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ABSTRACT: Cocaine addiction is a psychosocial disorder induced by the chronic
use of cocaine and causes a large number of deaths around the world. Despite
decades of effort, no drugs have been approved by the Food and Drug
Administration (FDA) for the treatment of cocaine dependence. Cocaine
dependence is neurological and involves many interacting proteins in the
interactome. Among them, the dopamine (DAT), serotonin (SERT), and
norepinephrine (NET) transporters are three major targets. Each of these targets
has a large protein−protein interaction (PPI) network, which must be considered in
the anticocaine addiction drug discovery. This work presents DAT, SERT, and NET
interactome network-informed machine learning/deep learning (ML/DL) studies of
cocaine addiction. We collected and analyzed 61 protein targets out of 460 proteins
in the DAT, SERT, and NET PPI networks that have sufficiently large existing
inhibitor datasets. Utilizing autoencoder (AE) and other ML/DL algorithms,
including gradient boosting decision tree (GBDT) and multitask deep neural
network (MT-DNN), we built predictive models for these targets with 115 407 inhibitors to predict drug repurposing potential and
possible side effects. We further screened their absorption, distribution, metabolism, and excretion, and toxicity (ADMET)
properties to search for leads having potential for developing treatments for cocaine addiction. Our approach offers a new systematic
protocol for artificial intelligence (AI)-based anticocaine addiction lead discovery.

1. INTRODUCTION

Cocaine abuse is a serious public health concern in the United
States (US) and around the world. It is associated with a series
of medical complications, including increased risk of HIV
(human immunodeficiency virus), hepatitis B, and heart
disease. In addition, it is also associated with rising rates of
crime and violence.1−3 Despite significant attention to discover
effective pharmacotherapies for the treatment of cocaine
dependence, no effective medication has been approved by
the US Food and Drug Administration (FDA).
Cocaine is a tropane alkaloid and a stimulant drug with

significant addictive potential. It is a nonselective inhibitor of
monoamine transporters including dopamine (DAT), seroto-
nin (SERT), and norepinephrine (NET) transporters.4−6 By
binding to these transporters, cocaine blocks reuptake of
dopamine, serotonin, and norepinephrine, leading to higher
synaptic and extracellular concentrations of these critical
neurotransmitters. Cocaine elicits psychostimulant activities
through increased activation of the monoamine receptors on
post-synaptic neurons and can cause enhanced euphoric
experiences.
The rewarding and addictive effects of psychostimulants are

directly associated with the increased levels of dopamine in the
nucleus accumbens (NAc),7 which is a critical component of

the mesolimbic and mesocortical dopamine pathways. This
pathway originates from the ventral tegmental area of the
midbrain and terminates with dopamine release in NAc8

contributing to stimulant reward.7 DAT is considered to play a
primary role in the addictive effect of cocaine. Because of the
critical role of DAT in cocaine addiction, many experimental
medications have targeted the dopamine system.9,10

In addition to DAT, SERT also plays an important role in
cocaine pharmacology. In vivo studies in rats demonstrated
that enhanced dopamine transmission by acute cocaine
intoxication in the nucleus accumbens is accompanied by
elevated release of serotonin.11 Moreover, cocaine withdrawal
is associated with decreased serotonin in nucleus accumbens in
microdialysis studies.12,13 Mice with genetic deletion of DAT
still show the rewarding effects of cocaine and cocaine
conditioned place preference,14 which suggests non-DAT
targets contribute to psychostimulant effects. However,
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combined dopamine and serotonin transporter knockouts
eliminate cocaine place preference in mice, indicating that
SERT makes a key contribution.15,16

Serotonin neurons originate in the raphe nuclei of the
midbrain and are found in various regions of the brain,
including a dense innervation of terminals to ventral
tegumental area (VTA) and nucleus accumbens (NAc).17

Cocaine-induced elevated extracellular levels of serotonin
hyperactivate serotonin receptors in these and other brain
regions. The actions of serotonin are mediated by at least 16
receptor subtypes that are grouped into seven families.18

Different receptors likely serve different modulatory effects due
to various neurochemical mechanisms with serotonin.
Serotonin 1A receptor (5-HT1A) is one of the most important
receptors, existing pre- and post-synaptically in many brain
areas,19 and is involved in nearly all serotonin-mediated effects.
Another family of serotonin receptors, including 5-HT2A and 5-
HT2C, is associated with impulsivity and cue reactivity to
cocaine. Either selective 5-HT2A antagonist or 5-HT2C lessen
impulsivity and cocaine-seeking in animal models, and the
synergism of pharmacotherapeutics targeting these receptors
was reported to attenuate a variety of aspects of cocaine
relapse.20 Some studies show that 5-HT3 receptor antagonists
also have potential therapeutic efficacy in curbing systems of
cocaine consumption21 or are effective in abolishing restate-
ment of cocaine self-administration.21 Preclinical studies in rats
show that serotonin-enhancing medications could help
decrease self-administration of cocaine,22,23 although selective
serotonin reuptake inhibitors gave mixed results for treating
cocaine addiction in clinical trials.24

Many noradrenergic neurons are localized in brainstem
nuclei, while noradrenergic axons project virtually everywhere
in the brain.25 NET is in the plasma membrane of
noradrenergic neurons and plays a primary role in the
inactivation of noradrenergic signaling by reuptake of
synaptically released norepinephrine (NE). Cocaine causes
elevated synaptic concentration of NE by its competitive
binding to NET and subsequently increases activation of post-
synaptic NE receptors.26 NE is a crucial neurochemical
messenger in central noradrenergic and peripheral sympathetic
pathways, and its effects are mediated by three families of
adrenergic receptors: α1, α2, and β.27 Stimulation of α1-
adrenergic receptors on VTA dopaminergic neurons28 or those
in the prefrontal cortex29 promotes activity of dopaminergic
neurons in the VTA. Preclinical studies found that the
noradrenergic system plays a role in mediating stress-induced
reinstatement of cocaine seeking. Experiments on rats found
that both α2 receptors agonists and β1- and β2-adrenergic
receptor antagonists can reduce stress-induced cocaine-seeking
behavior.30,31 Some clinical studies suggest that adrenergic
blockers are effective for cocaine dependence treatment in
patients with severe cocaine withdrawal symptoms32 and are
useful in reducing cocaine self-administration.33 Serotonin and
norepinephrine reuptake inhibitor (SNRI) administration was
proved to be effective in attenuating cue-induced relapse to
cocaine seeking after abstinence in rodents.34 Clinical studies
on a small group of subjects indicated that SNRIs may have
therapeutic potential for cocaine dependence treatment.35

These studies indicate the promise of mediating noradrenergic
signaling for the treatment for cocaine dependence.
DAT, SERT, and NET are targeted by cocaine. However,

cocaine addiction involves many more proteins in their
interactome with complicated molecular and functional

interactions, as well as a significant number of proteins
upstream and downstream. The three transporters or related
receptors in their protein−protein interaction networks are of
frequent focus for the therapeutic treatment of stimulant
dependence with the goals of an initial period of abstinence
and reduced incidence of relapse.36 On the one hand,
antagonists of these proteins could be potential therapies or
assist with abstinence. The side effects and addictive liability
from such antagonists in the interactome network should be a
concern. This motivated us to carry out an interactome-
informed systematic investigation of the potency and off-target
side effects of antagonists pertaining to specific protein targets.
A priority concern is potential effects on the human ether-a-go-
go (hERG) potassium channel, and the FDA included hERG
side effects in the most recent regulations.37

Protein−protein interaction (PPI) networks involve both
direct (physical/chemical) and indirect (functional) inter-
actions and associations,38 where a connection represents two
proteins jointly contributing to a specific biological function
even without direct physical/chemical interaction. Interactome
provides a large number of proteins associated with a specific
disease, facilitates the understanding of pathogenic mecha-
nisms underlying the cause and progression of diseases, and
promotes development of novel disease treatments. The
analysis of PPIs on the proteome scale is a promising approach
for the design of novel treatments for cocaine addiction as well
as potential side effects. Many interacting proteins in the
interactome are collected in the String database,38 which
makes it possible for interactome-informed systematic analysis
of compounds targeting pathways related to cocaine addiction.
In our previous work,39 a machine learning/deep learning

(ML/DL) approach was built around a PPI network extracted
from the String dataset and centered on DAT, providing cross-
target binding prediction and searching for potential inhibitors
to treat cocaine addiction. ML/DL models are especially useful
to predict binding affinities to targets in large-scale PPI
network analysis, in contrast to traditional in vivo or in vitro
experiments, which are time-consuming, expensive, and
ethically constrained due to animal testing. With autoencoder
(AE)-generated representative features for inhibitor molecules,
the gradient boosting decision tree method can be used to
build ML models for the protein targets with sufficient
inhibitor datasets in the PPI network. However, it is very
common that machine learning models may suffer from poor
predictive performance when the training dataset is very small.
Fortunately, multitask algorithms offer a promising option to
resolve this issue by taking advantage of other similar tasks
with a large dataset.39,40 The philosophy of multitask learning
relies on the explorations of sharing relatedness and trans-
ferring knowledge between tasks, resulting in improved
prediction of models with a small dataset. In this study,
multitask learning becomes a very useful tool to enhance the
model’s predictive power since many protein targets may
belong to the same family, and the underlying molecular
mechanism of protein−ligand binding shares commonalities,
which can be learned by joint training.
In the present work, we extend our earlier effort on DAT39

to the SERT and NET networks to perform systematic analysis
on potential therapeutic compounds, side effects, and potential
drug repurposing. Models constructed by gradient boosting
decision tree (GBDT) and multitask deep neural network
(MT-DNN) are adopted to accomplish these predictions and
analyses. More extensive and comprehensive investigations are
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implemented by combining the SERT, NET, and previously
studied DAT networks. Special attention to the repurposing
potentials of compounds targeting DAT, SERT and NET, as
well as off-target side effects of inhibitors of these three
transporters in the combined network is considered. Potency,
side effects, pharmacokinetic properties, and synthetic
accessibility through ML/DL predictions that form a series
of filters for screening are evaluated for potential lead
compounds.

2. METHODS

2.1. The Cocaine Addiction PPI Networks. In addition
to DAT, both SERT and NET play modulatory roles in
behavioral responses to cocaine, and their functions may be
pivotal to addiction. They have been frequently investigated to
understand the neurobiology of cocaine addiction, providing
insights for therapeutical intervention.16,41 PPI networks help
to reveal molecular interactions and cellular mechanisms. We
extracted the PPI networks of SERT and NET by respectively
inputting the protein names “serotonin transporter” and
“norepinephrine transporter” in the String Web site (https://
string-db.org/).

Two global networks centered on SERT and NET were
extracted from the String database38 for proteins that have
direct or indirect interactions with SERT or NET. The global
network for SERT is formed of 151 nodes and 1720 edges,
among which a core network with 20 protein nodes that have
direct interaction with SERT protein and total 66 edges are
considered. The global network for NET is composed of 158
nodes and 1791 edges and contains a core network of 14 nodes
and 37 edges.
There are 20 proteins in the core of the SERT network

comprised of SERT itself and 19 other proteins that have
direct interactions with SERT. SERT transports serotonin
molecules from synaptic cleft back into the pre-synaptic
neuron for repackaging and rerelease. It plays a critical role in
mediating the availability of serotonin for other receptors in
the serotonergic system and terminates the effects of serotonin
by removing it from the synaptic cleft. It is one of the three
direct targets of cocaine, and its inhibition by cocaine may
contribute to cocaine dependence. 5-HT1A receptor (5-
hydroxytryptamine receptor 1A) and 5-HT2A receptor (5-
hydroxytryptamine receptor 2A) are inhibitory G-protein
coupled receptors for serotonin. Through binding to serotonin,
they mediate hyperpolarization and reduction of the firing rate

Figure 1. A core and global network centered on DAT, SERT, and NET, as well as the proteome-informed ML workflow of anticocaine addiction
drug discovery. An autoencoder (AE)-based machine-learning (ML) approach is used to encode inhibitors or antagonists of proteins in the
networks, and ML models are built to predict binding affinities to each protein. Screening of DAT, SERT, or NET inhibitor datasets and
repurposing of inhibitors or antagonists from other protein targets are two key processes for drug discovery. ADMET screening is performed
following the screening or repurposing process, resulting in potentially nearly optimal leads. Abbreviations for the core SERT network: SERT
(serotonin transporter), HTR1A (5-hydroxytryptamine receptor 2A), HTR2A (5-hydroxytryptamine receptor 2A), BDNF (brain-derived
neurotrophic factor), CANX (calnexin), PPP2R4 (serine/threonine-protein phosphatase 2A activator), PPP2CA (serine/threonine-protein
phosphatase 2A catalytic subunit alpha isoform), SEC24B (protein transport protein Sec24B), SEC24C (protein transport protein Sec24C),
STX1A(syntaxin-1A), TPH1 (tryptophan 5-hydroxylase 1), TPH2 (tryptophan 5-hydroxylase 2), DDC (dopa decarboxylase), mGluR2
(metabotropic glutamate receptor 2) and SNAP-25 (synaptosomal-associated protein, 25 kDa). Abbreviations for the core NET network: NET
(sodium-dependent noradrenaline transporter), VMAT2 (synaptic vesicular amine transporter), ADCY7 (adenylate cyclase type 7), RSC1A1
(regulatory solute carrier protein family 1 member 1), SCRT1 (transcriptional repressor scratch 1), SLC5A2 (sodium/glucose cotransporter 2),
SLC5A4 (solute carrier family 5 member 4), SNCA (alpha-synuclein), TH (tyrosine 3-monooxygenase), DBH (dopamine beta-hydroxylase).
Abbreviations for the core DAT network: DAT (dopamine transporter), D1R (dopamine receptor 1), D2R (dopamine receptor 2), and D3R
(dopamine receptor 3).
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of the post-synaptic neuron. Antagonists targeting 5-HT1A
receptor and 5-HT2A receptor were found to diminish the
motivational effects of cocaine.42,43 Brain-derived neurotrophic
factor (BDNF) promotes the survival and differentiation of
selected neuronal populations of the central and peripheral
nervous systems. CANX (calnexin) assists in protein assembly
and quality control of the endoplasmic reticulum. PPP2R4
(serine/threonine-protein phosphatase 2A activator) acceler-
ates the folding of proteins and acts as a regulatory subunit for
serine/threonine-protein phosphatase 2A, modulating its
activity or substrate specificity. PPP2CA (serine/threonine-
protein phosphatase 2A catalytic subunit alpha isoform) is an
enzyme providing negative control of cell growth and division.
Proteins SEC24B (protein transport protein Sec24B), SEC24C
(protein transport protein Sec24C), and SEC24D (protein
transport protein Sec24D) are involved in vesicle trafficking
and promoting the formation of transport vesicles from the
endoplasmic reticulum. STX1A (syntaxin-1A) is critical for
hormone and neurotransmitter exocytosis and is implicated in
the docking of synaptic vesicles with the pre-synaptic plasma
membrane. TPH1 (tryptophan 5-hydroxylase 1) and TPH2
(tryptophan 5-hydroxylase 2) belong to the biopterin-depend-
ent aromatic amino acid hydroxylase family and are rate-
limiting steps in serotonin synthesis. DDC (dopa decarbox-
ylase) catalyzes the decarboxylation of L-3,4-dihydroxypheny-
lalanine (DOPA) to dopamine, L-5-hydroxytryptophan to
serotonin, and L-tryptophan to tryptamine, hence modulating
the amount of serotonin and catecholamine in the human
body. MECP2 is widely found in neurons in the brain and
promotes the maturation of the central nervous system.
Metabotropic glutamate receptor 2 (mGluR2) inhibits the
emptying of vesicular contents at the pre-synaptic terminal of
glutamatergic neurons. SNAP-25 (synaptosomal-associated
protein, 25 kDa) is critical for synaptic membrane fusion of
vesicles containing neurotransmitters, as is VAMP2, and both
are critical for neurotransmitter release. The functions of
serotonin receptors and STX1A can be seen to have direct
interactions with SERT, since they are directly related the
transportation of serotonin across SERT. Other proteins are
critical in modulating the protein function of SERT to
transport serotonin or related to the serotonin transportation.
The edges in the SERT core network in Figure 1 represent the
direct interactions between SERT and other 19 proteins.
The core of the NET network contains 14 proteins. NET is

responsible for the reuptake of extracellular norepinephrine,
extracellular dopamine, and regulates the concentration of
these two neurotransmitters in the synaptic cleft. VMAT2
(synaptic vesicular amine transporter) transports monoamines,
especially neurotransmitters such as dopamine, norepinephr-
ine, serotonin, and histamine, from the cytosol into synaptic
vesicles. ADCY7 (adenylate cyclase type 7) is an enzyme that
can catalyze the formation of cyclic AMP from ATP. RSC1A1
(regulatory solute carrier protein family 1 member 1) mediates
transcriptional and post-transcriptional regulation of gene
SLC5A1 and is also involved in transcriptional regulation of
SLC22A2. SCRT1 (transcriptional repressor scratch 1)
modulates the function of multiple transcription factors to
regulate neuronal differentiation. SLC5A2 (sodium/glucose
cotransporter 2) is the sodium-dependent glucose transporter
and is responsible for the reabsorption of 80%−90% of the
glucose filtered by the kidney glomerulus. SLC5A4 (solute
carrier family 5 member 4) may function as a glucose sensor.
SNCA (alpha-synuclein) is a neuronal protein that regulates

synaptic vesicle trafficking and subsequent neurotransmitter
release including dopamine release and transport. TH
(tyrosine 3-monooxygenase) is the enzyme responsible for
catalyzing the conversion of the amino acid L-tyrosine to L-3,4-
dihydroxyphenylalanine (L-DOPA), a precursor for dopamine,
and its activity may be increased by cocaine exposure. DBH
(dopamine beta-hydroxylase) catalyzes the conversion of
dopamine to norepinephrine. SNAP-25, DDC, HTR1A, and
STX1A are also in the core of the NET network and are
described above.
DAT, SERT, and NET constitute important components in

cocaine addiction networks as they are directly inhibited by
cocaine. Networks centered at the three proteins have intricate
intranetwork and internetwork interactions. As shown in
Figure 1, the core networks formed around the three proteins
serve as the center of their global networks, respectively. The
SERT global network consists of four clusters of proteins, each
cluster potentially serving different functions in the serotonin
system and modulatory effects of serotonin in cocaine
responses. SERT and most proteins in its core network are
in one of the four clusters. Proteins in the four clusters have
close interactions with SERT or proteins in its core network.
Both global networks for NET and DAT consist of three
clusters of proteins, with most of the proteins in the core
network sitting in one of the clusters. The three global
networks are not independent of each other. There are many
common proteins between networks. For instance, syntaxin-1A
is found in all three core networks. As discussed, SERT and
NET core networks share up to four proteins. Common
proteins can also be found by other pairwise network
comparisons. Because of the critical roles of DAT, SERT,
and NET in the global protein network, and their essential
modulatory effects in cocaine addiction, medications targeting
them could achieve profound pharmacological effects in
reducing cocaine addiction.

2.2. Datasets. We collected inhibitor datasets for the
proteins in SERT and NET networks from ChEMBL.44 We
then built models for the sets with sufficient data (i.e., over 250
data points), and 37 distinct target proteins from SERT and
NET networks. The details of these inhibitor datasets are listed
in the Supporting Information. Because of the role of protein
hERG in causing serious side effects in drug design, we also
built a model for the hERG blocker dataset.
These models allow us to perform cross-target binding

affinity (BA) prediction for other datasets. In addition to the
aforementioned 37 datasets, we also included 30 protein
datasets and corresponding reliable models from the previous
work39 for the DAT network, as they may be involved in
cocaine addiction. The DAT network shares some common
proteins with the current SERT-NET network. In total, we
built 61 different datasets with models. A Venn diagram
summarizing the 60 proteins from three networks can be found
in the Supporting Information. In addition, we performed a
brief categorization analysis for the 61 proteins and include the
description in Table S4 in the Supporting Information.

2.3. Molecular Representations. Molecular fingerprints
are used to represent molecules, usually in the form of vectors
with each vector element indicating the existence, degree, or
frequency of each structural characteristic or property. These
fingerprints have a variety of applications in ML/DL analysis,
virtual screening, similarity-based compound searches, target
molecule ranking, drug ADMET prediction, and other drug
discovery processes.45
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2D fingerprints, mathematical representations, and latent-
vector fingerprints (LV-FPs) constitute three types of
molecular fingerprints frequently used in ML/DL models.
Molecular feature extraction by means of state-of-the-art 2D
fingerprints can be classified into four categories, including
substructure key-based fingerprints, topological or path-based
fingerprints, circular fingerprints, and pharmacophore finger-
prints.45 MACCS, FP2, ECFP and 2D-pharmacophores are all
popular 2D fingerprints and can be generated by the open-
source cheminformatics software RDKit. In addition, models
based on deep neural network (DNN) draw interest in
extracting mathematical features. Many differential geometry,
algebraic topology, and spectral graph-based approaches have
been investigated in this regard.46 LV-FPs are the molecular
representations in the neural layers of DNN architectures and
gained wide popularity in a drug discovery47,48 and molecular
analysis.49 Among those DNN architecture models, the
seq2seq model draws particular attention. In this work, we
adopted the LV-FP of molecules generated by our in-house
seq2seq models.
2.4. Deep seq2seq Autoencoder Model. As shown in

Figure 2a, the seq2seq model is a DL autoencoder architecture
originated from natural language processing. It has achieved
breakthrough success in English−French translation and
conversational modeling. The seq2seq autoencoder model
consists of two neural networks, an encoder, and a decoder.
The encoder translates an input sequence of variable length
with discrete values to a fixed-sized continuous representation
(latent representation) using a gated recurrent unit (GRU)50

or a long short-term memory (LSTM) network,51 and the
decoder maps the latent representation to a target sequence
with another GRU or LSTM network. These intermediate
continuous latent representations are called latent vectors and
are often used to characterize the source or target sequence.
In our study, input and output sequences are both SMILES

strings−a one-dimensional (1D) “language” of chemical
structures. Our autoencoder model was trained to have a
high reconstruction ratio between input and output SMILES
strings while latent vectors carry faithful information on the
chemical structures. The latent vectors can be used to
represent compounds. The seq2seq model and LV-FPs were
realized by our in-house source code. We applied bidirectional
LSTM as the encoder and LSTM as the decoder. The
generated LV-FPs have a dimension of 512. Our seq2seq
autoencoder network is illustrated in Figure 2a. More details

about our seq2seq autoencoder model can be found in the
Supporting Information.

2.5. Gradient Boosting Decision Tree. The gradient
boosting decision tree (GBDT) is a popular ensemble method
and is robust against overfitting, insensitiveness to hyper-
parameters, and ease of implementation. Particularly, in terms
of efficiency, it is faster than DNN. When training small
datasets, it can have better performance than DNN and a
variety of other deep learning algorithms. It has been adopted
in a wide range of quantitative structure−activity relationship
(QSAR) prediction problems,40,52 and achieved some state-of-
the-art results. Other ensemble methods including random
forests (RF) and support vector machines (SVM) also share a
variety of merits as GBDT, but their performances are
generally not as good as GBDT in QSAR prediction
problems.40,45,53 In the Supporting Information, we gave a
performance comparison between GBDT models and RF
models with our LV-FPs on the prediction for DAT, SERT,
and NET datasets. It was observed that GBDT models
outperformed RF models. The superiority of GBDT is largely
due to the fact that the random forest model builds trees in
parallel, but the GBDT model builds trees in a sequential
manner, such that existing trees in GBDT pass information on
to subsequently produced trees. In this study, a GBDT
regressor in scikit-learn (version 0.20.1) was adopted to build
models for the 61 total protein targets. The hyperparameters
were tuned by grid search method, and those hyperparameters,
namely, ”n_estimators, max_depth, min_samples_split, sub-
sample, max_features” are the tuning ones. The hyper-
parameters leading to the highest average Pearson correlation
coefficient via 10-fold cross-validation on each dataset are
chosen as our optimal parameters and are summarized in the
Supporting Information.

2.6. Multitask Deep Neural Network. Through exploit-
ing the relatedness among different tasks, multitask learning
transfers learned information and knowledge between similar
tasks in the process of simultaneously training several tasks. It
is particularly beneficial in enhancing the predictive perform-
ance of models with small training datasets by joint learning
with those equipped with larger datasets. In this way, poor
predictive performance due to the difficulty of extracting
enough representative information from a small dataset is
overcome by the shared information/distribution from coupled
similar tasks with large datasets. Multitask deep neural network
(MT-DNN) has gained wide popularity in drug discovery45

Figure 2. Illustration of a seq2seq AE model and a MT-DNN model. (a) seq2seq AE model used for LV-FP generation. Bi-LSTM and LSTM are
used in encoder and decoder networks, respectively. (b) A simple illustration of MT-DNN for four tasks. The input layer consists of the feature
vectors Xt for each task. The hidden layers constitute the shared neuron networks for the four tasks, and the output layer represents the predictions
for four tasks.
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and molecular bioactivity predictions.40,52 MT-DNN builds a
wide neural network with multiple hidden layers and hundreds,
or thousands of neurons exist in each layer. In such a large
network, latent representation features can be formed and
complex nonlinear relationships can be formulated between
data and target labels. MT-DNN performs simultaneous
training on the shared hidden layers for several tasks and
produces predicted labels for each task. Figure 2 is a simple
illustration of a MT-DNN model for four tasks. There are N
hidden layers, and each layer consists of sk neurons for k = 1,
2, ..., N. The input layer represents the feature vectors of each
task, and the output stands for the predictions for the four
tasks.

To further illustrate, if we have T different tasks with the
training information given as (Xi

t,yi
t),i = 1

Nt where Xi
t is the

autoencoder feature representation for the ith sample molecule
in task t with the corresponding label yi

t, and Nt denotes the
number of molecules for task t. Indices t = 1, 2, ..., T indicate
the tasks to work on.
The goal in multitask learning is to minimize the loss

function of each task simultaneously:

{ }y X W bL farg min ( , ( ; , ))t t t t t
(1)

where yt = {yi
t} is the label vector for task t, f t is the predictor

for task t, Xt = {Xi
t} is the feature collection for dataset of task t,

and Wt,bt are weight vector and bias term. It is noteworthy that

Figure 3. Heatmap of cross-target BA prediction indicating the inhibitor specificity of each dataset. In each row, the diagonal element shows the
Pearson correlation coefficients of 10-fold cross-validation (R of 10-fold CV) on the machine-learning predicted BAs (ML-BAs) of each dataset.
Off-diagonal elements represent the highest ML-BAs of the inhibitors in each dataset to other targets.
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the feature length of data in all Xt for t = 1, 2, ..., T must be the
same in order to be fed into the same neural network. In such a
regression problem, the mean square loss function is frequently
used as a loss function, with which we have the following loss
function formulation for task t:

∑

{ }

= − { }
=

y X W b

W b

L f

y f X

( , ( ; , ))

1
2
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t t t t t
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MT-DNN on the shared network has a tendency to
significantly attenuate the risk of overfitting since simultaneous
learning promotes representations that can capture all the tasks
and reduce the chances of fitting noise for a specific task. A
popular improved loss function is introduced by adding
regularization term with weight vector, i.e., the loss function for
task t is reformulated as
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where ∥·∥2 represents the L2 norm, and β indicates a penalty
weight.
In our study, we are interested in the binding affinity

predictions of inhibitor molecules to specific protein targets. It
is reasonable to anticipate that a collection of proteins could
share similar protein structures, especially similar binding sites,
around which analogous molecular mechanisms occur. Joint
training for similar protein targets promotes sharing of a more-
complete feature statistical distribution between those tasks,
which is beneficial to those with only a small training dataset
available.
Network hyperparameters. The MT-DNN in our implemen-

tation consists of four hidden layers with the neuron number in
each layer chosen as 1024, 1536, 1536, and 1024. The
optimizer is set to be stochastic gradient descent (SGD) with
momentum of 0.5. 1000 epoch runs were performed for the
network. The mini-batch is 4 and the learning rate is 0.001 for
the first 900 epochs and 0.0005 for the last 100 epochs. No
dropout or L2 decay is used in the implementation. The
multitask training was performed with Pytorch (1.10).
2.7. Binding Affinity Predictions. The features encoded

with LV-FPs provides us with a valuable tool to describe the
inhibitor molecules. With LV-FPs, we make use of GBDT and
MT-DNN to build machine learning models. A GBDT
regressor in scikit-learn was adopted for the GBDT models,
and Pytorch was used to perform multitask training. Most of
the models were built with GBDT, and we mainly used MT-
DNN to improve the prediction for protein targets with small
datasets. Detailed discussion will be presented in the following
section. We then used these models to make BA predictions. In
our study of cocaine addiction, we built models for the 58
datasets with GBDT, and the other three came from MT-
DNN. We primarily seek to improve the prediction perform-
ance for models of small datasets using multitask transfer
learning. Consequently, we are not concerned if the perform-
ance for models of large datasets is not improved. We can
continue to use the obtained GBDT model for the protein
target of a large dataset if its multitask prediction becomes
worse. The validation for effectiveness and robustness of our
GBDT models by comparisons with the literature was reported

in our previous work,39 and some of the comparison results are
included in the Supporting Information.

3. RESULTS
3.1. Reliability Tests. In this section, we adopt ML/DL

models to systematically predict inhibitor BAs to analyze side
effects and repurposing potential. These ML models show
promising predictions with Pearson correlation coefficient (R)
in 10-fold cross-validation (CV) tests for each inhibitor
dataset, as indicated in the heatmap of Figure 3. Eleven (11)
of the 38 new models for inhibitor datasets have R > 0.8, and
30 of the 38 models have R > 0.7. Only 1 of the 38 have R <
0.6. The details of the 38 new models in addition to previously
built DAT models can be found in the Supporting Information.
We started with GBDT model constructions for all 61 protein
targets. However, some models have low prediction perform-
ance mainly because of their small inhibitor datasets. Thus, we
employed MT-DNN models to enhance the predictions for
such protein targets. FYN, LYN, and NTRK3 datasets have
very small sizes of 470, 468, and 355, respectively, and the R
values for their GBDT models are 0.56, 0.54, and 0.68,
respectively. As mentioned, multitask transfer learning could
assist with such cases by joint training with large datasets,
assuming that such large datasets are related to the small one
and can transfer useful statistical distributions. It is critical to
determine when to use multitask transfer learning. We choose
proteins with large datasets, having high protein similarities,
and high associated dataset similarities. It is also necessary to
consider the sequence similarity, because high sequence
similarity indicates similar protein structures and potentially
similar binding sites. Figures S2 and S3 in the Supporting
Information display the similarities of pairwise inhibitor
datasets and protein sequences for the 61 targets. Once we
determined a few candidates with high sequence similarity
scores, we select a large dataset with the highest similarity to
the small target dataset. In this way, modeling LCK dataset was
found to be one of the candidate tasks with a modeling LYN
dataset, because of their high similarities. Specifically, LYN and
LCK have a sequence similarity of 0.848 and LYN dataset has a
similarity of 0.867 with LCK dataset. The modeling of the
FYN dataset also has the modeling of the LCK dataset as its
most related task, because FYN has a sequence similarity of
0.876 with LCK and dataset similarity of 0.784 with LCK data.
Importantly, LCK has a relatively large inhibitor dataset of
1855 compounds, which allows its dataset to be used for
multitask training with the FYN dataset or the LYN dataset. In
fact, FYN and LYN share sequence and dataset similarities
with each other, which makes sense as these three proteins are
in the tyrosine−protein kinase family. Thus, it is reasonable to
put the three tasks in our MT-DNN. The R values show that
the multitask training indeed boosted the performances of
predictive models for FYN and LYN. The R values for FYN
and LYN models are increased from 0.56 to 0.68, and from
0.54 to 0.74 respectively. The comparison results for LCK,
FYN, and LYN modeling are detailed in the multitask 1
column in Table 1. In addition, the modeling of the NTRK1
dataset is found to be most suitable for multitask training with
the modeling of the NTRK3 dataset. NTRK3 has a sequence
similarity of 0.754 and a dataset similarity of 0.823 with
NTRK1. The NTRK1 dataset has 2783 molecules, which
makes it a good candidate for multitask training with NTRK3
dataset. The high sequence similarity between NTRK1 and
NTRK3 is attributable to the fact that they are both in the
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factor receptor family. Through this multitasking approach, the
R value for the NTRK3 model is increased from 0.69 to 0.74.
All these results show the effectiveness of using MT-DNN to
boost prediction performance. The improvement in prediction
performance via MT-DNN is listed in Table 1. Importantly, we

also encountered a case when multitask fails due to low task
similarity. The GBDT model for MINK1 has an R value of
0.52. Modeling the LCK dataset is found to be a similar task to
modeling the MINK1 dataset as MINK1 has a sequence
similarity of 0.677 and dataset similarity of 0.674 with LCK.
The multitask training did not help improve the prediction
performance of MINK1 model due to relatively low
similarities. The modeling of the SRC dataset was also
explored for multitask training with MINK1 task considering
MINK1’s sequence similarity 0.695 and dataset similarity of
0.568 with SRC. Both MT-DNN efforts were not successful
probably because MINK1 is a misshapen-like kinase, but LCK
and SRC are in the family of tyrosine−protein kinases. This
explains why LCK and SRC have relatively low sequence
similarities to MINK1. In addition, relatively low dataset
similarities also makes it hard to transfer useful information to
the modeling of the MINK1 dataset. In this case, we continued
to use the GBDT model for MINK1. The results of four
multitask learning are shown in Table 1.

3.2. Cross-Target Binding Affinity Predictions. The
highest BA of cross-target prediction represents the side-effect
strength of inhibitors to other targets. The 3660 cross-target
predictions in Figure 3 exhibit 3336 potential side effects
determined by BAs higher than −9.54 kcal/mol (Ki = 0.1 μM).
On the other hand, the remaining 324 predictions with all BA
values greater than −9.54 kcal/mol suggest weak side effects.
Figure 3 depicts the results of the cross-target BA prediction of
the 61 inhibitor datasets. Along the diagonal line are the R
values of 10-fold CV tests for the corresponding protein
datasets, while the off-diagonal elements indicate the predicted
minimal BA of the datasets to a specific target protein. For
example, the jth element in the ith row shows the predicted

Table 1. Improvement on Model Performance via MT-
DNNa

Multitask 1 Multitask 2

LCK LYN FYN NTRK1 NTRK3

dataset size 1855 468 470 2783 355
R-GBDT 0.73 0.55 0.56 0.81 0.68
R-MT-DNN 0.72 0.74 0.68 0.71 0.74
sequence similarity 1.000 0.848 0.876 1.000 0.754
dataset similarity 1.000 0.867 0.784 1.000 0.823
improvement −1.38% +34.6% +20.4% −12.4% +8.8

Multitask 3 Multitask 4

LCK MINK1 SRC MINK1

dataset size 1855 364 3054 364
R-GBDT 0.73 0.52 0.86 0.52
R-MT-DNN 0.32 0.36 0.39 0.41
sequence similarity 1.000 0.677 1.000 0.695
dataset similarity 1.000 0.674 1.000 0.568
improvement −56.2% −30.8% −54.7% −21.2%

aR-GBDT and R-MT-DNN stand for the Pearson correlation
coefficient of GBDT and MT-DNN models, respectively. LCK,
NTRK1, and SRC are the three large datasets used for MT-DNN.
The + or − signs indicate how much improvement on the R value the
MT-DNN has, compared to GBDT models. Our sequence and
dataset similarity analysis sheds light on the performance of MT-
DNN models.

Figure 4. Examples of cross-target predicted BA correlations detecting binding site similarities of different proteins. The first column exhibits the
predicted BAs of the inhibitor dataset to different targets, the second column corresponds to the 3D structure alignment of two proteins, and the
third column displays the sequence alignment of the binding site. The PDB IDs are 6CM4, 6WGT, 2DQ7, and 2ZV9 for D2R, HTR2A, FYN, and
LYN, respectively.
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highest BA of the ith inhibitor dataset listed to the left of the
heatmap by the jth target model listed on top of the heatmap.
3.2.1. Cross-Target BA Correlation Revealing Binding Site

Similarities. Binding site similarities can yield cross-target BA
correlation. On the other hand, high BA correlation can help
identify binding site similarities. According to our cross-target
prediction, there are some examples of high BA correlation to
similar binding sites. For instance, FYN (tyrosine−protein
kinase FYN) and LYN (tyrosine-protein kinase LYN) are both
kinases. The AKT1 inhibitor dataset has BAs correlation R of
0.54 to these two proteins. Their 3D protein structure
alignment displayed on the right shows their highly similar
structure. Their sequence alignment also has a sequence
identity as high as 75% around the binding site.
We also found that the proteins from different families can

also have similar binding sites, leading to cross-target BA
correlations, and an example is shown in the second row of
Figure 4. The predicted BAs of the SERT inhibitor dataset to

D2R and HTR2A have a Pearson correlation coefficient (R) of
0.31. D2R and HTR2A are receptors for dopamine and
serotonin, respectively, but they are not in the same family.
The highly similar 3D structure is shown on the right, and the
sequence alignments of the binding site have a sequence
identity of 42.11%. Some additional examples of similar
binding sites can be found in the Supporting Information.

3.2.2. Predictions of Side Effects and Repurposing
Potentials. It is desirable for a drug candidate to be highly
specific, i.e., having a high BA to its target and very low BAs to
all other human proteins, reducing likelihood of side effects. In
addition, if a drug candidate interacts weakly with its
designated target but is potent to another unintended protein,
it has repurposing potential. Our ML model is a useful tool to
study possible side effects and repurposing potentials by
systematically performing cross-target predictions. We adopted
the 61 available models to predict the BAs of compounds in
other datasets to specific protein targets. The 61 inhibitor

Figure 5. Examples of inhibitors’ possible side effects or repurposing potentials. The first three rows list some inhibitor datasets that have side
effects to 0, 1, or 2 of two off-target proteins. The orange rectangular frames outline the ranges where no side effects of inhibitors are caused to
either off-target protein. The colors of points represent the experimental BAs to these targets. The last row displays some inhibitor datasets that
have repurposing potential to other proteins. The two blue rectangles highlight the domains where inhibitors can have repurposing potential to one
protein but have no side effect to the other one.
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datasets and related models allowed us to evaluate possible
side effects of drug candidates as well as their repurposing
potentials for other protein targets.
Figure 5 plots some examples of inhibitors’ side effects and

repurposing potentials by prediction. As mentioned previously,
the selected proteins come from DAT, SERT, and NET
networks. Proteins in the three networks have internetwork
interaction. When considering cross-target predictions by the
61 models in our study, we do not limit our discussion within
each network. All possible cross-target predictions among 61
models on the 61 datasets are performed. Each chart in Figure
5 involves one inhibitor dataset and two target proteins. The x
and y values represent the predicted BAs of a designated
inhibitor dataset to two other proteins, the dot color represents
the experimental binding affinity of molecules in the
designated dataset. The first three rows depict cases of
predicted side effects, and the last row depicts cases of
repurposing potential. The orange frames in the first three
rows highlight the domains where inhibitors for a designated
protein would not have side effects on the other two targets,
i.e., BAs > −9.54 kcal/mol (Ki = 0.1 μM). The two blue frames
in each chart of the last row indicate the ranges where
inhibitors have repurposing potential to one target, i.e.,
predicted < −9.54 kcal/mol (Ki = 0.1 μM)) and no side
effects are caused on the other ones, i.e., predicted BA > −9.54
kcal/mol.
The first row of Figure 5 shows cases of inhibitor dataset

causing no side effects to two other targets. All the active
inhibitors of desired targets are predicted to have low BAs to
other targets. For example, the first and second charts indicate
that all active inhibitors of SERT are predicted to cause no side
effect to TDO2, STAT3, GRK5, and FYN proteins. It is the
same case in the third and fourth charts that NET inhibitors
have no predicted side effects on MAPKAPK2, STAT3,
CACNA1B, and hERG proteins. The second and third rows
show inhibitors of the designated protein having side effects on
either or both of two other targets. The first panel in the
second row shows that the HTR1A dataset has more than half
of its inhibitors predicted to bind with affinity < −9.54 kcal/
mol to HTR2A. This can be due to a high structural similarity,
since they are both serotonin receptors. The first three charts
in the third row show that a large number of inhibitors of
DAT, SERT, and NET can cause side effects to two other
proteins.
Some examples of inhibitors with repurposing potential are

provided in the last row of Figure 5. The third panel in the
fourth row shows that many inhibitors of IGFR1 may have
repurposing potentials for SERT and have no side effect on
MET. In the fifth panel of the fourth row, we can observe that
few inhibitors of MMP3 may have repurposing potentials for
NET and MMP9.
3.2.3. Repurposing Potential for SERT, NET, and DAT and

Side Effects on hERG. DAT is a well-known mediator of
cocaine’s behavioral effects. SERT and NET also play
significant roles in cocaine responses and inhibitors of each
have been considered as potential medications for cocaine
dependence. In this vein, we performed BA cross predictions of
inhibitors from other datasets in the PPI networks and the
hERG inhibitor dataset to find compounds with repurposing
potentials for either SERT or NET. As discussed above,
compounds with repurposing potential should be inactive to
their designated target with an experimental BA value of >
−9.54 kcal/mol, yet having BA values of < −9.54 kcal/mol for

SERT or NET. Since hERG is a priority side effect concern for
novel medications, the side effect threshold to hERG was
considered to be −8.18 kcal/mol (Ki = 1 μM).
Figures S12 and S13 in the Supporting Information show

the predicted repurposing potentials to SERT and potential
hERG effects of inhibitors from 59 other datasets. We show
that a larger portion of the datasets may qualify for further
screening. In some datasets, nearly half of all compounds may
have repurposing potential and low hERG effects. In the CDK1
dataset, 534 out of 1253 inhibitor compounds possessed
repurposing potential, and 507 still remained after considering
hERG side effects. Among the 392 DHFR inhibitors with
repurposing potentials for SERT, 349 had no predicted hERG
side effect. In addition, DAT and NET datasets provided 685
and 451 such compounds, respectively.
Predictions of repurposing potentials and hERG side effects

of 59 datasets for NET are provided in Figures S14 and S15 in
the Supporting Information. A fairly large number of
compounds were obtained from the 59 datasets, according to
the prediction. For example, 151, 155, 229, and 382
compounds with repurposing potential to NET and low
predicted hERG side effects were found in the DHFR, LCK,
DAT, and SERT datasets, respectively.
The predicted repurposing potential for DAT and the hERG

side effect are shown in Figures S16 and S17 in the Supporting
Information. Here, we only consider inhibitor datasets in the
SERT-NET networks but not in the DAT network. The
predictions for the datasets in the DAT network were already
reported in our previous work.39 Most of the datasets have a
large portion of the inhibitors whose predicted hERG BA
values are greater than −8.18 kcal/mol, suggesting no serious
potential hERG side effect. According to our predictions,
several datasets including DPP4, FGFR1, HDAC1, HTR1A,
HTR2A, HDM2, NET, SERT, and SRC have approximately
half of their inhibitors with high hERG side effects. On the
other hand, in search for compounds with repurposing
potential to DAT, most datasets have a limited number of
compounds satisfying repurposing requirements. However, a
few datasets contain several compounds with repurposing
potential and low predicted hERG side effects. For instance,
the LCK dataset of 1855 inhibitors contains 17 compounds
with repurposing potential to DAT. Fortunately, all 17
compounds are predicted to have no hERG side effects, with
predicted BA values to hERG > −8.18 kcal/mol. The SERT
dataset has 88 compounds that are predicted to have
repurposing potential to DAT. Forty-one (41) of the 88
compounds are predicted to have no hERG risk. In the NET
inhibitor dataset, 43 out of the 75 compounds with
repurposing potential have low predicted hERG potential. In
summary, an encouraging number of inhibitor compounds
with repurposing potential to DAT and low predicted hERG
side effects are available from the various datasets in the three
networks. According to predictions, 41, 43, 11, 35, and 19
compounds can be obtained respectively from SERT, NET,
DPP4, HTR1A, and HTR2A inhibitor datasets.

3.2.4. Possible Side Effects of SERT, NET, and DAT
Inhibitors to Other Proteins. Herein, we investigate the
possible side effects of inhibitors of SERT, NET, and DAT.
Figures S9, S10, and S11 in the Supporting Information show
the predicted side effects of SERT, NET, and DAT inhibitor
datasets, respectively.
Figures S9 and S10 show the BA predictions of inhibitors of

SERT and NET to other proteins. It can be seen that nearly
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half of the SERT inhibitors may have side effects on D3R and
YES1 proteins in the DAT network. This convinced us to
perform complete investigations across networks. Many NET
inhibitors may pose side effects on from several targets
including LRRK2, Sigma1, SERT, HTR2A, D4R, and others.
Figure S11 shows that DAT inhibitors could cause side

effects on several proteins including GRK5 and STAT3 from
BA predictions. In addition, many DAT inhibitors may cause
serious side effects through other proteins, including HTR1A,
HTR2A, D2R, D3R, SERT, NET, and others. HTR1A and
HTR2A serve as serotonin receptors, while D2R, D3R play
roles as dopamine receptors. Such side effects of DAT
inhibitors on the receptors may interfere with dopamine or
serotonin transmission. HRT1A and HTR2A do not belong to
the network of DAT, demonstrating the likelihood that a DAT
inhibitor with no side effects in its own network can pose
serious side effects on proteins in other networks. It is
consequently reasonable to consider the side effects of DAT
inhibitors on a larger scale involving more proteins.
3.3. Druggable Property Screening. We performed

systematic screenings of ADMET properties, synthetic
accessibility (SAS), and hERG risk of all inhibitor datasets.
Accurate predictions of pharmacokinetic properties are vital for
drug design. ADMET (absorption, distribution, metabolism,
excretion, and toxicity) includes a diversity of attributes
associated with the pharmacokinetic attributes of a compound
and is an important factor in drug discovery.54 In this work, we
restrict our attention to six indexes of ADMET, i.e.,
FDAMDD, T1/2 and F20%, log P, log S, and Caco-2, and
SAS,39 as well as a hERG risk assessment. The optimal ranges
of ADMET properties and SAS are provided in Table 2, while

the BA value >−8.18 kcal/mol is applied as the required range
for exempting hERG side effects. The available ML models for
ADMET55 and SAS, as well as our models for cross-target
prediction, enable us to systematically search for promising
compound leads with desired ADMET properties.
Figure 6 illustrates an example of screening datasets of five

proteins: SERT, NET, HTR1A, HTR2A, and DPP4. SERT
and NET are two of the direct targets of cocaine, and efforts
are often dedicated to pharmacological effects on these two
proteins in cocaine treatment. Serotonin receptors including
HTR1A and HTR2A also draw attention since some
pharmacological manipulations were found to reduce cocaine
use in preclinical studies.16 Each column records the ADMET
predictions of the given inhibitor dataset, while each row in
Figure 6 represents a pair of ADMET characteristics. The
orange frames indicate the optimal domains of the specified
two characteristics for the inhibitor dataset. Finally, the dot
color portrays the experimental binding affinities.

The first row corresponds to the FDA maximum
recommended daily dose (FDAMDDs) and the BA to hERG
(hERG BA), which reflect toxicity of potential drug candidates
to the human body. A small fraction of SERT and NET
datasets lie in the optimal domains outlined by this pair of
properties. The restriction by FDAMDD filters out more than
two-thirds of inhibitors from all the datasets. The second row
stands for the screening of absorption properties T1/2 (half-life)
and F20% (human oral bioavailability 20%). The half-life is the
amount of time it takes for a drug’s active substance to reduce
by half in human body, and T1/2 indicates the probability of
half-life less than 3 h. F20% represents the probability of an oral
drug reaching systemic circulation with <20% of the initial
dose remaining. This pair of properties together enforces strict
thresholds for drug screening, as we can see that the orange
frames only cover a small portion of a given dataset. Moreover,
the third row of Figure 6 denotes the screening on log P and
log S, which are the logarithm of the n-octanol/water
distribution coefficient and aqueous solubility value, respec-
tively. These two screening properties fail many inhibitors,
especially from the NET dataset. The last row depicts caco-2
and SAS screening. Caco-2 is commonly used to estimate in
vivo permeability of oral drugs, while SAS is designed to
estimate the ease of synthesis of druglike molecules. Based on
the predictions, most inhibitors of the five datasets are not hard
to synthesize. As a result, these two properties allow a large
portion of inhibitors to pass the screening.
The ADMET and other properties are important indexes of

eligible candidate drug compounds. We anticipate that several
of these properties may pose significant challenges when
searching for desired drugs to treat cocaine addiction. Reliable
ML-based models are in need to accomplish the prediction of
these properties. We took advantage of the ADMETlab 2.0
solver55 to obtain these screening results.

4. DISCUSSION
4.1. Side-Effect Predictions of Existing Experimental

Medications. Because of the importance of noradrenergic and
serotonergic systems in mediating cocaine effects, some
experimental medications targeting these two systems have
been investigated. In this study, we utilized ML models to
predict the side effects of these medications.

4.1.1. Medications Targeting the Serotonin System.
Cocaine dependence is closely linked to deficits in the
serotonin system. Some preclinical studies have already
shown that self-administration of cocaine can be reduced
through serotonin-enhancing medications.22,23 On the other
hand, pharmacologic manipulation of serotonin is associated
with the dopamine system16 and can indirectly modulate the
dopamine circuits relevant to dependence. Serotonin-enhanc-
ing medications also benefit the dopamine system by indirectly
increasing extracellular dopamine levels. Among those
serotonergic medications, ibogaine is investigated most
frequently. Structures and experimental or predicated BA to
various targets of many other experimental medications are
shown in the Supporting Information.

4.1.1.1. Ibogaine and Its Derivatives. Ibogaine is a
hallucinogenic alkaloid found in the root and bark of the
African shrub, Tabernanthe iboga. It may have effects in the
treatment of not only cocaine dependence but also for alcohol,
opiate, and methamphetamine dependence. The pharmacology
of Ibogaine is complex, and it has affinities for k-opioid
receptors, N-methyl-D-aspartate receptors, and σ1 and σ2

Table 2. Optimal Ranges of Six Selected ADMET
Characteristics and Synthesizability (SAS) Considered in
This Work

property optimal range

FDAMDD excellent, 0−0.3; medium, 0.3−0.7; poor, 0.7−1.0
F20% excellent, 0−0.3; medium, 0.3−0.7; poor, 0.7−1.0
log P the proper range: 0−3 log mol/L
log S the proper range: −4−0.5 log mol/L
T1/2 excellent, 0−0.3; medium, 0.3−0.7; poor, 0.7−1.0
Caco-2 proper range: >−5.15
SAS proper range: <6
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receptors, as well as DAT and SERT.56,57 The psychoactive
effects of Ibogaine are associated with k-opioid receptors,58

while the agonistic action with serotonin 5-HT2A receptor
(HTR2A) may contribute to the hallucinogenic effects.59 Its
actions are complex in mediating different neurotransmitters at
the same time. In particular, its interaction with DAT and
SERT may underlie its antiaddiction properties for cocaine and
it has been promoted as a treatment for addiction in Europe
and North America.
Ibogaine inhibits both DAT and SERT with IC50 values of

4.0 μM and 0.59 μM, respectively.60 The mechanism of
Ibogaine inhibition of SERT is different from other known
inhibitors in the sense that it is not competitive with substrates
and it stabilizes the transporter in an inward-open
conformation. Ibogaine binds to a site accessible from the
cell exterior that does not overlap with the substrate-binding
site on SERT57 and DAT.61 Its molecular mechanism of
inhibiting SERT either by binding to the outward-open
conformation or the inward-open conformation has been
discussed in detail.57 Despite its promising effects for the
treatment of cocaine addiction, its associated side effects,
including death, are a serious concern, and have led to its
prohibition in some countries. From 1990 to 2008, 19 fatalities

associated with the ingestion of Ibogaine were reported, and 6
of these fatalities were caused by acute heart failure or
cardiopulmonary arrest.62

One side effect of Ibogaine is that it may cause long QT
syndrome at higher doses, perhaps by blocking the hERG
potassium channel in the heart.62 The predicted BA value of
Ibogaine to hERG using our model is −8.43 kcal/mol, and this
modest prediction can indicate the potential of cardiac risk. In
addition, our models anticipated other high-risk side effects.
The predicted BA value to YES1 is −9.71 kcal/mol, and YES1
inhibition is associated with sarcoma and acute myeloid
leukemia. Ibogaine is also predicted to have high BAs of
−10.69, −10.47, −10.46, and −10.70 kcal/mol to NTRK1,
NTRK2, NTRK3, and SYK, respectively.
In recent years, there is increased interest in 18-

methoxycoronaridine (18MC), which is a derivative of
Ibogaine. It has shown its effectiveness in reducing the self-
administration of cocaine, morphine, methamphetamine,
nicotine, and sucrose in preclinical models.63 It has similar
pharmacological effects to those of Ibogaine, but it does not
cause tremors, Purkinje cell dysfunction, or toxicity in the
brain.64 Moreover, 18MC has no affinity for SERT, in contrast
to Ibogaine, and so it provides an enhanced safety profile to

Figure 6. Druggable property screening based on ADMET properties, synthesizability, and hERG side effects to compounds from five critical
protein datasets: SERT, NET, HTR1A, HTR2A, DPP4. The colors of points represent the experimental BAs to these targets. The x- and y-axes
show predicted ADMET properties, synthesizability, or hERG side effects. Orange frames outline the optimal ranges of these properties and side
effects.
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humans compared to ibogaine and is under clinical trials. The
predicted hERG BA of 18MC by our model is −7.67 kcal/mol,
which reflects moderate potential in incurring heart issues.
However, it is predicted to have BA values of −10.42, 10.15,
−10.20, 10.15, and −9.91 kcal/mol, respectively, for SSTR5,
YES1, LRRK2, VMAT2, and CNR2. Diseases associated with
SSTR5 include acromegaly, pituitary adenoma, and prolactin-
pecreting. YES1 is associated with sarcoma. These strong off-
target binding affinities may indicate the potential risk of such
diseases or related side effects when 18MC is tested in humans.
4.1.1.2. Selective Serotonin Reuptake Inhibitors. Selective

serotonin reuptake inhibitors (SSRIs) are typically used as
antidepressants. They increase the extracellular level of
serotonin by limiting its reuptake into the presynaptic cell.
Generally, SSRIs have a stronger affinity to SERT than to DAT
or NET. Because of their enhancement of extracellular
serotonin levels, attempts have been made to use SSRIs to
treat cocaine addiction, and some clinical trials using SSRIs
have shown some promise in treating cocaine addiction.
Fluoxetine is an SSRI approved by FDA to treat several

psychiatric disorders including depressive depression, bulimia
nervosa, and others. Some preclinical studies have shown the
effectiveness of fluoxetine in the treatment of cocaine
addictions, but clinical trials have yielded mixed results.
Some studies showed the efficacy of fluoxetine in significantly
reducing cocaine use,65,66 while others showed that fluoxetine
is not effective in altering cocaine effects.24 However, it is
encouraging that fluoxetine has a tendency to be more effective
if higher doses are used in the cocaine treatment.24,65 Our ML
models show that fluoxetine has low binding affinities to most
of the 61 targets in our network except for SERT, with
predicted BA lower than −10 kcal/mol. The high binding
affinity to SERT is reasonable since fluoxetine is an SSRI.
Fluoxetine is predicted to have binding affinity higher than
−9.0 kcal/mol to 55 out of the 61 targets, which reflects its low
side effects on the targets in the network. Since fluoxetine is
already an FDA approved medication, such low side effects are
anticipated. It is predicted to have binding affinity of −8.25
kcal/mol to hERG, which indicates relatively low potential to
cause prolongation of the QT interval.
Sertraline is also an SSRI used as antidepressant for various

psychiatric conditions. It is given as a generic medication, and
it was the most prescribed psychiatric medication in the USA
in 2016. It has also been tested in clinical trials for the
treatment of cocaine dependence. Sertraline is effective in
reducing cocaine cravings and can produce delays in relapse in
recently abstinent cocaine abusers with depressive symptoms.
According to our ML model predictions, sertraline has low
binding affinities to most of the 61 targets in the networks. It is
predicted to have relatively high BAs of −9.15 and −9.51 kcal/
mol for D4R and SYK, respectively. The predicted BA to hERG
is −7.75 kcal/mol, which suggests a low potential for causing
heart issues.
Citalopram is another SSRI antidepressant. Recently, some

very encouraging results were obtained in reducing cocaine use
when given in combination with contingency management.67

Side effects were observed to be mild. These studies provided
support that citalopram combined with behavioral therapy can
be a promising treatment for cocaine dependence. According
to our ML model predictions, citalopram has low BAs to most
of the 61 protein targets. It is predicted to have values of
−9.30, −9.34, −9.72, and −10.11 kcal/mol to SSTR5, D3R,
CNR1, and HTR2A, respectively. SSTR5 is associated with

diseases including acromegaly and prolactin-secreting pituitary
adenoma. The binding affinity of citalopram indicates potential
risk for the aforementioned diseases. Its strong binding affinity
to 5-HT2A and D3R indicate its effect in the transmission of
neurotransmitters serotonin and dopamine. 5-HT2A and D3R
have been investigated as pharmacological targets in the
treatment of cocaine dependence, and citalopram may cause
unexpected effects due to binding these two targets. The
predicted BA to hERG is −8.16 kcal/mol, consistent with the
announcement that “causes dose-dependent QT interval
prolongation” by FDA.16

4.1.1.3. 5-HT3 Receptor Antagonists. Efforts to target the
5-HT1B, 5-HT2A, and 5-HT3 receptors have been made due to
their important roles in potential cocaine addiction mecha-
nisms. Ondansetron, which is a 5-HT3 receptor antagonist, has
been investigated in clinical trials for cocaine addiction
treatment. Preclinical studies showed its efficacy in abolishing
the reinstatement of cocaine administration,21 and further
studies showed that ondansetron can be particularly effective in
reducing oral cocaine self-administration when given during
the acute cocaine withdrawal period.68 Our ML models show
that it has binding affinity values of −9.82, −9.64, −9.86, and
−9.4 kcal/mol for D4R, Sigma1, HTR1A, and DPP4,
respectively. The high binding affinities to these targets
indicate the potential for side effects mediated by them.

4.1.2. Medications Targeting the Noradrenergic System.
Some preclinical and clinical studies showed that pharmaco-
logical manipulations of the noradrenergic systems could be a
potential treatment for cocaine addiction.69 In noradrenergic
systems, norepinephrine (NE) is the main chemical messenger
and plays a contributing role in mediating the rewarding effects
of cocaine. NET is regarded as a potential target for treatment
of cocaine addiction. Atomoxetine and reboxetine are two
selective noradrenaline reuptake inhibitors with NET-blocking
effects.
Reboxetine, which is an antidepressant medication, has been

tested in the treatment of cocaine addiction35 and reported as
an effective and safe therapeutic option. However, more
rigorous double-blind studies of reboxetine need to be
performed before its efficacy in the treatment of cocaine
dependence can be fully confirmed. Another promising
outcome was reported for the combination of reboxetine
with the SSRI escitalopram.70 Predictions from our ML models
shows side effects to D4R, Sigma1, D3R, and GRM2, based on
the corresponding predicted BA values of −9.61, −9.55, −9.55,
and −9.37 kcal/mol. In addition, the BA value to hERG is
predicted to be −7.80 kcal/mol.
Atomoxetine is a selective NET inhibitor and has been

approved for the treatment of ADHD, and recently found to
prevent relapse to cocaine use. Other preclinical studies have
shown that atomoxetine can significantly attenuate cue-
induced relapse to cocaine seeking after abstinence, which
reflects the potential of atomoxetine as an effective treatment
in preventing relapse in cocaine addiction.34 Safety studies
were performed on atomoxetine when used with intravenous
cocaine on cocaine-experienced participants and found that
atomoxetine can be safely tolerated.71 Using our ML models, it
is predicted to have BAs of −9.27 and −9.21 kcal/mol,
respectively, for SPR and APP. Side effects to these targets,
discussed above, may be anticipated. Atomoxetine is already an
FDA-approved medication with low hERG side effects.

4.2. Nearly Optimal Leads from Our Systematic
Screening and Repurposing. We are dedicated to finding
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promising lead compounds targeting SERT and NET.
Screening and repurposing are two key processes for us to
filter molecules from 61 available inhibitor datasets, as
summarized in Figure 3. In addition to drug potency and
side effects, we also consider the six ADMET properties in
Table 2, as well as synthetic accessibility. In total, we required
68 criteria to be satisfied for a drug to be considered as a
potential reliable agent. In screening, we started with potent
inhibitors (experimental BA values of <−9.54 kcal/mol) from
the inhibitor dataset of the target protein. Those potent
inhibitors then were examined for their side effects on the
other 59 proteins with a uniform BA requirement, i.e.,
predicted BA values higher than −9.54 kcal/mol. A stricter
BA threshold is applied for hERG, with predicted BA values
higher than −8.18 kcal/mol required. These predicted side
effect BA values were obtained from our proteme models of
the 61 proteins. For repurposing, we started with inhibitors of
low BA value (experimental BA >−9.54 kcal/mol) to their
designated target protein yet having high predicted BA (<−
9.54 kcal/mol) to SERT or NET. Following this, side-effect
examinations were performed on the other 59 proteins. Finally,
excellent ADMET properties and synthesizability specified in
Table 2 had to be satisfied for both processes to SERT or
NET.
Several compounds through screening or repurposing were

found as potential agents for SERT. They all have excellent
ADMET properties and are readily prepared. Compound
ChEMBL1411979 was obtained via screening from the SERT

inhibitor dataset. It has an experimental BA of −9.54 kcal/mol
to SERT, and its potential side effects on hERG are low with a
predicted BA of −7.15 kcal/mol. Moreover, its predicted BA is
stronger than cocaine (experimental BA value = −9.08 kcal/
mol). This observation deserves further investigation. Seven
additional compounds were predicted to have low side effects
against the other 59 targets. Among those, ChEMBL3800268,
from the LRRK2 inhibitor dataset, has a low BA of −8.35 kcal/
mol to its designated target, but it is predicted to have a BA of
−10.01 kcal/mol to SERT. Its potential side effects on other
proteins are weak. For example, its predicted BA to hERG is as
low as −7.12 kcal/mol. Another compound, ChEMBL270299,
from the D3R dataset is predicted to have a BA of −9.62 kcal/
mol for SERT. It has a weak potential hERG side effect with a
predicted BA of −7.57 kcal/mol, while it has a low
experimental BA of −8.08 kcal/mol to its designated target
D3R. The information on other compounds and their
predicted BAs can be found in the Supporting Information.
All these compounds are predicted to have more potent BAs to
SERT than that of cocaine.
In searching for effective inhibitors for NET, compound

ChEMBL454675 was found to satisfy all requirements. It has
an experimental BA of −11 kcal/mol for NET while its
predicted BA to hERG is just −7.52 kcal/mol. It may provide
good pharmacological effects, as its BA for NET is much
higher than that of cocaine (−9.33 kcal/mol). No compounds
satisfying our criteria were found for NET by repurposing from
the other 60 inhibitor datasets.

Figure 7. Docking structure of SERT with cocaine, ChEMBL270299, ChEMBL14111979, and ChEMBL3800268, using AutoDock Vina software.
The experimental or predicted binding affinities of cocaine, and three compounds from screening and repurposing, are also presented.
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Figure 7 provides the docking information on cocaine and
three nearly optimal lead compounds at the central site of
SERT. The residuals at active sites near these compounds are
also labeled. More docking information about other nearly
optimal lead compounds can be found in the Supporting
Information. These docking predictions were implemented by
software AutoDock Vina.72

5. CONCLUSION

Substance use disorder (SUD) is associated with a variety of
mental/emotional, physical, and behavioral problems, includ-
ing chronic guilt, the seeking and taking of drugs despite
adverse consequences, driving or making important decisions
while intoxicated, and physiological withdrawal symptoms. As
a specific example of SUD, millions of people are addicted to
cocaine. However, there currently is no therapeutic approved
by the U.S. Food and Drug Administration to address it, in
part because cocaine addiction involves intricate molecular
mechanisms. DAT, SERT, and NET are each associated with a
complex interactome network, and one cannot develop
anticocaine addiction medications without considering all
interactome networks.
We proposed proteome-informed machine learning studies

of cocaine addiction as the first interactome-based machine
learning/deep learning (ML/DL) protocol for anticocaine
addiction lead discovery,39 but only the DAT interactome
network was considered. The present work extends these
previous studies to SERT and NET, enabling us to perform a
comprehensive evaluation of existing potential cocaine
addiction inhibitors. With molecular features generated by
autoencoder (AE), gradient boosted decision tree (GBDT) is
used to build robust predictive models, while multitask deep
neural network (MT-DNN) is also leveraged to enhance
predictive performance for models with small datasets. Using
such ML/DL tools, we have considered repurposing existing
inhibitors and screened for side effects as well as ADMET
properties. After this rigorous screening, we have identified a
small group of promising compounds.
The knowledge and understanding obtained from the

present work will be employed for the automated generation
and screening of anticocaine addiction candidates using our
generative network complex.48 The next step is to test the
resulting leads in in vitro and animal assays. It will be critical to
examine toxicity and blood-brain barrier permeability charac-
teristics of candidate compounds using cell-based assays to
refine our lists and prioritize compounds for animal models.
This may include iterative medicinal efforts to optimize critical
qualities to identify compounds with the greatest therapeutic
potential. These compounds must then be tested in rodent
models, since in silico and cell-based assays cannot definitively
determine the behavioral effects of a drug. Cocaine locomotor
sensitization in mice can uncover the ability of a compound to
block the physiological and psychomotor effects of the drug
while cocaine-conditioned place preference can determine
whether a compound can prevent a drug reward or drug
environment.73−75 Compounds with effects in either of these
assays would then be good candidates for testing in the more
time-consuming but more rigorous cocaine self-administration
model. Examining characteristics like acquisition, breakpoint,
extinction, and context- or cue-reinstatement can reveal
whether a compound might be useful to block key aspects of
cocaine addiction like drug seeking, craving, and relapse.74,76

Of course, compounds that produce promising results in
animal testing would then move into further development.
Finally, our work establishes a new protocol for artificial

intelligence (AI)-based nearly optimal lead discovery that can
be applied to any disease for which some portion of the
molecular etiology has been studied. We hope this technology
can be applied to many other neuropsychiatric diseases going
forward to uncover new classes of therapeutic agents to
improve disease outcomes.
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