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Abstract

Extensive sampling of neural activity during rich cognitive phenomena is critical for robust understanding
of brain function. We present the Natural Scenes Dataset (NSD), in which high-resolution fMRI responses
to tens of thousands of richly annotated natural scenes are measured while participants perform a
continuous recognition task. To optimize data quality, we develop and apply novel estimation and
denoising techniques. Simple visual inspections of the NSD data reveal clear representational
transformations along the ventral visual pathway. Further exemplifying the inferential power of the
dataset, we use NSD to build and train deep neural network models that predict brain activity more
accurately than state-of-the-art models from computer vision. NSD also includes substantial resting-state
and diffusion data, enabling network neuroscience perspectives to constrain and enhance models of
perception and memory. Given its unprecedented scale, quality, and breadth, NSD opens new avenues
of inquiry in cognitive neuroscience and artificial intelligence.
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Introduction

Neuroscience has an insatiable appetite for data. Many ongoing efforts to extensively sample brain
activity'® and structure*- are motivated, in part, by the availability of new computational methods that
make analysis of massive datasets feasible. Equally as important is the growing desire to understand how
the brain coordinates complex sensory and motor behaviors and the realization that the neural networks
supporting such behaviors span multiple scales, from single neurons to local circuits to whole systems.
Understanding massive, complex networks will inevitably require commensurately massive amounts of
data.

The need for massive data is especially acute in visual neuroscience, a model system for understanding
brain function. The network that mediates our ability to flexibly and efficiently perceive the visual world
occupies approximately one-third of human cerebral cortex” and interconnects brain areas with
profoundly different functional properties®. This network both encodes visual stimuli and interfaces visual
representations into a cognitive context, including information about what one has already seen®, might
see'?, or is selectively attending''. Understanding vision thus means interrogating a high-dimensional,
context-dependent neural network.

Given these considerations, it is clear that extensive experimental data providing access to whole-brain
responses to complex stimuli are critical in the quest to understand the human visual system. The ideal
dataset should include naturalistic stimuli: the visual system is distributed widely across the brain, and
natural scenes, in addition to being ecologically relevant, are effective activators of the entire system'2.
Moreover, the ideal dataset should be large: in order to take full advantage of powerful data analysis and
machine learning (ML) techniques that have recently become available, we need considerably more data
than is currently available. How much? Modern ML methods used in computer vision to process natural
scenes (e.g. deep convolutional neural networks) require tens to hundreds of thousands of image
samples for training''4. A dataset that sampled brain activity at these scales would raise the exciting
possibility of exploiting these methods to develop better models of how the brain processes natural
scenes'>2, and would accelerate efforts to bridge cognitive neuroscience and artificial intelligence?’.

In this paper, we present a dataset that achieves sampling at this ambitious scale. The Natural Scenes
Dataset (NSD) consists of high-resolution (1.8 mm) whole-brain 7T fMRI of 8 carefully screened human
participants who each viewed 9,000-10,000 color natural scenes (22,000-30,000 trials) during 30—40
scan sessions distributed over the course of a year. Aggregated across participants, NSD includes
responses to 70,566 distinct natural scene images—this is more than an order of magnitude larger than
comparable datasets involving fMRI sampling of many images??-2*. Moreover, as we show, the high
quality of the NSD dataset makes it possible to leverage the full power of modern ML methods for
developing better models of visual representation. Achieving high data quality was afforded, in part, by
the use of ultra-high magnetic field strength (7T) to improve signal-to-noise ratio over what is attained at
lower field strengths?.

NSD incorporates several innovations in addition to its unprecedented scale and quality. To reconcile
extensive sampling with a practical time commitment, we used an aggressive rapid event-related design.
This drove the development of new analysis techniques that accurately compensate for the overlap of
hemodynamic responses across successive trials. To ensure participant engagement and control
cognitive state, we incorporated a continuous recognition task?® in which participants were instructed to
indicate whether they have seen each presented image at any point in the past. In addition to making the
experiment tolerable (and even somewhat interesting) for participants, inclusion of this task makes NSD,
to our knowledge, the longest-term continuous recognition memory fMRI study in history and, thus, a
likely source of new insights into long-term memory formation and the cognitive context of vision. Finally,
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to ensure the broad reach of the NSD dataset, we incorporated design input from a large network of
collaborators with diverse scientific interests (e.g., low-level vision, high-level vision, memory,
connectivity, neuroanatomy) and technical expertise (e.g., mapping, multivariate pattern analysis,
encoding models, representational similarity analysis, neural network modeling). This input helped
precipitate a carefully curated dataset with extensive auxiliary measures.

The goal of this paper is to provide a comprehensive description of the design, acquisition, and
preparation of the NSD dataset. In particular, we detail the state-of-the-art acquisition and analysis
methods that we developed for the dataset, and perform comprehensive assessments that evidence the
high quality of the data. We also perform initial analyses of the NSD dataset demonstrating the feasibility
of using data-driven analyses to reveal insights into vision and memory. We expect that NSD will serve as
a valuable resource with widespread application in neuroscience and its intersection with artificial
intelligence.
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Results

Sampling thousands of images during continuous recognition

We obtained 73,000 color natural scenes from the richly annotated Microsoft Common Objects in Context
(COCO) image dataset'*, a dataset that is heavily used in the computer vision and machine learning
communities. Our experimental design specified that each of 8 subjects would view 10,000 distinct
images and a special set of 1,000 images would be shared across subjects (8 subjects x 9,000 unique
images + 1,000 shared images = 73,000 images). This sampling strategy was chosen to maximize the
number of distinct images in NSD, while also facilitating investigations of similarities and differences in
brain representations across individuals?’. Each image would be presented 3 times to a given subject.
While this is a low number, we reasoned that 3 trials would be sufficient to produce robust responses
given our use of ultra-high field (7T) fMRI. Furthermore, images would be presented using a rapid event-
related design consisting of 4-s trials (Figure 1A). This was done to maximize statistical power and to
create an engaging experience for the subjects. In addition, the continuous nature of task engagement—
in contrast to slow event-related designs and block designs where engagement is likely to fluctuate—
helps avoid unwanted respiratory variations?® and arousal-related confounds?®.

The NSD experiment was split across 40 scan sessions for each subject (Figure 1B). To control cognitive
state and encourage deep processing of the images, subjects were instructed to perform a continuous
recognition task in which they reported whether the current image had been presented at any previous
point in the experiment. We controlled the distributions of image presentations such that both short-term
and long-term repetitions were probed (Extended Data Figure 1A). Parameters were selected such that
even in the first scan session, images were not always new, and even in the last scan session, images
were not always old (Extended Data Figure 1B).

Neuroimaging data collection on carefully selected subjects

All fMRI data in NSD were collected at 7T using a whole-brain 1.8-mm 1.6-s gradient-echo EPI pulse
sequence. After verbally screening a number of potential participants with respect to basic eligibility
criteria, we recruited 14 subjects to participate in an initial 7T fMRI screening session which involved
population receptive field (pRF)*° and category localizer (fLoc)®' experiments. Based on data from this
scan session, we ranked the 14 subjects with respect to data quality—specifically, we quantified BOLD
variance explained in the pRF and fLoc experiments, behavioral performance in the pRF and fLoc
experiments, and two metrics of head motion, normalized these six measures, and then averaged the
measures (for details, see ‘Rankings from the 7T fMRI screening session’ in the Methods). We then
invited the top 8 subjects to participate in the full NSD experiment (all subjects accepted). This selection
process was conducted to ensure the best possible data quality for NSD. Analyses conducted after
completion of the NSD experiment confirm that the ranking procedure successfully identified subjects that
yield high-quality data and that data quality would have suffered substantially had we omitted the
selection process (Figure 2C).

Data were collected from the 8 NSD subjects over the course of a year (Figure 1C). Subjects consistently
engaged with the task: the average response rate across scan sessions was above 99% for all subjects
and the response rate never dropped below 96% in any single scan session. Moreover, all subjects
exhibited successful recognition performance (Figure 1D), issuing ‘old’ responses at a higher rate for
previously presented images (blue and orange lines) than for novel images (yellow lines). The full NSD
dataset includes a variety of anatomical neuroimaging measures (including T+, T2, diffusion, venogram,
and angiogram), functional neuroimaging measures (including the pRF and fLoc experiments, the NSD
experiment, resting-state data, and two additional experiments involving synthetic stimuli and visual
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imagery), and behavioral measures (Figure 2A-B). In some fMRI sessions, physiological data (10
sessions per subject) and eyetracking data (2—4 sessions per subject) were also collected. Analysis of the
eyetracking data indicates that subjects were able to successfully maintain central fixation most of the
time, with some variability in fixation performance across subjects (Extended Data Figure 4). With
regards to the core NSD experiment, we completed the full set of 40 NSD scan sessions for four of the
subjects, but due to unforeseen summer absences and scheduled decommissioning of the 7T scanner,
we completed 30—-32 NSD scan sessions for each of the other subjects. A full breakdown of data
collection and analysis procedures is provided in Extended Data Figures 2-3.

Stable high-resolution imaging across scan sessions

In our experience, although visual inspection is non-quantitative and somewhat subjective, it is still the
most effective way to assess many common aspects of fMRI pre-processing®2. Accordingly, we generated
a comprehensive set of visualizations that detail the excellent quality of the raw and pre-processed NSD
data. These include detailed inspections of raw time-series data to confirm the presence of stimulus-
evoked signals (Supplementary Figure 3); movies that assess the co-registration of the different imaging
modalities (e.g. T4, T2, EPI; Supplementary Video 1); movies that assess the manually-edited cortical
surface reconstructions generated using FreeSurfer (Supplementary Video 2); movies that assess the
registration of the NSD subjects to the fsaverage (Supplementary Video 3) and MNI (Supplementary
Video 4) group spaces; movies that inspect raw and pre-processed EPI volumes (Supplementary Video
5); and movies that provide volume and surface visualizations of the stability of mean EPI intensity across
sessions (Supplementary Videos 6 and 7; Supplementary Figure 4) and the stability of BOLD
responses across sessions (Supplementary Videos 8 and 9). All movies are readily viewable online
(https://osf.io/lzyb3t/). The visualizations—in particular, Supplementary Video 9—indicate that the quality
of the NSD data enables precision functional mapping*?: activity patterns are fine-scale and highly reliable
within individual subjects and these patterns are distinct across subjects.

In addition to visual inspection, quantitative data quality metrics were computed for each NSD scan
session. This was in fact done on a rolling basis as the data were acquired, allowing us to monitor data
quality and provide performance bonuses to the subjects. Inspecting the metrics, we see that temporal
signal-to-noise ratio (tSNR) is stable across scan sessions for each subject (Figure 2D, left). One
subject, subject 8, exhibits low tSNR compared to the other subjects; this can be attributed to higher
levels of head motion for this subject (Figure 2D, middle). We also observe that BOLD responses
(quantified as median variance explained across voxels and runs by a simple ON-OFF GLM) are stable
across scan sessions for each subject, though there is substantial variation in the strength of BOLD
responses across subjects (Figure 2D, right).

One feature we implemented in the pre-processing of the fMRI data was to interpolate the data on a fine
temporal grid and a fine spatial grid in the same steps used to correct for slice timing differences and
spatial displacements (e.g. head motion). This upsampling strategy preserves fine-scale detail that is
present in the raw fMRI data due to the temporal jitter of the acquired fMRI volumes relative to the
experimental paradigm and the spatial jitter of the acquired fMRI volumes relative to the brain’s
anatomy?®23*. An illustration of the benefits of upsampling is provided in Extended Data Figure 5. This
example highlights the existence of fine-scale detail in fMRI image intensities (Extended Data Figure 5B,
top row) as well as in BOLD responses extracted from the fMRI data (Extended Data Figure 5B,
bottom row and Extended Data Figure 5C). Importantly, this fine-scale detail is replicable across
different scan sessions (Extended Data Figure 5C, bottom and Extended Data Figure 5D), indicating
that the upsampled preparation reveals meaningful detail that is lost under a non-upsampled approach.

Extensive auxiliary measures to complement the NSD data
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To enrich the fMRI data from the NSD experiment, we collected and prepared a large set of auxiliary
measures. These measures include substantial amounts of resting-state data (minimum 100 minutes per
subject), external physiological measures during the resting-state scan sessions, diffusion data and
associated derivatives (white-matter tracts, structural connectivity matrices), and an extensive collection
of manually defined regions of interest (ROIs) including retinotopic and category-selective areas as well
as subregions of the thalamus and medial temporal lobe. Results and discussion of these resources can
be found in Supplementary Note 1, Extended Data Figures 6—7, and Supplementary Figure 5.

Accurate estimation of single-trial fMRI response amplitudes

We performed a general linear model (GLM) analysis of the data from the NSD experiment in order to
help streamline subsequent analyses of the data. The goal of the GLM was to obtain single-trial betas,
i.e., estimates of the fMRI response amplitude of each voxel to each trial conducted. Given the low signal-
to-noise ratio of fMRI and the overlap of the hemodynamic response from ftrial to trial, estimating accurate
betas is a challenging endeavor. We thus developed a novel GLM approach consisting of three
components. First, we used a library of hemodynamic response functions (HRFs) derived from an initial
analysis of the dataset as an efficient and well-regularized method for estimating voxel-specific HRFs
(Figure 3A-C). Second, we adapted the GLMdenoise technique®® to the single-trial GLM framework,
thereby enabling the use of data-driven nuisance regressors (Figure 3D). Third, to address the challenge
posed by highly correlated single-trial regressors, we developed an efficient implementation of ridge
regression® and used this to regularize and improve the accuracy of the betas (Figure 3E). To assess
the efficacy of these various GLM techniques, we generated three versions of the betas, reflecting
increasing sophistication (Extended Data Figure 8A—C). Beta version 1 (b1) is the result of simply using
a canonical HRF for all voxels. Beta version (b2) is the result of fitting an HRF to each voxel using the
library-of-HRFs approach. Beta version (b3) uses the library-of-HRFs approach like b2 but also adds the
use of GLMdenoise and ridge regression in an attempt to improve the accuracy of the betas.

We quantified the quality of the different beta versions (b1, b2, b3) by calculating noise ceilings for
individual voxels. The noise ceiling is a measure of trial-to-trial reliability, quantifying the percentage of
variance in a voxel's responses that can be attributed to the stimulus and not to measurement noise (see
Methods). Surface maps of noise ceiling results reveal locations of reliable responses to the NSD stimuli:
high noise ceilings are present in occipital cortex and extend into temporal and parietal cortex (Figure 3F
and Supplementary Video 10). Importantly, the maps reveal very large increases in noise ceilings from
b1 to b2 to b3, indicating that the additional GLM techniques incorporated into b2 and b3 improve
reliability of responses. Detailed quantifications show that these improvements are highly consistent
across voxels and subjects (Figure 3G and Supplementary Figure 6A) and that noise ceiling estimates
are highly reliable (Supplementary Figure 6B). For b3, the noise ceiling levels in visual cortex are, on
average, 36% (calculated by computing the median across the nsdgeneral ROI and then averaging
across subjects). This means that a typical visual cortex voxel in the NSD dataset has associated with it a
set of 10,000 responses (30,000 trials divided by 3 trials per image = 10,000 images) and a large
percentage, 36%, of the variance in these 10,000 values is a signal that is, in theory, predictable.
Expressed in terms of Pearson’s correlation (r), this is equivalent to a prediction accuracy of r = 0.60.
Complementing the noise ceiling analysis, we also performed simple univariate analyses of the NSD
betas (Extended Data Figure 8D-E); these analyses demonstrate that the NSD dataset contains high
response reliability across trials within a subject as well as high response reliability across subjects.

A massive increase in equivalent trials
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To put the quality of the NSD data into perspective, we propose the concept of ‘equivalent trials’ which
allows comparison of different datasets that vary in signal-to-noise ratio and trial distribution (see Methods
for details). The next largest data collection effort that is similar in nature to NSD is BOLD500022. Using
the same GLM analysis methods on both NSD and BOLD5000, we find that the signal-to-noise ratio per
trial is approximately 0.260 for NSD and 0.187 for BOLD5000. Combining these values with the number
of trials conducted in each dataset, we estimate that the total size of the NSD dataset is 213,000 trials x
(0.260)?2 = 14,399 equivalent trials, whereas the total size of BOLD5000 is 18,870 trials x (0.187)? = 660
equivalent trials. Thus, using the metric of equivalent trials, NSD can be viewed as 14,399/660 = ~22
times as large as the BOLD5000 dataset. This is a massive increase in statistical power. Note that even if
we do not take into account the higher SNR per trial in the NSD dataset, NSD still has substantially more
subjects (8 vs. 4), trials per subject (26,625 vs. 4,718, on average), and hours of fMRI per subject (35.5
vs. 13.7, on average) than BOLD5000.

Successful recovery of retinotopy

Having demonstrated the quality of the NSD data, we now turn to example analyses that illustrate the rich
scientific insights that can be derived from the data. As a simple starting example, we fit a voxelwise pRF
model that uses local contrast in the NSD images to account for the NSD betas. This simple model is
expected to recover spatial tuning in early visual cortex where responses co-vary with stimulus energy®’.
Indeed, in all eight subjects, high-quality maps of angle and eccentricity estimates are obtained in early
visual cortex, and these estimates extend all the way to the fovea (Extended Data Figure 9 and
Supplementary Modeling Note 1). These results provide a check of the validity of the NSD betas. They
also demonstrate that subjects were able to maintain central fixation reliably enough to support detailed
mapping of visual space. This finding is consistent with our analysis of the eyetracking data (see
Extended Data Figure 4).

Reliable and long-term recognition memory effects

The use of a continuous recognition task establishes NSD as one of the largest datasets relevant to
human memory. Despite the challenging nature of the task, we find that subjects were able to
successfully discriminate old images from new images (average d’ across subjects: 1.28, maximum: 1.47,
minimum: 0.94). Further, recognition memory remained above chance even at long timescales between
repetitions (Figure 4A). Specifically, for each session, we calculated a measure of recognition accuracy
accounting for guessing (adjusted hit rate: hit rate minus false alarm rate) and binned this measure by the
time since last exposure (considering only those trials involving a previously shown image). At the group
level, subjects exhibit performance levels greater than chance (adjusted hit rate > 0) in all measured
intervals, ranging from one second to one year. At the level of individuals, all subjects show a positive
adjusted hit rate in the longest time bin for which data are available for every subject (when binning on a
log scale; 7 out of 8 subjects when binning on a linear scale). These results indicate that from its
behavioral component alone, NSD is powered to address questions concerning human memory spanning
short (seconds) to relatively long (months) timescales.

But what about neural effects? To assess whether recognition effects are present in the fMRI data, we
performed two-sample t-tests contrasting NSD betas observed for hits with NSD betas observed for
correct rejections (the so-called ‘old/new effect®®). We find highly consistent old/new effects at the level of
individual scan sessions (Figure 4B, top; see also Supplementary Figure 7). Moreover, these effects
occur in expected frontal and parietal regions®, and persist at the group level (Figure 4B, bottom). The
scale and statistical power afforded by the NSD dataset also provides additional insight. Whereas old/new
effects are typically studied using group-level analyses, the quality of the NSD dataset reveals highly
statistically significant results at the level of individual subjects. Indeed, when pooling trials across all NSD
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scan sessions, several subjects exhibit statistically significant activity differentiating hits and correct
rejections in nearly the entire cerebral cortex (see results for a representative subject in Figure 4B, top).
Reminiscent of past datasets employing extensive sampling of individuals*®, the current results suggest
that the extent of cortex engaged by basic memory processes is much more widespread than previously
appreciated, though a careful consideration of effect sizes would be important for a full understanding of
the effect.

Rich stimulus sampling for probing brain representations

NSD samples a huge variety of natural scenes. To gain insight into the breadth of stimulus sampling
available, we constructed representational dissimilarity matrices (RDMs) from the NSD betas and
performed t-distributed stochastic neighbor embedding*' (t-SNE) to visualize the underlying
representations. We computed t-SNE embeddings in different regions along the ventral visual pathway for
an example subject (Figure 5A). These embeddings reflect arrangements of stimuli that are driven by the
overall similarity of multivoxel activity patterns in the brain, independent of their anatomical organization
within a given ROI. Visualizing the data in this way reveals intriguing patterns of semantic representation
that are clearly visible by eye. For example, by color-coding the resulting embeddings according to
animacy attributes (Figure 5B), we find that in posterior ventral temporal cortex (pVTC), there is a clear
large-scale pattern progressing from images containing people (gray dots; lower left), images containing
animals (red dots; middle), and images containing inanimate objects (blue dots; upper right), whereas the
pattern is not present in early visual areas V1, V2, and V3. This aspect of semantic representation is
consistent with previous studies*?43,

Other intriguing patterns are also visible. In anterior ventral temporal cortex (aVTC), the animacy
progression is present to some extent, but a different, more clustered representation emerges that
presumably reflects more complex categorical and semantic clusters. Indeed, zooming in on small
sections of the t-SNE embedding for aVTC reveals that these clusters contain images with relatively
homogeneous semantic content (Figure 5C): the blue cluster is dominated by images of round edible
objects, while the gray cluster is dominated by images of people interacting with objects. Note that the
clustering of semantically related images does not necessarily mean that these representations are truly
semantic in the sense of being invariant or independent of visual features; the clustering could be driven
by certain visual features that are diagnostic of object categories**. To tease apart these possibilities,
further detailed analyses would be necessary. Overall, these findings show how simple visual inspections
of the NSD dataset can be used to generate hypotheses about visual representations in the human brain.

To further characterize brain representations using a quantitative analysis, we calculated how well brain
RDMs are captured by a model RDM constructed from category labels in the COCO image dataset.
Consistent with the clustering observed in the t-SNE embeddings, we find that categorical structure is
pronounced in VTC compared to early visual areas (Figure 5D). Finally, to assess the utility of NSD for
investigating similarities of brain representations across subjects, we isolated images that were common
across subjects and created a second-order RDM that quantifies the similarity of brain RDMs across ROlIs
and subjects (Figure 5E). In this second-order RDM, we observe high levels of consistency in each ROI's
representation across subjects (red outlines). We also observe distinct representations across ROls, with
the largest distinctions occurring between early visual areas and VTC. One noticeable finding is the
existence of strong off-diagonal elements (white arrows); these elements indicate spatial noise
correlations that are typical in fMRI and other neural measurement techniques. To counteract these noise
correlations, one simple approach is to compare representations across ROIs using data from distinct
trials*. To further summarize the second-order RDM, we computed the average correlation of brain
RDMs across all ROI pairs, restricting this calculation to distinct subjects in order to avoid the effects of
spatial noise correlations (Figure 5F). We observe that correlations are highest for brain RDMs from the
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same ROI (e.g. a given subject’'s V1 RDM is more correlated with other subjects’ V1 RDMs compared to
other ROIs), confirming consistencies in brain representations across subjects (for a complementary
univariate analysis of across-subject consistency, see Extended Data Figure 8D-E).

A brain-optimized neural network model of the visual system

One of the main motivations for NSD was to amass sufficient sampling of brain activity to be able to drive
data-hungry machine learning techniques. As an intriguing test case, we specifically investigated whether
we could successfully use the scale of NSD to train, from scratch, a deep convolutional neural network
(CNN) to accurately predict brain activity'. Adopting the framework of encoding models*6, we took NSD
betas from visual areas V1-hV4, divided these data into a training set (used for parameter tuning) and
validation set (used to assess prediction performance), and evaluated how accurately different
computational models predict brain responses in the validation set based on the presented image. The
primary encoding model of interest is based on a new network we refer to as ‘GNet’, a brain-optimized
CNN whose parameters are trained using image-response pairings observed in the training set. For
comparison, we also evaluated an encoding model based on AlexNet*, a task-optimized CNN whose
parameters are pre-trained using explicit labels of objects taken from an image database. AlexNet has
been previously shown to provide state-of-the-art performance in modeling visual responses''°. Finally,
we included a simple V1-like control model based on oriented Gabor filters?*. Details of modeling
procedures are provided in Supplementary Modeling Note 2 and Extended Data Figure 10.

Varying the amount of training data provided to the models, we find that the performance of the GNet-
based encoding model is relatively poor when only small amounts of training data are available (Figure
6A, orange arrows). This is expected since the feature extractors in GNet are not pre-trained and thus
require data for tuning. However, when large amounts of training data are available, the GNet model
exhibits an impressive increase in performance, achieving approximate parity with the AlexNet-based
encoding model (Figure 6A, blue arrows). Interestingly, when we trained a single GNet model using
brain activity from multiple subjects, we find that the model is able to outperform the AlexNet model (two-
tailed paired t-test across subjects, p = 0.013), albeit modestly (Figure 6A, red arrows). Noticeably, the
simple Gabor model accounts for substantial variance in the responses; nonetheless, the more complex
CNN-based models provide additional predictive power, consistent with previous observations*®. For
additional insight into model performance, we compared voxel-wise performance levels of the GNet
model to noise ceiling estimates (Figure 6B). Across voxels, prediction accuracy is tightly correlated with
the noise ceiling, suggesting that voxel-wise differences in prediction accuracy simply reflect differences
in signal-to-noise ratio. In addition, performance levels are close to, but do not reach, the noise ceiling.
Finally, cortical surface maps indicate voxel-wise performance levels vary across foveal and peripheral
representations (Figure 6C).

The demonstration that an encoding model based on a brain-optimized CNN (GNet) outperforms an
encoding model based on a task-optimized CNN (AlexNet) is significant for two reasons. First, it indicates
NSD is large enough to successfully train a complex neural network architecture. Had the NSD dataset
been smaller in scale or lower in quality, qualitatively different patterns of model performance would have
been obtained (in Figure 6A, compare orange arrows reflecting a few thousand trials to red arrows
reflecting tens of thousands of trials). Second, the successful training of a brain-optimized CNN opens the
possibility of new avenues of investigation into the nature of the features used in CNNs. It is an interesting
open question whether the features learned by task-optimized networks like AlexNet are similar to, or
diverge from, the features present in brain-optimized networks like GNet. In general, brain-optimized
networks'” are a useful alternative to task-optimized networks'62°, as the narrowly defined tasks that task-
optimized networks are typically trained to solve do not necessarily respect the diversity of functions
supported by the human visual system?* nor necessarily match properties found in biological visual
systems®°.
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Discussion

In the last several years, there have been a number of large-scale neuroimaging datasets that have been
made publicly available for re-use (e.g., refs 533%1-53)_ Several distinguishing aspects of the present work
set NSD apart from past datasets. One is the unprecedented scale of the dataset. NSD shares the
motivation of recent ‘deep’ (or ‘precision’) neuroimaging efforts33°4-57 seeking to amass large amounts of
data from individual subjects, as opposed to modest amounts of data on a large number of subjects. In
this context of deep neuroimaging, NSD is, to our knowledge, the most extensive fMRI data collection
effort that has been performed to date. This can be gauged not only in terms of the number of hours of
fMRI data acquisition per subject (30—40 hours of data for each of 8 subjects on the core NSD
experiment) and the high spatial resolution of the acquired data (1.8 mm), but also the wealth of
additional measures beyond the core experiment, including substantial amounts of resting-state and
diffusion data, physiological data, and functional localizers. The availability of extensive measures
provides the opportunity to build complete models of how individual brains support vision and memory%8.
Of course, the emphasis on depth in individuals comes at the cost of sampling fewer individuals; datasets
emphasizing large numbers of participants, such as the Human Connectome Project®, are better suited
for studying variability in the general population and how psychological traits broadly relate to brain
structure and function.

A second aspect is the unusually high quality of the data. Although quality of neuroimaging data is more
complex to assess than quantity, assessment of data quality is essential since MRI data have relatively
low sensitivity and are prone to errors and artifacts. In particular, when acquiring massive datasets, there
is a risk of accumulating unknown sources of noise and artifact. The work presented in this paper (and in
the accompanying files in the data release) guards against this possibility by crafting a customized and
highly optimized approach to pre-processing the NSD data and providing comprehensive documentation
of the high data quality (see also Supplementary Note 2). Several factors likely contributed to the high
data quality: these include the use of ultra-high magnetic field strength (7T) which enhances BOLD
contrast-to-noise ratio; the screening, training, and incentivization of participants; the detailed inspection
and supervision of data processing; and the large network of collaborators who helped guide the design
and trajectory of the dataset.

A third aspect of the present work lies in the novel analysis techniques developed for improved GLM
analysis of fMRI time-series data. These include (i) an efficient and robust method to estimate voxel-
specific HRFs, (ii) adaptation of the GLMdenoise technique® to a single-trial GLM framework, and (iii)
development of ridge regression as an effective method for regularizing single-trial response estimates.
These three techniques have been integrated into a toolbox that can be applied to other neuroimaging
datasets, and are the subject of a forthcoming paper. An important lesson stemming from our results is
that well-executed data collection is important but not the only factor to consider: data preparation
methods exert a major influence on the quality of a dataset and hence its scientific value. One can view
improvements in data quality as equivalent to increases in data quantity, in the sense that analysis
methods that reduce unwanted variability (noise) can be interpreted as increasing the effective amount of
data collected®®. Thus, by improving data quality, the methods introduced with NSD are contributing to the
massive scale of the dataset.

The NSD dataset has many potential applications. Given its extensive sampling of natural scenes (70,566
distinct images aggregated across 8 subjects) and high signal-to-noise ratio, the dataset will be useful for
investigating a variety of phenomena in low-, mid-, and high-level vision. In addition, the memory
component of the NSD experiment provides a unique opportunity to study the neural mechanisms of both
short- and long-term memory (ranging from seconds to many months), as well as potential interactions
between vision and memory. From a methodological perspective, the repeated scanning of individuals
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using a consistent experimental manipulation (up to 40 scan sessions of the NSD experiment per subject)
provides a unique opportunity for development and evaluation of neuroimaging pipelines. Finally, perhaps
the most exciting use of NSD is as a common dataset to bridge the disciplines of cognitive science,
neuroscience, and artificial intelligence?'. As we have shown in the context of deep neural network
modeling (see Figure 6), there are sufficient data in NSD to successfully drive the training of neural
network models with thousands of free parameters. This demonstration exemplifies how NSD—with its
large amounts of carefully curated fMRI data collected during a rich cognitive paradigm—enables data-
driven approaches towards understanding the complexities of information processing in the brain.
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Figure Captions

Figure 1. Design of the NSD experiment. A, Trial design. While maintaining central fixation,
participants viewed sequences of color natural scenes and judged whether each image had been
previously shown at any point in the past. The scenes, taken from Microsoft's COCO™, are richly
annotated with object information (as depicted). B, Run and session design. Each run lasted 5
minutes and consisted of 62 or 63 stimulus trials with occasional interspersed blank trials. Each
scan session consisted of 12 runs (750 stimulus trials). C, Timeline of 7T fMRI scan sessions.
Each subject participated in an initial screening session (prffloc), 30—40 NSD core sessions, and
two final sessions (nsdsynthetic, nsdimagery). The first NSD core session corresponds to day 0.
D, Behavioral performance. For each of three trial types, we quantify the percentage of trials on
which the subject indicated an ‘old’ response.

Figure 2. Overview of acquired data. A, Auxiliary fMRI experiments. Data from the pRF and
fLoc experiments were used to define retinotopic visual areas and category-selective regions,
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respectively. Resting-state data were collected before and after the NSD runs in a subset of the
NSD core sessions (totaling 100 or 180 minutes per subject). B, Available measures. Examples
of the actual data are depicted. C, Participant selection. Data quality from the initial screening
session was used to rank a set of 14 participants. On the right is an illustration of one measure
contributing to the ranking, specifically, variance explained in the fLoc experiment (one slice per
participant; identical color range). The inset compares the participant ranking against the b3 noise
ceiling calculated on the full NSD dataset (see Figure 3). A line fit to the 8 NSD subjects (green
dots) is extrapolated to predict noise ceilings for the subjects who were not selected for
participation in NSD (red circles). D, Metrics of data quality (for details, please see ‘Data quality
metrics’ in the Methods). Results for individual subjects (thin colored lines) and the median across
subjects (thick black line) are shown. The insets show detail on tSNR and head motion for one
sample run (see Supplementary Figures 1-2 for more information).

Figure 3. Improving signal-to-noise ratio through novel response estimation and denoising
methods. A-C, Library of HRFs. Hemodynamic response functions (HRFs) were estimated
within a subspace spanned by 3 principal components (PCs). Distributions of voxel-specific HRFs
are shown for individual subjects (panel A) and the group average (panel B). These distributions
reside on the unit sphere with coordinate axes corresponding to 3 PC timecourses (see panel B,
inset). We defined a series of points on the unit sphere (cyan dots), and the timecourses
associated with these points are used as the HREF library (panel C). D, GLMdenoise. Horizontal
lines indicate the average number of GLMdenoise regressors identified in a scan session (1.8-
mm preparation; error bars indicate bootstrapped 68% confidence intervals). E, Ridge regression.
Optimal ridge regression fractions are shown for an example scan session (subject 5, nsd10, 1-
mm preparation). F, Noise ceilings for the case where responses are averaged across 3 trials.
Results from individual subjects (nativesurface preparation) were mapped to fsaverage and then
averaged. Right inset shows results thresholded at 15% on the inflated left hemisphere (see also
Supplementary Video 10). G, Performance summary. Each bar indicates the median noise
ceiling across vertices in the nsdgeneral ROI.

Figure 4. Reliable and long-term recognition memory effects. A, Behavioral recognition
effects. Adjusted hit rate indicates recognition accuracy accounting for guessing (hit rate minus
false alarm rate), and is binned by time between repetitions on a linear (left) or log scale (right).
Dashed line indicates chance performance. Each dot in each bin summarizes relevant trials from
one scan session. Black line indicates the mean across subjects, with ribbon indicating + 1 SEM.
B, Neural recognition effects. We performed two-sample t-tests on NSD betas contrasting ‘hits’ >
‘correct rejections’. All results are shown on a flattened left hemisphere fsaverage surface and
thresholded at |¢| > 3 (inset shows inflated surface). Tests were performed for trials taken from
individual NSD scan sessions (columns 1 through 4) as well as for trials pooled across all NSD
scan sessions (column 5). In addition, we perform a control in which trial labels in the pooled
analysis are shuffled (column 6). Results for subject 1 (top row) and a simple average of results
across subjects (bottom row) are shown.

Figure 5. Representational similarity analysis (RSA) reveals transformations of
representations along the ventral visual stream. A, lllustration of fsaverage ROIs used for the
RSA analysis. B, t-SNE embedding for each ROI in an example subject (subject 1). Each dot
represents a distinct image (total 10,000). Using category labels from the COCO image dataset,
we color each dot according to whether the associated image contains particular combinations of
people, animals, and inanimates. C, t-SNE embedding for anterior ventral temporal cortex with
actual images depicted. Insets highlight an inanimate cluster (blue inset) and a cluster of people
with inanimate objects (gray inset). D, Categorical brain repesentations. We plot the correlation
between brain RDMs and a model RDM constructed from category labels in the COCO dataset.
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Color shaded regions indicate within-subject error (mean and standard error across distinct
groups of images), while the gray shaded region indicates across-subject error (mean and
standard error across subjects). E, Similarities of brain representations across ROIls and subjects.
Depicted are correlations across brain RDMs obtained for different ROIs and subjects. Thin white
lines separate groups of 8 subjects. F, Quantitative summary. We summarize the results of panel
E by averaging the upper triangle of each group of 8 x 8 subjects, reflecting the correlation of
RDMs from different subjects. Shaded regions indicate standard errors estimated by
bootstrapping subjects with replacement.

Figure 6. Prediction of brain activity using a brain-optimized neural network. We used
encoding models*® to predict voxel activity in V1-hV4. NSD betas were divided into a training set
(consisting of up to 9,000 images x 3 trials = 27,000 training samples per subject) and validation
set (consisting of up to 1,000 images x 3 trials = 3,000 validation samples per subject), and the
accuracy of different encoding models was quantified as the voxel-wise correlation between
model predictions and responses observed in the validation set. A, Performance as a function of
amount of training data used. Models include an encoding model based on AlexNet which is a
task-optimized neural network (blue); encoding models based on GNet which is a brain-optimized
neural network trained using data from single subjects (orange) or data from multiple subjects
(red); and a V1-like control model based on Gabor filters (purple). Plotted lines and error bars
indicate mean and standard deviation across results obtained from different bootstrap samples of
the data. B, Detailed view of the performance of the multi-subject GNet model for a representative
subject. C, Surface maps depicting spatial distribution of validation accuracy for the multi-subject
GNet model.
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Methods

Subject recruitment

The NSD study was advertised to the University of Minnesota community. We sought to recruit right-
handed individuals (18-65 years old) with no known cognitive deficits nor color blindness and with normal
or corrected-to-normal vision. Those who were interested in participating were contacted for a phone
interview to explain the nature of the study and to screen them for eligibility. We discussed the long-term
nature of the study, the time commitment it would involve, and the feasibility of traveling to the scanner on
a regular basis. We paid attention to the communicativeness of potential participants and their general
attitude towards study participation. Selecting participants whom we were confident would provide high-
quality data was more important to us than obtaining a random sample of the general population. Based
on the phone interviews, we invited 14 people who we felt were strong candidates to participate in an
initial 7T fMRI screening session. Of these, 8 were selected to participate in the full NSD experiment.

Subjects

Eight subjects (two males, six females; age range 19-32) participated in the NSD dataset (subjo1-
subj08). There were six additional subjects (four males, two females; age range 20-53) who participated
in the initial 7T fMRI screening session but not in the remainder of data collection. No statistical methods
were used to pre-determine the sample size; rather, our experimental approach® emphasizes collecting
extensive data from each subject, which enables the demonstration and replication of effects in individual
subjects. Subjects were naive to the design of the NSD dataset. All subjects had normal or corrected-to-
normal visual acuity. Informed written consent was obtained from all subjects, and the experimental
protocol was approved by the University of Minnesota Institutional Review Board. Subjects were
compensated at a rate of $30 per hour, plus performance bonuses. Additional subject information
including height, weight, handedness, and visual acuity was logged and is available online.

Subjects participated in a number of neuroimaging and behavioral data collection sessions (a full
breakdown is provided in Extended Data Figure 2). Neuroimaging included 3T structural scan sessions
and 7T functional scan sessions. The 7T functional scan sessions included an initial screening session
termed ‘prffloc’, referring to the population receptive field (pRF) and functional localizer (fLoc) experiments
conducted in that session. The 7T sessions also included, for each subject, 30—40 sessions in which the
main NSD experiment was conducted (‘nsd01-nsd40’). These sessions are collectively termed the ‘NSD
core’. In some of these sessions, resting-state data were acquired before and after the NSD experiment.
Finally, the 7T sessions also included two sessions conducted after completion of the NSD core; these
sessions, termed ‘nsdsynthetic’ and ‘nsdimagery’, involved measuring responses to synthetic stimuli and
cognitive task manipulations (including mental imagery), respectively. The total number of 7T fMRI scan
sessions were 43, 43, 35, 33, 43, 35, 43, and 33 for subj01-subj08, respectively. The average number of
hours of resting-state fMRI conducted for each subject was 2.0 hours, and the average number of hours
of task-based fMRI conducted for each subject was 38.5 hours. Each subject also participated in several
behavioral assessments after scanning was complete. These included a variety of behavioral measures
(‘nsdpostbehavior’), a final memory test (‘nsdmemory’), and an image-similarity assessment
(‘nsdmeadows’).

MRI data acquisition
MRI data were collected at the Center for Magnetic Resonance Research at the University of Minnesota.

Some data were collected using a combination of a 3T Siemens Prisma scanner and a standard Siemens
32-channel RF head coil. Most data were collected using a combination of a 7T Siemens Magnetom
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passively-shielded scanner and a single-channel-transmit, 32-channel-receive RF head coil (Nova
Medical, Wilmington, MA). lllustrations of the different types of MRI data acquired are provided in Figure
2B. Below we summarize the scanning protocols (full protocol printouts are available online).

At 3T, we collected a number of anatomical measures (T1, T2, diffusion, angiogram). The motivation for
collecting data at 3T was to ensure acquisition of T1 volumes with good gray/white-matter contrast and
homogeneity, which is difficult to achieve at ultra-high field>®. To increase contrast-to-noise ratio and
enable the ability to assess reliability, we acquired several repetitions of T+- and T2-weighted volumes.
For each subject, we collected between 6—10 scans of a whole-brain T+-weighted MPRAGE sequence
(0.8-mm isotropic resolution, TR 2400 ms, TE 2.22 ms, T/ 1000 ms, flip angle 8°, bandwidth 220 Hz/pixel,
no partial Fourier, in-plane acceleration factor (iPAT) 2, TA 6.6 min/scan) and 2—3 scans of a whole-brain
T2-weighted SPACE sequence (0.8-mm isotropic resolution, TR 3200 ms, TE 563 ms, bandwidth 744
Hz/pixel, no partial Fourier, in-plane acceleration factor (iPAT) 2, TA 6.0 min/scan). In addition to T1 and
T2 data, we also acquired 4 high angular resolution diffusion-weighted spin-echo EPI scans, using
protocols from the Lifespan Human Connectome Project Development effort®®. These protocols involved
varying the number of diffusion directions and the phase-encode direction (1.5-mm isotropic resolution,
TR 3230 ms, TE 89.20 ms, flip angle 78°, refocusing flip angle 160°, bandwidth 1700 Hz/pixel, echo
spacing 0.69 ms, partial Fourier 6/8, no in-plane acceleration, multiband slice acceleration factor 4, TA
5.6 min/scan for 99 directions, TA 5.7 min/scan for 100 directions). The 4 scans included 99 directions AP
(anterior-to-posterior phase-encode direction), 99 directions PA (posterior-to-anterior phase-encode
direction), 100 directions AP, and 100 directions PA. Diffusion volumes were acquired at b-values of 0,
1,500, or 3,000 s/mm?. We also acquired an angiogram using a time-of-flight (TOF) multi-slab 3D
sequence (0.39 mm x 0.39 mm x 0.5 mm resolution, TR 19.0 ms, TE 2.91 ms, flip angle 18°, bandwidth
186 Hz/pixel, phase partial Fourier 6/8, slice partial Fourier 6/8, in-plane acceleration factor (iPAT) 2, TA
5.5 min).

At 7T, we collected functional data and associated fieldmaps and a few additional anatomical measures
(venogram, high-resolution T2). Functional data were collected using gradient-echo EPI at 1.8-mm
isotropic resolution with whole-brain (including cerebellum) coverage (84 axial slices, slice thickness 1.8
mm, slice gap 0 mm, field-of-view 216 mm (FE) x 216 mm (PE), phase-encode direction anterior-to-
posterior, matrix size 120 x 120, TR 1600 ms, TE 22.0 ms, flip angle 62°, echo spacing 0.66 ms,
bandwidth 1736 Hz/pixel, partial Fourier 7/8, in-plane acceleration factor (iPAT) 2, multiband slice
acceleration factor 3). The use of moderate spatial resolution capitalizes on the signal-to-noise ratio
benefits provided by ultra-high magnetic field strength. At the beginning of each 7T session, we acquired
a short test EPI scan and adjusted the gain factor (FFT scale factor) accordingly to ensure large dynamic
range while avoiding clipping. Empirical measurements indicate that the acoustic noise caused by the EPI
sequence is 112 dBA; assuming a conservative noise reduction estimate of 26 dB for the earplugs that
we used, the resulting noise level is 86 dBA, which can be safely endured for approximately 8—16
continuous hours according to guidelines from the National Institute for Occupational Safety and Health
(NIOSH) 1998 and Occupational Safety and Health Administration (OSHA) 2009.

In addition to the EPI scans, the 7T sessions also included dual-echo fieldmaps for post-hoc correction of
EPI spatial distortion (same overall slice slab as the EPI data, 2.2 mm x 2.2 mm x 3.6 mm resolution, TR
510 ms, TE1 8.16 ms, TE2 9.18 ms, flip angle 40°, bandwidth 301 Hz/pixel, partial Fourier 6/8, TA 1.3
min/scan). Fieldmaps were periodically acquired over the course of each scan session to track changes
in the magnetic field (details provided below). In one of the 7T sessions held for each subject, we
acquired a venogram using a susceptibility-weighted imaging (SWI) 3D sequence (0.5625 mm x 0.5625
mm x 0.6 mm resolution, TR 28 ms, TE 21 ms, flip angle 17°, bandwidth 120 Hz/pixel, phase partial
Fourier 6/8, slice partial Fourier 6/8, in-plane acceleration factor (iPAT) 3, TA 10.1 min). This venogram
could be useful for investigating the impact of vasculature on fMRI signals®2. In addition, for the purposes
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of hippocampal segmentation, we acquired in one of the 7T sessions a high-resolution T2-weighted TSE
scan (0.357 mm x 0.357 mm x 1.5 mm resolution, 56 oblique slices oriented perpendicular to the long
axis of the hippocampus, field-of-view 160 mm (FE) x 156.4 mm (PE), TR 16000 ms, TE 53 ms,
bandwidth 100 Hz/pixel, no partial Fourier, in-plane acceleration factor (iPAT) 2, turbo factor 15, TA 4.5
min).

In the prffloc 7T fMRI session, the acquisition structure was [F BWLL F BWLL F BWLL F], where F
indicates a fieldmap, B indicates a multibar run of the pRF experiment (188 TRs), W indicates a
wedgering run of the pRF experiment (188 TRs), and L indicates a run of the fLoc experiment (195 TRs).
In the NSD 7T fMRI sessions, the acquisition structure was either [F NNNN F NNNN F NNNN F] or [F
RNNNN F NNNN F NNNNR F], where F indicates a fieldmap, N indicates a run of the NSD experiment
(188 TRs), and R indicates a resting-state run (188 TRs).

Stimulus display and scanner peripherals

Ear plugs were used to reduce acoustic noise experienced by the subjects. To minimize head motion, we
acquired a headcase®' for each of the 8 NSD subjects (Caseforge, Berkeley, CA; http://caseforge.co) and
deployed the headcases starting from the second NSD core scan session (nsd02). To ensure maximal
subject comfort, only the posterior half of the headcases were used (omitting the anterior half). Standard
foam padding was used to mitigate head motion prior to that point (prffloc, nsd01).

Stimuli were presented using a Cambridge Research Systems BOLDscreen 32 LCD monitor positioned at
the head of the 7T scanner bed, placed flush against the scanner bore. We chose to use an LCD monitor
because it delivers a sharp, high-quality image, in contrast to typical scanner setups involving projectors
and backprojection screens. The monitor operated at a resolution of 1920 pixels x 1080 pixels at 120 Hz.
The size of the full monitor image was 69.84 cm (width) x 39.29 cm (height). Subjects viewed the monitor
via a mirror mounted on the RF coil. The viewing distance was 5 cm from the subjects’ eyes to the mirror
+ 171.5 cm from the mirror to the monitor image = 176.5 cm total. Measurements of the display spectral
power density were obtained using a PR-655 spectroradiometer (Photo Research). The BOLDscreen is
designed by the manufacturer to behave as a linear display device, and our measurements confirmed this
to be the case.

We determined the maximum square extent visible in both eyes given the constraints of the RF coil to be
8.4° x 8.4° (714 pixels x 714 pixels). Thus, stimuli from the various experiments (e.g., pRF, fLoc, NSD)
were adjusted to fill 8.4° of visual angle (details provided below). At the beginning of each scan session,
we made an effort to position the monitor in the same location relative to the scanner and to position the
subject’s head and RF coil in the same location relative to the scanner. We also used a calibration square
(8.4° in size) to determine any incidental horizontal or vertical offsets needed in that session in order for
the participant to see the entire square in each eye, unobstructed. Given these efforts, we believe that
consistent and high-quality visual stimulation was achieved across scan sessions. Nonetheless, we
caution that due to limitations in positioning and/or potential drift over the course of a scan session, some
slight occlusion of the corners of the 8.4° x 8.4° square extent may have occurred some of the time.

A Mac Pro computer controlled stimulus presentation using code based on Psychophysics Toolbox
3.0.145283 Behavioral responses were recorded using a button box (Current Designs, Philadelphia, PA).
In some scan sessions (nsd21-nsd30, the same sessions in which the primary set of resting-state data
were acquired), physiological data were collected using a pulse oximeter and a respiratory belt (stock
Siemens equipment). Care was taken to secure the oximeter with tape to the left index finger of the
subject and to secure the respiratory belt snugly to the subject’s torso. Physiological data were carefully
synchronized with the fMRI data and cropped, but are not further analyzed in this paper.
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In several scan sessions (see Extended Data Figure 2 for details), eyetracking was performed using an
EyeLink 1000 system (SR Research, Mississauga, Ontario, Canada) combined with a custom infrared
illuminator mounted on the RF coil. Eyetracking was performed for the left eye, and eyetracking data were
obtained at 2000 Hz using the Pupil-CR centroid mode. We caution that the eyetracking data are variable
in quality, as achieving sufficient pupil contrast was often difficult given the constraints of the scanner
setup. For information complementary to the eyetracking data, we also captured video recordings of the
eyetracker computer display (see Figure 2B) using a cell phone secured to a mount. These video
recordings are useful for checking the accuracy of the eyetracker, and provide information in scan
sessions where pupil tracking and data acquisition failed completely. Details of pre-processing and
analysis of eyetracking data are provided in Supplementary Note 3.

Day-to-day acquisition procedures

Participants were scanned roughly once a week, with attempts to keep a regular weekly scan time. At the
beginning of each session (starting at approximately nsd07), participants were asked to rate on a five-
point scale how well they slept the night before, their mood, how hungry they were, and their stress level.
We also asked whether they had had caffeine in the past three hours. At the end of each scan session,
participants were asked to rate how comfortable they were during the session and to provide any general
feedback they had about the session. These various measures, as well as any technical issues that arose
during the session, were logged onto a spreadsheet (available online).

In the first several scan sessions, we emphasized the importance of fixation and performed simple tests
prior to scanning in which we watched the subject’s eyes while they attempted to fixate and while they
deliberately broke fixation. This was done to help subjects understand what good fixation feels like. In
every scan session, we reminded subjects about the importance of fixation and about the correct
mapping between buttons and responses.

During data collection, we monitored aspects of data quality including overall image quality, head motion,
quality of physiological data, and behavioral performance. Between functional runs, we checked in with
the subject to assess their energy level, enthusiasm, and compliance. If we noticed any substantial drops
in response rate, we politely notified the subject and offered short breaks before continuing.

To promote subject engagement and retention, participants were given the opportunity to earn monetary
bonuses that gradually increased in size over the course of the NSD study. These bonuses were
contingent on achieving certain performance levels on data quality metrics such as head motion and
response rate (details available online). Information regarding performance was supplied to participants in
the form of a continually updated “leaderboard” figure. We found that this figure greatly helped to motivate
participants.

The NSD experiment
Basic design

In the NSD experiment, participants performed a long-term continuous recognition task while viewing a
large number of color natural scenes. We chose this recognition task because it engages and challenges
the observer and is unbiased with respect to the specific content of the images (unlike other tasks such
as animacy judgment). In addition, it infuses the experiment with a rich memory dimension that is likely of
interest to memory researchers. A total of 73,000 distinct images were prepared. We intended that the 8
NSD subjects would each view 10,000 distinct images presented 3 times each over the course of 40 scan
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sessions. We designated a special set of 1,000 images (chosen randomly from the full set of prepared
images) as shared images that would be seen by all subjects (referred to as the ‘shared1000’); all other
images would be mutually exclusive across subjects. The distribution of the 3 presentations of each
image was tightly controlled, and subjects were naive as to both the number and distribution of the
presentations. Note that because some NSD subjects completed only 30 of the 40 prescribed scan
sessions, there are ultimately 515 images, out of the shared 1,000 images, that are viewed all 3 times by
all 8 subjects (referred to as the ‘shared515’).

Images were presented using a 3-s ON / 1-s OFF ftrial structure (Figure 1A). In informal piloting, we found
that this pacing made the recognition task feasible and not overly taxing. In addition, we reasoned that the
relatively long stimulus duration would increase neural activity and that the rapidity of the design would
allow more trials to be collected and thereby increase overall experimental power. Finally, we speculated
that the 3/1 trial structure would yield a pleasant experience for participants, at least compared to slow
event-related designs where most experimental time is spent viewing a blank screen.

Image preparation

The NSD stimuli are prepared as a single brick of RGB images with dimensionality 425 pixels x 425 pixels
x 3 RGB channels x 73,000 images and unsigned 8-bit integer format.

Images were taken from Microsoft's Common Objects in Context (COCO) image database'#. COCO
images are photographs harvested from online repositories; each image is supplemented by a rich set of
annotations (e.g., boundary polygons around objects, natural language captions, body-pose estimates).
Out of the 90 original COCO categories, there are a total of 80 COCO categories that exist in the 73,000
NSD images. We used COCO images in the 2017 train/val split'*, and restricted selection to the subset of
images for which pixel-level annotations of “stuff’®* (e.g., sky, land, wall, road) in addition to “things” (e.g.,
car, skateboard, hat) were available.

We selected only images whose smaller dimension (height or width) was at least 425 pixels. Where
necessary, we squared image dimensions by cropping out pixels along the largest dimension. For
example, if the original image was 425 x 585, we cropped away 160 pixels from the larger dimension,
resulting in an image that is 425 x 425. The median number of pixels cropped per image was 160. After
cropping, images were downsampled, if needed, to 425 x 425.

Cropping an image can change the way the viewer interprets it. We refer to this effect of cropping as
“semantic loss”. In order to be able to take full advantage of the rich annotations available for the COCO
images, we attempted to minimize semantic loss when cropping images. For landscape-oriented images,
we selected between a center, left, or right crop. For portrait-oriented images, we selected between a
center, top, or bottom crop (finer grids of cropping options had little effect on results). Selection of crops
were carefully performed based on quantitative analysis and visual inspection (details provided in the
NSD Data Manual).

In addition to screening to minimize semantic loss, we implemented a screening procedure to remove
duplicate images. Some of the COCO images are extremely similar to each other, differing only by a post-
processing operation (i.e., grayscaling or sharpening) or by a few frames in a motion-capture sequence.
To remove these near-duplicates, we downsampled all images to 40 x 40 and then computed the
correlation of grayscale pixel intensities between all image pairs. We manually inspected the image pairs
with the 500 highest correlation values. Of these, 38 image pairs were observed to be near-duplicates.
We randomly selected another image from the COCO dataset to replace one image in each near-
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duplicate pair. Finally, we screened captions for all images for indications of violent or salacious content.
No images were deemed too offensive to include in the experiment.

The distribution of “thing” categories across the final images selected for NSD was nearly identical to
distribution in the full COCO dataset. As a result, the “person” category was over-represented; however,
with a few exceptions, all 80 COCO object categories are displayed in at least 100 images to each
subject. Note that images tend to depict more than one category, so that a given object category
frequently appeared in the same image with other categories. For each subject’s images, at least 90% of
the images contain 2 or more of the 80 COCO categories.

Distribution of image presentations

We determined the ordering of the 10,000 images x 3 trials = 30,000 trials in advance and kept the
ordering fixed across subjects. The idea is that these 10,000 images are actually treated as slots into
which different NSD images are inserted. We designated the first 1,000 slots as corresponding to the
special shared1000 images; the remaining 9,000 slots were filled with unique images for each subject.
Note that because the trial ordering and repetition structure are identical across subjects, the difficulty of
the recognition task is comparable across subjects (up to the fact that some images might be more
difficult to remember than others).

We controlled the distribution of image presentations in order to prevent the recognition task from
becoming too difficult (and risking loss of subject morale). In the procedure, we conceptualized the task of
determining the trial ordering as equivalent to placing image presentations on a circle that would
eventually be cut and unraveled. The rationale for this circular design is to minimize the extent to which
certain points in the experiment differ from others; of course, since the circle eventually becomes a line,
there is some imperfection (see discussion below regarding “burn-in” and “dead” time). To determine
presentation times, we created a circular probability distribution by mixing a von Mises distribution and a
uniform distribution (Extended Data Figure 1A). Using random draws from the resulting distribution
(positioning the distribution at a random location on the circle for each image), we determined 3
presentation times for each of the 10,000 images. After completing the placement of all 30,000 trials, we
then cut the circle, unraveled it into a linear sequence of image presentations, and divided this sequence
into 40 consecutive segments corresponding to the 40 NSD scan sessions (750 trials per session).

To determine presentation times, we created a circular probability distribution by mixing a von Mises
distribution and a uniform distribution (Extended Data Figure 1A). For each image, we positioned the
peak of the von Mises distribution at a random position on the circle (i.e., we randomly sampled the mean
parameter from —180 to 180 degrees) and then randomly sampled presentation times for each of the
three image repetitions from the mixture distribution. We chose specific parameters for the probability
distribution: we used a von Mises distribution with concentration parameter of 3° and a mixing ratio of
60% and 40% for the von Mises and uniform distributions, respectively. This choice of parameters yields
appealing properties. First, the distribution is relatively narrow (see Extended Data Figure 1A) and
therefore ensures that there will be many trials involving an image that has been presented in the recent
past (thus, making the trials easy), while still allowing the probing of more distant memory events.
Second, there is minimal “burn-in” time at the beginning of the experiment: even in the first scan session,
there is still a substantial number of trials involving old images (see Extended Data Figure 1B, blue
line). Third, there is minimal “dead” time at the end of the experiment: even in the last scan session, there
is still a substantial number of trials involving new images (see Extended Data Figure 1B, blue line).

To provide a sense of the overall experimental design, we computed basic statistics on each NSD scan
session. For a typical session, the total number of distinct images shown once, twice, and all three times
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within that session is 437, 106, and 34, respectively (these numbers reflect the mean across scan
sessions, rounding to the nearest integer).

Trial and run design

Each trial lasted 4 s, and consisted of the presentation of an image for 3 s, followed by a 1-s gap. A total
of 75 trials were conducted in a run; thus, each run lasted 300 s. The first 3 trials (12 s) and last 4 trials
(16 s) were blank trials. The remaining 68 trials were divided into 63 stimulus trials and 5 blank trials. The
blank trials were randomly positioned in each run such that the minimum and maximum continuous
number of stimulus trials was 9 trials (36 s) and 14 trials (56 s), respectively (see Figure 1B). For even-
numbered runs, the 63" stimulus trial was designated to be a blank trial. A total of 12 NSD runs were
collected in one NSD session, yielding a total of (63 + 62) x 6 = 750 stimulus trials. Moreover, this design
was repeated for all 40 NSD sessions: 750 stimulus trials x 40 sessions = 30,000 stimulus trials. The
temporal ordering of stimulus and blank trials was generated once and kept fixed across subjects.

Note that the experimental design involves minimal trial jittering: for the most part, the time interval
separating consecutive stimulus images is fixed at 1 s, though occasionally, due to blank trials, the time
interval is 5 s. This design was intended to maximize statistical power, and differs from conventional fMRI
practice where intervals are often chosen randomly from a fixed range.

Stimulus presentation and task

Since the BOLDscreen is calibrated to behave as a linear display device, we used a squaring luminance
response when presenting the NSD experiment in order to simulate the typical viewing of digital images.
At time of presentation, the prepared NSD images were resized using linear interpolation from their native
resolution of 425 pixels x 425 pixels to 714 pixels x 714 pixels in order to occupy 8.4° x 8.4° on the
display. Throughout each run (including blank trials), a small semi-transparent red fixation dot with a black
border (0.2° x 0.2°; 50% opacity) was present at the center of the stimuli (Figure 1A). Stimuli were shown
against a gray background with RGB value (127,127,127).

Subjects were instructed to fixate the central dot and to press button 1 using the index finger of their right
hand if the presented image was new, i.e. the image had never been presented before, or button 2 using
the middle finger of their right hand if the presented image was old, i.e. the image is identical to one that
had been presented before, either in the current scan session or any previous scan session. Subjects
were additionally instructed to continue to fixate and wait for the next image in the event of blank trials.

Before the start of the NSD experiment, we showed the subjects a version of the experiment involving
cartoon images in order for them to become familiarized with the feel and timing of the task. During the
NSD experiment, minimal feedback was provided to the subjects regarding their performance on the
recognition task. Participants were blind to the precise details of the NSD experiment (e.g., total number
of images, total number of presentations per image). Participants were informed only about their
response rate (fraction of trials on which they successfully made a response) and a vague “performance
metric” which, unbeknownst to them, quantified their percent correct for easy trials (trials that involved the
presentation of an image that had occurred earlier in the same scan session). We revealed the nature of
the design in a debriefing session after the completion of the NSD experiment (details below).

Details on experiment timing
Stimulus presentation was locked to the refresh rate of the BOLDscreen monitor. Empirical

measurements confirmed that the monitor refresh rate was nearly exactly 120 Hz: duration of runs were
highly reliable, ranging from 299.95-299.98 s. To compensate for the slight offset from 300 s, the fMRI
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data were pre-processed to achieve a sampling rate of 0.999878 s (high-resolution preparation) or
0.999878 s x (4/3) = 1.333171 s (standard-resolution preparation). For brevity, we refer to these numbers
as 1.000 s and 1.333 s. Experimental runs were started by a trigger issued by the MR scanner. Due to
input polling and monitor refresh, there was slight variability in the delay between trigger detection and the
presentation of the first stimulus frame, ranging from 3—-22 ms. We did not attempt to compensate for this
delay.

Acquisition

Due to constraints on subject availability (including unplanned out-of-town absences in the summer of
2019) and due to constraints on scanner availability (the 7T scanner was decommissioned in November
2019), we did not complete the full NSD experiment for every participant. Fortunately, we were able to
collect a sizable amount of data: 40, 40, 32, 30, 40, 32, 40, and 30 NSD sessions for subj01-subj08,
respectively. In these collected data, each subject viewed 9,209-10,000 distinct images and participated
in 22,500-30,000 trials. Aggregated across subjects, the total number of distinct images shown was
70,566, and the total number of trials was 213,000.

Debriefing

After completion of the final memory test (details below), participants filled out a post-NSD questionnaire.
This questionnaire probed topics such as strategies used for performing the NSD task and estimates for

the number of images viewed and the number of image repetitions. After filling out this questionnaire, the
design of the NSD experiment was then revealed to the participants.

Other experiments

Population receptive field (pRF) experiment

We adapted the experiment used in the Human Connectome Project (HCP) 7T Retinotopy Dataset®.
Stimuli consisted of slowly moving apertures filled with a dynamic colorful texture (see Figure 2A).
Apertures and textures were updated at a rate of 15 Hz. Two run types were used. The first, termed
‘multibar’, involves bars sweeping in multiple directions (same as RETBAR in the HCP 7T Retinotopy
Dataset). The second, termed ‘wedgering’, involves a combination of rotating wedges and expanding and
contracting rings. Both run types included blank periods.

For consistency with the NSD experiment, stimuli were resized to fill a circular region with diameter 8.4°.
Each run lasted 300 s (exact empirical timings were highly accurate and ranged between 299.95-300.00
s). Throughout stimulus presentation, a small semi-transparent dot (0.2° x 0.2°) was present at the center
of the stimuli. The color of the central dot switched randomly to one of three colors (black, white, or red)
every 1-5 s. Subjects were instructed to maintain fixation on the dot and to press a button whenever the
color of the dot changed. To further aid fixation, a semi-transparent fixation grid was superimposed on the
stimuli and was present throughout the experiment®®. A total of 6 runs (3 multibar, 3 wedgering) were
collected in the first 7T fMRI session (prffloc).

Functional localizer (fLoc) experiment

This experiment was developed by the Grill-Spector lab®' (stimuli and presentation code available at
http://vpnl.stanford.edu/fLoc/). The experiment consisted of the presentation of grayscale images
depicting different stimulus categories (see Figure 2A). There were 10 categories, grouped into 5
stimulus domains: characters (word, number), bodies (body, limb), faces (adult, child), places (corridor,
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house), and objects (car, instrument). Stimuli were presented on a scrambled background (different
backgrounds for different stimuli). Stimuli were presented in 4-s trials. In a trial, 8 images from a given
category were sequentially presented (image duration 0.5 s). Each run included 6 presentations of each
of the 10 categories as well as blank trials (also of 4-s duration).

For consistency with the NSD experiment, stimuli were resized to fill a square region filling 8.4° x 8.4° of
visual extent. Each run lasted 300 s (exact empirical timings were highly accurate and ranged between
300.000-300.002 s). Throughout stimulus presentation, a small red fixation dot was present at the center
of the stimuli. Subjects were instructed to maintain fixation on the dot and to press a button whenever
they noticed an image in which only the background was present (“oddball” task). A total of 6 runs were
collected in the first 7T fMRI session (prffloc).

Resting-state experiment

Stimuli consisted of a white fixation cross (0.5° x 0.5°) on a gray background (see Figure 2A). Each
resting-state run lasted 300 s. In the second resting-state run held within a given scan session, the
fixation cross turned red after 12 s had elapsed and remained red for 4 s before returning to white.

Resting-state data were acquired in several NSD core scan sessions: nsd21-nsd38 for subj01 and
subj05, and nsd21-nsd30 for all other subjects. Thus, a total of 100 or 180 minutes of resting-state data
were acquired for each subject. In each session, one resting-state run was acquired at the beginning of
the session (prior to the NSD runs) and another resting-state run was acquired at the end of the session
(after the NSD runs).

In the first resting-state run, subjects were instructed to stay awake and fixate the cross but otherwise
rest. In the second resting-state run, subjects were additionally instructed to inhale deeply when the
fixation cross turned red. This instructed breath was designed to aid analysis of the physiological data
collected concomitantly with the resting-state data. Prior to each resting-state run, subjects were asked to
report their current sleepiness level using the Stanford Sleepiness Scale®® (1-7 where 1 is most active
and 7 is most sleepy). After each resting-state run, subjects were asked to report their sleepiness level
during the run that had just completed.

After the last scan session involving resting-state data, participants filled out a post-resting-state
questionnaire. This questionnaire queried what the participants were doing during the resting-state runs
and whether they thought about the images from the NSD experiment.

Synthetic stimuli experiment (nsdsynthetic)

After completion of the NSD experiment, we conducted an additional 7T fMRI scan session in which
responses were measured to a variety of carefully controlled synthetic (non-naturalistic) stimuli while the
subject performed either a fixation task or a one-back task. These data will be described and released in
a forthcoming manuscript.

Visual imagery experiment (nsdimagery)

After completion of the nsdsynthetic experiment, we conducted an additional 7T fMRI scan session in
which responses were measured while participants engaged in visual imagery and other cognitive tasks.

These data will be described and released in a forthcoming manuscript.

Ad(ditional behavioral measures (nsdpostbehavior, nsdmemory, nsdmeadows)
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A number of behavioral assessments were conducted after completion of the NSD experiment. Several of
these were relatively brief, and included the following (nsdpostbehavior): open-ended questions regarding
language ability; the Vividness of Visual Imagery Questionnaire®’; the Test of Word Reading Efficiency®®,
including both Sight Word Efficiency and Phonemic Decoding Efficiency; the Cambridge Memory Test for
Faces®; ultra-fast measurement of contrast sensitivity’?; and an assessment of chromatic sensitivity
(participants adjusted intensities of red, green, and blue channels on the BOLDscreen display until
minimal luminance flicker was perceived).

We also conducted a final memory test in which we collected various memory-related measures
regarding the images shown to the subjects during the NSD experiment (hsdmemory). These data will be
described and released in a forthcoming manuscript.

Finally, using the web-based Meadows platform (http://meadows-research.com), we conducted an
assessment of how the NSD subjects perceive and interpret the NSD images (nsdmeadows). First, we
selected a small set of images that maximally span semantic space. This was done by isolating the
shared515 images; computing shifted inverse frequency sentence embeddings for the sentence captions
provided by the COCO dataset’!; and using a greedy approach to determine the subset of 100 images
that maximize the average distance between each image’s embedding and its closest neighbor. We then
asked participants to perform a Multiple Arrangements Task’? in which they arrange using a drag-and-
drop interface the 100 images within a white circular arena according to the similarity of their content.
Using an adaptive procedure, subsequent arrangements were conducted using subsets of the images in
order to maximize information gain. This was done until 45 minutes had elapsed. Using a similar interface
on Meadows, participants then provided valence and arousal ratings for the 100 images as well as 3
additional images pulled from the shared515 images. Ratings were performed separately for valence and
arousal, and were accomplished by freely arranging using a drag-and-drop interface the images
(delivered in small batches) along a one-dimensional axis ranging from low to high. This assessment took
about 15 minutes.

Overview of data analysis

We designed custom analysis strategies to maximize the quality of derived measures from the NSD data.
A number of methods are based on recent work3273 where further details can be found. Data analysis and
visualization were performed using custom code in MATLAB and Python as well as tools from various
packages such as FreeSurfer, SPM, FSL, ANTs’#, and ITK-SNAP75. An archive of code used is provided
online (https://github.com/cvnlab/nsddatapaper/), and specific code files are referenced in the text below.

A comprehensive schematic outlining the data analysis performed in this paper is provided in Extended
Data Figure 3. The analysis of the NSD data can be divided into three components: (i) pre-processing of
the anatomical, diffusion, and functional data, (ii) time-series analysis of the fMRI data to estimate trial-
wise betas, and (iii) further analyses of the trial-wise betas to answer specific scientific questions. The first
two components produce the so-called ‘prepared data’ that are generally useful to the community,
whereas the third component refers to analyses performed for the purposes of this paper (estimation of
pRFs from the NSD data, univariate memory analysis, representational similarity analysis, brain-optimized
neural network training). Data collection and analysis were not performed blind to the conditions of the
experiments. No data were excluded from analyses, with the exception of a few T+ volumes (2 of 52
volumes = 4%) and certain portions of the eyetracking data that were corrupted by noise (11 of 160
eyetracking runs = 7%).

The pre-processing approach that we designed for the NSD dataset prioritizes accuracy and preservation

of information (e.g. avoiding spatial smoothing). We avoid “baking in” unnecessary assumptions (e.g.
aggressively removing signal fluctuations without careful assessment of validity) and we avoid assuming
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the accuracy of automated methods; care is taken to manually inspect each pre-processing step to
ensure satisfactory results. While we believe our pre-processing is general and likely suitable for most
downstream uses of the data, the raw data are also available for those who wish to explore other pre-
processing approaches such as fmriprep’®. We note several aspects of the NSD dataset that may render
the dataset challenging from a pre-processing standpoint: the relatively high spatial resolution of the fMRI
data (1.8 mm) places higher demands on spatial accuracy, the ultra-high field strength (7T) used for the
fMRI data yields higher levels of EPI spatial distortion compared to lower field strengths, and the
emphasis on many repeated scans of individuals heightens the importance of achieving consistent
imaging results across scan sessions.

Pre-processing of MRI data

Details of the pre-processing of anatomical, functional, and diffusion data are provided in Supplementary
Notes 4-5. Functional data were pre-processed using one temporal resampling to correct for slice time
differences and one spatial resampling to correct for head motion within and across scan sessions, EPI
distortion, and gradient nonlinearities. Two versions of the functional data were prepared: a 1.8-mm
standard-resolution preparation (temporal resolution 1.333 s) and an upsampled 1.0-mm high-resolution
preparation (temporal resolution 1.000 s). Analyses of the pRF and fLoc localizer experiments were used
to define retinotopic and category-selective regions of interest (ROIs), respectively. Other ROls were also
defined, including an ‘nsdgeneral’ ROl indicating occipital regions generally responsive in the NSD
experiment and a ‘corticalsulc’ ROI collection indicating major cortical sulci and gyri. Annotations for
several of the corticalsulc ROls are shown in Figure 3F and Figure 4B. Abbreviations: CGS = cingulate
sulcus, PrCS = precentral sulcus, CS = central sulcus, PoCS = postcentral sulcus, SFRS = superior
frontal sulcus, IFRS = inferior frontal sulcus, LS = lateral sulcus, Calc = calcarine sulcus, OTS =
occipitotemporal sulcus, CoS = collateral sulcus, STS = superior temporal sulcus, IPS = intraparietal
sulcus.

Data quality metrics

Several data quality metrics were calculated (export_runmetrics.m) and summarized in Figures 1D and
2D. Temporal signal-to-noise ratio (tSNR) was computed from raw fMRI volumes (no pre-processing) by
first detrending the time-series data from each voxel (quadratic polynomial fit) and then dividing the mean
signal intensity by the standard deviation of signal intensity values (autoqc_fmri.m). We calculated the
median tSNR across voxels within a simple brain mask (mean volume thresholded at 1/10th of the 99th
percentile of values) and then computed the median across runs. Head motion was quantified by
calculating framewise displacement (FD)’” based on motion parameter estimates (1.8-mm preparation).
We calculated the mean FD across volumes in a run and then computed the median across runs. BOLD
response was quantified by calculating the percentage of variance explained by a simple ON-OFF GLM
model (1.8-mm preparation). We calculated the median variance explained across voxels within the
nsdgeneral ROI and then computed the median across runs. (Further details on the ON-OFF GLM can be
found in the ‘GLMsingle algorithm’ section.) Response rate was quantified by calculating the percentage
of trials for which the subject pressed a button and then computing the mean across runs. Behavioral
performance was quantified by dividing trials into easy trials (trials for which the presented image had
been previously presented in the same scan session), hard trials (trials for which the presented image
had been previously presented but in a previous scan session), and novel trials (trials for which the
presented image had never been previously presented) and then calculating, for each trial type, the
percentage of trials on which the subject indicated an ‘old’ response.

To identify EPI signal dropout regions (export_signaldropout.m), we divided the T2 volume (resampled to
match the EPI data) by the mean EPI volume (1-mm preparation). The resulting volume is useful as it

28



1257
1258
1259
1260
1261
1262
1263
1264
1265
1266

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306

indicates which voxels have high signal intensity in the T2 but are corrupted by signal dropout in the EPI.
We mapped the volume to the cortical surface (cubic interpolation; mean across depth), transformed the
result to fsaverage, and then used a data-driven threshold to mark atypically high values. Vertices marked
in at least four of the eight subjects are indicated in Figure 3F. To visualize surface imperfections, we
took the voxels that were marked in the 0.8-mm anatomical space (during the manual inspection of
FreeSurfer surface imperfections), smoothed this binary volume with a 3D Gaussian with full-width-half-
max of 2 mm, mapped the result to the cortical surface (cubic interpolation; max across depth), and then
transformed the result to fsaverage. Vertices exceeding 0.01 in at least one of the eight subjects are
indicated in Figure 3F.

Rankings from the 7T fMRI screening session

Six quality measures (pRF BOLD, fLoc BOLD, pRF behavior, fLoc behavior, raw motion, detrended
motion) were computed for each of the 14 subjects who participated in the screening session. BOLD
quality was quantified as the percentage of voxels for which variance explained by modeling the fMRI
time-series data (either pRF model fitting or GLM model fitting) exceeded 20%. Behavior quality was
quantified as described above. Motion was quantified by calculating the median voxel displacement
relative to the reference volume used for motion correction, computing the median of this quantity across
volumes, and then computing the mean across runs. This motion quantification was performed using raw
motion parameter estimates (thereby providing a measure of global head displacement over the course of
the session) as well as using motion parameter estimates that are linearly detrended within each run
(thereby providing a measure of within-run head instability). Each of the six measures was linearly scaled
to span the range 1-5 where 1 corresponds to the worst performance and 5 corresponds to the best
performance observed across subjects. Finally, the normalized measures were averaged to produce an
overall ranking for each subject, as depicted in Figure 2C.

Analysis of behavioral data from the NSD experiment

The behavioral data from the NSD experiment were lightly reformatted for the convenience of subsequent
analyses (analyzebehavior_nsd.m). We first checked whether the subject had accidentally positioned
their fingers on incorrect buttons on the button box, and compensated for this if necessary. (In a few
instances, we deliberately instructed subjects to use alternative buttons due to hardware malfunction of
the button box.) We then recorded, for each stimulus trial, several quantities including time of image
presentation, whether the image presented was new or old, whether the response was correct or
incorrect, and the reaction time. Button responses were extracted from a time window extending 250—
4250 ms after image onset. In the case of multiple buttons pressed during a trial, we scored the final
button pressed, excluding any redundant presses of that button (subjects sometimes repeated button
presses for good measure).

GLM analysis of the NSD experiment
Overview of approach

We performed a GLM analysis of the pre-processed time-series data from the NSD experiment. To
maximize flexibility for subsequent analyses, the GLM approach was designed to provide estimates of
BOLD response amplitudes (‘betas’) for single trials. Due to low signal-to-noise ratio, single-trial
estimation in fMRI is challenging. We therefore developed several analysis components in order to
optimize the quality of single-trial betas. These components are packaged into a tool called GLMsingle,
and is the subject of a forthcoming manuscript where additional details and discussion can be found.
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The first analysis component of GLMsingle is the use of a library of hemodynamic response functions
(HRFs) whereby the best-fitting HRF from the library is chosen for each voxel. This simple approach for
compensating for differences in hemodynamic timecourses across voxels’® has several appealing
features: it is efficient and can be executed with little computational cost (and hence can accommodate
the massive scale of NSD); and it invariably provides well-regularized HRF estimates. The second
analysis component is an adaptation of GLMdenoise to a single-trial GLM framework. GLMdenoise® is a
technique in which data-derived nuisance regressors are identified and used to remove noise from—and
therefore improve the accuracy of—beta estimates. The third component is an application of ridge
regression’® as a method for dampening the noise inflation caused by correlated single-trial GLM
predictors. To determine the optimal level of regularization for each voxel, we make use of a recently
developed efficient re-parameterization of ridge regression called ‘fractional ridge regression’®.

Derivation of the library of HRFs

To generate a library of HRFs that accurately capture empirically occurring timecourse variation, we
performed an initial analysis of data from the first NSD core session (nsd01). This library was fixed and
used for the analysis of all subsequent NSD sessions. The first step was to create a comprehensive
summary of observed timecourses (hrf_derivecanonicalpcs.m). The time-series data from each subject’s
nsd01 session was fit using a finite impulse response model (0—30 s) where all of the stimulus trials are
treated as instances of a single experimental condition (this simplification is necessary to make estimation
feasible). We identified voxels for which model variance explained (R?) was greater than 10%, and from
these voxels randomly drew 20,000 voxels (with replacement). Pooling across subjects, timecourse
estimates from the resulting 160,000 voxels were subjected to singular value decomposition to determine
the top 3 principal components (shown in Figure 3B, inset). To fine-tune timecourse estimates, we re-fit
the time-series data from the nsd01 session using these 3 principal components as the basis (as opposed
to the finite impulse response basis). Finally, adopting the visualization approach of the Temporal
Decomposition Method”?, we projected voxel timecourse estimates onto the unit sphere (using the same
voxel selection criterion of R? > 10%), and constructed a 2D histogram for each subject (shown in Figure
3A).

The second step was to define a set of timecourses that span the observed timecourse variation
(hrf_constructmanifold.m). To do this, we converted the 2D histograms to units of relative frequency and
then averaged the histograms across subjects. Inspecting the group-average histogram (shown in Figure
3B), we manually clicked a sequence of points on the unit sphere that follow the data density as closely
as possible. We then parameterized the path traced by these points (a simple 1D manifold) by positioning
regularly spaced points where successive points are separated by six angular degrees (Figure 3B, cyan
dots). The timecourses corresponding to the resulting set of 20 points were cubic interpolated to a
sampling rate of 0.1 s and normalized to peak at 1 (Figure 3C). Finally, we fit each timecourse using a
double-gamma function as implemented in SPM’s spm_hrf.m (hrf_fitspmhrftomanifold.m). This yielded a
library of 20 canonical HRFs that may be useful for application to other experimental datasets
(getcanonicalhrflibrary.m). We note that variation in timecourse shape is likely due to the influence of
macrovasculature on BOLD temporal dynamics’.

Cross-validation framework for single-trial GLM

The GLMdenoise and ridge regression analysis components of GLMsingle both require tuning of
hyperparameters. To determine the optimal setting of hyperparameters, we use a cross-validation
approach in which out-of-sample predictions are made for single-trial beta estimates, as opposed to time-
series data. This simplifies and reduces the computational requirements of the cross-validation
procedure. Note that because of cross-validation, although GLMsingle produces estimates of responses
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to single trials, it does require the existence of and information regarding repeated trials, i.e., trials for
which the stimulus is the same.

The first step of the cross-validation procedure is to analyze all of the available data using no
regularization. In the case of GLMdenoise, this amounts to the inclusion of zero nuisance regressors; in
the case of ridge regression, this amounts to the use of a shrinkage fraction of one, indicating ordinary
least-squares regression. In both cases, the analysis produces a full set of unregularized single-trial betas
(e.g., in one NSD session, there are 750 single-trial betas distributed across 12 runs). The second step of
the procedure is to perform a grid search over values of the hyperparameter (e.g., number of nuisance
regressors; shrinkage fraction). For each value, we assess how well the resulting beta estimates
generalize to left-out runs. For example, in leave-one-run-out cross-validation, one run is held out as the
validation run, stimuli that occur in both the training runs and the validation run are identified, and squared
errors between the regularized beta estimates from the training runs and the unregularized beta
estimates from the validation run are calculated. This procedure is iterated with each run serving as the
validation run, and errors are summed across iterations.

GLMsingle algorithm

Having described the essential aspects of the estimation framework above, we now turn to the steps in
the GLMsingle algorithm. GLMsingle involves fitting several different GLM variants. Each variant includes
polynomial regressors to characterize the baseline signal level: for each run, we include polynomials of
degrees 0 through round(L/2) where L is the duration in minutes of the run.

1. Fit a simple ON-OFF GLM. In this model, stimulus trials are treated as instances of a single
experimental condition, and a canonical HRF is used (getcanonicalhrf.m). Thus, there is a single
“ON-OFF” predictor that attempts to capture signals driven by the experiment. The utility of this
simple model is to provide variance explained (R?) values that help indicate which voxels carry
experiment-driven signals.

2. Fit a baseline single-trial GLM. In this model, each stimulus trial is modeled separately using the
canonical HRF. This model provides a useful baseline for comparison.

3. Identify HRF for each voxel. We fit the data multiple times with a single-trial GLM, each time using
a different HRF from the library of HRFs. For each voxel, we identify which HRF provides the best
fit to the data (highest variance explained), and inherit the single-trial betas associated with that
HRF. Note that the final model for each voxel involves a single chosen HRF from the library (not a
weighted sum of HRFs).

4. Use GLMdenoise to determine nuisance regressors to include in the model. We define a pool of
noise voxels (brain voxels that have low ON-OFF R?) and then perform principal components
analysis on the time-series data associated with these voxels. The top principal components are
added one at a time to the GLM until cross-validation performance is maximized on-average
across voxels.

5. Use fractional ridge regression to regularize single-trial betas. With the nuisance regressors
determined, we use fractional ridge regression (fracridge®) to estimate the single-trial betas,
systematically evaluating different shrinkage fractions. For each voxel, in the context of a GLM
that incorporates the specific HRF chosen for that voxel, cross-validation is used to select an
optimal shrinkage fraction for that voxel. To mitigate bias on the overall scale of betas, we apply a
post-hoc scaling and offset on betas obtained for a given voxel in order to match, in a least-
squares sense, the unregularized betas obtained for that voxel.

Application of GLMsingle to the NSD data
We used GLMsingle to analyze the time-series data independently for each NSD scan session

(gIm_nsd.m). Major algorithmic parameters included the following: we evaluated up to 10 nuisance
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regressors; we evaluated shrinkage fractions from 0.05 to 0.90 in increments of 0.05 and from 0.91 to 1 in
increments of 0.01 (representing a finer grain for voxels with the best signal-to-noise ratio); we performed
6-fold cross-validation (consecutive pairs of runs) for Steps 4 and 5; and we used an ON-OFF R2
threshold of 5% in Step 4.

Three different versions of the single-trial betas were computed and saved. The first beta version (b1,
‘betas_assumehrf’) is the result of Step 2, and reflects the use of a canonical HRF. The second beta
version (b2, ‘betas_fithrf’) is the result of Step 3, and reflects the result of voxel-wise HRF estimation. The
third beta version (b3, ‘betas_fithrf_GLMdenoise_RR'’) is the result of Step 5, and reflects the additional
GLMdenoise and ridge regression procedures. Betas were converted to units of percent BOLD signal
change by dividing amplitudes by the mean signal intensity observed at each voxel and multiplying by
100. While we provide betas in units of percent signal change, we suggest that users may wish to z-score
the responses of each voxel within each scan session in order to eliminate potential non-stationarities and
to equalize units across voxels.

For user convenience, we created preparations of the single-trial betas in additional spaces other than the
native 1.8-mm and 1.0-mm functional spaces. For the ‘nativesurface’ preparation, we performed cubic
interpolation of the 1.0-mm betas onto each of the 3 cortical surface depths and averaged across depths
(analysis_transformfsaverage.m). The result was then mapped using nearest-neighbor interpolation to
fsaverage space to create the ‘fsaverage’ preparation. For the ‘MNI’ preparation, we mapped the 1.0-mm
betas to MNI space using cubic interpolation (analysis_transformMNI.m).

GLM analysis of the resting-state experiment

As an optional resource, we fit the time-series data from the resting-state experiment using methods that
parallel those used for the NSD experiment (g/m_nsdresting.m). For each scan session involving resting-
state, we took the two resting-state runs (first and last run acquired) and analyzed the data using the
design matrix of the neighboring NSD runs and the same voxel-wise HRFs determined from analyzing the
NSD runs in that scan session (this is analogous to beta version b2). Although there is no reason to think
that spontaneous resting-state activity conforms to the 4-s trial structure of the NSD experiment, these
resting-state betas may be useful as a direct comparison for the NSD betas.

Noise ceiling estimation

To obtain a measure of data quality, noise ceilings were estimated for the NSD betas
(export_noiseceiling.m). The noise ceiling for a given voxel is defined as the maximum percentage of
variance in the voxel's responses that can in theory be explained, given the presence of measurement
noise. Our method for estimating the noise ceiling follows the general framework laid out in previous
studies®®8!. Several assumptions are made: (i) the signal contained in the voxel’s response is determined
solely by the presented image, (ii) the variability of the signal across different images is Gaussian-
distributed, (iii) the noise is Gaussian-distributed with zero mean, and (iv) the response to an image is
equal to the signal plus noise. Given these assumptions, any observed response is a sample from a sum
of Gaussian distributions:

RESP ~ N(#signazr‘fsignaz) + NV (0, Gppise)
where RESP indicates the NSD beta observed on a given trial, psignal is the mean signal across different
images, osignal is the standard deviation of the signal across different images, and oneise is the standard
deviation of the noise (for illustration of these concepts, see Extended Data Figure 8C). Note that the
first Gaussian distribution characterizes true signal variability, whereas the second Gaussian
characterizes variability due to noise. Also, note that this framework treats response variability unrelated
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to the stimulus as “noise”, but such variability may in fact reflect “signal” from the perspective of functional
connectivity®2.

To compute the noise ceiling, we first take the trial-wise NSD betas for each voxel and z-score these
betas within each scan session. This simple normalization compensates for nonstationarities that may
exist across sessions. We then calculate the variance of the betas across the three presentations of each
image (using the unbiased estimator that normalizes by n—1 where n is the sample size), average this
variance across images, and then compute the square-root of the result. This produces an estimate of the

noise standard deviation:
&naise =\ mean(ﬁaz)

where f,° indicates the variance across the betas obtained for a given image. Next, given that the
variance of the z-scored betas is 1, we estimate the signal standard deviation as follows:

&signal = |1 - &naisez|+
where | |, indicates positive half-wave rectification. Finally, we simplify by calculating a single scalar
quantity:

&signal

nesnr = ——

Onoise

where ncsnr indicates the noise ceiling signal-to-noise ratio.

Given the framework described above, the noise ceiling can be calculated as the amount of variance
contributed by the signal expressed as a percentage of the total amount of variance in the data:
Usignalz

NC =100 x ; -
Usignal + Onoise

where NC indicates the noise ceiling. We would like to be able to calculate the noise ceiling based on the
single scalar ncsnr. Moreover, since a researcher may wish to average across multiple presentations of
each image before attempting to explain the NSD betas, we would like a method for flexibly expressing
the noise ceiling for different levels of trial-averaging. With some algebra, it can be shown that the noise

ceiling can be expressed as follows:

nesnr?
NC =100 x

nesnr? +%
where n indicates the number of trials that are averaged together (see the NSD Data Manual for the
derivation and additional details). We note that there is a direct relationship between the commonly used
metric of split-half reliability and the noise ceiling: if a voxel has two sets of responses that reflect the
same image presentations, then the correlation between the two sets of responses multiplied by 100 is
equal to the noise ceiling for single-trial responses expressed in percent variance explained.

Using the above methods, we calculated noise ceilings for each of the beta versions and for each of
various spatial preparations (1.8-mm, 1-mm, fsaverage, nativesurface). For simplicity, noise ceiling
estimates were calculated using betas associated with images with all three presentations available. To
assess stability, we also computed split-half noise ceiling estimates. This was achieved by splitting the
available images into two mutually exclusive groups and computing noise ceiling estimates independently
for each group. The noise ceiling results shown in Figure 3F-G and Supplementary Figure 6 were
computed assuming n = 3, reflecting the scenario in which trial-wise betas are averaged across three
trials for each image. The noise ceiling results shown in Figure 6A-B were computed assuming n = 1
and are expressed in correlation units (square root of percent variance explained).

A few important notes: Even though NSD consists of only up to three trials for a given image, the estimate
of response variability for each voxel (i.e. the noise standard deviation) is averaged across a very large
number of images, thus stabilizing the noise ceiling estimate. Also, note that our noise ceiling metric
refers to activity levels in individual voxels in individual subjects. It is thus quite different from, for
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example, noise ceiling metrics computed for group-average representational dissimilarity matrices®®. The
latter are more abstracted away from the data given that they summarize properties observed across a
collection of voxels, reflect second-order computations on activity levels and not activity levels
themselves, and probe responses at the group level and not at the individual level.

Calculation of equivalent trials

To provide a common basis for comparing different datasets, we define the number of equivalent trials
present in a dataset as N x ncsnr? where N indicates the number of trials conducted and ncsnr is the
noise ceiling signal-to-noise ratio (as defined earlier). The assumptions here are that (i) every trial has
equal value, irrespective of whether it is used to measure brain responses to an image that has already
been shown or a new image (e.g., two trials for one image is equivalent to one trial for two distinct
images), and (ii) increases in signal-to-noise ratio are equivalent to the collection of additional trials. For
an illustrative example of the second assumption, suppose an experimenter chooses to improve signal-to-
noise ratio by averaging the response to a given image across p repetitions of that image. This effectively
reduces the noise standard deviation by a factor of \p and ncsnr will thus increase by a factor of Vp.
Alternatively, the experimenter could choose to not average and instead use the p trials as-is. In the
former case, the number of equivalent trials is 1 x (\p x ncsnr)?2 = p x ncsnr?, whereas in the latter case,
the number of equivalent trials is p x ncsnr?. Thus, the two cases correspond to the same number of
equivalent trials.

We conducted an auxiliary analysis that directly compares NSD against the BOLD5000 dataset?. The
goal of this analysis was to calculate a summary ncsnr value for each dataset, so that the number of
equivalent trials can be calculated. For fair comparison, both NSD and BOLD5000 were analyzed using
the exact same GLM methods described in this paper (beta version b3). We then defined a common brain
region on which data quality can be compared. This was done by transforming the nsdgeneral ROI to MNI
space and then mapping the resulting MNI mask to each subject in the two datasets. Finally, we
computed the median ncsnr observed across voxels in the mask in each subject.

The median ncsnr, averaged across subjects, was 0.260 for NSD (averaged across the first four NSD
subjects), and 0.187 for BOLD5000 (averaged across the four subjects in BOLD5000). This indicates
that, despite the longer time duration allocated per trial in BOLD5000 (10 s) compared to NSD (4 s), the
quality of a single-trial beta in NSD is higher than that in BOLD5000. Specifically, one NSD trial is
approximately equivalent to (0.260)%/(0.187)? = 1.93 BOLD5000 trials. This increase in quality is likely
due, in part, to the screening of subjects and the ultra-high magnetic field strength (7T) used in NSD.
Note that the ncsnr metric quantifies the SNR per trial and is expected to be unbiased with respect to the
number of repeated frials used to calculate it. Thus, although the exact number of trials per image is
different in the NSD and BOLD5000 datasets, the ncsnr values can still be directly compared.

Univariate analysis of memory recognition

For this analysis (results shown in Figure 4B), we used version 3 of the NSD betas (b3) in the fsaverage
preparation. Betas for each surface vertex were kept in percent signal change units. Using the behavioral
responses, we identified trials involving hits (subjects responded ‘old’ to a previously presented image)
and trials involving correct rejections (subjects responded ‘new’ to a novel image). Then, for each subject,
we calculated two-sample f-values at each surface vertex. This was done both for trials pooled within
individual NSD scan sessions as well as for trials pooled across all sessions.

Representational similarity analysis
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For this analysis (results shown in Figure 5), we used version 3 of the NSD betas (b3) in the fsaverage
preparation. Betas for each surface vertex were z-scored within each scan session, concatenated across
sessions, and averaged across repeated trials for each distinct image. To support the representational
similarity analysis®, we defined a set of ROIs (V1, V2, V3, pVTC, aVTC) on the fsaverage surface. This
was done by mapping the manually-defined V1, V2, and V3 from each subject to fsaverage, averaging
across subjects, and using the result to guide the definition of group-level ROls. We also defined a
posterior and anterior division of ventral temporal cortex (pVTC and aVTC, respectively) based on
anatomical criteria. For each subject, we extracted betas for vertices within each ROI (concatenating
across hemispheres). We then computed Pearson's correlation between beta patterns across all possible
pairs of images. This yielded representational dissimilarity matrices (RDMs) with rows and columns
indexing distinct images (e.g., the RDMs for subject 1 have dimensionality 10,000 x 10,000 with
correlations corresponding to 49,995,000 possible pairs).

To help visualize and interpret these large dissimilarity matrices, we performed {-distributed stochastic
neighbor embedding*':% (t-SNE) using a perplexity level of 100 (Figure 5B—C). This projects the high-
dimensional representations onto a two-dimensional plane such that the distance of a given pair on the
plane reflects that pair's distance in the high-dimensional representation as accurately as possible. To
verify the strong categorical structure visible in pVTC and aVTC (see Figure 5B), we quantified the
similarity of the brain RDMs to a model RDM constructed from the category labels in the COCO dataset.
Specifically, we constructed an RDM from a binary matrix indicating the presence or absence of each of
the 80 COCO categories (cosine distance metric), and correlated this model RDM with each brain RDM.
This process was performed for mutually exclusive groups of 100 images drawn from all images
presented 3 times to a given subject (the number of groups was 100, 100, 62, 54, 100, 62, 100, and 54
for the eight subjects, respectively). We calculated the mean and standard error across results obtained
for different groups of images (Figure 5D). Finally, we investigated similarity of brain representations
across ROls and subjects. This was done by isolating the shared515 images, constructing brain RDMs for
these images, and correlating brain RDMs across ROlIs and subjects. The resulting second-order RDM is
shown in Figure 5E, with further quantification of this matrix shown in Figure 5F.

Data availability

The NSD dataset is freely available at http:/naturalscenesdataset.org. The data are hosted in the cloud,
allowing researchers to exploit high-performance cloud computing to efficiently analyze the dataset. We
provide both raw data in BIDS format®® and prepared data files, along with extensive technical
documentation in the NSD Data Manual. To ensure strict validation for an upcoming Algonauts prediction
challenge®’, the initial public release will withhold the last three NSD scan sessions from each participant
(about 8.4% of the NSD data). Images used for NSD were taken from the Common Objects in Context
database' (https://cocodataset.org).

Code availability

We provide an archive of code used in this paper (https://github.com/cvnlab/nsddatapaper/), as well as
utility functions for working with the prepared NSD data (https://github.com/cvnlab/nsdcode/). Custom
algorithms developed for this paper include GLMsingle (https://github.com/cvnlab/GLMsingle/) and
fracridge (https://github.com/nrdg/fracridge/). Example scripts demonstrating scientific analyses of the
NSD data are available (https://github.com/cvnlab/nsdexamples/); these scripts may be useful for
teaching purposes.
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Part 1: Pre-processing

Functional data
one temporal resampling
(slice time correction);
one spatial resampling
(fieldmap-based undistortion,
motion correction)

Pre-processed fMRI
time-series data
in 1.8-mm and 1-mm
volumetric preparations

Part 2a: GLM analysis to estimate trial-wise betas

GLMsingle (Fig. 3A-E)

FreeSurfer cortical
surface reconstructions
(multiple depths)

ROls (thalamus) ROIs (MTL)
i Anatomicaldata: Diffusion data Eyetracking data

denoising; correction for
susceptibility, motion, and eddy
distortions; co-registration to
anatomy; diffusion signal
modeling; tractography

T, T, Angiogram Venogram High-res T,
— blink removal, tracking noise
removal, downsampling,
detrending, smoothing

co-registration; preparation at
multiple resolutions; de-identification

Pre-processed time series
of gaze position (X and Y)
and pupil size

Macrostructural and
microstructural properties,
white-matter tracts, structural
connectivity matrices

nsd_mapdata

Calculate coordinate transformations and incorporate into nsd_mapdata utility which
enables mapping between functional, anatomical, fsaverage, and MNI spaces

Part 2b: Analysis of localizer experiments

ROIs (V1-hV4) (Ext. Data Fig. 7A)

(1) Determine best HRF for

each voxel from HRF library Single-trial betas in 1.8-mm and 1-mm expzti{r';ent pRF parameter estimates
NS_D (2) Add data-driven nuisance | —> volume spaces (also create versions in
experiment regressors nativesurface, fsaverage, and MNI spaces) fLoc __, Response estimates to each
experiment stimulus category

(3) Regularize single-trial
betas using ridge regression

quantification of response
reliability to image repetitions ,L

Noise ceiling estimates (Fig. 3F—G) ROIs (body-, face-, place-, gy paa Fig. 70)

word-selective regions)

Part 3: Scientific analyses demonstrated in this paper

pRF estimation (Ext. Data Fig. 9)

Encoding models based on deep
convolutional neural networks (Fig. 6)

Univariate analysis of

memory recognition (Fig. 4) Representational similarity analysis (Fig. 5)
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Supplementary Note 1:
Auxiliary data and resources in the NSD dataset

Substantial amounts of resting-state data with physiological measurements

A minimum of 100 minutes of resting-state data were acquired for each NSD subject. This large amount of data is appealing
as it enables stable estimates of network correlations®. External physiological measures (pulse oximeter, respiratory belt)
were also acquired in most of the scan sessions that included resting-state acquisition. Visual inspections of the
physiological data (available online) suggest that the data are of excellent quality and that more than 90% of the pulse data
and more than 95% of the respiratory data are usable. These physiological data play a critical role in identifying potential
contaminants of resting-state signals®°. Overall, the resting-state component of NSD is valuable not only for enriching
interpretation of the core NSD experiment, but also as a standalone resource due to the sizable amount of data and use of
7T imaging.

Highly reliable diffusion data and derivatives

The diffusion data included with the NSD dataset complement the extensive fMRI measurements. We pre-processed the
raw diffusion data using the state-of-the-art DESIGNER pipeline methodology®' as implemented on brainlife.io%. As there
is no accepted map of white matter in the human brain, the field lacks consensus on how to validate the accuracy of
tractography results. We instead focused on reliability as a measure of quality and adopted a statistical approach that
evaluates reliability of major tracts and connectivity matrices®®. We find that the quality of the pre-processed diffusion data
for each subject is high, as evidenced by the signal-to-noise ratio (Supplementary Figure 5B). We then proceeded to
perform diffusion signal modeling®-%8, anatomically-informed tractography®®, and profilometry'®. White-matter
microstructural properties are found to be highly reliable for each subject (Extended Data Figure 6A). Structural
connectivity matrices'! derived from tractography results are also highly reliable, both at the group level (Extended Data
Figure 6B—C) as well as at the single-subject level (Extended Data Figure 6C, inset). The ready-to-use diffusion
derivatives provided with NSD include a variety of macrostructural and microstructural measures, white-matter tracts, and
structural connectivity matrices, as well as intermediary pre-processed outputs (such as denoised and spatially corrected
diffusion volumes). These derivatives can be easily integrated into machine learning workflows, and serve as launching
points for scientific investigations seeking to apply network neuroscience perspectives'?1% to understanding brain function
in the NSD dataset.

Extensive set of manually defined ROls

To increase the value of the NSD dataset to the broader community, we performed analysis of the data from the pRF and
fLoc experiments and manually defined regions of interest (ROIs) based on the results. The defined ROIs include retinotopic
visual areas based on the pRF results (V1, V2, V3, hV4), eccentricity-based regions based on the pRF results (bands
between 0°, 0.5°, 1°, 2°, 4°, and beyond), and category-selective regions based on the fLoc results (body-, face-, place-,
and word-selective regions). Representative examples illustrating the high quality of the localizer results and associated
ROls are shown in Extended Data Figure 7. NSD also includes manual segmentations of the thalamus (LGN, pulvinar,
superior colliculus) and the medial temporal lobe (hippocampal subfields and surrounding subregions). These resources
reduce overhead and facilitate scientific analyses of the NSD dataset.



Supplementary Note 2:
Limitations of the NSD fMRI data

Our examination of the NSD fMRI data did not reveal any severe problems or artifacts that could not be compensated for in
data pre-processing. Nonetheless, there are several known limitations of the data that should be considered. EPI pulse
sequences invariably suffer from signal dropout and spatial distortion in locations with magnetic field inhomogeneties. The
NSD data exhibit signal dropout in typical locations such as near the ear canals and the frontal sinuses (see Figure 3F),
and our approach for distortion correction may have some imperfections (see Supplementary Video 6). In a few fMRI scan
sessions (6 out of 308; 1.9%), the subject exited the scanner and re-entered either on the same day or a different day to
complete the session. We compensated for these occurrences in the pre-processing of the data, but they nonetheless
contribute some variability. Due to hardware errors, behavioral responses are missing for a few of the NSD runs (2 out of
3,408; 0.06%). A few fMRI scan sessions (4 out of 308; 1.3%) had slightly incomplete brain coverage due to subject motion.
Finally, while NSD subjects were instructed to fixate, eye movements are not fully avoidable'® and are likely present to
some degree in the data (see eyetracking results in Extended Data Figure 4). A comprehensive summary of data anomalies
is available in the online materials.



Supplementary Note 3:
Pre-processing and analysis of eyetracking data

Eyetracking data and video recordings were carefully synchronized and cropped to match the fMRI data acquisition
(nsd_et _crop.m). The eyetracking data were then pre-processed to reduce noise as detailed below
(nsd_et_preprocessing.m). Note that the eyetracking data are variable in quality: the eyetracker frequently lost track of the
pupil, thereby introducing noise to the data and causing missing samples. We carefully cleaned the data to the best of our
ability, taking care to select parameters that work well for the majority of subjects and scan sessions.

We implemented the following pre-processing steps. First, blinks and tracking noise were removed by excluding samples
at which the pupil was lost entirely, excising data 100 ms before and 150 ms after each occurrence. Further, because
recorded gaze positions tended to jump erratically to the screen edge whenever the pupil was lost, we excluded samples
deviating more than 6° from central fixation, excising data 250 ms before and 250 ms after each occurrence. Next, we
removed slow signal drift by linear detrending and median-centering of the gaze position time series (X and Y). This step
assumes that the median gaze position corresponds to central fixation. Finally, the time-series data for gaze position and
pupil size were downsampled to 100 Hz and smoothed using a 50-ms running average. Any eyetracking run containing
fewer than 1/3 valid samples after pre-processing was deemed unusable and excluded from further analysis.

Detailed analyses of the eyetracking data obtained for the NSD experiment are shown in Extended Data Figure 4. Because
two of the subjects (S3 and S8) do not have eyetracking data acquired during the NSD experiment, we considered for these
two subjects eyetracking data acquired during the nsdsynthetic experiment (which also required central fixation) as a proxy.
This allowed aggregate analyses to be performed for these subjects (panels B and C), but precluded trial-wise time-resolved
analyses (panel F), due to the different experimental design used in the nsdsynthetic experiment.

Note that despite our best efforts to reduce noise in the eyetracking data, the data are still noisy. This can be appreciated
by inspecting the eyetracking video recordings available online. Thus, not all deviations in the recorded data reflect actual
eye movements, and results shown in Extended Data Figure 4 likely reflect an underestimation of the true fixation accuracy
of the subjects. As an alternative approach, it may be possible to infer eye gaze from fMRI signal intensities in and around
the eyeballs'1%, This could provide robust estimates of fixation accuracy, even for scan sessions where eyetracking was
not conducted.



Supplementary Note 4:
Pre-processing of the MRI data

Pre-processing of anatomical data
T1 and T2 volumes

T+~ and Tz-weighted volumes were corrected for gradient nonlinearities using a custom Python script
(https://github.com/Washington-University/gradunwarp) and the proprietary Siemens gradient coefficient file retrieved from
the scanner. The multiple T: and T2 volumes acquired for a given subject were then co-registered
(preprocess_nsd_structuralalignment.m). This was accomplished by first co-registering the T+ volumes to each other (rigid-
body transformation; correlation metric; the first Ts volume serving as the target) and then by co-registering the T2 volumes
to the T+ volumes (rigid-body transformation; mutual information metric; the prepared T data serving as the target). In the
estimation of registration parameters, a manually defined 3D ellipse was used to focus the cost metric on brain tissue.
Individual volumes were manually inspected and rejected if substantial image artifacts were visible (only the 2nd and 4th T+
volumes for subject 8 were rejected). The final T+ and T2 data were created by performing cubic interpolation at a resolution
of 0.5 mm. Results for the multiple acquired volumes were averaged (within modality) to increase contrast-to-noise ratio.
Finally, the 0.5-mm volumes were resampled to create alternative 0.8-mm and 1.0-mm versions. These resampled versions
are provided for the convenience of users.

SWI volume (venogram)

We co-registered the SWI volume (magnitude component only; corrected for gradient nonlinearities) to the prepared 1.0-
mm EPI volume (preprocess_nsd_SWI.m). To compensate for the acquisition being performed on different scanners, we
used a slightly flexible nonlinear warp as implemented in ANTs 2.1.0 (BSplineSyN with parameters [0.1, 400, 0, 3]). The
final SWI volume was prepared in the subject-native anatomical space by performing B-spline interpolation at a resolution
of 0.5 mm. The resulting volume was then resampled to create alternative 0.8-mm and 1.0-mm versions.

TOF volume (angiogram)

We co-registered the TOF volume to the prepared 1.0-mm T1 volume (preprocess_nsd_TOF.m). This was accomplished
using a slightly flexible nonlinear warp as implemented in ANTs 2.1.0 (BSplineSynN with parameters [0.1, 200, 0, 3]). To
aid estimation of registration parameters, a temporary version of the TOF volume was used in which extremely bright pixels
were dampened. The final TOF volume was prepared in the subject-native anatomical space by performing B-spline
interpolation at a resolution of 0.5 mm. The resulting volume was then resampled to create alternative 0.8-mm and 1.0-mm
versions.

High-resolution T2 volume

We co-registered the high-resolution T2 volume to the prepared 0.5-mm T2 volume (external_mtl.m). Given that these
volumes were acquired on different scanners, we evaluated several strategies for achieving accurate co-registration. We
obtained the best results by performing a simple linear co-registration (affine transformation; correlation metric) in
combination with a rectangular box that focused the cost metric on regions of interest in the medial temporal lobe. The
estimated registration was subsequently used to map labels defined on the high-resolution T2 volume to the subject-native
anatomical space.

De-identification

We mapped a liberal brain mask defined in MNI space to the subject-native anatomical space, and then used the result to
mask and thus de-identify the anatomical volumes (preprocess_nsd_applybrainmask.m).

FreeSurfer processing
The prepared 0.8-mm T7 volume was processed using FreeSurfer version 6.0.0 with the -hires option

(analysis_freesurfer.m). Manual edits of tissue segmentation (labeling voxels as gray matter, white matter, or cerebrospinal
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fluid) were performed for each of the eight subjects to optimize the accuracy of the cortical surface representations
generated by FreeSurfer. The prepared 0.8-mm T2 volume was used to inform manual segmentation decisions, but was not
explicitly used in the FreeSurfer processing. We also manually marked surface imperfections that remained even after
manual edits; these are labeled in the surface inspections (Supplementary Video 2) and are largely confined to a few
difficult regions located in the inferior aspects of the temporal and frontal lobes (see Figure 3F).

Several additional FreeSurfer processing steps were performed. Using mris_expand, we generated cortical surfaces
positioned at 25%, 50%, and 75% of the distance between the pial surface and the boundary between gray and white
matter. These surfaces are useful for creating surface representations of the fMRI data. Multiple surfaces at different gray-
matter depths were created given the relatively high spatial resolution of the fMRI data (1.8-mm acquisition); this may
represent a departure from standard fMRI workflows geared towards lower-resolution data. We also generated several
flattened surface representations: for each hemisphere in each subject, we created a flattened version of the entire cortical
sheet (using manually defined cuts) as well as flattened versions of cortical patches covering ventral temporal cortex and
early visual cortex (patches were determined automatically based on a set of cortical patches defined on fsaverage). Finally,
in line with the ‘surface voxels’ visualization technique®?, we sampled 1-, 2-, and 3-mm volumetric test patterns onto surface
vertices using nearest-neighbor interpolation (analysis_surfacevoxels.m). The test patterns, distributed with the dataset,
may be useful to users for understanding the impact of cortical curvature on surface visualizations.

Pre-processing of diffusion data

Code scripts used to analyze the diffusion data are accessible via the hyperlinks indicated below, which refer to brainlife.io
apps (http://brainlife.io)'%’.

The prepared 0.8-mm Ti-weighted volume for each subject was segmented into different tissue types using MRTrix318
(https://doi.org/10.25663/brainlife.app.239). The gray- and white-matter interface mask was subsequently used as a seed
mask for white-matter tractography. For network generation, the HCP-MMP cortical parcellation'® was mapped to subject-
native surfaces and then to the volumetric Freesurfer segmentation (ribbon.mgz) for each subject
(https://doi.org/10.25663/bl.app.23).

The raw data from the four diffusion scans (99 AP, 99 PA, 100 AP, 100 PA) were corrected for gradient nonlinearities,
concatenated, and then pre-processed following a published protocol®'. Specifically, diffusion volumes were denoised and
cleaned with respect to Gibbs ringing using MRTrix3 before being corrected for susceptibility, motion, and eddy distortions
using FSL’s topup and eddy functions (https://doi.org/10.25663/brainlife.app.287). We note that the raw acquired diffusion
volumes exhibit substantial ‘striping’ artifacts (in which every other slice appears spatially displaced), possibly reflecting
within-volume motion caused by physical vibrations of the RF coil. We attempted to mitigate these effects using the mporder
functionality of eddy, but we caution that some residual artifact may exist in the pre-processed results. Following these
corrections, the diffusion volumes were bias-corrected and had background noise removed using MRTrix3. Finally, the
diffusion volumes were co-registered to the 0.8-mm Ti-weighted anatomical volume using FSL's epi_reg (rigid-body
transformation, boundary-based registration), and then resliced to 0.8-mm isotropic voxels. The diffusion data were
organized into two runs: data from the 99 AP and 99 PA scans constitute ‘Run 1’ and data from the 100 AP and 100 PA
scans constitute ‘Run 2’ (https://doi.org/10.25663/brainlife.app.371). To assess data quality, we calculated signal-to-noise
ratio in the corpus callosum using workflow provided by Dipy 1.1'° (https://doi.org/10.25663/brainlife.app.120).

Following pre-processing, brain masks were generated using Dipy’s median_otsu (https://doi.org/10.25663/bl.app.70). This
mask was used in subsequent model fitting and tractography. Multiple models of myelinated microstructural organization
were fit to the diffusion data from each run. This included the diffusion tensor (DTI) model®®, diffusion kurtosis (DKI) model®,
and the neurite orientation dispersion and density imaging®° (NODDI) models (https://doi.org/10.25663/bl.app.9,
https://doi.org/10.25663/brainlife.app.365). The NODDI model was fit twice for each run: once for white-matter tract
microstructure using an intrinsic free diffusivity parameter (d,) of 1.7 x 103 mm?/s, and once for cortical microstructure using
ds = 1.1 x 10 mm?/s, following previously described procedures'''. The constrained spherical deconvolution''? (CSD)
model was fit for 4 spherical harmonic orders (Lmax = 2, 4, 6, 8) using MRTrix3 (https://doi.org/10.25663/brainlife.app.238).
The fiber orientation distribution functions for Lmax = 6 and Lmax = 8 were subsequently used to guide anatomically-
constrained probabilistic tractography®® using MRTrix3 (https://doi.org/10.25663/brainlife.app.297). A total of 3 million
streamlines across Lmax = 6 and Lmax = 8 for each run were generated, using a step size of 0.2 mm, minimum length of 25
mm, maximum length of 250 mm, and a maximum angle of curvature of 35°. Finally, structural connectivity matrices
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representing  fiber density were generated using a combination of SIFT2'" and MRTrix3
(https://doi.org/10.25663/brainlife.app.394). Fiber density was quantified as the number of streamlines connecting two
regions divided by the average volume of the two regions.

Following model fitting and tractography, 61 major white-matter tracts were segmented for each run using a customized
version of the white matter query language'* (https://doi.org/10.25663/brainlife.app.188). Then, using Vistasoft
(https://github.com/vistalab/vistasoft), outlier streamlines were removed (https://doi.org/10.25663/brainlife.app.195) and
tract profiles (each tract sampled with 200 nodes) were generated for DTI, DKI, and NODDI measures
(https://doi.org/10.25663/brainlife.app.361). Finally, these measures were mapped to the cortical surface following
previously published procedures’"’ using FreeSurfer 7.0 and Connectome  Workbench 142
(https://github.com/Washington-University/workbench) (https://doi.org/10.25663/brainlife.app.379).

Pre-processing of functional data
Overall strategy

We implemented a pre-processing approach that aimed to preserve as much spatial and temporal detail as possible. In
short, the fMRI data were pre-processed by performing one temporal resampling to correct for slice time differences and
one spatial resampling to correct for head motion within and across scan sessions, EPI distortion, and gradient
nonlinearities. This produced volumetric fMRI time-series data in subject-native space for each NSD subject. The functional
data were pre-processed independently of the anatomical data; this was done intentionally in order to avoid dependence of
the pre-processed functional data on choices such as how to co-register the functional and anatomical data. Also, to
minimize the risk of inaccurate or unwanted assumptions, we did not include any temporal filtering (e.g. detrending,
confound regression, censoring). Pre-processing results were carefully visually inspected to ensure quality control. There
were a few anomalous cases, such as acquisition being split across two different scan sessions; special modifications were
made to the pre-processing to accurately compensate for these occurrences (see online notes for details).

First-stage pre-processing

Given the fMRI data acquired in a scan session, a series of steps were performed (preprocess_nsd.m, preprocessfmri.m):
1. Temporal resampling. A cubic interpolation of each voxel's time-series data in each run was performed. This
interpolation corrected differences in slice acquisition times (as determined from the DICOM header) and also
upsampled the data (in the same step) to either 1.333 s (standard-resolution preparation) or 1.000 s (high-resolution
preparation). Data were prepared such that the first time-series data point coincides with the acquisition time of the
first slice acquired in the first volume of each run. The upsampling exploits the benefits of temporal jitter between
the acquisition and the experiment and synchronizes the time-series data to convenient multiples of the experiment
trial structure”. For example, in the standard-resolution preparation, there are 3 time points for each 4-s trial in the

NSD experiment.

2. Fieldmap preparation. The multiple fieldmaps acquired in the scan session (3.6-mm slices) were upsampled using
nearest-neighbor interpolation to match the slice resolution of the fMRI data (1.8-mm slices). The fieldmaps were
then phase-unwrapped using the FSL utility prelude and regularized by performing 3D local linear regression using
an Epanechnikov kernel with radius 5 mm. Values in the magnitude component of the fieldmaps were used to
regularize the fieldmaps and the regression in order to improve robustness of the field estimates. Finally, the
fieldmaps were linearly interpolated over time, producing an estimate of the field for each fMRI volume acquired.
This time-varying fieldmap strategy is atypical for fMRI workflows, but we have found it to be highly effective32.

3. Spatial undistortion. The temporally resampled volumes from Step 1 were undistorted based on the field estimates
from Step 2 using the standard unwarping method''s. Undistorted volumes were generated using cubic
interpolation.

4. Motion estimation. The undistorted volumes from Step 3 were used to estimate rigid-body motion parameters using
the SPM5 utility spom_realign (the first fMRI volume in the scan session served as the reference). A manually defined
3D ellipse was used to focus the cost metric on brain regions unaffected by gross susceptibility effects. Note that
the estimated motion parameters reflect temporally upsampled data and should be interpreted accordingly (e.g.
when assessing framewise displacement). Also, note that the motion parameters may reflect apparent image motion
due to respiration-induced Bo fluctuations'; this was particularly apparent in subject 3.



5. Spatial resampling. A single cubic interpolation was performed on the temporally resampled volumes from Step 1
in order to correct for the combined effects of head motion and spatial distortion.

Gradient nonlinearity correction and session registration

Given the results of the first-stage pre-processing, we computed the mean fMRI volume and corrected this volume for
gradient nonlinearities (preprocess_nsd_epigradunwarp.m). We then co-registered this gradient-corrected volume to the
gradient-corrected volume from the first NSD scan session (affine transformation, correlation metric). Thus, the first NSD
scan session determined the target space for preparing fMRI data from different scan sessions
(preprocess_nsd_epialignment.m).

Second-stage pre-processing

We repeated the pre-processing steps (Steps 1-5 above) but with the final spatial resampling step incorporating the effects
of the gradient nonlinearity correction and the session registration (preprocess_nsd_secondstage.m). In this way, a single
cubic interpolation is used to compensate for the effects of head motion, spatial distortion, gradient nonlinearities, and
session registration. For this final interpolation step, we used either a 1.8-mm grid (standard-resolution preparation) or a
1.0-mm grid (high-resolution preparation). The latter approach intentionally upsamples the data in order to exploit the
benefits of small head displacements and preserve as much spatial detail as possible®?3*. To minimize storage
requirements, the interpolations were performed within a 3D box that was just large enough to cover the brain of each
subject.

To facilitate assessment of T>* effects, we created a bias-corrected version of the mean EPI volume
(analysis_biascorrection.m). For each preparation, we took the mean EPI volume and fit a 5th-degree 3D polynomial,
considering only voxels labeled as cortical or cerebellar gray matter in the FreeSurfer aseg file. The fitted volume (‘coilbias’)
was then divided from the mean EPI volume, producing the bias-corrected volume (‘bc’).

Final outputs

The final result of pre-processing was volumetric fMRI time-series data in subject-native space. Two versions were
generated: the standard-resolution version was prepared at a spatial resolution of 1.8 mm and a temporal resolution of
1.333 s, whereas the high-resolution version was prepared at a spatial resolution of 1 mm and a temporal resolution of
1.000 s. These two volumetric versions of the fMRI data are the main versions of the data. However, we do create some
alternative versions of the data: for example, a surface-based version of the NSD betas (‘nativesurface’) is prepared for the
convenience of users. We prioritize the volume-based format as the main version of the data; this is primarily because it is
a simple format, amenable for both cortical and sub-cortical analyses, and does not incorporate specific decisions about
how to map functional data onto cortical surface representations.

Calculation of coordinate transformations between volumetric and surface-based representations of
functional and anatomical images

We performed several analyses related to mapping data between different spaces:

e  Mapping between functional and anatomical spaces. We co-registered the mean fMRI volume (1-mm preparation;
mean of first five NSD sessions) to the prepared 1.0-mm T2 volume
(preprocess_nsd_functionaltostructuralalignment.m). To compensate for acquisition on different scanners, we used
a slightly flexible nonlinear warp as implemented in ANTs 2.1.0 (BSplineSyN with parameters [0.1, 400, O, 3]). A
small amount of nonlinearity was necessary to achieve accurate co-registration (see inspections provided online).

e Changing resolutions in anatomical space. For resampling data to different anatomical resolutions (0.5-, 0.8-, or
1.0-mm), we used an ideal Fourier filter (10th-order low-pass Butterworth filter) followed by cubic interpolation
(changevolumeres.m).

e Mapping to and from fsaverage. We calculated the indexing information that maps subject-native surfaces to and
from fsaverage using nearest-neighbor interpolation in the spherical space defined by FreeSurfer. Visual
inspections confirm the quality of the folding-based alignment achieved by FreeSurfer (Supplementary Video 3).



e Mapping to and from MNI. Using FSL'’s utility fnirt, we co-registered the subject-native prepared 1.0-mm T7 volume
to the MNI152 T; 1-mm template provided by FSL (preprocess_nsd_MNIlandbrainmask.m). Visual inspections
confirm the quality of the registration (Supplementary Video 4).

e Converting surface data to volumetric format. We implemented a method that, for a given target anatomical volume
with resolution R mm, allows each surface vertex to contribute a triangular (linear) kernel of size +/— R mm and then
calculates a weighted average of data values at the position of each voxel in the volume
(cvnmapsurfacetovolume_helper.m).

Based on the results of the above analyses, we calculated coordinate transformations that indicate how to map between
the functional spaces, the anatomical spaces, the subject-native surfaces, fsaverage, and MNI space
(preprocess_nsd_calculatetransformations.m). Finally, we created a lightweight utility (nsd_mapdata.{m,py}) that uses the
coordinate transformations to map user-supplied data from one space to another space under a given interpolation scheme
(nearest-neighbor, linear, cubic, winner-take-all). For example, data in subject-native functional space can be mapped to
MNI space or a subject-native cortical surface using a single interpolation of the functional data. The use of interpolation to
map volumetric data onto surface representations (as opposed to incorporating spatial kernels tailored to the cortical
surface) helps maximize spatial resolution and avoids making strong assumptions about cortical topology. Nonetheless, the
user is free to apply other methods (e.g., FreeSurfer, Connectome Workbench) to perform the mapping. We used the
nsd_mapdata utility to perform a number of mundane but useful transformations, such as generating versions of the
anatomical volumes that are matched to the functional volumes (analysis_transforms.m). Label data (e.g. ROI labels) were
transformed by performing a separate interpolation for each label and then a winner-take-all operation.



Supplementary Note 5:
Localizers and regions of interest

Analysis of the pRF experiment

The pre-processed fMRI data from the pRF experiment were analyzed using the Compressive Spatial Summation model®°
as implemented in analyzePRF (analysis_prf.m). First, the time-series data from the three repetitions of each run type
(multibar, wedgering) were averaged. Stimulus apertures indicating the position of the texture were prepared at a resolution
of 200 pixels x 200 pixels. We then used analyzePRF (http://cvnlab.net/analyzePRF/) to estimate pRF parameters for each
voxel (canonical hemodynamic response function; seedmode 2). Results were mapped to the cortical surface by performing
linear interpolation on the volumes (1-mm preparation) and then averaging across cortical depth. To quantify behavioral
performance, we calculated, for each run, (A — B)/C x 100, where A indicates the number of successful detections of color
changes (button pressed within 1 s of a color change), B indicates the number of extraneous button presses, and C indicates
the total number of color changes. Performance averaged across the six runs ranged between 93.5-98.9% for the eight
NSD subjects.

Analysis of the fLoc experiment

The pre-processed fMRI data from the fLoc experiment were analyzed using GLMdenoise®*>'"7, a data-driven denoising
method that derives estimates of correlated noise from the data and incorporates these estimates as nuisance regressors
in a general linear model (GLM) analysis of the data (analysis_floc.m). We coded the 10 stimulus categories using a
“condition-split” strategy3? in which the trials associated with a single category were split into separate conditions in each
run. We used six condition-splits, thereby producing six response estimates (betas) for each category. After fitting the GLM,
t-values were computed from the GLM betas in order to quantify selectivity for different categories and domains (e.g.,
selectivity for faces was quantified by calculating a t-value that contrasts adult and child faces vs. all other categories).
Results were mapped to the cortical surface by performing linear interpolation on the volumes (1-mm preparation) and then
averaging across cortical depth. To quantify behavioral performance, we calculated the hit rate for each run (button pressed
within 1 s of an oddball image). Performance averaged across the six runs ranged between 90.8-97.5% for the eight NSD
subjects.

Regions of interest (ROIs)
Volume-based subject-native ROls

The thalamus ROI collection consists of ROIs related to the lateral geniculate nucleus, pulvinar, and superior collicus
(external_subcortical.m). Manual labeling of these ROls was performed by an expert (M. Arcaro) based on the T7 and T2
anatomical volumes obtained for each subject as well as functional results obtained in prior studies''®, projected from MNI
space to the native space of each subject. Labels were defined in 0.5-mm anatomical space and were resampled to create
alternative 0.8-mm and 1.0-mm versions. To provide labels in functional space, the 0.8-mm anatomical volume was mapped
to the 1.0-mm functional space, and the 1.0-mm anatomical volume was mapped to the 1.8-mm functional space.

The MTL ROI collection consists of ROlIs related to the hippocampus and surrounding brain regions in the medial temporal
lobe (external_mtl.m). Manual labeling of these ROIs was performed by an expert (W. Guo) based on the high-resolution
T2 volume obtained for each subject, following a published protocol''®. Labels were defined on the raw high-resolution
volume, and were mapped to 0.5-mm anatomical space using the previously determined affine transformation. Note that
the resulting labels have some amount of jaggedness due to the anisotropy of the voxels in the high-resolution T2 volume.
Alternative versions of the labels were created in the same way as described for the thalamus labels.

Surface-based subject-native ROIls

Results of the pRF experiment were used to define prf-visualrois, a collection of ROIs consisting of the dorsal and ventral
subdivisions of V1, V2, and V3, and area hV4 (analysis_drawrois_prf*.m). These ROIs were manually drawn on cortical
surfaces by experts (K. Kay, J. Winawer) based on pRF angle and eccentricity estimates, following common practices'?°.
The ROIs extended to the fovea (0° eccentricity) but were restricted to the extent of cortex stimulated by the pRF experiment.
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The pRF results were also used to define prf-eccrois, a collection of ROls consisting of concentric regions with increasing
eccentricity coverage (0.5°, 1°, 2°, 4°, >4°). Labeled regions were confined to the same cortical extent labeled in prf-
visualrois.

Results of the fLoc experiment were used to define several collections of category-selective ROls, including commonly used
ROIs such as extrastriate body area (EBA), fusiform face area (FFA), parahippocampal place area (PPA), and visual word
form area (VWFA) (analysis_drawrois*.m). These ROIls were manually drawn on cortical surfaces by experts (K. Kay, A.
White, A. Bratch) based on a combination of anatomical location (relative to sulci and gyri) and stimulus selectivity t-values
obtained from the fLoc experiment, following general procedures used in prior studies®''?"'22_ For each ROI collection (floc-
bodies, floc-faces, floc-places, floc-words), several ROIs exhibiting preference for the associated category were defined
(e.g., floc-faces was based on t-values for the contrast of faces > non-faces). ROIs were defined by drawing a polygon
around a given patch of cortex and then restricting the ROI to vertices within the polygon that satisfy t > 0. This liberal
criterion was used to provide maximum flexibility (the user can easily restrict the ROI further using the provided t-value
volumes).

Surface-based atlas ROls

To help summarize results in this paper, we defined nsdgeneral, an ROI in occipital cortex reflecting regions generally
responsive in the NSD experiment (analysis_drawnsdgeneral.m). This ROl was drawn on fsaverage based on group-
average results for variance explained by the b3 version of the GLM. The ROl is shown in Figure 3F.

To provide anatomical reference, we defined corticalsulc, a collection of ROls consisting of major sulci and gyri, and streams,
a collection of ROIs reflecting large-scale divisions of visual cortex (early, midventral, midlateral, midparietal, ventral, lateral,
parietal). These ROI collections were manually drawn on fsaverage.

For convenience, the NSD dataset also includes a few publicly available atlases. These include Kastner2015'?3, an atlas of
visual topography, and HCP_MMP1'%, a whole-brain cortical parcellation based on multimodal measures. Both atlases
were prepared in fsaverage and converted as described below.

Conversion of surface-based ROls

A number of conversions were performed to prepare volumetric versions of surface-based ROls
(analysis_surfaceroistovolume.m). ROIs defined on fsaverage were mapped to subject-native surfaces using nearest-
neighbor interpolation. ROIs defined on subject-native surfaces were mapped to 0.8-mm anatomical space by assigning
labels to the 3 depth-dependent surfaces and then performing weighted linear conversion (as described earlier). The 0.8-
mm volume was then mapped to the 1.0-mm and 1.8-mm functional spaces.
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Supplementary Modeling Note 1:
Estimation of pRFs from the NSD responses

For this analysis (results shown in Extended Data Figure 9), we used version 3 of the NSD betas (b3) in the nativesurface
preparation. Betas for each surface vertex were z-scored within each scan session, concatenated across sessions,
averaged across repeated trials for each distinct image, and then re-normalized using a scale and offset such that 0
corresponds to 0% BOLD signal change and the standard deviation of the betas equals 1.

To prepare stimuli for pRF estimation, the NSD images were converted to grayscale, resized to 800 pixels x 800 pixels
(cubic interpolation), and squared to mimic the luminance response of the display. The images were then placed against
the gray background and divided into a 51 x 51 grid such that the first and last grid elements were centered at the edges of
the stimulus (each grid element spanned 0.168° x 0.168°). Finally, to quantify local contrast, we computed the standard
deviation of pixel values within each grid element.

Based on the local-contrast preparation of the NSD images, we used analyzePRF (http://cvnlab.net/analyzePRF/) to fit the
Compressive Spatial Summation pRF model®° to the trial-averaged betas obtained for each vertex. The non-shared NSD
images were used as training data; the shared NSD images were used as validation data. pRFs were constrained to have
non-negative gain. No offset term was included in the model (opt.maxpolydeg = NaN); thus, the model necessarily predicts
a response of 0 for an image with zero contrast. For model fitting, an initial gridding of model parameters was performed
(opt.seedmode = 2), and parameter optimization started from the best parameter combination (opt.modelmode = 2;
opt.algorithm = "trust-region-reflective’). Model fitting produced, for each vertex, an estimate of pRF angle, eccentricity, size,
exponent, and gain, as well as variance explained in the training data and the validation data.
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Supplementary Modeling Note 2:
Encoding models based on deep convolutional neural networks

For this analysis (results shown in Figure 6), we used version 3 of the NSD betas (b3) in the 1.8-mm volume-based
preparation. Before modeling, betas for each voxel were z-scored within each scan session and concatenated across
sessions. Models were implemented using PyTorch.

Model architecture

We considered several variants of voxel-wise encoding models*® that attempt to predict the NSD betas. All three models
consist of (i) a feature extractor implemented as a convolutional neural network (CNN) and (ii) a network-to-brain coupling
model that maps extracted features into predictions of activity observed for individual voxels.

In the first model (AlexNet), the feature extractor is the AlexNet CNN'24, a task-optimized network that has been trained to
classify object categories in the ImageNet database'®. In the second model (GNet), the feature extractor is a different
CNN—referred to here as ‘GNet'—a brain-optimized network that is trained to directly predict brain activity in the NSD
dataset. The third model is a simple control model in which the feature extractor consists of a single fixed layer of Gabor
filters?*. The specific network architectures for AlexNet and GNet are illustrated in Extended Data Figure 10.

To facilitate direct comparison, all models are designed to have comparable coupling models. For GNet, both the feature
extractor and coupling model are trained jointly using brain data; for AlexNet and the Gabor models, the feature extractors
are fixed and only the coupling model is trained using brain data.

The CNNs in the AlexNet, GNet, and Gabor models consist of hierarchically composed functions of an input image x:
el(x) =m;oe_4(x)

where 1), is a feature extractor that operates at layer [ on the output of e;_;(x) (also a composite function). e, may denote

an arbitrary sequence of transformations. The encoding models leverage the intermediate representations e;(x), which are

feature maps with pixels denoted by [e; (x)],;;» Where (i, j) is the location of the pixel in the kth feature map. Predicted brain

activity for voxel v, 7,

is given by the expression:

7/'1\; = bv + Z vaf(q)k(x))
k
where w,, are feature weights for voxel v and feature k, b, is a bias term,

Dy (x) = Zf([eﬂx)]klﬁ)g%ﬁ @ ---Zf([eL(x)]iji)gﬁji
9] ]

f () is typically a compressive nonlinearity, g},ﬁ indicates a weight assigned to pixel (i, ) in the lth feature map, and &

denotes summation along the feature axis k = (k4, ... k; ). Note that this formulation incorporates feature-space separability,
which reduces overfitting and generally improves prediction accuracy for brain activity'®.

In the Gabor model, the feature extractor consists of a single fixed set of convolutions involving 12 log-spaced spatial
frequency Gabor wavelets between 3 and 72 cycles/stimulus and constructed at 6 evenly spaced orientations between 0
and 7'°.

Spatial pooling fields

Constraints were placed on the weights (gf,ji)—termed ‘spatial pooling fields’—that couple the feature maps to voxel activity.
For the AlexNet- and Gabor-based encoding models, the spatial pooling field for each voxel was a 2D isotropic Gaussian
that was applied to all feature maps (see Extended Data Figure 10B, middle). We find that this constrained model of
spatial pooling typically yields better prediction accuracy (relative to other possible variants) in the scenario where feature
extraction parameters are fixed'®. For the GNet-based encoding model, the weights of the spatial pooling fields were
independently adjustable; hence, we refer to these as flexible spatial pooling fields (see Extended Data Figure 10B, left).
Feature maps with the same spatial resolution were grouped together, and a distinct, independently optimized spatial
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pooling field was applied to each group. Thus, the GNet model for each voxel was specified by multiple, independently
optimized spatial pooling fields.

Model training and validation

Given the demanding memory requirements of training large-scale neural networks to jointly predict tens of thousands of
voxels, we selected the four NSD subjects with the highest noise ceilings (see Figure 3G). For the selected subjects (1, 2,
5, 6), NSD betas were extracted from visual areas V1-hV4. These betas were separated into those evoked by the
shared1000 images and those that were not; the former were designated as the validation set, while the latter were
designated as the training set. For example, for subject 1, there were 9,000 images x 3 trials = 27,000 samples in the
training set, and 1,000 images x 3 trials = 3,000 samples in the validation set. After model training, accuracy was quantified
as the voxel-wise correlation between model predictions and observed responses in the validation set.

For the AlexNet-based encoding model, parameters of the feature extractors were pre-trained based on classification of
objects in the ImageNet database*’. For both the AlexNet- and Gabor-based encoding models, feature weights for the
coupling model were optimized via ridge regression, with the ridge parameter selected to maximize accuracy on a held-out
subset (20%) of the training data. Line search was used to optimize the position and size of the Gaussian spatial pooling
field for each voxel (see Extended Data Figure 10B, right). In total, the AlexNet-based encoding model consisted of 2,692
free parameters per voxel (2,688 feature weighting parameters, 3 spatial pooling parameters, 1 bias term), and the Gabor-
based encoding model consisted of 76 free parameters per voxel (72 feature weighting parameters, 3 spatial pooling
parameters, 1 bias term).

For the GNet-based encoding model, parameters of the feature extractors, spatial pooling fields, and feature weights were
all optimized via stochastic gradient descent of an L,-norm weighted loss function:
Zvl.pvzj(rv - /1;)2

dvlpy?]
where |p,?] is the batchwise prediction accuracy for a given voxel v with an imposed floor of 0.1 in order to permit
contribution of yet-to-be-predicted voxels. In total, the GNet-based encoding model consisted of 1,034,944 free parameters
that are shared across voxels, plus 1,307 free parameters per voxel.

L(r, %) =

Two versions of the GNet model were developed and evaluated. In the single-subject GNet model, different instantiations
of GNet were created for different subjects, and only the data from a given subject were used to train the GNet-based
encoding model for that subject. In the multiple-subject GNet model, a single instantiation of GNet was created for all four
subjects, and data from all subjects were used to train the GNet-based encoding models. In this scheme, all subjects share
a common feature extractor, but each subject has independently adjusted coupling models and feature weights.

To train the GNet-based encoding model, stochastic gradient descent with early stopping was performed using the ADAM
optimizer'?® (Ir = 1073, 8, = 0.99, B, = 0.99). Parameter updates for feature extractors, spatial pooling fields, and feature
weights were alternated to promote stability of the training procedure.

Note that the NSD subjects view largely non-overlapping sets of images. Thus, when training GNet on data from multiple
subjects, we used a modified procedure for selecting batches of training data. For each iteration of training, we first extracted
a batch of training samples from one subject’s data and calculated the gradient with respect to the loss function. Coupling
model parameters for that subject and feature extractor parameters were then updated and the process was repeated until
all batches from all subjects were used. This corresponded to one training epoch.
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Supplementary Figures
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Supplementary Figure 1. Details on the quantification of tSNR. This figure shows example tSNR results (nsd20 scan
session, first NSD run). The middle slice in each of three orthogonal views (axial, sagittal, coronal) is displayed. To compute
tSNR, the raw fMRI volumes (with no pre-processing) from a given run are obtained, and the mean across volumes is
computed (Mean EPI). A brain mask is computed by identifying voxels whose intensity is at least 10% of the 99th percentile
of intensities in the mean volume (Mask). tSNR is calculated by quadratically detrending the time-series of each voxel
(preserving the mean) and then computing the mean divided by the standard deviation of the time-series values (tSNR). A
summary tSNR value is determined by calculating the median tSNR across voxels within the brain mask. This corresponds
to the summary metric shown in Figure 2D, left (the inset shows results from subject 2).
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Supplementary Figure 2. Details on the quantification of head motion. A, Example motion parameter estimates (nsd20
scan session, first NSD run, 1.8-mm data preparation). The rotation parameters, originally in radian units, are multiplied by
50 in order to allow interpretation in terms of millimeters of displacement for a circle of diameter 100 mm’’. Motion
parameters are relative to the reference volume which is the first volume in each scan session. Framewise displacement
(FD), calculated as the sum of the absolute differences of the motion parameters for successive pairs of volumes, is also
plotted. The mean FD across volumes is indicated in the plot titles, and corresponds to the summary metric shown in Figure
2D, middle (the inset shows results from subject 5). B, Distributions of FD. From the 1.8-mm data preparation, we plot
histograms of FD observed across all volumes in all NSD runs (top row) and all resting-state (RS) runs (bottom row).
Apparent head motion due to the interaction of respiration and the main magnetic field'?-'28 is present in the NSD data and
can be seen in the anterior-to-posterior translation parameter which corresponds to the EPI phase-encode direction (see
panel A, subjects 3 and 5). Thus, in addition to the original FD values (blue histograms), we also plot a modified version of
FD (orange histograms) in which we simply omit the anterior-to-posterior translation parameter. This is likely to provide
more accurate estimates of actual head motion, though more accurate compensation might be achieved by frequency-
based filtering based on the actual respiratory behavior of each subject'?”:'28, Using a threshold of 0.15 (vertical red lines),
we report the percentage of volumes whose modified FD exceeds this threshold (red inset numbers). Overall, the results
indicate that most of the data are free of large head motions (with the possible exception of subject 8) and that the NSD and
RS runs have comparable levels of head motion.
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Supplementary Figure 3. Inspection of raw time-series data. To assist interpretation of the raw data shown in this figure,
we fit a simple ON-OFF GLM model (see Methods) that assumes a fixed response to each presented image. For each
subject, we show results for one axial slice in one NSD run (nsd20 scan session, run01, slice 42 of 84). The image on the
left shows raw fMRI data (the first acquired volume in the run). The image in the middle shows the amount of variance
explained (R?) by the ON-OFF model. We select two voxels for detailed inspection: the voxel with the highest R? (labeled
‘2’) and a control voxel located 18 mm (a distance of 10 voxels) towards the anterior direction (labeled ‘1’). The plots on the
right show raw time-series data for these two voxels. Thin gray vertical lines mark stimulus onsets. Several observations
can be made. First, in each subject, the raw time-series data for the high R? voxel (bottom plot) show clear stimulus-evoked
signals: the blank trials that occur intermittently during the run lead to decreases in signal intensity that are captured by the
ON-OFF model fit. Note that during periods of time involving only stimulus trials, there are in fact small modulations present
in the ON-OFF model fit, and these correspond to the onsets of individual images. Second, in each subject, the raw time-
series data for the control voxel (top plot) show little discernible stimulus-evoked signals, thereby providing an important
comparison. Note that real differences in neural activity evoked by different images are expected to manifest as signal
fluctuations in the data, and thus may account for some of the observed time-series fluctuations. Also, note that since motion
correction has not been performed for these raw data inspections, it is likely that the observed slow signal drifts are due, in
part, to small shifts in head position. Overall, these results confirm the quality of the NSD data by demonstrating that
stimulus-evoked signals can be readily observed in the raw time-series data.
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Supplementary Figure 4. Quantification of functional imaging stability. We took the mean fMRI volume (1-mm
preparation) in each scan session, bias-corrected the volume by dividing by a fitted 3D polynomial (autoqgc_nsd_grand.m),
and then computed pairwise correlation across sessions. Dotted white lines mark increments of five NSD scan sessions.
Inspection of similarity of the mean EPI volume across sessions reveals a few minor anomalies. We investigated these
cases further and determined the following: the nsd36 scan session in subject 7 involved a poor scanner shim, which was
largely but not fully corrected by the fieldmap-based processing; the nsd01 scan session in subject 8 involved an unusually
large amount of head motion, which resulted in some residual spatial distortion; and the nsd12-nsd16 scan sessions in
subject 8 involved a temporary sinus infection near frontal cortex that manifested as bright signal intensities in the EPI
volumes outside the brain but otherwise did not cause any data problems. For visual inspection of these effects, see
Supplementary Videos 6-7.
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Supplementary Figure 5. Diffusion processing for investigation of white-matter connectivity. A, Schematic of the
diffusion pre-processing pipeline. Diffusion volumes were corrected for noise, Gibbs ringing, susceptibility, motion, eddy
currents, and bias fields before being co-registered to the T1 anatomy. Following pre-processing, the data were organized
into two runs (corresponding to the 99-direction and 100-direction scans, respectively). B, Signal-to-noise ratio, computed
in the corpus callosum (dots and error bars indicate mean and standard deviation across volumes, respectively; for Runs 1
and 2, error bars reflect 184 and 186 volumes, respectively). C, White-matter tract segmentation from an example subject
(subject 7). White-matter tracts are organized based on typical anatomical and functional definitions into associative (left),
projection (middle), and callosal (right) tracts and overlaid on the T4 anatomy. D, Reliability of MD, ODI, NDI, ISOVF, Mean
Kurtosis (MK), Axial Kurtosis (AK), and fiber count, length, and volume. Each dot indicates results averaged along a single
tract. Pearson’s correlation (r) and root-mean-squared error (RMSE) for each measure are indicated in the inset. E,
Macrostructural and microstructural properties observed for different tracts. Error bars indicate + 1 SEM across 8 subjects.
F, Microstructural properties of cortical regions. Shown are tensor (FA, left), NODDI (ODI; middle), and kurtosis (MK; right)
results mapped to the cortical surface of the example subject, with dorsal (top) and ventral (bottom) viewpoints of occipital
cortex. Quantitative results are shown on the right, where each dot indicates results obtained for a single region in the HCP-
MMP1 parcellation.
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Supplementary Figure 6. Additional details regarding noise ceiling estimates. This figure provides additional detail on
noise ceiling results shown in Figure 3F-G. All results reflect vertices within the nsdgeneral ROI. A, Detailed comparison
of noise ceiling results for different beta versions. Each subplot is a 2D histogram comparing noise ceilings for two different
beta versions. Improvements in noise ceilings are consistent across voxels and subjects. B, Reliability of noise ceiling
estimates. Here we show split-half noise ceiling estimates for beta version 3. Each subplot is a 2D histogram comparing
noise ceiling estimates calculated from two halves of the data from a given subject. The inset indicates the correlation
between the two sets of estimates. Noise ceiling estimates are highly stable owing to the large number of images that inform
the noise ceiling estimates.
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Supplementary Figure 7. Recognition memory effects in the NSD data. Same format as Figure 4B, but showing results
for all individual subjects. Positive values indicate BOLD responses are greater for hits than for correct rejections, whereas
negative values indicate BOLD responses are greater for correct rejections than for hits. The observed decrease in the
magnitudes of the t-values (e.g. from nsd05 to nsd20) likely reflects a decrease in the subjects’ recognition accuracy over
the course of the experiment.
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Supplementary Videos

Supplementary Video 1. Inspection of image quality and co-registration quality. Videos available online
(https://osf.io/tgbdw/ - T1-T2-EPl.mp4), https://osf.io/g86ep/ - T2-SWI.mp4, https://osf.io/s7b2a/ - T1-TOF.mp4). Three
videos are provided. One video cycles between the T4, T2, and EPI volumes, another cycles between the T> and SWI
volumes, and the third cycles between the T1 and TOF volumes. All volumes have been transformed to a common
anatomical space (set by the T1 volume) in the course of data pre-processing.

Supplementary Video 2. Inspection of cortical surfaces. Videos available online (https://osf.io/zyb3t/ - subj{01-
08} _{axial,coronal,sagittal}.mp4). These videos show the FreeSurfer cortical surface reconstructions superimposed on the
T1 volume. Left hemisphere white and pial surfaces are colored blue and cyan, respectively; right hemisphere white and
pial surfaces are colored red and yellow, respectively. Blue voxels indicate locations that have been judged to have surface
imperfections.

groupavgdctiEature

Supplementary Video 3. Inspection of fsaverage alignment. Video available online (https://osf.io/ghSbs/ -
fsaveragecheck.mp4). This video cycles through (i) the binarized curvature of each of the NSD subjects mapped via nearest-
neighbor interpolation to fsaverage, (ii) the average of this binarized curvature across subjects, and (iii) the fsaverage
binarized curvature. The video is useful for assessing the quality of the folding-based alignment performed by FreeSurfer.
Notice that the group-average curvature resembles the fsaverage curvature, as expected.
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Supplementary Video 4. Inspection of MNI alignment. Video available online (https://osf.io/p3zgm/ - MNIcheck.mp4).
This video cycles through the T1 volumes of the NSD subjects after nonlinear warping to MNI space and the MNI template
volume. The video is useful for assessing the quality of the nonlinear volume-based alignment.

Supplementary Video 5. Inspection of raw and pre-processed EPI volumes. Videos available online
(https://osf.io/zyb3t/ - subj{01-08} nsd10_run06_{raw,pp}.mp4). These videos quickly scroll through all EPI volumes in a
sample run. This is useful for assessing quality and stability of the functional imaging.

Supplementary Video 6. Inspection of mean EPI across scan sessions (volume visualization). Video available online
(https://osf.io/ydf9j/ - grandmean.mp4). This video assesses the results of pre-processing the fMRI data. Each frame shows
the mean EPI volume from a single scan session (1-mm data preparation). Note that session 0 corresponds to the prffloc
scan session and the last two scan sessions from each subject correspond to the nsdsynthetic and nsdimagery scan
sessions. This video is useful for assessing overall image quality and the stability of functional imaging across scan sessions.
For quantitative analysis, see Supplementary Figure 4.
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Supplementary Video 7. Inspection of mean EPI across scan sessions (surface visualization). VVideo available online
(https://osf.iolytjk4/ - grandmeansurface.mp4). This is similar in spirit to Supplementary Video 6, except that the mean EPI
volumes have been projected onto each subject's cortical surface and then transferred to the fsaverage surface.

subj0l, session 10 subj05, session 10

subj02, session 10 subj06, session 10

subj03, session 10 subj07, session 10

subj04, session 10 subj08, session 10

Supplementary Video 8. Inspection of BOLD signal strength across scan sessions (volume visualization). Video
available online (https://osf.io/kwxta/ - grandR2.mp4). Each frame shows the amount of variance explained by the ON-OFF
GLM model (1-mm data preparation; fixed color range). This video is useful for assessing the overall strength and stability
of BOLD responses in the NSD dataset.

Supplementary Video 9. Inspection of BOLD signal strength across scan sessions (surface visualization). Video
available online (https://osf.io/gu9wx/ - grandR2surface.mp4). This is similar in spirit to Supplementary Video 8, except
that the variance explained volumes have been projected onto each subject's cortical surface and then transferred to the
fsaverage surface.

24



Supplementary Video 10. Inflated surface visualization of noise ceilings. Video available online (https://osf.io/z3wxn/
- b3noiseceiling.mp4). This video shows the group-average b3 noise ceiling (see Figure 3F) on a rotating, inflated fsaverage
surface. Values below 15% are thresholded away in order to show the underlying curvature. This video is useful for
identifying brain regions whose activity is strongly related to the sensory content presented in the NSD experiment.
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