martingales play a central role in characterizing admissible e-processes — every e-process is
upper bounded by a nonnegative martingale (Corollary 24; Ramdas et al. [31]). Thus, Proposition 13 proves
that if (𝐸

(ℓ)
𝑖,𝑡 ) are all e-processes for 𝑖 ∈ [𝑘], ℓ ∈ N, then FDR control is maintained in the multi-agent for any

stopping time.

D.4 Hypotheses involving multiple arms
In the current setting, we have only considered hypotheses that are tied to a single arm i.e. hypothesis 𝑖 is
concerned solely with 𝜈𝑖 for all 𝑖 ∈ [𝑘]. We also might be concerned with hypotheses that involve multiple
arms. For example, we could be interested in the hypothesis that the reward distributions are exchangeable
across arms [40, 42] i.e. any permutation of the arms is the same distribution, or the hypothesis that the
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means of two specific reward distributions are the same. Naturally, if each hypothesis is not restricted to
being involved with only a single arm, we can consider more (or fewer) hypotheses than the number of arms.

Thus, we can denote 𝑘 to be the total number of hypotheses and 𝑛 to be the number of arms. Algorithm 6
specifies a meta-algorithm similar to Algorithm 1 that maintains FDR control in multi arm hypotheses. We
simply maintain an e-process or p-process for each hypothesis. An important difference between hypotheses
involving multiple arms setting and the standard setting is that the independence of 𝑋1,𝑡, . . . , 𝑋𝑛,𝑡 is no
longer sufficient to ensure all the e-variables or p-variables are dependent only through the exploration policy
and stopping time. The dependence structure within the e-variables or p-variables is based not only upon
the dependence of 𝑋1,𝑡, . . . , 𝑋𝑛,𝑡, but also whether the hypothesis tests themselves have any dependence
among each other e.g. two hypotheses might involve the same arm. Thus, for p-variables, we may require
𝛿′ = 𝛿/ log 𝑘 even when the reward distributions are independent.

Algorithm 6: A meta-algorithm that ensures FDR control when hypotheses can involve multiple
arms in the bandit setting.
Input: Exploration component (𝒜𝑡), stopping rule 𝜏*, desired level of FDR control 𝛿 ∈ (0, 1). Set

𝐷0 = ∅.
for 𝑡 in 1 . . . do

ℐ𝑡 := 𝒜𝑡(𝐷𝑡−1) ⊆ [𝑛]
Obtain rewards for each 𝑖 ∈ ℐ𝑡, and update data 𝐷𝑡 := 𝐷𝑡−1 ∪ {(𝑖, 𝑡,𝑋𝑖,𝑡) : 𝑖 ∈ ℐ𝑡}.
Update e-process or p-process that relate to any of the queried arms.

𝒮𝑡 :=

{︃
BH[𝛿/ log 𝑘](𝑝1,𝑡, . . . , 𝑝𝑘,𝑡) or arbitrary p-self-consistent set if using p-variables
eBH[𝛿](𝑒1,𝑡, . . . , 𝑒𝑘,𝑡) or arbitrary e-self-consistent set if using e-variables

if 𝜏* = 𝑡 then stop and return 𝒮𝑡;
end

Proposition 14. Algorithm 6 outputs 𝒮𝑡 for all 𝑡 ∈ N such that sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿.

E-variables in this setting have potentially larger power over p-variables than in the standard setting. This
is because the number of hypotheses, 𝑘, is no longer tied to the number of arms, 𝑛. For example, 𝑘 ≈ 𝑛2/2 if
there was a hypothesis for each pair of arms in the bandit. Then, using p-variables in Algorithm 6 would
require a correction of approximately 2 log 𝑘. In contrast, p-variables and BH require no more than a log 𝑘
correction in the standard setting. Consequently, allowing for multiple arm hypotheses further highlights the
benefit of e-variables over p-variables when dealing with arbitrarily dependent statistics.

E Additional simulations
In this section, we perform additional simulations to empirically verify our theoretical results. We test the
performance of different choices of p-variables against e-variables in the standard bandit setting. We also
provide simulations for the combinatorial bandit setting and compare p-variable methods with different
assumptions against an e-variable method.

E.1 Testing against different choices of p-variables
We consider two additional choices of p-variables to compare with our e-variable method and the p-variable
from JJ discussed in Section 5. One is simply 𝑃 IPM-H

𝑖,𝑡 := 1/𝐸PM-H
𝑖,𝑡 , which we will call Inverse PM-H (IPM-H).

The other, which we call the IS p-variable, which is defined as follows by setting 𝜙 = 𝜙IS in (5b).

𝑃 IS
𝑖,𝑡 := inf{𝛽 ∈ [0, 1] : |̂︀𝜇𝑖,𝑡 − 𝜇0| > 𝜙IS(𝑡, 𝛽)}. (15)

We run these methods using the UCB arm selection algorithm described in (5a) inside of Algorithm 1.
The results shown in Figure 5 demonstrate that e-variables and e-BH still perform better than any

p-variable and BH method. The two new p-variables, IS and IPM-H, have about similar sample efficiency,
and both outperform the JJ p-variable, but both are still slightly worse than the PM-H e-variable. Thus,
e-BH and e-variables have consistently better performance than BH and p-variables.
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(a) |ℋ1| = 2 (b) |ℋ1| = ⌊log 𝑘⌋ (c) |ℋ1| = ⌊
√
𝑘⌋

Figure 5: Relative comparison of time 𝑡 for each method to obtain a rejection set, 𝒮𝑡, that has a TPR(𝒮𝑡) ≥ 1−𝛿
while maintaining FDR(𝒮𝑡) ≤ 𝛿, where we choose 𝛿 = 0.05. This plot compares different choices of p-variables
against the PM-H e-variable over different numbers of arms (choices of 𝑘) and different densities of non-null
hypotheses (sizes of ℋ1). Time is reported as a ratio to the time taken by the algorithm that uses the PM-H
e-variable. The JJ p-variable is the baseline p-variable specified in (5). We see that both the IPM-H and the
IS p-variable have similar performance, and require fewer samples than the JJ p-variable. Overall, the PM-H
e-variable performs better than any choice of p-variable.

E.2 Graph bandits with dependent 𝑋1,𝑡, . . . , 𝑋𝑘,𝑡

We consider a graph bandit setting where the algorithm makes no assumptions about the underlying
dependence structure, and each arm consists of a node and its neighbors. We set the joint distribution
over rewards at each step as the product of independent normal distributions for each arm. The marginal
distribution of each arm 𝑖 ∈ [𝑘] is a normal distribution with mean 𝜇𝑖, where 𝜇𝑖 = 1/2 if 𝑖 ∈ ℋ1 and
𝜇𝑖 = 𝜇0 = 0 if 𝑖 ∈ ℋ0. Each graph we simulate is composed of 10 cliques of 𝑘/10 nodes. Thus, the set of
superarms available for sampling is 𝒦 = {{𝑖, 𝑖 + 10, 𝑖 + 20, . . . , 𝑖 + 𝑘 − 10} : for 𝑖 ∈ [10]}. Finally, we let
𝛿 = 0.05 be level of FDR control for each algorithm.

We compare 3 different methods. For all 3 methods, the exploration strategy is to uniformly sample from
the set of superarms 𝒦. These methods differ solely in their choice of the evidence component. The first
method is called the single arm BH method, as it only saves a single uniformly random sample from the set of
samples it attains at each time step. Hence, it is equivalent to the uniformly randomly sampling BH method
for the standard bandit setting. In this combinatorial bandit setting, it simply discards all but one sample at
each step, and can consequently still enjoy the guarantees in Proposition 1. Our second method is to use
the default BH and p-variables with no discarding of samples and the larger correction from Proposition 2.
Lastly, we have the e-BH and e-variable method that also uses all samples from each pull of a superarm, since
e-BH requires no correction for arbitrary dependence.

Figure 6 shows the results of using methods that guarantee FDR control at level 𝛿 on graph bandits with
arbitrary dependence between arms. Single arm BH pays a tremendous cost in time by throwing away many
samples at each step, and the slightly smaller correction it needs to make does not make up for this deficit.
Between the two methods that make full use of the samples obtained from superarm, we see that e-BH does
better. Thus, e-variables and e-BH exhibit empirical performance on par or better than p-variables and BH
in both the standard and combinatorial bandit settings.

F Betting interpretation of e-variables for bandits
We will describe our methodology for constructing e-variables using the perspective of betting in this section.
Shafer [33] uses betting to formulate a paradigm for understanding the quantity represented by an e-value,
and Shafer and Vovk [34] extend these ideas to form a mathematically rigorous foundation for probability
based on game theory. Separately, betting ideas have also been used in parameter free techniques for online
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(a) |ℋ1| = 2 (b) |ℋ1| = ⌊log 𝑘⌋ (c) |ℋ1| = ⌊
√
𝑘⌋

Figure 6: Relative comparison of time 𝑡 for each method to obtain a rejection set, 𝒮𝑡, that has a TPR(𝒮𝑡) ≥ 1−𝛿
while maintaining FDR(𝒮𝑡) ≤ 𝛿, where we choose 𝛿 = 0.05. This plot compares two different p-variable
methods (BH and single arm BH) against an e-variable method (e-BH) over different numbers of arms (choices
of 𝑘) and different densities of non-null hypotheses (sizes of ℋ1). Time is reported as a ratio to the time
taken by the algorithm that uses e-BH. We see that e-BH outperforms the two other BH algorithms in the
graph bandit setting. Notably, single arm BH is linearly increasing in time relative to the other two methods
that make full use of the samples obtained from a superarm. Single arm BH discards too many samples at
each step, and the smaller correction it makes does not make up the deficit in number of samples.

learning [28, 21, 29]. In this section, we will use a betting approach to produce a data adaptive e-process.
Recall that if 𝐸 is an e-variable, then E[𝐸] ≤ 1 when the null hypothesis is true. On the other hand, if

the null hypothesis is false, we would like 𝐸 to be large, since that increases the likelihood that the null
hypothesis is rejected. Thus, constructing 𝐸 such that is satisfies the e-variable constraint under the null and
is large under the alternative is the same as constructing a valid hypothesis test that has as much power as
possible. Consequently, we can consider a betting game where we pay a dollar to play, and 𝐸 is the payout.
If the null hypothesis is true, then we are unable to make any money in expectation, since the expectation is
of 𝐸 is at most 1. However, if the null hypothesis is false, then we would expect to be able to make money on
this game. If we did not make money under the alternative, then any test that used this e-variable would
have no power, since the behavior of 𝐸 would not change between the null hypothesis being true and being
false. In other words, this would be no better than picking 𝐸 = 1 deterministically: a valid e-variable, but
ineffectual for testing.

We define the predictably-mixed Hoeffding (PM-H) e-process [45], which we used in our simulations
in Section 5, as follows:

𝐸PM-H
𝑖,𝑡 (𝜇0) :=

𝑇𝑖(𝑡)∏︁
𝑗=1

exp(𝜆𝑖,𝑡𝑖(𝑗)(𝑋𝑖,𝑡𝑖(𝑗) − 𝜇0) − 𝜆2
𝑖,𝑡𝑖(𝑗)

/2).

(𝜆𝑖,𝑡) is any sequence of nonnegative real numbers that is predictable w.r.t. (ℱ𝑡). We will use an argument
based on betting to derive a (𝜆𝑖,𝑡) sequence, and show that this e-process can “make money” and hence
provide TPR guarantees in the sub-Gaussian case. We first observe the following property of this process.

Proposition 15. 𝐸PM-H
𝑖,𝑡 (𝜇0) is a nonnegative supermartingale, and thus an e-process, if 𝑖 ∈ ℋ0 and 𝜈𝑖 is

1-sub-Gaussian.

Proof. We drop 𝜇0 from (𝐸PM-H
𝑖,𝑡 (𝜇0)) and denote it as (𝐸PM-H

𝑖,𝑡 ).
We proceed by showing (𝐸PM-H

𝑖,𝑡 ) is a nonnegative supermartingale w.r.t. to the canonical filtration (ℱ𝑡).
Consider 𝐸PM-H

𝑖,𝑡 when 𝑖 ∈ ℋ0. If 𝐼𝑡 ̸= 𝑖 then 𝐸PM-H
𝑖,𝑡 = 𝐸PM-H

𝑖,𝑡−1 , which satisfies the supermartingale
property in (6).
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Otherwise,

E[𝐸PM-H
𝑖 𝑖, 𝑡 | ℱ𝑡−1] = E

[︂
exp

(︂
𝜆𝑡(𝑋𝑖,𝑡 − 𝜇0) − 𝜆2

𝑡

2

)︂
𝐸PM-H

𝑖 𝑖, 𝑡− 1 | ℱ𝑡−1

]︂
= E

[︂
exp

(︂
𝜆𝑡(𝑋𝑖,𝑡 − 𝜇0) − 𝜆2

𝑡

2

)︂
| ℱ𝑡−1

]︂
𝐸PM-H

𝑖,𝑡−1

≤ 𝐸PM-H
𝑖,𝑡−1 ,

where the final equality is because 𝑋𝑖,𝑡 are independent across 𝑡 ∈ N and 1-sub-Gaussian, and 𝜇𝑖 ≤ 𝜇0.
Since (𝐸PM-H

𝑖,𝑡 ) is a nonnegative supermartingale, it is an e-process by optional stopping. Thus, we have
achieved our desired result.

Note that Proposition 15 justifies that our choice of e-process for the simulations in Section 5 was indeed a
valid e-process. Now that we have shown (𝐸PM-H

𝑖,𝑡 ) is an e-process, we will consider how to choose a powerful
(𝜆𝑖,𝑡). Consider a model where we view the e-value, 𝑒𝑖,𝑡, for each arm 𝑖 ∈ [𝑘] as the money made by each
arm, or a “betting score”. For each arm 𝑖 ∈ [𝑘], imagine we are allocated initial wealth equal to 1. At each
time step, the algorithm chooses an arm 𝑖 ∈ [𝑘], and a “bet”, 𝜆𝑖,𝑡. The wealth of the arm at the next round
changes by a factor based on the reward 𝑋𝑖,𝑡 (assuming 𝑖 is the arm chosen at round 𝑡 + 1):

𝑒𝑖,𝑡+1 = 𝑒𝑖,𝑡 · exp(𝜆𝑖,𝑡(𝑋𝑖,𝑡 − 𝜇0) − 𝜆2
𝑖,𝑡/2)⏟  ⏞  

change in wealth

.

Note that this a “fair game” or the reward multiplier is less than 1 in expectation if E[𝑋𝑖,𝑡] ≤ 𝜇0.
The betting score, 𝐸PM-H

𝑖,𝑡 , may be interpreted as the money earned by arm 𝑖 at time 𝑡. When the null
hypothesis is true, i.e. 𝜇𝑖 ≤ 𝜇0, we know that sup𝜏∈𝒯 E[𝐸PM-H

𝑖,𝜏 ] ≤ 1 by Proposition 15. Thus, regardless of
our stopping strategy, we make no money in expectation. However, if we knew that 𝐸PM-H

𝑖,𝑡 was actually
a favorable bet, and E[𝑋𝑖,𝑡] = 𝜇𝑖 > 𝜇0, we would want to come up with a sequence (𝜆𝑖,𝑡) for each arm
𝑖 ∈ [𝑘] that maximizes our wealth at each arm. Consequently, we can reframe our goal for choosing (𝜆𝑖,𝑡) as
maximizing capital in a betting game. In the next section, we will discuss some strategies for accomplishing
such an objective.

F.1 Optimal betting strategies
One way of maximizing capital is to optimize for the Kelly criterion [24], which aims to maximize the
logarithm of the capital on each step and is equivalent to maximizing rate of growth of capital. In our
scenario, the Kelly criterion manifests in the following form:

E
[︀
log𝐸PM-H

𝑖,𝑡 (𝜇0)
]︀

=

𝑇𝑖(𝑡)∑︁
𝑗=1

E
[︁
𝜆𝑖,𝑡𝑖(𝑗)(𝑋𝑖,𝑡𝑖(𝑗) − 𝜇0) − 𝜆2

𝑖,𝑡𝑖(𝑗)
/2

]︁
.

Optimal choice of (𝜆𝑡) for log wealth. To maximize the above sum, we can simply decompose it with
respect to each 𝑗, and since the 𝜆𝑖,𝑡𝑖(𝑗) are decoupled, we can identify an optimal 𝜆*

𝑖,𝑡𝑖(𝑗)
for each 𝑗:

𝜆*
𝑖,𝑡𝑖(𝑗)

:= argmax𝜆∈R+ 𝜆E[𝑋𝑖,𝑡𝑖(𝑗) − 𝜇0] − 𝜆2/2 = 𝜇𝑖,

𝜆*
𝑖,𝑡𝑖(𝑗)

E[𝑋𝑖,𝑡𝑖(𝑗) − 𝜇0] − 𝜆*
𝑖,𝑡𝑖(𝑗)

2/2 = max
𝜆∈R+

𝜆E[𝑋𝑖,𝑡𝑖(𝑗) − 𝜇0] − 𝜆2/2 = ∆2
𝑖 /2.

We can see that if the 𝜇𝑖 is known, the above quantity is maximized by setting 𝜆𝑖,𝑡𝑖(𝑗) = 𝜇𝑖 for all
𝑗 ∈ [𝑇𝑖(𝑡)]. This observation confirms our intuition that the Kelly criterion is a sensible quantity to optimize
for when trying to maximize the e-values of hypothesis in ℋ1. On the other hand, if 𝑖 ∈ ℋ0, 𝜇𝑖 ≤ 𝜇0 = 0,
the log wealth incurred at each time step is nonpositive. Thus, in expectation, the log wealth process
log𝐸PM-H

𝑖,𝑡 (𝜇0) will only increase in capital when the hypothesis associated with the arm is truly non-null.
In betting language, we are presenting a one-sided bet that allows for our bets (𝜆𝑖,𝑡) to make money in
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expectation iff the null hypothesis is false. Hence, our strategy is profitable only when the true mean of the
arm is greater than 𝜇0.

In practice, we do not know 𝜇𝑖, since testing 𝜇𝑖 is the entire premise of the problem. Instead, we can use
the sample mean, ̂︀𝜇𝑖,𝑡, in place of 𝜇𝑖 and show that it gives us convergence at a rate of approximately 1/𝑇𝑖(𝑡)
to the optimal capital gain rate.

Proposition 16. Let 𝜈𝑖 be 1-sub-Gaussian for 𝑖 ∈ [𝑘]. If 𝜆𝑖,𝑡 = 𝜇̂𝑖,𝑡−1, then

E[̂︀𝜇𝑖,𝑡𝑖(𝑗)−1(𝑋𝑖,𝑡𝑖(𝑗) − 𝜇0) − ̂︀𝜇2
𝑖,𝑡𝑖(𝑗)−1/2] = ∆2

𝑖 /2 − 1/(𝑇𝑖(𝑡) − 1).

Proposition 16 follows from the variance of ̂︀𝜇𝑖,𝑡 being 1/𝑇𝑖(𝑡). Now, we can derive the following corollary.

Corollary 1. The total log wealth at time 𝑡, log𝐸PM-H
𝑖,𝑡 , has an expectation satisfying the following property,

where 𝜆𝑖,𝑡 = ̂︀𝜇𝑖,𝑡−1:

E[log𝐸PM-H
𝑖,𝑡 ] = 𝑇𝑖(𝑡)∆

2
𝑖 /2 −

𝑇𝑖(𝑡)∑︁
𝑗=1

1/𝑗 ≈ 𝑇𝑖(𝑡)∆
2
𝑖 /2 − log(𝑇𝑖(𝑡)),

where
𝑇𝑖(𝑡)∑︀
𝑗=1

1/𝑗 is approximately log(𝑇𝑖(𝑡)).

Thus, in log wealth, using ̂︀𝜇𝑖,𝑡 incurs a penalty of log 𝑇𝑖(𝑡), which is relatively small compared to the
positive term — especially when 𝑡 is large.

F.2 Sample complexity for standard sub-Gaussian bandits
We prove a sample complexity result for the 𝐸PM-H

𝑖,𝑡 as well.

Theorem 2. Let (𝒜𝑡) be such that 𝒜𝑡 outputs ℐ𝑡 = {𝐼𝑡} for all 𝑡 ∈ N, where 𝐼𝑡 is defined in (5a),
𝜆𝑖,𝑡 = (̂︀𝜇𝑖,𝑡−1/2)+, and 𝐸𝑖,𝑡 = 𝐸PM-H

𝑖,𝑡 . Then, Algorithm 1 will always guarantee sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿. With
at least 1 − 𝛿 probability, there will exist

𝑇 .
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿) +
∑︁
𝑖∈ℋ1

∆−2
𝑖 (log(∆−2

𝑖 ) log(1/𝛿) + log 𝑘)

∧ |ℋ0|∆−2 log(log(∆−2)/𝛿) + |ℋ1|∆−2 log(∆−2) log(1/𝛿)

such that TPR(𝒮𝑡) ≥ 1 − 𝛿 for all 𝑡 ≥ 𝑇 .

Theorem 2 shows the limitation of using an estimate of the mean, ̂︀𝜇𝑖,𝑡, in place of the true mean. The
intuition of the proof of Theorem 2 is that at each step, 𝐸PM-H

𝑖,𝑡 must account for an 1/𝑡 deviation, since
the variance of ̂︀𝜇𝑖,𝑡 is 1/𝑡. The sum of these deviations is approximately log 𝑡. Thus, the sample complexity
bound has a log ∆−2 instead of only a log log ∆−2 term. This limitation seems to be an inherent flaw in
choice of (𝜆𝑖,𝑡) based on estimation, since the estimation error must be accounted for along with the typical
deviation from providing a concentration inequality that is uniform over time steps 𝑡.

To prepare for our proof of Theorem 2, we require some self-contained lemmata. Define the following
auxiliary random variables for all 𝑖 ∈ ℋ1:

𝜌′𝑖 := min
𝑡∈N

𝐸𝑖,𝑡

exp

(︃
𝑇𝑖(𝑡)∑︀
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)∆𝑖 − 𝜆2
𝑖,𝑡𝑖(𝑗)

)︃ . (16)

Lemma 7. For all 𝑖 ∈ ℋ1, P (𝜌′𝑖 ≤ 𝑠) ≤ 𝑠 for 𝑠 ∈ (0, 1) i.e. 𝜌′𝑖 is superuniformly distributed.
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Proof. We observe that the reciprocal of 𝜌′𝑖 is the following:

1/𝜌′𝑖 = max
𝑡∈N

exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗)) − 𝜆2
𝑖,𝑡𝑖(𝑗)

/2

⎞⎠ .

Let

𝑀𝑡 = exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗)) − 𝜆2
𝑖,𝑡𝑖(𝑗)

/2

⎞⎠ .

We will show (𝑀𝑡) is a nonnegative supermartingale w.r.t. (ℱ𝑡). Assume arm 𝑖 is sampled at time 𝑡 —
otherwise the supermartingale property is trivially satisfied.

E[𝑀𝑡 | ℱ𝑡−1] = E

⎡⎣exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗)) − 𝜆2
𝑖,𝑡𝑖(𝑗)

/2

⎞⎠ | ℱ𝑡−1

⎤⎦
= E

[︀
exp

(︀
𝜆𝑖,𝑡(𝜇𝑖 −𝑋𝑖,𝑡) − 𝜆2

𝑖,𝑡/2
)︀
| ℱ𝑡−1

]︀
exp

⎛⎝𝑇𝑖(𝑡−1)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗)) − 𝜆2
𝑖,𝑡𝑖(𝑗)

/2

⎞⎠
≤ exp

⎛⎝𝑇𝑖(𝑡−1)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)(𝜇𝑖 −𝑋𝑖,𝑡𝑖(𝑗)) − 𝜆2
𝑖,𝑡𝑖(𝑗)

/2

⎞⎠
= 𝑀𝑡−1.

The sole inequality arises from 𝑋𝑖,𝑡 being independent across 𝑡 ∈ N and 1-sub-Gaussian, and having mean 𝜇𝑖.
Thus, 𝜌′𝑖 is superuniformly distributed by Ville’s inequality.

Rewriting the definition of 𝜌′𝑖, we get:

𝐸𝑖,𝑡 ≥ exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)∆𝑖 − 𝜆2
𝑖,𝑡𝑖(𝑗)

⎞⎠ 𝜌′𝑖 (17)

for all 𝑡 ∈ N. Now show a result for the rate of growth of 𝐸𝑖,𝑡 by showing a result concerning the lower bound
in (17).

Lemma 8. For all 𝑡 ∈ N,

exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)∆𝑖 − 𝜆2
𝑖,𝑡𝑖(𝑗)

⎞⎠ & 𝑇𝑖(𝑡)∆
2
𝑖 − log(1/𝜌𝑖) log(𝑇𝑖(𝑡)).
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Proof. Recall that 𝜆𝑡 = (̂︀𝜇𝑖,𝑡−1/2)+. Then, we derive the following asymptotic lower bound:

𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)∆𝑖 − 𝜆2
𝑖,𝑡𝑖(𝑗)

=
1

4

𝑇𝑖(𝑡)∑︁
𝑗=1

2̂︀𝜇𝑖,𝑡−1∆𝑖 − ̂︀𝜇2
𝑖,𝑗−1

≥ 1

4

𝑇𝑖(𝑡)∑︁
𝑗=1

∆2
𝑖 − (∆𝑖 − ̂︀𝜇𝑖,𝑗−1)2

≥ 1

4

𝑇𝑖(𝑡)∑︁
𝑗=1

∆2
𝑖 − 𝜙(𝑇𝑖(𝑗 − 1), 𝜌𝑖)

2 def. of 𝜌𝑖

≥ 1

4

𝑇𝑖(𝑡)∑︁
𝑗=1

∆2
𝑖 −

4 log(log2(2𝑗)/𝜌𝑖)

𝑗
upper bound from Fact 4

& ∆2
𝑖𝑇𝑖(𝑡) − log

(︂
1

𝜌𝑖

)︂
log(𝑇𝑖(𝑡)),

where the last line is because
∑︀𝑇𝑖(𝑇 )

𝑗=1 1/𝑗 ≈ log 𝑇𝑖(𝑡). Thus, we have arrived our desired result.

We now have the ingredients to present a proof of Theorem 2.

Proof of Theorem 2. Combining the lower bound in (17) with Lemma 8, we get the following asymptotic
lower bound:

𝐸𝑖,𝑡 & exp(𝑇𝑖(𝑡)∆
2
𝑖 − log(1/𝜌′𝑖) − log(1/𝜌𝑖) log(𝑇𝑖(𝑡)).

Inverting the expression above, we get that the following lower bound sample complexity of a single arm,

𝑇𝑖(𝑡) & ∆−2
𝑖 log(∆−2

𝑖 ) log(1/𝜌𝑖) + ∆−2
𝑖 log(1/𝜌′𝑖) + ∆−2

𝑖 log(𝜀),

implies 𝐸𝑖,𝑡 ≥ 𝜀 for 𝜀 > 0.

We can now derive a bound for
∞∑︀
𝑡=1

I {𝐼𝑡 ∈ ℋ1,ℛ ̸⊆ 𝒮𝑡}.

∞∑︁
𝑡=1

I {𝐼𝑡 ∈ ℋ1,ℛ ̸⊆ 𝒮𝑡} ≤ max
𝜋

∑︁
𝑖∈ℋ1

∆−2
𝑖 log(∆−2

𝑖 ) log(1/𝜌𝑖) + ∆−2
𝑖 log(1/𝜌′𝑖) + ∆−2

𝑖 log(𝑘/𝜋(𝑖))

where 𝜋 is a mapping from [|ℋ1|] to ℋ1.
We get the following total bound:

∞∑︁
𝑡=1

I {ℛ ̸⊆ 𝒮𝑡} =
∞∑︁
𝑡=1

I {𝐼𝑡 ∈ ℋ0,ℛ ̸⊆ 𝒮𝑡} +
∞∑︁
𝑡=1

I {𝐼𝑡 ∈ ℋ1,ℛ ̸⊆ 𝒮𝑡}

=
∞∑︁
𝑡=1

I {𝐼𝑡 ∈ ℋ0,ℛ ̸⊆ 𝒮𝑡} +
∞∑︁
𝑡=1

I {𝐼𝑡 ∈ ℋ1,ℛ ̸⊆ 𝒮𝑡}

.
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿𝜌𝑖)

+ max
𝜋

∑︁
𝑖∈ℋ1

∆−2
𝑖 log(∆−2

𝑖 ) log(1/𝜌𝑖) + ∆−2
𝑖 log(1/𝜌′𝑖) + ∆−2

𝑖 log(𝑘/𝜋(𝑖)),

where the asymptotic inequality is by Lemma 5.
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We know that we can apply Lemma 4 at level 𝛽 = 𝛿/2 to 𝜌𝑖 for 𝑖 ∈ [𝑘] and 𝜌′𝑖 for 𝑖 ∈ ℋ1. Thus, the
following happens with at least 1 − 𝛿 probability:

∞∑︁
𝑡=1

I {ℛ ̸⊆ 𝒮𝑡} .
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿)

+ max
𝜋

∑︁
𝑖∈ℋ1

∆−2
𝑖 log(∆−2

𝑖 ) log(1/𝛿) + ∆−2
𝑖 log(𝑘/𝜋(𝑖)).

Similar to the Theorem 1, we can show two different bounds. The first is the following:

∞∑︁
𝑡=1

I {ℛ ̸⊆ 𝒮𝑡} . |ℋ0|∆−2 log(log(∆−2)/𝛿) + |ℋ1|∆−2 log(∆−2) log(1/𝛿),

because
|ℋ1|∑︀
𝑖=1

log(𝑘/𝑖) ≤ 𝑘. The second follows from dropping 𝜋(𝑖):

∞∑︁
𝑡=1

I {ℛ ̸⊆ 𝒮𝑡} .
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿)

+
∑︁
𝑖∈ℋ1

∆−2
𝑖 log(∆−2

𝑖 ) log(1/𝛿) + ∆−2
𝑖 log 𝑘.

Thus, we have shown both of our desired bounds.

G Testing the average conditional mean
For simplicity, we will discuss results and proofs in this section under the single arm bandit case, so we will
drop the arm index 𝑖 when labeling terms. Our conclusions, however, do generalize to the general multi-arm
bandit case.

In Section 4 and JJ, the null hypothesis for each arm we are concerned with is

“E[𝑋𝑡 | ℱ𝑡−1] ≤ 𝜇0 for all 𝑡 ∈ N almost surely.” (H1)

In the aforementioned settings, there is an additional assumption that 𝑋𝑖,𝑡 are i.i.d. across 𝑡 ∈ N. Thus,
E[𝑋𝑡 | ℱ𝑡−1] simply becomes E[𝑋𝑡]. We can also test a more general hypothesis of whether the means of 𝑋𝑡

are less than or equal to 𝜇0 on average.
To formally define a notion of “average mean”, let us consider the case where there is a single arm i.e. we

have a sequence of rewards 𝑋1, 𝑋2, . . ., where the average conditional mean is defined as

𝜇𝑡 ≡
1

𝑡

𝑡∑︁
𝑗=1

E[𝑋𝑗 | ℱ𝑗−1].

Consequently, we can define a null hypothesis w.r.t. 𝜇𝑡:

“𝜇𝑡 ≤ 𝜇0 for all 𝑡 ∈ N almost surely.” (H2)

In the specific case where 𝑋𝑡 are i.i.d. across 𝑡 ∈ N, each with mean 𝜇, then E[𝑋𝑡 | ℱ𝑗−1] = E[𝑋𝑡] = 𝜇 for
all 𝑡 ∈ N, and 𝜇𝑡 = 𝜇. Consequently, there would be no difference between testing the average conditional
mean and testing the marginal mean, 𝜇, because they are the same value. However, when the distribution of
𝑋𝑡 are not necessarily i.i.d. across 𝑡 ∈ N, we will emphasize that not all valid tests for (H1) are also valid
for (H2). Generally, (H1) is a “stronger” hypothesis than (H2) in the sense that any distribution over 𝑋𝑡 for
𝑡 ∈ N that satisfies (H1) also satisfies (H2).

The difference between (H1) and (H2) is reflected in the fact that e-processes are supermartingales in
(H1), but only upper bounded by a martingale in (H2).
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Proposition 17. Assume that conditional distribution of 𝑋𝑡 | ℱ𝑡−1 is always 1-sub-Gaussian for all 𝑡 ∈ N.
Consider a process of the form,

𝐸𝑡 :=
𝑚∑︁
ℓ=1

𝑤ℓ exp

⎛⎝ 𝑡∑︁
𝑗=1

𝜆ℓ(𝑋𝑗 − 𝜇0) − 𝜆2
ℓ

2

⎞⎠
where 𝑚 ∈ N ∪ {∞},

𝑚∑︀
ℓ=1

𝑤ℓ ≤ 1. Under both (H1) and (H2), (𝑀𝑡) is a e-process. Specifically, (𝑀𝑡) is

(i) a nonnegative supermartingale under (H1).

(ii) upper bounded by a nonnegative supermartingale under (H2).

Proof. (i) follows from Proposition 7.
Without loss of generality, we will consider the case where 𝑚 = 1 and 𝑤1 = 1, since a convex combination

of supermartingales is a supermartingale. Thus,

𝐸𝑡 = exp

⎛⎝ 𝑡∑︁
𝑗=1

𝜆(𝑋𝑗 − 𝜇0) − 𝜆2

2

⎞⎠ .

To prove (ii), we first notice we can define a process 𝑀 ′
𝑡 that upper bounds 𝐸𝑡:

𝑀 ′
𝑡 = exp

⎛⎝ 𝑡∑︁
𝑗=1

𝜆(𝑋𝑗 − E[𝑋𝑗 | ℱ𝑗−1]) − 𝜆2

2

⎞⎠
= exp

⎛⎝𝜆

⎛⎝ 𝑡∑︁
𝑗=1

𝑋𝑗 −
𝑡∑︁

𝑗=1

E[𝑋𝑗 | ℱ𝑗−1]

⎞⎠− 𝑡𝜆2

2

⎞⎠
= exp

⎛⎝𝜆

⎛⎝ 𝑡∑︁
𝑗=1

𝑋𝑗 − 𝑡𝜇𝑡

⎞⎠− 𝑡𝜆2

2

⎞⎠
≥ exp

⎛⎝𝜆

⎛⎝ 𝑡∑︁
𝑗=1

𝑋𝑗 − 𝑡𝜇0

⎞⎠− 𝑡𝜆2

2

⎞⎠
= 𝐸𝑡.

Now, we will show that (𝑀 ′
𝑡) is a supermartingale.

E

⎡⎣exp

⎛⎝ 𝑡∑︁
𝑗=1

𝜆(𝑋𝑗 − E[𝑋𝑗 | ℱ𝑗−1]) − 𝜆2

2

⎞⎠ | ℱ𝑡−1

⎤⎦ = E
[︂
exp

(︂
𝜆(𝑋𝑡 − E[𝑋𝑡 | ℱ𝑡−1]) − 𝜆2

2

)︂
| ℱ𝑡−1

]︂
𝑀 ′

𝑡−1

≤ 𝑀 ′
𝑡−1,

where the last inequality is because the conditional distribution of 𝑋𝑡 | ℱ𝑡−1 is 1-sub-Gaussian. Thus, we
have shown both parts of our desired result.

The 𝐸𝑡 specified in Proposition 17 is an e-process, but not necessarily a nonnegative supermartingale, for
any distribution under (H2) where there exists a 𝑡 ∈ N such that E[𝑋𝑡 | ℱ𝑡−1] > 𝜇0. Thus, the distinction
highlighted in Proposition 17 is not vacuous.

Further, we will also note the following negative result that there exists processes that are e-processes
under (H1) but are not under (H2).

Proposition 18. Assume that conditional distribution of 𝑋𝑡 | ℱ𝑡−1 is always 1-sub-Gaussian for all 𝑡 ∈ N.
(𝐸PM-H

𝑡 ) is an e-process under all distributions satisfying (H1), but there exist (𝜆𝑡) such that (𝐸PM-H
𝑡 )

is not an e-process under all distributions that satisfy (H2).
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Proof. (𝐸PM-H
𝑡 ) is an e-process under (H1) by a similar argument to the proof of Proposition 15, since the

conditional distribution of 𝑋𝑡 | ℱ𝑡−1 is 1-sub-Gaussian. However, we can provide a simple counterexample
choice of (𝜆𝑡) and distribution that satisfies (H2) which cannot have expectation greater than 1 at a time
𝑡 ∈ N. Let 𝜇0 = 0, 𝑋𝑡 = −1 if 𝑡 is odd, and 𝑋𝑡 = 1 if 𝑡 is even. Consider a (𝜆𝑡) where 𝜆𝑡 = 0 when 𝑡 is odd
and 𝜆𝑡 = 1 when 𝑡 is even. Then,

E[𝐸PM-H
𝑡 ] = exp(⌈𝑡/2⌉).

Consequently, (𝐸PM-H
𝑡 ) with this choice of (𝜆𝑡) is not an e-process under (H2), and we have proved our

desired result.

Thus, using adaptive strategies for selecting (𝜆𝑡) like in Waudby-Smith and Ramdas [45] for testing (H2)
is not necessarily straightforward, while mixture strategies in the form specified in Proposition 17 are valid
e-processes for testing both (H1) and (H2).
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