
REVIEW PAPER

Review of applications and challenges of quantitative systems
pharmacology modeling and machine learning for heart failure

Limei Cheng1 • Yuchi Qiu2 • Brian J. Schmidt1 • Guo-Wei Wei2,3,4

Received: 24 June 2021 / Accepted: 22 September 2021 / Published online: 12 October 2021
� The Author(s) 2021

Abstract
Quantitative systems pharmacology (QSP) is an important approach in pharmaceutical research and development that

facilitates in silico generation of quantitative mechanistic hypotheses and enables in silico trials. As demonstrated by

applications from numerous industry groups and interest from regulatory authorities, QSP is becoming an increasingly

critical component in clinical drug development. With rapidly evolving computational tools and methods, QSP modeling

has achieved important progress in pharmaceutical research and development, including for heart failure (HF). However,

various challenges exist in the QSP modeling and clinical characterization of HF. Machine/deep learning (ML/DL)

methods have had success in a wide variety of fields and disciplines. They provide data-driven approaches in HF diagnosis

and modeling, and offer a novel strategy to inform QSP model development and calibration. The combination of ML/DL

and QSP modeling becomes an emergent direction in the understanding of HF and clinical development new therapies. In

this work, we review the current status and achievement in QSP and ML/DL for HF, and discuss remaining challenges and

future perspectives in the field.
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Introduction

Heart failure

Heart failure (HF) is generally described as a condition

where the blood output of the heart is not sufficient to meet

metabolic demands of the tissues [1]. However, a variety of

dysfunctions comprise heart failure, heart failure can be a

challenging syndrome to diagnose clinically, and

compensatory cardiac mechanisms can sometimes mask an

underlying disease state. A critical functional quantity used

in the characterization of heart failure is the ejection

fraction (EF), the ratio between the blood volume ejected

and total filled volume. EF is usually reported for the

cardiac chamber responsible for systemic delivery of

arterial blood through the aorta, the left ventricle ejection

fraction (LVEF). The two most commonly diagnosed types

of heart failure are heart failure with reduced ejection

fraction (HFrEF) and heart failure with preserved ejection

fraction (HFpEF). Normally, the EF of a healthy person is

55–70%, and when EF drops below 40 %, it is character-

ized as HFrEF. Intermediate ejection fractions of 40–55%

are often considered to be abnormal [2]. For HFpEF

patients both the blood ejected volume and the total filled

blood volume are reduced, which results in a near-normal,

preserved EF.

Heart failure can have a number of etiologies, but gen-

erally progresses from an initial cardiac injury through a

remodeling stage that ultimately results in cardiac dys-

function [3]. The causes of cardiac injury can include
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myocardial disease, pericardial or endocardial abnormali-

ties, valve diseases such as regurgitation and stenosis,

arrhythmia, pressure overload, or volume overload [4]. The

most common cause is cardiac injury is myocardial

ischemia, which usually involves blockage of the coronary

arteries from coronary artery disease (CAD) [4]. Remod-

eling is driven by cellular processes including cardiomy-

ocyte hypertrophy, proliferation of fibroblasts, extracellular

matrix changes including an initiation of fibrosis, apoptosis

and necrosis of myocytes, and inflammation [4]. Hyper-

trophy can be stimulated by reductions in blood flow to the

heart, which results in increase oxygen demand. In addition

to increased demand for oxygen with additional muscle

tissue, the increased wall stiffness can serve as a barrier to

sufficient coronary blood flow. This positive cycle causes

cardiac remodeling and is often associated with worsening

in HFpEF. Cardiac myocyte apoptosis and necrosis results

in weakened heart muscle, reduced force of contraction,

reduced stroke volume, and ultimately produces remodel-

ing with progressively thinner walls and larger ventricle

chambers in HFrEF [5].

Increases in fluid retention and congestion are additional

hallmarks of heart failure. When the heart does not contract

properly in heart failure, less blood passes through the heart

and lungs. The kidney compensates for the response in

arterial underfilling as triggered by baroreceptor activation

as well as neurohormonal stimulation, increasing sodium

and water retention. Gradually, the interstitial fluid and

plasma volume expand [6]. This results in congestion in the

lungs and body and fluid retention in tissues and organs. In

addition to the loss of cardiac functionality, heart failure

therefore also progressively results in shortness of breath,

swelling, and the loss of the ability to exercise.

No single mechanism can account for the heterogenous

clinical syndromes and conditions of heart failure. Thus,

multiple strategies are needed to assess the mechanisms,

complex systems, describe the clinical syndromes, and

assess the likelihood of the many alternate causes of heart

failure [7].

Introduction of quantitative systems
pharmacology

Mathematical biology and pharmacology models are

increasingly used in preclinical and clinical drug devel-

opment. Quantitative systems pharmacology (QSP) is an

emerging interdisciplinary field that integrates systems

biology and pharmacometrics, with an emphasis on

dynamic modeling, to quantitatively predict the effects of

clinical interventions and their combinations under a

variety of genetic, biochemical, biophysical, biomechani-

cal, and physiological conditions. Sometimes these mech-

anistic underpinnings are also mapped to influential

demographic considerations such as gender, race, and age

[8, 9]. Recently, machine learning (ML) approaches to

inform QSP have been of increasing interest and utility.

QSP models are developed by incorporating underlying

disease and therapeutic mechanisms, and are leveraged to

solve complex problems, improve decisions, and reduce

costs in drug development. They are applied from early

drug design and discovery to late-stage clinical develop-

ment. A fast-growing interest in application of QSP to

dosing and trial decision-making for clinical development

has made QSP a well-recognized tool in drug development.

QSP has supported clinical development in many thera-

peutic areas and provided unexpected insights [10]. The

further integration, calibration, and validation with patient

data, particularly those from clinical trials, enables QSP to

provide mechanical and actionable predictions. QSP

modeling has become an indispensable tool that has also

created interest from regulatory agencies such as the US

Food and Drug Administration (FDA) and European

Medicines Agency (EMA) for new drug development

[10, 11]. As such, QSP will have a substantial impact on

human healthcare and the pharmaceutical industry in the

future.

Overview of machine learning and deep learning

Machine learning (ML), including deep learning, has had a

growing and substantial impact on science, engineering,

technology, and industry in the past decade [12, 13]. It is a

branch of artificial intelligence and computer science,

which focuses on the use of data and algorithms to imitate

the way that humans learn, gradually improving its accu-

racy [14]. Supervised learning and unsupervised learning

are two major categories that have a wide clinical appli-

cation on HF [15], although semi-supervised learning and

self-supervised learning are potentially useful. In this sec-

tion, we give a brief introduction to these areas of machine

learning algorithms.

Supervised learning

The primary difference between supervised learning and

unsupervised learning is whether the training data is ‘‘la-

beled.’’ Supervised learning uses labeled datasets to train

the ML model. Supervised learning consists of two major

types of tasks, regression and classification, where a

regression task predicts a continuous quantity and a clas-

sification task generally predicts a category. Linear

regression is one basic regression algorithm that uses a

linear approach to model the relationship between a scalar

response and one or more explanatory variables (i.e. pre-

dictors) [16]. Logistic regression is used to model the

probability of a certain class or event existing, which is
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mainly intended for classification problems [17]. Support

vector machine (SVM) is a classification method that

develops an optimal hyperplane that maximally separates

high dimensional data points classified into two categories.

Although the hyperplane is a linear divider, nonlinear

classification problems can be tackled with a kernel func-

tion. New examples are then mapped into that same space

and predicted to belong to a category based on which side

of the line they fall [18]. SVM has also been adapted for

regression problems, support vector regression (SVR).

Another classification method is the decision tree, a flow-

chart-like structure with many binary decision points, or

nodes. Leaf nodes are the end points in a decision tree

structure, and each leaf node assigns a class label. The

paths from the root to the leaf represent classification rules

[19]. Decision trees have been noted to be prone to over-

fitting, whereby they may fit the data very well, including

spurious features and noise. An ensemble method, i.e. the

random forest method, proceeds by constructing multiple

decision trees at training time and averaging predictions of

the individual trees to mitigate overfitting issues [20].

Many additional ensemble learning methods have been

developed, such as gradient boosting trees and XGBoost

[21].

Deep learning has become more popular in supervised

learning because of its capabilities for universal approxi-

mation and availability of increasingly powerful high-per-

forming computational tools. One popular deep learning

algorithm is the artificial neural network (ANN), a network

consisting of connected units or nodes [22]. Each node

produces a single output value based on a weighted sum of

the inputs plus a bias term. Intermediate nodes between the

input and output nodes are often called hidden nodes, and

there may be multiple layers of intervening nodes. To

prevent overfitting and reduce the dimensionality of the

model in the neural network, convolution neural networks

(CNN) introduced convolutional layers, which perform

additional matrix multiplication operations on the input.

CNNs are particularly designed for learning image data

[23]. Recurrent neural networks (RNN) include additional

recurrence relationships that rely on previous network time

points that are not included in ANNs but are needed to help

predict sequences, such as letters in sentences and words.

In natural language processing, many RNN architectures

were introduced to make the model scalable to sequence

data with various lengths, such as long short-term memory

(LSTM) [24], gated recurrent unit (GRU) [25] and trans-

former [26]. ML models can simultaneously take multiple

features or biomarkers as input data, and meanwhile predict

multiple clinical events or outputs. The existence of mul-

tiple output data enables the use of the so-called to mul-

titask deep learning (MDL) method. This approach, also

called transfer learning, can take the advantage of a large

data set to help improve the prediction accuracy of small

data sets.

Unsupervised learning

Another type of machine learning task is unsupervised

learning, where the data have no labels. Two of the main

methods in unsupervised learning are dimension reduction

and clustering. Dimension reduction transforms high-di-

mensional data into a low-dimensional space retaining the

most meaningful properties. Clustering divides data into

multiple groups with similar internal characteristics.

Dimension reduction methods are common in fields that

deal with high-dimensional data for noise reduction, data

visualization, and cluster analysis [27]. Linear dimension

reduction, such as principal component analysis (PCA),

performs a linear mapping of the data to eigenspace in

lower dimension, maximally preserving the variability in

the original data while using minimal dimensions in the

transformed space [28]. Other nonlinear dimension reduc-

tion methods, such as non-negative matrix factorization

(NMF) [29], T-distributed stochastic neighbor embedding

(t-SNE) [30], autoencoder [31], and uniform manifold

approximation and projection (UMAP) [32], were widely

used to data with different structures [33]. Clustering is the

task of grouping a set of objects in such a way that objects

in the same group are more similar to each other than to

those in other groups. Distance-based clustering [34, 35],

hierarchical clustering [36], community-based clustering

[37, 38], density-based clustering [39], soft clustering

[40, 41], and graph-based clustering [42] were widely

applied to transcriptomic data analysis [43], pattern

recognition [44], image processing [45] as well as heart

failure [46] to reveal data internal characteristics.

QSP modeling for cardiovascular diseases
and heart failure

Applications of QSP modeling for cardiovascular
diseases and heart failure

For pharmaceutical discovery and development, one cru-

cial question that must be addressed is whether the

potential treatment is safe and efficacious. Mechanistic

systems modeling approaches can provide insights and

guide target identification and drug evaluation throughout

the drug development process [47]. QSP models can

improve understanding of heart failure mechanisms, pro-

vide safety and efficacy assessments, and assist in the

design and planning of clinical trials.

QSP modeling has been applied in the pharmaceutical

industry to cardiovascular applications. As one example,
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the Cardiovascular Physiolab� platform models the biol-

ogy and pathophysiology of cardiovascular disease and was

applied to explore the progression of atherosclerosis and

response to therapies [48]. One striking prediction from the

model was that although cholesterol ester transfer protein

(CETP) inhibition can modulate the circulating lipoprotein

profile, the known mechanisms for clinically explored

CETP inhibitors generally would not effectively remove

cholesterol from plaque to facilitate improved cardiovas-

cular outcomes. That is, the model both provided a quan-

titative hypothesis for the lack of impact of torcetrapib on

plaque outcomes and further suggested a class effect pos-

ing a challenge to the clinical development of CETP

inhibitors that would extend beyond torcetrapib. The

mechanistic insight and predictions were made public prior

to the readouts of multiple phase 3 trials for CETP inhi-

bitors with outcomes in agreement with the insights pro-

vided by the mechanistic modeling work [47–49].

For heart failure patients, reduced cardiac output and

arterial filling pressure leads to congestion in the lungs and

body, which causes short breath and fluid retention, con-

tributing to further volume overload. As one example of

mechanistic modeling applied to heart failure, cardiac and

renal interactions in HFrEF were modeled by Yu et al. to

incorporate the underlying mechanisms of edema and

investigate the effects of renally-targeted therapies on

HFrEF [50]. The model investigated the poorly understood

effects of sodium-glucose co-transporter 2 inhibitors

(SGLT2i) on HF. Simulated virtual diabetic and non-dia-

betic HF patients and simulated clinical trials were used to

evaluate the effect of SGLT2i on cardiac functions, blood

volume, congestion, and edema in HFrEF patients. Yu

et al. proposed that HFrEF improves with SGLT2 inhibi-

tion due by reducing cardiac preload and relieves conges-

tion by reducing the interstitial fluid accumulation.

Myocardial energetics also change with decompensated

heart failure. However, it is unknown how mechanical

function and changes in myocardial energetics interact with

each other in HF. Tewari et al. developed an integrated

model with mitochondrial ATP energetics, calcium-de-

pendent actin-myosin cross-bridge cycling, and systemic

resistance to address this question [51]. The model was

applied to investigate the efficacy of drugs, including

omecamtive mecarbil, on cross-bridge cycling kinetics and

resulting oxygen demands in decompensated heart failure.

Tewari et al. used the computational analysis to propose

how metabolic changes can account for the systolic dys-

function in heart failure.

QSP modeling in HF often uses data from literature,

nonclinical studies, and available prior clinical data to

inform model develop and assist clinical studies and

development. There are many open questions about the

development of therapeutics for heart failure that would

benefit from a QSP modeling approach. QSP can address

early assessments of clinical efficacy, assessments of the

optimal dose level, dosing regimen optimization, combi-

nation with other therapeutics including the standard of

care, and identification of characteristics of responders in

heterogenous patient populations. QSP models can also be

updated with emerging clinical data. When the primary

outcome fails in a clinical trial, QSP can be applied to re-

assess whether there is a strong biologic rationale that

favors the treatment and whether the failure was due to the

trial population [52].

A summary diagram of a QSP model being applied to

inform clinical development is shown in Fig. 1. The model

mathematically describes the physiology of cardiovascular,

respiratory, renal system, Na?/water regulation, and the

central nervous and hormonal regulation system. The

model can simulate a pulsatile heart and hemodynamics

with interactions of neuro-hormonal control and kidney

function of a virtual patient as a normal subject or with

heart failure. In addition to questions about clinical dosing

strategies, the heart failure model has been applied to

generate a deeper biological and clinical understanding of

the disease states in heart failure. The model has also been

used to investigate the mechanisms of action for thera-

peutic targets in clinical development. The heart failure

QSP modeling approaches integrate clinical and non-clin-

ical data and current knowledge in a quantitative and

mechanistic fashion to generate actionable predictions.

QSP models can simulate virtual patients (VPs) and one

major application of the heart failure QSP modeling is also

HF VP simulation. A variety of criteria are used to estab-

lish that simulated VPs are biologically plausible, or valid.

Biomarkers of plausible VPs should be clinically observed

physiological ranges, for example observed ranges of car-

diac ejection fraction, left ventricle volume, total periph-

eral resistance, heart rate, cardiac output, diastolic and

systolic pressure, respiration rate, and hormonal concen-

trations. Plausible VPs can provide prediction results and

simulated data to begin to address the challenges for HF

drug development. However, with observed clinical bio-

marker and response data, a set of plausible VPs can also

be expanded and developed into a virtual patient popula-

tion that quantitatively matches multiple summary statistics

or distributions of the clinical observations [53–55]. These

virtual populations can be used in silico trials to aid in a

number of clinical development decisions with projections

of anticipated population and trial variability. These

insights including outcome distributions and quantitative

population differences in the underlying mechanisms can

be used for a more quantitative projection of trial outcomes

when assessing doses, deciding how to stratify patients for

therapy by their biomarkers, analyzing the contribution of

components, and making decisions about combination
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therapy approaches, and deciding to advance or halt clin-

ical development [56].

Another application of heart failure QSP modeling is

predicting the progression of HF. Even if the HF patients

are considered clinically stable when they are receiving

treatment and show no physical signs and symptoms of

worsening HF, HF treatments generally do not protect

against progressive deterioration of cardiac function. The

heart failure QSP model captures the progressive change

and status of an HF patient with treatment or without

treatment over time.

In addition to the QSP applications introduced, signifi-

cant work has been done developing computational models

of cardiac electrophysiology, cardiomyocytes and

mechanics for guiding pharmaceutical therapy and

deployment of devices, screening cardiac toxicity, and

addressing heart failure questions [57]. It is also worth

noting that HF can modulate organ blood flows that are

important for tissue concentrations and clearance rates, and

physiologically based pharmacokinetic (PBPK) models

that model the effective clearance of HF drugs with the

changes in organ perfusion associated with HF have been

used to assess dosing as associated with the disease state

[58, 59]. Extension of PBPK models with simple phar-

macodynamic (PD) models to create PBPK-PD models is

one additional strategy to predict effects [60], and in

addition modeling of cardiac tissue concentrations may

further help to predict and assess cardiotoxicity [61]. While

QSP approaches have also explicitly included distribution

of a drug to target tissues, target binding, and mechanistic

pharmacodynamic effects, in some cases it has also been

useful to instead assess the impact of therapies through a

direct in silico modulation of the target [50].

Challenges and future directions for QSP
modeling in heart failure

HF is a widespread disease and poses a substantial medical

need that is only partially being met. Overall, there are

more than 26 million HF patients worldwide and more than

half of them are 65 years or older. Half of HF patients die

in 5 years, and a half of HF patients are re-hospitalized in 6

months. Currently, multiple assessments and tests are used

for diagnosis, and half of the patients have no approved

treatments. HF research is also expensive: a typical car-

diovascular clinical trial can cost $72 million, and half of

phase III trials have failed. In addition, research in HF can

take 30 years or even longer. As mentioned previously,

heart failure often involves multiple organs and systems,

results in many complications, and the relevant mecha-

nisms for a patient may not be fully elucidated. Although

there is already much clinical data related to HF, important

readouts of clinical cardiac function and disease state such

as ejection fraction, heart rate, and blood pressure may not

be reported and generally are not available in a source

electronic format where relationships can be more readily

assessed. Clinical research in heart failure is challenging

and investment in heart failure has declined [62].

Mechanistic cardiovascular computational modeling has

been developed over several decades. For example, blood

vessel hemodynamic models were published in 1959 [63],

electrophysiological cardiac models were published in

1962 [64], electromechanical models of heart have been

published since 1974 [65, 66], detailed computational

biology of the heart from structure to function have been

published since 1990s [67], and integrated cardiovascular

models have been developed since 2000s [68, 69]. How-

ever, due to these challenges in HF, relatively few multi-

scale mechanistic models that incorporate the diverse

Fig. 1 Diagram of a quantitative systems pharmacology model of heart failure
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pathophysiology from multiple length and time scales have

been developed. For example, the QSP model of HF pre-

sented here captures multiple temporal scales, from mod-

eling action potential at the time scale of milliseconds to

modeling changes in cardiac out over years. For maximal

mechanistic insight and ability to explore more therapies,

biomarkers, and functions, HF models can in theory also

utilize multiple physiological scales, from molecular

interactions such as target engagement, signaling pathways

[70], molecular cardiomyocyte processes including cross-

bridge cycling [51], cardiac tissue remodeling [50], up to

systemic flow and blood pressure [50]. Current QSP

modeling approaches only consider a limited set of com-

ponents at the molecular through physiological scale. They

can provide quantitative predictions as well as hypotheses

for HF study, but the limit of resolution of the under-

standing they provide may be determined in part by the

level of mathematical abstraction that mechanisms are

incorporated at. Multiscale models of HF including addi-

tional processes incorporated explicitly at the molecular,

cellular, tissue, and organ levels would therefore help to

investigate additional contributing mechanisms and

potential biomarkers in silico to deepen the mechanistic

understanding of HF. Ultimately, a process of iterative

model development, informed by assessment of model

behaviors and available data, may help to further advance

HF QSP.

Machine learning in heart failure

Applications for machine learning in heart failure

The goals of applying ML to medicine include improving

the detection and classification of disease, making better

predictions, and improving the personalization of medicine

[15]. ML has been applied to HF to reduce cost by

improving existing diagnostic and treatment support sys-

tems [71]. Current HF diagnosis and management rely

upon patients’ history, including their physical examina-

tion, and both laboratory and imaging data [72]. Learning

from existing data, machine learning methods were applied

to improve the accuracy and efficiency in predictions in HF

diagnosis [73–75], readmission rate [76, 77], mortality rate

[78, 79], and hospitalization rate [80]. While conventional

statistical models have been used in heart failure, current

state-of-art machine learning and deep learning techniques

provide more powerful tools boosting the predictive

accuracy [81]. A classification model was built by using a

support vector machine (SVM) to classify all patients into

three groups: the healthy group, the HF-prone group, and

the HF group. Large amounts of physical examination

records were used to build the ML model, including heart

rate variability test, echocardiography test, electrocardio-

graphy test, chest radiography test, six minute walk test,

and physical test [82]. Individualized treatment and healthy

living choices can be suggested for high-risk patients pre-

dicted by ML from electronic health records [83]. Unsu-

pervised clustering can identify phenotype groups in heart

failure in baseline clinical characteristics, biomarker val-

ues, measures of left and right ventricular structure, and

function, and the primary outcome occurrence [46, 84, 85].

The classification of phenotypically heterogeneous HF

might aid in optimizing the rate of responders to specific

therapies. Rather than the regression or classification tasks,

machine learning models can also provide significant

analysis on HF. For example, random forest methods can

analyze the importance of each feature. The left ventricular

ejection fraction was successfully identified as the most

relevant feature in predicting the survival of patients [86].

Machine learning models were used to analyze heart failure

patients, providing various outputs such as an HF severity

evaluation, HF-type prediction, as well as a management

interface that compares the different patients’ follow-ups

[87].

Many technologies can be used to assist the diagnosis of

HF, but there is also heterogeneity in clinical diagnoses due

to differences between clinicians. Machine learning may

help to improve the accuracy of diagnosis. LVEF is a

measurement, expressed as a percentage, of how much

blood the left ventricle pumps out with each contraction.

Empirically, LVEF is an important classifier for HF [88].

However, patients with normal LVEF may have HF, ter-

med HFpEF. The spatiotemporal variations of LV strain

rate during rest and exercise can be used to identify patients

with HFpEF and to provide an objective diagnostic clas-

sification. The analysis of such left ventricular long-axis

function data via ML can improve the diagnosis and

understanding of HFpEF [73, 74]. Electrocardiogram

(ECG) is a non-invasive and simple diagnostic method that

may demonstrate changes in congestive HF. However, the

changes in ECG signal can also be difficult to detect

accurately. Deep learning methods are therefore widely

used to improve the accuracy in detecting congestive HF

from ECG, where CNN [89] and LSTM [90] have been

applied. Echocardiography is another standard tool for HF

characterization and management, while it requires a skil-

led user and interpreter, and the interpretation of echocar-

diographic images has varying levels of subjectivity and

inter-rater reliability [15, 91]. Artificial intelligence (AI)

technologies provide new possibilities for echocardiogra-

phy to generate an accurate, consistent, and automated

interpretation of echocardiograms, thus potentially reduc-

ing the risk of human error [92]. An ensemble machine-

learning model, consisting of support vector machines,

random forests, and artificial neural networks, was
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developed and a majority voting method was used for

conclusive predictions based on echocardiographic images

[93]. Combining echocardiography data and electronic

health records, random forest achieved significantly higher

prediction accuracy than logistic regression [94]. Wearable

technologies recording cardiac function and machine

learning algorithms can assess compensated and decom-

pensated HF states by analyzing the cardiac response to

submaximal exercise [95]. Heart sounds could be an eco-

nomic and efficient method for a daily and home-based

monitor for chronic HF. A model combining feature

selection from a classic ML model and a downstream deep

learning model was able to accurately identify new chronic

HF patients through heart sounds [96].

Challenges and future directions for machine
learning in heart failure

With increasingly available data, the accuracy of ML

models can be improved in the data-driven approach. Data

is an essential component in ML, QSP, and data-driven

discovery. In general, a large amount of good quality

training data can help to yield good accuracy of ML

approaches. Deep learning has the ability for universal

approximation to boost the predictive performance when

large data sets are available. But challenges exist in

machine/deep learning due to the data requirements. First,

patient data and biomarkers collected from different sour-

ces or with different protocols may have strong variations

and noise [15]. How to reduce the variations and align data

from multiple sources together in one ML model is critical

to the performance of the ML model. Data from different

sources, such as different machines and hospitals, may

present challenges [15]. Data from diverse and heteroge-

nous sources typically involve different patient groups,

inhomogeneous data collection techniques, and unspecified

human errors, leading to nonuniform calibration, accuracy,

and reliability, etc.

Because of their mechanistic nature, QSP models may

help to flag and further check whether data from multiple

sources are largely consistent or conflicting. Second,

imbalanced data sets with low representation of a class of

interest can significantly reduce the prediction accuracy

and performance of both ML and QSP models. Tests that

directly couple with the majority classes of the imbalanced

data may be better predicted, but cases associated with the

minority classes may not be accurately predicted. Many

techniques on ML models can be applied to better work

with imbalanced data [97]. For example, oversampling

training data in the minority classes and using special loss

function (e.g. focal loss [98]) are two popular approaches

to enhance the predictive power of ML models on minority

classes. Some analogous strategies may also facilitate QSP

model calibration. For example in analogy to the focal loss

strategy, statistical methods that ensure infrequent out-

comes and biomarker observations associated with the

infrequent outcomes are calibrated properly may be

employed. Third, missing values in a dataset is a common

phenomenon in potential data and biomarkers, especially

for large datasets. Patients might skip or forget to take

medicine or measurements. Most ML models require data

that has the same dimension for individual components.

Data imputation to fill out the missing values is necessary

to the designs of an ML model to fully utilize all available

information from data [99], and imputation strategies may

also be useful for datasets for QSP model calibration. On

the other hand, data may be limited number due to various

reasons, for example if the data collection is expensive or

the cases to be studied are rare. The complexity of the ML

model needs to be appropriately selected to avoid overfit-

ting. Similar considerations arise in QSP model calibration,

and strategies to account for this have included both judi-

cious selection of the number of parameters that are varied

in a virtual population as well as model averaging [56].

Model interpretability is also extremely desirable for

ML application on HF to reveal underlying mechanisms.

However, the trade-off between model accuracy and model

interpretability is a main challenge for ML approaches

[100]. The integration of data-driven machine learning

methods with mechanistic QSP modeling may be a com-

ponent to overcome this obstacle.

Machine learning-assisted QSP for heart
failure

In recent years, with the rise of ML and DL technology,

QSP modelers have started to apply machine learning-as-

sisted QSP for heart failure modeling (Fig. 2). One key

area where we anticipate this will be important is relating

clinical trial endpoints that are not mechanistic, such as

survival, to endpoints that can be modeled explicitly. For

example, we previously described the case where the left

ventricular ejection fraction was found to be the most rel-

evant feature in predicting the survival of patients [86]. In

this case, the ML training and validation is done explicitly

with the clinical data, but the insights can also be used to

tie the QSP model outputs to additional clinical informa-

tion of interest.

A second area where QSP and ML may be integrated is

related to the calibration of model event rates using

machine learning approaches, once a justifiable link

between model outputs and clinical outcomes is set. In

certain settings, we are given clinical event rate data

reported from many trials with different (drug, dose)

combinations, and some of these combinations may be
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reported from multiple studies with varied outcomes. For

each of these studies, we receive the event rate that was

reported for the trial. This data can be used to tune an event

prediction algorithm. With this strategy, machine learning

models are trained at the population level of input data,

generated from an ensemble of individual patient QSP

simulations. Many ML algorithms can be developed for

this purpose. For example, a logistic regression model that

takes in the input field(s) for each virtual patient and out-

puts a probability of an event can be utilized. Other

methods, including gradient, boosted decision tree

(GBDT), deep neural network (DNN), MDL, can be

employed.

A third area where QSP and ML may be integrated is in

the development of surrogate models of computationally

challenging model subsystems. For example, if some sub-

systems operate on a relatively fast timescale that imposes

smaller time steps on an ordinary differential equation

solver, but analytically are not tractable to a good quasi-

steady-state approximation, a surrogate model developed

with ML that recreates the input-output relationships of

interest across all of the conditions to be explored may help

to speed model simulations [101]. In our previous study,

Fig. 2 An overview and illustration of machine learning assisted quantitative system pharmacology modeling for heart failure. It involves

systems biology, physiology and pathophysiology, biochemistry, signaling pathways, and patient data

46 Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:39–50
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we used a simple Gaussian regression method as a surro-

gate for a signaling pathway saturation and desaturation

mechanism before calibrating a QSP model of heart failure

to publicly available clinical data for a competitor com-

pound, then predicted the potential efficacy of our com-

pound for decision making in the clinical development.

The application of mechanistic models often requires

exploration of a high dimensional parameter space, and

data-guided methods have been developed to both enable

efficient characterization of this space and facilitate virtual

population development [56, 102–105]. Highly efficient

parameter exploration and model calibration strategies are

a fourth area where ML strategies may further assist QSP.

Recently, generative models, such as autoencoders, nor-

malizing flows, and generative adversarial network [106],

have been explored as a component of new strategies for

statistical inference with mechanistic models, and also

offer alternatives when the likelihood function is not ana-

lytically tractable [107]. Physics-informed neural networks

(PINNs) can easily infer parameters and obtain accurate

solution of the system with well-known governing

Eqs. [108, 109]. PINNs have been applied to cardiac

modeling [110]. Moreover, machine learning methods have

been also applied to cardiac modeling for uncertainty

quantification [111], model order reduction [112], surro-

gate generation and acceleration of large scale of simula-

tions [113].

Conclusions

Although, to our knowledge, a QSP model that captures the

full range of HF etiologies in good mechanistic detail that

explicitly reproduces all proposed contributing factors

across the molecular, cellular, tissue, and organ scales has

not been developed, we can further develop current HF

QSP models to work towards the goal of models capable of

reproducing more clinical phenotypes, underlying causes,

and calibration to more clinical interventions. We antici-

pate the utilization of ML approaches will help the advance

towards this goal. ML will further bring together different

approaches. QSP models that build in with new mecha-

nisms and incorporate richer data will have a bright future.

Acknowledgements This work was supported in part by NIH grant

GM126189, NSF grants DMS-2052983, DMS-1761320, and IIS-

1900473, NASA grant 80NSSC21M0023, Michigan State Founda-

tion, Bristol-Myers Squibb 65109.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Denolin H, Kuhn H, Krayenbuehl H, Loogen F, Reale A (1983)

The defintion of heart failure. Eur Heart J 4(7):445–448

2. Bhuiyan T, Maurer MS (2011) Heart failure with preserved

ejection fraction: persistent diagnosis, therapeutic enigma. Curr

Cardiovasc Risk Rep 5(5):440

3. Azevedo PS, Polegato BF, Minicucci MF, Paiva SA, Zornoff

LA (2015) Cardiac remodeling: concepts, clinical impact,

pathophysiological mechanisms and pharmacologic treatment.

Arq Bras Cardiol 106:62–69

4. Tanai E, Frantz S (2011) Pathophysiology of heart failure.

Compr Physiol 6(1):187–214

5. Anversa P, Kajstura J, Olivetti G (1996) Myocyte death in heart

failure. Curr Opin Cardiol 11(3):245–251

6. Miller WL (2016) Fluid volume overload and congestion in

heart failure: time to reconsider pathophysiology and how vol-

ume is assessed. Circulation 9(8):e002922

7. Mann DL (1999) Mechanisms and models in heart failure: a

combinatorial approach. Circulation 100(9):999–1008

8. Leil TA, Ermakov S (2015) The emerging discipline of quan-

titative systems pharmacology. Front Pharmacol 6:129

9. Sorger PK, Allerheiligen SR, Abernethy DR, Altman RB,

Brouwer KL, Califano A et al (2011) Quantitative and systems

pharmacology in the post-genomic era: new approaches to dis-

covering drugs and understanding therapeutic mechanisms. An

NIH white paper by the QSP workshop group. NIH Bethesda,

Bethesda

10. Bai JP, Schmidt BJ, Gadkar KG, Damian V, Earp JC, Friedrich

C et al (2021) FDA-Industry Scientific Exchange on assessing

quantitative systems pharmacology models in clinical drug

development: a meeting report, summary of challenges/gaps,

and future perspective. Springer, Cham

11. Musuamba FT, Bursi R, Manolis E, Karlsson K, Kulesza A,

Courcelles E et al (2020) Verifying and validating quantitative

systems pharmacology and in silico models in drug develop-

ment: current needs, gaps, and challenges. CPT 9(4):195

12. Jordan MI, Mitchell TM (2015) Machine learning: Trends,

perspectives, and prospects. Science 349(6245):255–260

13. Wei G-W (2019) Protein structure prediction beyond AlphaFold.

Nat Mach Intell 1(8):336–337

14. Carbonell JG, Michalski RS, Mitchell TM (1983) An overview

of machine learning. Mach Learn 1983:3–23

15. Olsen CR, Mentz RJ, Anstrom KJ, Page D, Patel PA (2020)

Clinical applications of machine learning in the diagnosis,

classification, and prediction of heart failure. Am Heart J

229:1–17

16. Strahler AN (1957) Quantitative analysis of watershed geo-

morphology. Eos Trans Am Geophys Union 38(6):913–920

17. Kleinbaum DG, Dietz K, Gail M, Klein M, Klein M (2002)

Logistic regression. Springer, Cham

18. Cortes C, Vapnik V (1995) Support-vector networks. Mach

Learn 20(3):273–297

Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:39–50 47

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



19. Safavian SR, Landgrebe D (1991) A survey of decision tree

classifier methodology. IEEE Trans Syst Man cybern

21(3):660–674

20. Ho TK, editor Random decision forests. In: Proceedings of 3rd

international conference on document analysis and recognition;

1995: IEEE

21. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H.

Xgboost: extreme gradient boosting. R package version 04-2.

2015;1(4)

22. Schmidhuber J (2015) Deep learning in neural networks: an

overview. Neural Netw 61:85–117

23. LeCun Y, Bengio Y (1995) Convolutional networks for images,

speech, and time series. The Handb Brain Theory Neural Netw

3361(10):1995

24. Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget:

continual prediction with LSTM. Neural Comput

12(10):2451–2471

25. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of

gated recurrent neural networks on sequence modeling. arXiv

preprint arXiv:14123555. 2014

26. Tetko IV, Karpov P, Van Deursen R, Godin G (2020) State-of-

the-art augmented NLP transformer models for direct and sin-

gle-step retrosynthesis. Nature Commun 11(1):1–11

27. Van Der Maaten L, Postma E, Van den Herik J (2009)

Dimensionality reduction: a comparative. J Mach Learn Res

10(66–71):13

28. Wold S, Esbensen K, Geladi P (1987) Principal component

analysis. Chemom Intell Lab Syst 2(1–3):37–52

29. Lee DD, Seung HS (1999) Learning the parts of objects by non-

negative matrix factorization. Nature 401(6755):788–791

30. Van der Maaten L, Hinton G (2008) Visualizing data using

t-SNE. J Mach Learn Res 9(11):2579

31. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A,

Bottou L (2010) Stacked denoising autoencoders: Learning

useful representations in a deep network with a local denoising

criterion. J Mach Learn Res 11(12):3371

32. McInnes L, Healy J, Melville J. Umap: Uniform manifold

approximation and projection for dimension reduction. arXiv

preprint arXiv:180203426. 2018

33. Hozumi Y, Wang R, Yin C, Wei G-W (2021) UMAP-assisted

K-means clustering of large-scale SARS-CoV-2 mutation data-

sets. Comput Biol Med 131:104264

34. Hamerly G, Elkan C (2004) Learning the k in k-means. Adv

Neural Inf Process Syst 16:281–288

35. Zhang Q, Couloigner I (2005) A new and efficient k-medoid

algorithm for spatial clustering. International conference on

computational science and its applications. Springer, Berlin

36. Murtagh F, Contreras P (2012) Algorithms for hierarchical

clustering: an overview. Wiley Interdiscip Rev 2(1):86–97

37. Traag VA, Waltman L, Van Eck NJ (2019) From Louvain to

Leiden: guaranteeing well-connected communities. Sci Rep

9(1):1–12

38. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008)

Fast unfolding of communities in large networks. J Stat Mech

2008(10):P10008

39. Schubert E, Sander J, Ester M, Kriegel HP, Xu X (2017)

DBSCAN revisited, revisited: why and how you should (still)

use DBSCAN. ACM Trans Database Syst 42(3):1–21

40. Sha Y, Wang S, Zhou P, Nie Q (2020) Inference and multiscale

model of epithelial-to-mesenchymal transition via single-cell

transcriptomic data. Nucleic Acids Res 48(17):9505–9520

41. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A,

Chandra T et al (2017) SC3: consensus clustering of single-cell

RNA-seq data. Nat Methods 14(5):483–486

42. Kuang D, Ding C, Park H, editors. Symmetric nonnegative

matrix factorization for graph clustering. In: Proceedings of the

2012 SIAM international conference on data mining; 2012:

SIAM

43. Oller-Moreno S, Kloiber K, Machart P, Bonn S. Algorithmic

advances in machine learning for single cell expression analysis.

Current Opinion in Systems Biology. 2021

44. Saxena A, Prasad M, Gupta A, Bharill N, Patel OP, Tiwari A

et al (2017) A review of clustering techniques and develop-

ments. Neurocomputing 267:664–681

45. Zhong Y, Ma A, soon Ong Y, Zhu Z, Zhang L (2018) Com-

putational intelligence in optical remote sensing image pro-

cessing. Appl Soft Comput 64:75–93

46. Cikes M, Sanchez-Martinez S, Claggett B, Duchateau N, Piella

G, Butakoff C et al (2019) Machine learning-based

phenogrouping in heart failure to identify responders to cardiac

resynchronization therapy. Eur J Heart Fail 21(1):74–85

47. Schmidt BJ, Papin JA, Musante CJ (2013) Mechanistic systems

modeling to guide drug discovery and development. Drug Dis-

cov Today 18(3–4):116–127

48. Powell LM, Lo A, Cole MS, Trimmer J (2007) Application of

predictive biosimulation to the study of atherosclerosis: devel-

opment of the cardiovascular PhysioLab platform and evaluation

of CETP inhibitor therapy. Proc FOSBE 2007:9–12

49. Wahba K, Lo A, Kadambi A, Powell LM (2011) Clinical trial

simulations of dyslipidemic patients in a mechanistic model of

cardiovascular disease predict little impact on CHD events by

CETP inhibitors. Am Heart Assoc 2011:A9560

50. Yu H, Basu S, Hallow KM (2020) Cardiac and renal function

interactions in heart failure with reduced ejection fraction: A

mathematical modeling analysis. PLoS Comput Biol

16(8):e1008074

51. Tewari SG, Bugenhagen SM, Vinnakota KC, Rice JJ, Janssen

PM, Beard DA (2016) Influence of metabolic dysfunction on

cardiac mechanics in decompensated hypertrophy and heart

failure. J Mol Cell Cardiol 94:162–175

52. Pocock SJ, Stone GW (2016) The primary outcome fails—what

next? N Engl J Med 375(9):861–870

53. Woodhead JL, Howell BA, Yang Y, Harrill AH, Clewell HJ,

Andersen ME et al (2012) An analysis of N-acetylcysteine

treatment for acetaminophen overdose using a systems model of

drug-induced liver injury. J Pharmacol Exp Ther

342(2):529–540

54. Allen R, Rieger TR, Musante CJ (2016) Efficient generation and

selection of virtual populations in quantitative systems phar-

macology models. CPT 5(3):140–146

55. Cheng Y, Thalhauser CJ, Smithline S, Pagidala J, Miladinov M,

Vezina HE et al (2017) QSP toolbox: computational imple-

mentation of integrated workflow components for deploying

multi-scale mechanistic models. AAPS J 19(4):1002–1016

56. Cheng Y, Straube R, Alnaif EA, Huang L, Leil AT, Schmidt JB

(2021) Virtual populations for quantitative systems pharmacol-

ogy models. Systems Medicine, Springer

57. Niederer SA, Lumens J, Trayanova NA (2019) Computational

models in cardiology. Nat Rev Cardiol 16(2):100–111
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