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ABSTRACT. We initiate a systematic study of the convolution operation on
Keisler measures, generalizing the work of Newelski in the case of types. Adapt-
ing results of Glicksberg, we show that the supports of definable and finitely
satisfiable (or just definable, assuming NIP) measures are nice semigroups,
and classify idempotent measures in stable groups as invariant measures on
type-definable subgroups. We establish left-continuity of the convolution map
in NIP theories, and use it to show that the convolution semigroup on finitely
satisfiable measures is isomorphic to a particular Ellis semigroup in this con-
text.

1. INTRODUCTION

Various notions and ideas from topological dynamics were introduced into the
model-theoretic study of definable group actions by Newelski [19, 20]. A funda-
mental observation is that certain spaces of types over a definable group carry a
natural algebraic structure of a (left-continuous) semigroup, with respect to the
“independent product” of types. In a rather wide context, this operation can be
extended from types to general Keisler measures on a definable group (i.e. finitely
additive probability measures on the Boolean algebra of definable subsets), where it
corresponds to convolution of measures. We first recall the classical setting. When
G is a locally-compact topological group, then the space of regular Borel probability
measures on G is equipped with the convolution product: if ¢ and v are bounded
measures on G, then their product is the measure p * v on G defined via

px v(A) = / By / Al y)du(e)iv(y),

for an arbitrary Borel set A C G (where x4 is the characteristic function of A).
And a measure p is idempotent if p* p = p. A classical theorem of Wendel [30]
shows that if G is a compact topological group and p is a regular Borel probability
measure on GG, then u is idempotent if and only if the support of p is a compact
subgroup of G, and the restriction of p to this subgroup is the (bi-invariant) Haar
measure. Wendel’s result was extended to locally compact abelian groups by Rudin
[26] and Cohen [5], and this line of research continued into the study of the structure
of idempotent measures on (semi-)topological semigroups, in particular in the work
of Glicksberg [13, 12] and Pym [24, 25].

In this paper we consider the counterpart of these developments in the definable
category, i.e. for definable groups and Keisler measures on them. In particular, we
aim to address the following questions.

(Q1) Under what conditions the convolution product of two global Keisler mea-
sures can be defined?
(Q2) What algebraic structures arise from idempotency of a Keisler measure?
1
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(Q3) Is there a connection between the convolution semigroups of Keisler mea-
sures and Ellis semigroups?

We begin by reviewing some (mostly standard) material on Keisler measures in
Section 2: we recall various classes of measures (invariant, Borel-definable, finitely
satisfiable, finitely approximable, smooth), summarize the relationship between
them (in general, as well as in NIP and stable theories) and discuss supports of
measures. In particular, in Proposition 2.11 we give a topological characterization
of the space of measures finitely satisfiable over a small model M, and in Lemma
2.10 we make a couple of observations on invariantly supported measures (i.e. global
measures such that all types in their support are (automorphism-)invariant over a
fixed small model).

In Section 3.1 we extend the usual product ® of Borel-definable measures to
a slightly larger context. Namely, when defining p ® v, we only require the level
functions of the measure p to be Borel restricted to the support of v (Definition 3.1).
It is equivalent to the standard definition when g is Borel-definable, but allows one
to evaluate the product of an arbitrary invariant measure p with an arbitrary type
p for example (and this extends the usual independent product of invariant types,
see Proposition 3.5). In relation to (Q1), in Section 3.2 we define the convolution
operation on *-Borel pairs of Keisler measures in terms of this generalized product
of measures (Definition 3.9) and observe some of its basic properties, in particular
that it extends the independent product of arbitrary invariant types in a group
(Proposition 3.12).

In Section 3.3, we begin investigating idempotent Keisler measures. In Propo-
sition 3.19 we observe that every invariant measure on a type-definable subgroup
is idempotent (the extended ®-product is needed for this to hold without any de-
finability assumptions on the invariant measure). Mirroring the classical situation
in Wendel’s theorem, the expectation is that in tame contexts all idempotent mea-
sures should arise in this way. In the case of a definably amenable NIP group,
invariant measures were classified in [3]. We observe in Proposition 3.20 that a
type-definable subgroup of bounded index of a definably amenable NIP group is
still definably amenable (and the analysis from [3] extends to it). We also point
out that, as a consequence of Wendel’s theorem, idempotent measures finitely sup-
ported on realized types correspond to finite subgroups (Proposition 3.22); and
that in an abelian NIP group, the class of idempotent generically stable measures
is closed under convolution (Proposition 3.23).

In Section 4, we study the supports of idempotent Keisler measures (question
(Q2) above). In the proof of Wendel’s theorem (as well as Glicksberg’s proof in the
abelian semitopological semigroup case [12]), an idempotent regular Borel measure
1 is associated to a closed subgroup given by its support. In particular, S(u) is
a closed group and p|g(,) is its associated (bi-invariant) Haar measure. In the
general model-theoretic context the situation is not as nice (see Examples 4.1 and
4.2). However, adapting some of Glicksberg’s work to our context, we show that if
u is definable, invariantly supported and idempotent, then (S(u),*) (with respect
to the usual independent product of invariant types) is a compact, left-continuous
semigroup with no closed two-sided ideals (Corollary 4.4 and Theorem 4.7). This
assumption is satisfied when g is a dfs measure in an arbitrary theory, or when u
is an arbitrary definable measure in an NIP theory. We also deduce that if S(u)
has no proper closed left ideals, then p is “generically” invariant restricting to its
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support (Corollary 4.16). It follows that in abelian stable groups, the supports
of the idempotent measures are precisely the closed subgroups of the convolution
semigroup on the space of types (Corollary 4.18); which leads to a quick description
of idempotent measures in strongly minimal groups (Example 4.19).

In Section 5 we classify idempotent measures on a stable group, demonstrating
that they are precisely the invariant measures on its type-definable subgroups. More
precisely, every idempotent measure is the unique invariant Keisler measure on its
own (type-definable) stabilizer. Our proof relies on the results of the previous
section and a variant of Hrushovski’s group chunk theorem due to Newelski [18].

Concerning question (Q3), it was observed by Newelski [19] that the convolution
semigroup (S;(G,G), *) on the space of global types finitely satisfiable in a small
model G < G is isomorphic to the enveloping Ellis semigroup E(S.(G,G),G) of the
action of G on this space of types. Ellis semigroups for definable group actions in
the context of NIP theories were previously considered in e.g. [2, 3], to which we
refer for a general discussion. In Section 6, under the NIP assumption, we obtain
an analogous description for the convolution semigroup (9, (G, G), *) on the space
of global Keisler measures finitely satisfiable in a small model. Namely, in Theorem
6.10 we show that it is isomorphic to the Ellis semigroup E (9, (G, G),conv(G)) of
the action of conv(G), the convex hull of G in the space of global measures finitely
satisfiable on G, on this space of measures (see Remark 6.11 on why the convex
hull is necessary). Our proof relies in particular on left-continuity of convolution of
invariant measures in NIP theories established in Section 6.2 using approximation
arguments with smooth measures.

Acknowledgements. We thank the referee for many helpful suggestions on im-
proving the paper. This work constitutes part of the Ph.D dissertation of the second
named author. We thank Sergei Starchenko for several helpful conversations on the
topics considered here. Both authors were partially supported by the NSF CA-
REER grant DMS-1651321, and Gannon was additionally supported by the NSF
conference grant DMS-1922826.

2. PRELIMINARIES ON KEISLER MEASURES

2.1. Basic facts about Keisler measures. For the majority of this article, we
focus on global Keisler measures and their relationship to small elementary sub-
models. In this section we recall some of the material from [17, 14, 15, 16, 4, 10],
and refer to e.g. [27, Chapter 7] for a more detailed introduction to the subject, or
[28, 1] for a survey.

Given r1,m9 € R and € € Ryq, we write r1 = 7o if |r; — 79| < . Let T be
a first order theory in a language £ and assume that U is a sufficiently saturated
model of T' (we make no assumption on T unless explicitly stated otherwise). In
this section, we write x,y, z,... to denote arbitrary finite tuples of variables. If x
is a tuple of variables and A C U, then £,(A) is the collection of formulas with
free variables in x and parameters from A, up to logical equivalence (which we
identify with the corresponding Boolean algebra of definable subsets of U®). We
write L, for £,(0). Given a partitioned formula ¢(z;y), we let p*(y; ) := o(z;y)
be the partitioned formula with the roles of x and y reversed. As usual, S,(A)
denotes the space of types over A, and if A C B C U then S, (B, A) (respectively,
Sinv(B, A)) denotes the closed set of types in S,(B) that are finitely satisfiable in
A (respectively, invariant over A). For any set A C U, a Keisler measure over
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A in variables z is a finitely additive probability measure on £,(A). We denote
the space of Keisler measures over A (in variables z) as 9, (A). Every element of
M. (A) is in unique correspondence with a regular Borel probability measure on the
space S, (A), and we will routinely use this correspondence. If My < M <X U are
small models, then there is an obvious restriction map rq from 9, (M) to M. (Mo)
and we denote ro(u) simply as pu|p,. Conversely, every p € 9, (My) admits an
extension to some p' € M, (M) (not necessarily a unique one).

The space M, (A) is a compact Hausdorfl space with the topology induced from
[0,1]%+(4). This is the coarsest topology on the set 9,(A) such that for any
continuous function f : S;(A) — R, the map p — [ fdp is continuous. If My < M,
then under this topology, the restriction map rq is continuous. We identify every
p € Sz(A) with the corresponding Dirac measure 9, € M, (A), and under this
identification S, (A) is a closed subset of M, (A).

We recall several important properties of global measures that will make an
appearance in this article.

Definition 2.1. Let p € M, (U) be a global Keisler measure.

(1) pis invariant if there is a small model M < U such that for any partitioned
L(M)-formula ¢p(x;y) and any b,b" € UY, if b =) b then u(p(z;d)) =
w(p(z;b')). In this case, we say p is M-invariant. We let 9UV(U, M)
denote the closed set of all M-invariant measures in M, (U).

(2) Assume that p is M-invariant and ¢(z;y) is a partitioned L£(M)-formula.
We define the map F7 ,, : S,(M) — [0,1] by F?,,(q) = p(p(x;b)), where
b |= q (this is well-defined by M-invariance of p).

We will often write F)? instead of F i » When the base model M is clear
from the context.

(3) p is Borel-definable (respectively, definable) if there is M < U such that
u is M-invariant and for any partitioned £(M)-formula ¢(z;y), the map
F;f u is Borel-measurable (respectively, continuous). In this case, we say
that u is Borel-definable over M (respectively, definable over M).

(4) pis finitely satisfiable in M < U if for any L, (U)-formula ¢(z), if pu(p(x)) >
0 then U = ¢(a) for some a € M*. We let M., (U, M) denote the closed set
of measures in 9, (U) which are finitely satisfiable in M.

(5) pis dfs if there is M < U such that u is both definable over M and finitely
satisfiable in M. Similarly, if this is the case, we say that p is dfs over M.

(6) Given @ € (U*)<¥, with @ = (aq,...,ay), the associated average measure
Avg € M, (U) is defined by

N 171151
for any o(x) € L, (U).

(7) pis finitely approzimated if there is M < U such that for any £(M)-formula
¢(x;y) and any € € Ry, there exist n € N>q and a € (M*)" such that
for any b € UY, u(p(z; b)) ~: Ava(p(z;b)). In this case, we call @ a (p,¢)-
approximation for u, and we say p is finitely approximated in M.

(8) w is smooth if there exists a small model M < U such that for any N
with M < N <X U, there exists a unique measure ' € 9, (N) such that
1| = plar- In this case, we say that p is smooth over M.

These properties are related as follows.
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Fact 2.2. (1) In any theory T, given u € M, (U), over any given M < U:
(a) w is smooth = p is finitely approzimated [16, Corollary 2.6|;
(b) p is finitely approximated = p is dfs (e.g. see [10, Proposition 4.12]);
(¢) p is definable = p is Borel-definable;
(d) if v is either Borel-definable or finitely satisfiable, then p is invariant.
(2) Assuming T is NIP, given u € M, (U), over any M < U we have addition-
ally:
(a) p is invariant = p is Borel-definable ([15, Corollary 4.9], or [27,
Proposition 7.19]);
(b) pis dfs = p is finitely approzimated [16, Theorem 3.2].
(3) Assuming T is stable, given any p € M, (U) we have moreover:
(a) w is finitely approzimated (see e.g. [4, Lemma 4.3] for a direct proof);
(b) for every L-formula ¢(x;y), there exist types (pi)icw n Sz(U) and
(ri)icw, i € [0,1] such that Y r; = 1, and taking p' = > 7 - p; we
have p(p(x;b)) = @' (p(x;b)) for all b € YUY [17, Lemma 1.7];
(c) If T is w-stable, then there exist (p;)icw in Sz(U) and (7;)icw, i € [0,1]
such that > r; =1 and p =3 r;-p; (same as the proof of [17, Lemma
1.7], using boundedness of the global rank).

We have the following characterization of definability (see e.g. [10, Proposition
4.4]).

Fact 2.3. The following are equivalent for p € M, (U) and M < U.

(1) The measure p is definable over M.

(2) For any partitioned L(M)-formula (x;y) and any € > 0, there exist
formulas ®1(y), ..., Pn(y) such that each ®;(y) € L,(M), the collection
{®;(U) : i < n} forms a partition of UY, and if = ®;(c) A D;(c'), then
|u(p(z,c)) = nle(z, )| <e.

(3) For every partitioned formula o(x;y) € L(M) and every n € N>q there

1
ezist some Ly(M)-formulas ®]'™ (y) with i € I, == {0,1,2 .. =11}
such that: )
(a) the collection {®]'"(U) : i € I,} forms a covering of U, (but not
necessarily a partition);
1
(b) For everyi € I, and b € Uy, ifU = @™ (b) then |u(p(x,b)) —i| < L.
This easily implies the following.

Fact 2.4. If M < N <U and p € M, (N) is definable over M, then there exists
a unique extension p' € M, (U) of u which is definable over N, denoted ply (it is
then automatically definable over M and given by the same definition schema ® for

W as in Fact 2.3).

In an NIP theory, every measure over a small model can be extended to a smooth
measure over a slightly larger elementary extension ([17, Theorem 3.16], or [27,
Proposition 7.9]).

Fact 2.5. Let T be an NIP theory. Let M <U and p € M, (M). Then p admits a
smooth extension. ILe., there exist some v € M, (U) and some small M < N < U
such that v is smooth over N and v|p = p.

Definition 2.6. Given a Keisler measure p € 9, (A), the support of p is
S(p) =A{p € S2(A) : p(p(z)) > 0 for any ¢(z) € p}.
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Types in S(p) are sometimes called weakly random with respect to p in the litera-
ture.

We recall some properties of supports, with proofs for the sake of completeness.

Proposition 2.7. Let u € M, (A).

(1) Then for any o(x) € Li(A) such that p(p(z)) > 0, there exists some
q € S(u) such that o(z) € q. In particular, S(u) # 0.

(2) S(p) is a closed subset of S, (A) and u(S(p)) =1 (and S(n) is the smallest
set of types under inclusion with this property).

Proof. (1) Without loss of generality, p(z) = = x. Otherwise, we reiterate the
proof with the normalization of p to the definable set ¢(z), i.e. considering the
Keisler measure p’ defined by p/(¢(z)) = % for all ¥(x). Assume that
S(p) = 0, then for every type p € Sy(A), there exists some ¢,(x) € p such that
w(op(z)) = 0. Then, pu(—pp(z)) = 1 for every p € Sy(A), hence for any n and
P1y P € Sz(A), we have (L, =gy, (x) # 0. Then K = (\,cg, 4y ~¢p(x) # 0
by compactness of S;(A). But if ¢ € K, then in particular —p,(z) € ¢ — a
contradiction.

(2) Assume that p & S(ut). Then, there exists a formula ¢, (z) such that ¢, (z) €
p and p(pp(x)) = 0. Then,

Se(A\S(m) = | ep(@).

pZS (k)

Therefore, S(u) is closed. Assume that p(S;(M)\S(r)) > 0. By regularity of y,
there exists a clopen C' C S, (A)\S(p) with positive measure. But by (1) we must
have C'N S(u) # 0, a contradiction. O

Proposition 2.8. Let AC B CU and p € M, (B) be arbitrary. Let r : S;(B) —
Sz (A),q— qla be the restriction map. Then:

(1) 7(S(p)) = S(pla);

(2) the measure p|a is the pushforward of p along r, i.e. v*(u) = pla.

Proof. (1) The map r is a continuous surjection between compact Hausdor{f spaces.
By Proposition 2.7(2), r(S(n)) is compact (hence, closed), as the continuous image
of a compact set. Clearly 7(S(u)) C S(ula), and as r(S(p)) is closed it suffices to
show that r(S(u)) is a dense subset of S(u|4). Indeed, assume that p(z) € L,(A)
and o(x)NS(ula) # 0. Then p|a(p(x)) > 0, hence u(¢(x)) > 0, and by Proposition
2.7(1) there exists some ¢ € S(u) with ¢(z) € q. Hence ¢p(z) € r(g), and so
r(S(w)) Np(x) # 0. And (2) is clear. O

Definition 2.9. We say that p € 9, (U) is invariantly supported if there exists
some small model M < U such that every type p € S(u) is M-invariant.

Lemma 2.10. Let p € M, (U).
(1) If u is finitely satisfiable, then w is invariantly supported.
(2) If p is invariantly supported, then u is invariant.
(8) If T is NIP, then u is invariant if and only if it is invariantly supported.
(4) In some theory, there exist a definable measure p € M, (U) and p € S(p)
such that p is not invariant (over any small set).
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Proof. (1) Clearly if p is finitely satisfiable over a small model M < U, then every
p € S(u) is also finitely satisfiable in M.

(2) Let M < U be a small model such that every p € S(u) is invariant over
M. If p1 is not invariant over M, then there exist some ¢(z,y) € L, and some
b=p b in YUY such that u(p(z, b)) # p(e(x,v’)). But then p(p(x,b)Ap(z, b)) >
hence ¢(z,b)Ap(z,b') € p for some p € S(u) by Proposition 2.7 — contradlctlng
M-invariance of p.

(3) («=) holds by (2). For (=), we note that if 4 is invariant over M < U, then
every global type p € S(u) does not divide over M (given ¢(x,b) € p and an M-
indiscernible sequence (b;);e., in UY such that b; =pr b, we have that p(p(z,b;)) =
p(eo(z,b)) =: € > 0 for all i; but then pu(A, ., ¢(x,0;)) > 0 for every k € w, so in
particular # ), by a standard probability lemma, see e.g. [27, Lemma 7.5]), hence
p is invariant over M by [15, Proposition 2.1(ii)].

(4) Let T be the theory of the random graph, in a language with a single binary
relation. We let 1 (A, E(x,b;)%) = 5% for every k € w, pairwise distinct b; € U
and t; € {0,1}, and pu(z = b) = 0 for every b € U. By quantifier elimination,
this determines a measure g € M, (). This p is clearly definable over (), and
the support of p consists of all non-realized types in S, (U). However, it is easy
to construct by transfinite induction a non-realized type p € S, (U) which is not
invariant over any small M < U. (I

The space of measures M, (U4) can be naturally viewed as a closed convex subset
of a real topological vector space (of all bounded real-valued measures). Given
M < U, we identify M* with the set {0, : a € M*} C M, (U), and let conv(M?)
denote the convex hull. We have the following topological characterization of finite
satisfiability for measures.

Proposition 2.11. Let p € M, (U) and let M < U be a small model. Then p is
finitely satisfiable in M if and only if p is in the closure of conv(M?®) (viewed as a
subset of M, (U)).

Proof. Assume p is finitely satisfiable in M. Let U be a basic open subset of 9t (U)
containing u. Say

U= { €M) :ri < (pil)) < i}
i=1

for some n € N, ¢1(x),...,on(x) € Ly(U) and r;,...,7n,81,.... 8, € [0,1]. The
collection {p1(x), ..., on(x)} generates a finite Boolean subalgebra of £, (U). Let
01(z), ..., 0 (z) be its atoms, and let © := {0;(x) : p(6,(x)) > 0}. As p is finitely
satisfiable in M, for each 6;(z) € ©, there exists some a; € M7 such that = 0;(a;).
Let v := Zejee w(0(r))0q, € My(U). Then we have u(pi(r)) = v(pi(x)) for
all 1 < i < n (note that a; = 0; <= i = j), sov € UNconv(M”). Hence
w € cl(conv(M®)).

Conversely, suppose p € cl(conv(M?)) and let (x) € L,(U) be such that
wu(y(x)) > 0. Consider the open set Uy := {v € M, (U) : 0 < v(¢p(x))} containing
p. Since p is in the closure of conv(M®), there exists some py, = Y ., 704, where
a; € M7 for all i and py € Uy. But then U |= ¢(a;) for at least one 4. O

3. DEFINABLE CONVOLUTION AND IDEMPOTENT MEASURES
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3.1. Extended product of measures. We begin by defining a slight general-
ization of the product of measures that encompasses both the usual independent
product of Borel-definable measures and the standard Morley product of invariant
types (without any definability assumptions), and also allows to take products of G-
invariant measures in arbitrary theories. This is accomplished by slightly tweaking
the domain of the integral in the usual definition of the ®-product.

Definition 3.1. Let p € M, (U), v € M, (U), and p(z,y,¢) € Lyy(U). We say
that the triple (i, v, @) is Borel if there exists some N < U such that:
(1) ¢C N;
(2) foranyq € S(v|n)andd,d € UY withd,d' |= q, we have that p(p(z,d,2)) =
wp(z,d’,e));
(3) the map FY \ : S(v|n) — [0,1] is Borel, where FY \/(q) = pu(¢(z,d,?)) for
some/any d = q.
We say that the ordered pair (u,v) is Borel if (u,v, ¢) is Borel for any ¢(z,y,¢) €
Loy (U).

Definition 3.2. Assume that (u, ) is Borel. Then we define the product measure
pRv € M., (U) as follows: given an arbitrary formula ¢(z,y,¢) € Lyy(U), let N
be any small elementary submodel of U witnessing that (u,v, ) is Borel (as in
Definition 3.1); we define

pinle(e o) = [ Ffdv,
S(v|n)

with the notation from Definition 3.1, where vy is the restriction of the regular
Borel measure v|y to the compact set S(v|n).

We check that ® is well-defined.

Proposition 3.3. Assume that (i, v, @) is Borel. Then the value of p@v(¢(x;y,¢))
in Definition 3.2 does not depend on the choice of N (as in Definition 3.1).

Proof. This proof is essentially the same as for ® (see e.g. [27, Proposition 7.19]).
Assume that (u, v, ) is Borel with respect to both M and N. We may assume that
M C N (taking a common extension). By Proposition 2.8, let r : S(vy) — S(var)
be the restriction map; then F;f por= F/ﬁ n and the pushforward of the measure
vy, namely r*(vy), is equal to vy,. Hence we have:

FLPMd(VM):/ F“’Mdr*(yN):/ F?, or)dvy
/s<u|M) . Swi) S(vlzv)( a )

= / FldeVN.
S(v|n)

We recall the independent product of invariant types (see e.g. [27, Section 2.2]).

Fact 3.4. (1) Assume M < U is a small submodel, p € S™ (U, M) and U’ -
U. There exists a unique type p' € S™(U', M) extending p. Then for any
A CU', we write p|a to denote p'|4.
(2) Assume that p € Sy(U),q € Sy(U) and p is invariant. Then p @ q =
tp(a,b/U) € Syy(U) for some/any b |= q and a = plus (in some U’ = U;
this is well-defined by (1)).

O
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(3) If p.q € Su(U, M) (respectively, p,q € Sy (U, M)), then p&q € Sy, (U, M)
(respectively, p ® q € Sy (U, M)).

The product ® extends both the independent product on invariant types and
the product of Borel definable probability measures in arbitrary theories.

Proposition 3.5. (1) Let p € M(U) and v € M, (U). Assume that p is
Borel-definable. Then, 1 @ v = uQv.
(2) If p € M, (U) is invariant and q € Sy(U) is arbitrary, then (u,d,) is Borel
and p@4, is well-defined.
(3) Let p € Sy(U) and q € Sy(U), and p is invariant. Then Spgq = 0,04,
where p ® q s the free product (see Fact 3.4).

Proof. (1) Assume that p is Borel-definable over M < U. Let ¢(z,y,¢) be an
arbitrary formula in L, (U), and let M’ < U witness (u,v, ) is Borel. Taking
N < U to be an elementary extension of both M and M’, we have that both p is
Borel-definable over N and N witnesses that (u,v, ¢) is Borel. It is then easy to
see that fsy(N) F£dvIn) = [g,y) Fifdvn as long as the integral on the left hand
side is well-defined — which is the case by Borel-definability of pu.

(2) Let ¢(z,y) € L(U), and let N < U containing all the parameters from ¢ be
such that p is invariant over N. Note that the map F? : S, (N) — [0, 1] need not be
Borel definable. However S(dq|n) is a single point as ¢ is a type, hence F)f [55,|x)
is trivially Borel.

(3) By (2), (6p,d4) is Borel. Let N < U witness this, and let b € UY,b = ¢|n.
Then

: L o(z,b) €p,
b)) = [ Ffd@)n = Ff (aly) =
e Sy T o 0 —p(z,b) €p.
That is, §,85,(¢(x;y)) = 1 if and only if p(z,y) € tp(a,b/N) for some/any

b qln and a = q|nb- O

Remark 3.6. If p € S;(U),q € S, (U), we say that (p, ¢) is Borel if (6, 4) is Borel.
In this case the proof of Proposition 3.5(3) shows that there exists some r € Sg, (U)
such that 6, = 6,®d,, we will denote it by r := p®q — by Proposition 3.5 this
extends the ® operation on invariant types to a larger class of types.

From now on we will simply write ® instead of ® to denote this extended oper-
ation (on types and measures) when there is no ambiguity involved.

Definition 3.7. We say that p € MM, (/) and v € M, (U) (®-)commute if both
(1, v) and (v, ) are Borel, and p®@ v =v & pu.

We recall some facts about the ® operation and commuting measures.

Fact 3.8. Assume that j1 € M, (U), v € M, (U), X € M. (U) and M < U.

(1) [16, Theorem 2.5] Assume that p is Borel-definable over M and v is smooth
over M. Then, for any ¢(z;y) € Lyy(M), we have that,

/ F$d(v]a) = / FS" d(ular).
Sa (M) Sy(M)

In particular, p@ v =v @ p.
(2) (4, Proposition 2.13] or [7, Proposition 2.10]) If p1 and v are finitely ap-
prozimated over M, then p Q@ v =v ® .
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(8) [27, Proposition 7.30] If T is NIP, p is dfs over M and v is invariant over
M, then p®@v =v® p.

(4) [6, Corollary 1.3] If u and v are smooth over M, then p® v is also smooth
over M.

(5) If T is NIP and p,v are invariant, then p® (v @A) = (L@ v) @ X. (See
[6], Theorem 2.2 and the introduction there.)

3.2. Definable convolution. Throughout this section, we let T be a first order
L-theory expanding a group. We let G be a sufficiently saturated model of T, and
G denotes a small elementary submodel. We use letters x,y to denote singleton
variables, i.e. of the sort on which the group is defined. For any formula ¢(z,¢) €
L.(G), we let ¢'(x,y,¢) = p(x -y, ).
Definition 3.9. Let p,v € M,(G), and let v, denote the measure in M, (G) such
that for any ¢(y) € L,(9), vy(e(y)) = v(p(x)).
(1) We say that (u,v) is *-Borel if for every formula ¢(x,¢) € L,(G), the triple
(i, vy, ¢") is Borel. We say that p is x-Borel if the pair (u, i) is *-Borel.
(2) If (u,v) is *-Borel, then we define the (definable) convolution product of u
with v as follows:

wx v(p(@,2)) = pbuy (¢ (2,9,2)) = /S L Rfne)
Vy G

where G is some/any small submodel of G witnessing that (i, v, ¢") is Borel
and vg(y) is the Borel measure v, restricted to S(vy|g) (as in Definition
3.2). We will routinely write this product simply as [ F l‘f/du when there is
no possibility of confusion.

Note that we are integrating over translates with respect to the right action of
G, and in general throughout the article, when speaking about G-invariance and
related notion, we will typically consider the action of G on the right. This choice is
made to make sure that this definition correctly extends Newelski’s product of types
(Proposition 3.12), but of course all of our results hold with respect to left actions
modulo obvious modifications. First we check that the convolution operation indeed
defines a measure.

Fact 3.10. Let p,v € M, (G). If (u,v) is x-Borel, then u*v is a Keisler measure.

Proof. Clearly pxv(z =2) =1 and p* v(—¢(x)) =1 — p*v(e(x)). Assume that
V1(x),¥2(x) € Lo (U) satisfy ¥1(z) Apa(z) = 0. Let 0(z;y) = v1(z-y) vV ha(z - y),
and let G < G witness that both (u, vy, 1]) and (u, vy, 15) are Borel. Then for any
q € S(vlg) and b |= q we have F(q) = p(0(x;b)) = p(¢1(x - b) V iho(z - b)). As
P1(z) A pa(x) = 0 implies ¢y (z - b) Ape(z - b) = 0, we have

F(q) = p(tn(z - 0)) + plwoa(x - b)) = F (q) + 2 (g)-

Then
« ) (01 (2) V () = Fldug = FV 4 FY)d
e i) = [ Blave= [ (B4R v
— [ B [ Bve = (e @) + (0 ) al).
S(vle) S(vla)
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This notion of convolution extends the notion of the product of invariant types
extensively studied by Newelski [19, 20] and others from the point of view of topo-
logical dynamics. The following is easy using Fact 3.4.

Fact 3.11. Let G < G be a small model. Given p,q € SI™(G,G), we define
p*q:=tp(a-b/G) € S™(G,QG), for some/any (a,b) |E p® q in a larger monster
model. Then (S;HV(Q,G), *) is a semigroup, with multiplication continuous in the
left coordinate: for each g € S™(G,G), the map — x q: SI™(G,G) — SV (G, G) is
continuous. And (S;(G,G),*) is a closed sub-semigroup.

Proposition 3.12. Let § : SI™(G,G) — M™(G,G) be the map §(p) = 6,. Then
0 is a topological embedding, and Op.q = 0p * 04 for any p,q € Sz(G,G).

Proof. Clearly § is a topological embedding. Now let p(z) € £,(G) be arbitrary,
then by Proposition 3.5(3) we have

Oprq(P(2)) = Op, @, (P(x - y)) = 0p, B0y, (P(z - y)) = Ip * 04(p()).
(]

Remark 3.13. As in Remark 3.6, given p,q € S.(G) we say that (p, q) is *-Borel
if (0p,04) is *-Borel, and in this case denote by p * ¢ the type r € S;(G) such that
0 = 0, * §; — by Proposition 3.12 this extends the operation on invariant types
from Fact 3.11.

The next lemma follows by straightforward computations.

Proposition 3.14. Let i, fi1, .., fins V1 - - - s Um € M4 (G) be arbitrary, and assume
that the pairs (u;,v;) are *-Borel for all1 <i<n,1 <j<m. Leta,b,a1,...,a, €
G and r1,..., T, S1,...,8m € Rg be such that Y ;- r; = 27:1 s; = 1. Then:

(1) p#be=1bexp=np,

(2) (Sa * (Sb = 6ab7

(3) (0ax p)((x)) = plpla-x)) for any p(x) € Lo (U),

(4) (i ri i) (X5y s ovi) = S0 rie sy - (miox ),

(5) (CiZimi - 0a;) * 1) (@) = 302, i - p(p(ai - ) for any (@) € Lo(U).

Finally, we observe that the following properties of measures are preserved under

convolution.

Proposition 3.15. Let u,v € M, (G) be such that (p,v) is x-Borel.

(1) If pu,v are definable over G < G, then px v is definable over G.

(2) If p,v are finitely satisfiable over G < G, then p* v is finitely satisfiable
over G.

(3) If u,v are finitely approximated over G < G, then u* v is finitely approxi-
mated over G.

(4) If p(x =b) =0 for every b in G, then u*v(x =b) =0 for every b € G.

Proof. Claims (1), (2) and (3) are slight variations on the preservation of the corre-
sponding properties with respect to ® (see e.g. [16, Lemma 1.6] or [7, Proposition
2.6] for (1) and (2), and [4, Proposition 2.13] or [7, Proposition 2.10] for (3)).

(4) Let b € G be arbitrary, let ¢(z) € L;(U) be the formula “z = b” and let
G < G witness that (u, vy, ") is Borel. Then

prvla=b) = pémfay=t) = [ ().
S(vla)
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And for ¢ € S(v

le), F, ()—u(sc c="b) forsome/anyclzqing Then, p(z-c=
b) = pu(r =bc1)=0

y assumption. Therefore, [ Fy ¢ dve = J 0dvg = 0. ([

3.3. Idempotent measures. We continue working in a theory expanding a group,
and begin with some standard definitions.

Definition 3.16. Let € M,(G).
(1) We say that u is idempotent if y is *x-Borel and p* pu = p.
(2) We say that u is right-invariant if for any formula ¢(z) € £,(G) and any
a € G, we have u(p(z)) = p(p(z - a)).

Definition 3.17. Let H be a type-definable subgroup of G, where H(x) is the
partial type defining the domain of H (which we associate with the closed set
of types implying H). Then H is definably amenable if there exists a measure
i € M, (G) such that p(H(z)) = 1, and for any p(z) € L,(G) and a € H we have
w(p(z)) = u(p(z - a)). In this case, we call p right H-invariant.

Remark 3.18. For NIP groups, existence of a right-invariant measure on H is
equivalent to the existence of a left invariant measure on H (as well as a bi-invariant
measure, see [3, Lemma 6.2]).

Proposition 3.19. Let H be a type-definable, definably amenable subgroup of G,
defined by a partial type H(x). Suppose that p € M,(G) is right H-invariant. Then
w is idempotent. Moreover, if v is another measure such that v(H(z)) = 1, then
(u,v) is x-Borel and p*v = p.

Proof. We show that for any measure v € M, (G) such that v(H(z)) = 1, (u,v)
is *-Borel and p x v = p. For ease of notation, we will identify v with v,. Fix
a formula p(z) € £,(G). Let G be a small elementary submodel of G containing
the parameters of H(x) and ¢(z). Fix some ¢ € S(v|g) C S,(G), then g - H(y).
If not, then ¢ € S,(G)\H(y). Since H(y) is closed, S,(G)\H (y) is open, hence
Sy(G)\H(y) = U;c; ¥i(y) for some index set I and ¢; € L,(G). Then v;(y) €
q for some ¢ and since ¢ € S(v|g), we know that v(i;(y)) > 0. But this is a
contradiction since v(H(y)) = 1 and ;(y) is disjoint from H(y). Therefore, if

be G andb | q, then b € H. Now, the function F‘pG is constant on S(v|g) since

Ff/c;(q) = p(p(x - b)) = p(e(x)) by right H-invariance of p, hence (u,v) is *-Borel.
And pxv=yp as

e v(p(a) = /S . Favo = /S . o) = ()

In particular, (i, ) is Borel and p* p = p. O

The expectation is that in tame situations, all idempotent measures are of this
form for some type-definable subgroup. We will show that this is indeed the case
when G is a stable group in Section 5, but for now we discuss some examples in
which idempotent measures arise.

If G is a definably amenable group, and H is a type-definable subgroup of finite
index (hence definable), then # is definably amenable (if p is a right-invariant
measure on G, then uy(p(z)) =[G : H] - p(e(x) N H(z)) gives a right-invariant
measure on H). This generalizes to type-definable subgroups of bounded index
when G is NIP.
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Proposition 3.20. Assume that G is definably amenable and NIP, and let H be a
type-definable subgroup of G of bounded index. Then H is also definably amenable.

Proposition 3.20 follows from a slightly generalized construction of the G-invariant
measures (i, from [14, 15, 3] in NIP groups. We will use some properties of the abso-
lute type-definable connected component G%, the intersection of all type-definable
subgroups of G of bounded index, and refer to the aforementioned texts for further
details. To be compatible with our set up for convolutions, we work with G act-
ing on the right. By NIP, G% is a normal subgroup type-definable over (}, and let
G < G be an arbitrary small model. As usual, 7 : G — G/G% is the surjective group
homomorphism with 7(g) depending only on tp(g/G). Then G/G is a compact
Hausdorff topological group with respect to the logic topology, i.e. a subset X of
G/G% is closed if and only if 771(X) is type-definable, if and only if 7=1(X) is
type-definable over G. The induced map S,(G) — G/G% is continuous. With re-
spect to this topology, closed subgroups of G/G% are in a bijective correspondence
with type-definable subgroups of G of bounded index (equivalently, containing G°°).
Namely, if K is a closed subgroup of G/G%, then H := 7=1(K) is a type-definable
set containing G%° = 77 !(ek), and is a group since 7 is a group homomorphism
(and vice versa). Also, if H C G is type-definable, then K := 7w(H) C G/G% is a
closed subgroup (as 7 : S,(G) — G/G" is a closed map).

Recall that a global type p € S,(G) is strongly f-generic over G if p- g is G-
invariant for every g € G. If G is definably amenable and G is an arbitrary small
model, then there exists a type p strongly f-generic over G (see [15]). Moreover, as
every right translate of a strong f-generic over G is again a strong f-generic over
G, we may assume p(z) - GY(z).

Proof of Proposition 3.20. Let K := n(H), then 7=*(K) = H (by the fourth iso-
morphism theorem for groups), hence K is a closed subgroup of G/G%. Denote by
v the right-invariant Haar measure on Borel subsets of K normalized by v(K) = 1.

Let p € S.(G) be a strong f-generic over G with p(z) - G°°(z), so in particular
pkH and p-g = p for every g € G'°. For a formula ¢(z) € L,(G), let

App={g€e K:p(x)ep-g}.
Then A, is a Borel subset of K (as Ay, = KN{g€ G/G% : p(z) € p- g}, and
the latter set is Borel by [15, Proposition 5.6]). We define
tip (p(2)) = v(Ag,p).
Then we have the following.

o /iy, is a Keisler measure with p, ,(H) = 1.
It is easy to check that y, , is a measure. And by regularity, u, ,(H) =
inf{p, . (¥(x)) : H(x) - ¥(z),¥(z) € L4(G)}, and as p - H + 9 for all such
1, we have that Ay , = K by definition, hence p, , () = 1.
® iy, is right H-invariant (as pp.(o(z) - 9) = v(Ap.g,p) = V(App - T(g)) =
v(Ayp) = tp((x)) by right K-invariance of v, as m(g) € K).
Hence H is definably amenable, witnessed by fip, ... (I

Question 3.21. Is Proposition 3.20 true without the NIP assumption?

Classification of measures supported on finite subsets of G follows from Wendel’s
theorem.
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Proposition 3.22. If u is a measure on G whose support is a finite collection of
realized types, then p is idempotent if and only if p = ﬁ > acw Oa for some finite
subgroup H of G.

Proof. (<) is by Proposition 3.19.

(=) Assume that S(u) = {a1,....,an} = A C G. As p is idempotent, S(u) is
closed under multiplication (if not, then there exists ¢ € G\ A such that ¢ = a; - a;
and c¢ for some i, j; then p(x = ¢) =0, but p* u(xz = ¢) > 0). Therefore A is closed
under products. As any finite subset of a group closed under products is a subgroup,
A is a compact group, and p|4 is an idempotent measure on A. Therefore, by [30,
Theorem 1], p|4 is the unique Haar measure on the subgroup S(u|4) of A. But as
S(p) = A, we conclude that p= 13 _ . 6,. O

n

Finally, we observe a sufficient condition for idempotence to be preserved under
convolution in the NIP context.

Proposition 3.23. If G is NIP and abelian, and both p,v are idempotent and dfs,
then p* v is idempotent and dfs.

Proof. Fix a formula ¢(x) € L£,(G) and assume that G < G witnesses that both
(1, v, ) and (v, u, ) are Borel, and both p and v are dfs over G (taking a com-
mon extension of the models witnessing each of this properties separately). By
Proposition 3.15, p* v is dfs over G. By Fact 3.8(3), u and v commute, so we have

prv(p(x)) = pe @ vy(p(x - y)) = vy @ pa(p(x - y)).

By change of variables and abelianity of G, we can conclude

=12 ® py(e(y - ) = Ve @ py(p(z - y)) = v* p(e(x)).

Now, let A := p* v. Using associativity of x in the NIP context (see Proposition
6.2),

AN U*k VKRV = Uk Uk Uk =[xV =\

4. SUPPORTS OF IDEMPOTENT MEASURES

In this section, we will show (in an arbitrary theory) that if p is definable, invari-
antly supported (see Definition 2.9) and idempotent, then (S(u),*) is a compact,
left-continuous semigroup with no closed two-sided ideals. The assumption “defin-
able and invariantly supported” is satisfied when p is a dfs measure in an arbitrary
theory (by Lemma 2.10(1)), and when p is an arbitrary definable measure in an
NIP theory (by Lemma 2.10(3)).

We begin by considering two examples, which illustrate in particular that the
support of an idempotent dfs Keisler measure need not be a group in general.

Example 4.1. Let T' = Tyoag be the complete theory of a divisible ordered abelian
group in the language {+,<,0,1}. Let G be a monster model of T" and consider
G := Q as an elementary substructure in the natural way. Let p., be the unique
global type finitely satisfiable in G and extending {z > a : a € Q}. Let p_ be
the unique global type finitely satisfiable in G and extending {z < a : a € Q}.
Let pu:= 36, . + 30,., we claim that 4,6, _,0, . € M,(G) are idempotent. By

oo ?
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Proposition 3.15, the product d, * dg for a, 5 € {pso, P—oc} is finitely satisfiable in
Q. Then, using Proposition 3.14, it is not hard to verify the following calculation:

o= (ghrnt 390) » (3~ + 3%-)
S (CRSLSOES IR (AL R (G
S PSR P PR VR VR YO

We observe that while (S(d,_,),*) and (S(d,__),*) are groups (with a single ele-
ment), (S(u), *) is not a group since it does not contain an identity element.

Example 4.2. Let G = (S!,-,C(x,y, 2)) be the standard circle group over R, with
C the cyclic clockwise ordering. Let T be the corresponding theory. Let p be the
Keisler measure on this structure which corresponds to the restriction of the Haar
measure on S'. Let G be a monster model of T such that S* < G. Then y is smooth
over S' and admits a unique global extension ji. We remark that ji is right invariant,
hence idempotent (Proposition 3.19). Let st : S;(G) — S* be the standard part
map. Assume that p € S(fi) and st(p) = a. Then ¢.(z) := Cla —e,z,a+¢€) ¢ p
for every infinitesimal ¢ € G (v # a € p as p(x = a) = 0, and if p.(z) € p,
then fi(¢:(z) Az # a) > 0, but ¢.(G) = {a} — contradicting finite satisfiability
of i in G). As the types are determined by the cuts in the circular order, it
follows that for every a € S! there are exactly two types ay(z),a_(z) € S(j)
determined by whether C(a + €, z,b) holds for every infinitesimal € and b € G, or
C(b,z,a — €) holds for every infinitesimal € and b € G, respectively. It follows that
(S(f1),*) =2 St x {+, —} with multiplication defined by:

as* by = (a-b)s
for all a,b € St and 6,7 € {+,—}. Again, (S(u), *) is not a group.

Next we establish various properties of (S(),*) when p is a global idempotent
measure which is definable and invariantly supported. Given Sp,S2 C S.(G), we
write Sy % Sy := {p1 *p2 € Sz(G) : p; € S;} (under the assumption that all such
products are defined, i.e. assuming (p1,p2) is *-Borel for all p; € S; — see Remark
3.13). The assumption of being invariantly supported in the lemmas below is only
needed to ensure that S(u) * .S(w) is defined (Fact 3.11).

Proposition 4.3. Let p,v € M,(G). Assume that p is definable, and both p and
v are invariantly supported. Then:

(1) S(p) = S(v) € S(p*v);
(2) S(p)* S(v) is a dense subset of S(u*v).

Proof. (1) Assume that p € S(p),q € S(v), and let p(z) € p*q. Choose G < G
such that p is definable over G, p, g are finitely satisfiable in G, and G contains all
the parameters from ¢. We need to show that p * v(o(x)) > 0. Now,

wv(p(e)) = / F¢ dve
S(vla)

Since p is definable, the map F,f/c: : S(vlg) — [0,1] is continuous. Therefore, it
suffices to find some r € S(v|g) such that F:f/G(r) > 0. Consider r := ¢|g. Then,
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Flflc;(q|c;) = p(p(z - b)), where b |= q|g. Then, p(x - b) € p and since p € S(u), we
have that p(¢(x - b)) > 0. Hence, Fff/(q|c) > 0 and so p* v(p(x)) > 0.

(2) By (1), we already know that S(u)*S(v) C S(p*v). Fix some r € S(uxv) and
a formula ¢(x) € 7. We need to find p € S(u) and g € S(v) such that p(z) € p*q.
Choose G such that p is definable over G, all types in S(u), S(v) are invariant over
G, and G contains the parameters of p(z). Since ¢(z) € r and r is in the support of

px v, we know that p*v(p(z)) > 0. Therefore, fS(U‘G) Fi,Gd(Vg) > 0, and so there

exists some t € S(v|g) such that F/f/G(t) > 0. If ¢ Et, then p(p(x-c¢)) > 0. So,
by Proposition 2.7(1), there exists p € S(u) such that ¢(z - ¢) € p. By Proposition
2.8, we let ¢ € S(v) be such that ¢|¢ = t. By construction, we then observe that
p(r) €pxq. O

Corollary 4.4. Assume that u is definable, invariantly supported and idempotent.
Then (S(u), *) is a compact Hausdorff (with the subspace topology) semigroup which
is left-continuous, i.e. the map —xq : S(u) — S(u) is continuous for each ¢ € S(u).

Proof. By Proposition 2.7(2), S(u) is a compact Hausdorff space. By Proposition
4.3, S(p) * S(u) € S(p*pu) = S(w). Now, choose some G < G such that p is
definable over G, and all types in S(u) are invariant over G. Then (S(u),*) is a
sub-semigroup of (S*V(G,G), *) and * is left-continuous by Fact 3.11. O

We now define some global functions which mimic the map y — [ f(z-y)du(z).

Definition 4.5. Let u € 9,(G) be definable, and fix p(z) € £,(G). We then
define the global function le/ 0 54(G) — [0,1] via p — p(p(z - ¢)), for some/any
¢ = plg and small G < G containing the parameters of ¢(z) and such that p is
definable over G.

Note that for any formula ¢(x) € £,(G), the map D“"' is continuous: D“", =

F‘pG or, where 7 : S, (G) = Sy(G) is the restriction map, and F;fG is continuous
by definability of p. The next two results are adapted from Glicksberg’s work on
semi-topological semigroups into the general model theory context. In particular,
see [13, 12].

Proposition 4.6. Let p € M, (G) be definable, invariantly supported and idem-
potent, and p(z) € L;(G) arbitrary. Assume that Dﬁ/|5(#) attains a maximum at
q € S(n) (exists as this is a continuous function on a compact set). Then for any
p € S(u), we have that Dﬁ/ (q) = le/ (pxq).

Proof. Fix a small model Gy < G such that u is definable over G, and G contains
the parameters of ¢(z). Let b = ¢|g, and let 0(x;y) := o((x - y) - b). Now fix
a larger submodel G < G such that Gob C G. Let § := p(p(x - b)). Observe
that then for any t € S(ulg), a = t, and t € S(u) such that f|¢ = ¢, we have
FOo(t) = ple(x-a) - b) = p(p(x-(a-b) = DE (E+q) < DE'(q) = & (by the
assumption on ¢). We conclude that for any t € S(u|g), F37G(t) < 6. On the other
hand,

§=D% (q) = p(p(z - b)) = px p(p(x - b)) = ey (0(z37))

S(ule)
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Therefore, Fg = ¢ almost everywhere (with respect to pug). Since both maps are
continuous, they are equal on S(p|g). Finally, for any p € S(p) and a = p, we
have:

D¥(q) =6 = Ff o(ple) = ule((z - a) - b)) = p(p(z - (a- b)) = DE (p*q),

as wanted. O

Theorem 4.7. Let i € M, (G) be definable, invariantly supported and idempotent.
Let I C S(u) be a closed two-sided ideal. Then, I = S(u).

Proof. If I is dense in S(u), then I = S(p). So we may assume that I is not dense
in S(p). Therefore, there exists some ¢(z) € £L,(G) such that o(x) N S(u) # @ and
p(z)NI = 0. Let G < G be a small model containing the parameters of ¢, and
such that p is definable and invariantly supported over G.

Claim 4.8. There exists some q € S(u) such that Dﬁ/ (q) > 0.

Proof. Assume not. Let p,q € S(u) be arbitrary. Let b = ¢lg,a E plgs. Then
ulo(x - b)) = Dl‘f/(q) = 0 by assumption, hence = —p(a - b) as p € S(u), so
e(x) & p*q.

Consider now the continuous characteristic function x, : S(p) — {0,1}. By
Proposition 4.3(2) and the previous paragraph, x, vanishes on a dense subset
S(p)* S(p) of S(p), hence x,, vanishes on S(y). But this contradicts the choice of
©. O

’

So there exists some g € S(u) such that Df (g) > 0. Then, since le, is contin-
uous, it attains a maximum 6 > 0 on some r € S(u).

Claim 4.9. For any h € I, we have le,(h) =0.
Proof. Let h € I. Then ij'(h) = u(p(z - b)), where b = h|g. Then

ez - b)) = p({p € S(p) : p(z-b) e p}) = n{p € S(u) : p(x) € pxh}).
As I is a left ideal, we have S(u) * h C I. By assumption, ¢(z) NI = (), and so we
have {p € S(p) : p(x) € p* h} = 0. Therefore, le/(h) =0. O

Finally, since I is a right ideal, we have that h x r € I. Therefore, using Propo-
sition 4.6 and the claim,
0<Df (r):le (hxr)=0.
Therefore, we obtain a contradiction. (Il

Corollary 4.10. Assume that |S(u)| > 1, i.e. p is not a type. Then S(u) contains
no zero elements, i.e. there is no element p € S(p) such that for any q in S(u),

P*q=q*xp=p.
Proof. If p is a zero-element, then {p} is a closed two sided ideal. ([l

We make some further observations on the structure of the semigroup S(x) under
the additional assumptions on the idempotent measure p. We recall the following
structural theorem of Ellis (with the roles of multiplication on the left and on the
right exchanged everywhere).
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Fact 4.11. [8, Proposition 4.2] Assume that (S, -) is a compact Hausdorff semigroup
which is left-continuous (i.e. such that for any a € S, the map —-a : S — S
is continuous). Then, there exists a minimal left ideal I (which is automatically
closed). We let J(I)={i € I :i®> =i} be the set of idempotents in I.

(1) J(I) is non-empty.

(2) For everyp € I and i € J(I), we have that p-i = p.

(8) I =U{i-I:i€J(I)}, where the union is over disjoint sets, and each set

i- 1 is a group with identity 1.
(4) I-q is a minimal left ideal for all g € S.

Assume that p € 91,,(G) is definable, invariantly supported and idempotent. Then
(S(u), *) is a semigroup satisfying the assumption of Fact 4.11 by Corollary 4.4.

Definition 4.12. We let I, denote a minimal (closed) left ideal of (S(u),x*) (it
exits by Fact 4.11). We say that p is minimal if I, = S(p).

In particular, if g is minimal, then S(u) is a disjoint union of subgroups.
Example 4.13. For example, the measure ji considered in Example 4.2 is minimal.

Proposition 4.14. Assume that p € M, (G) is definable, invariantly supported,
idempotent and minimal (i.e. I, = S(n)). Let o(x) € L;(G) be any formula. Then

for any p,q € S(pn), we have that D (p) = Dy (q)-

Proof. By Fact 4.11, S(p) = U{i* S(n) : i € J(I,)}. By continuity, le, attains a
maximum at some p € S(u). Let now g € S(u) = I, be arbitrary. Then ¢ € i* I,
for some ¢ € J(I,). Also i xp € ix 1, as I, = S(n). Asix 1, is a group by Fact
4.11(3), there exists some r € ¢ * I, such that r * (i * p) = ¢. But then, applying
Proposition 4.6, we have

Df (p) = D ((r i) xp) = D (r«(ixp)) = Df (q).
As g € S(u) was arbitrary, this shows the proposition. O

Proposition 4.15. Assume that p € M, (G) is definable, invariantly supported,
idempotent and minimal. Then for every o(x) € L;(G), plp(z)) = Dﬁl (p) for any
p € S(p).

Proof. Assume not. By Proposition 4.14 and replacing ¢(x) by —¢(x) if necessary,
we may assume that u(¢(z)) > D/f/(i), where i is an idempotent in S(u). Then
i (p(x) A—p(z- b)) > 0, where b |= i|¢ and G < G is chosen as usual. Hence there
exists ¢ € S(u) such that ¢(z) A =p(x - b) € q. Then ¢(x) € ¢, and —p(x) €
q * i. However, ¢ i = ¢ by Fact 4.11(2), and so we have ¢(x), ~p(x) € ¢ — a
contradiction. d

A direct translation of the previous proposition then says that minimal idempotent
measures are “generically” right-invariant on their supports.

Corollary 4.16. Assume that p € M,(G) is definable, invariantly supported,
idempotent and minimal. Let o(x;b) € L,(G). Then, for any a € G such that
tp(a/Gb) € S(ulgz), we have p(p(x)) = p(p(z - a)).

Finally, we record a corollary for the case when the group G is stable and abelian.

Remark 4.17. I, = S(u) if and only if for every p,q in the S(u) there exists
r € S(p) such that r x ¢ = p.



DEFINABLE CONVOLUTION AND IDEMPOTENT KEISLER MEASURES 19

The following corollary is a direct consequence of Glicksberg’s theorem for semi-
topological semigroups [12] (note that unless the group is stable and abelian, we
only have continuity of * on the left, so we were not in the context of Glicksberg’s
theorem in the earlier considerations).

Corollary 4.18. If G is stable, abelian and p € M, (G) is idempotent, then S(u)
is an abelian compact Hausdorff topological group.

Proof. Note that p is automatically dfs by Fact 2.2(3), hence the results of this
section apply to it. We see that (S(u),*) is commutative, as in Proposition 3.23.
Then * is both left and right-continuous. Hence I,, = S(u) by Theorem 4.7. But
this is equivalent to: for every p,q € S(u) there exists r € S(u) such that r* g = p.
By commutativity of * and Fact 4.11, this implies that S(u) is a group. Finally, by
a classical theorem of Ellis [9], separate continuity of multiplication implies joint
continuity for (locally) compact groups. O

Using this corollary, we can quickly describe idempotent measures in strongly min-
imal groups.

Example 4.19. Let G be a strongly minimal group. Then the idempotent measures
are precisely of the following form:

(1) Haar measures on finite subgroups of G;
(2) dp, where p is the unique non-algebraic type in S (G).

Proof. Assume that G is strongly minimal, then it is abelian, and let p be an
idempotent measure. As G is in particular w-stable, by Fact 2.2(3c) = >, 7" pi
for some p; € S;(G) and some r; € R>g with >, r; = 1. By strong minimality,
let p € S,(G) be the unique non-algebraic type. Then clearly S(u) = cl({p; : i €
w}) C{p; : i € w} U {p}, in particular S(p) is countable. By Corollary 4.18, S(u)
is a compact group, and every countable compact group must be finite (using the
existence of finite Haar measure). If p ¢ S(u), then S(u) is a finite subgroup of G,
and we are in the first case by Proposition 3.22. Assume that p € S(u). Note that
p is clearly right G-invariant, hence p x ¢ = p for any ¢ € S(u) by Proposition 3.19.
As (S(u),*) is a group, this implies S(u) = {p}. O

This example is generalized to arbitrary stable groups in the next section.

5. IDEMPOTENT MEASURES IN STABLE GROUPS

In this section we classify idempotent measures on a stable group, demonstrating
that they are precisely the invariant measures on its type-definable subgroups. Our
proof relies on the results of the previous section and a variant of Hrushovski’s
group chunk theorem due to Newelski [18]. We will assume some familiarity with
the theory of stable groups (see [23] or [29] for a general reference). As before, G is
a monster model for a theory extending a group.

5.1. Stabilizers of definable measures.

Definition 5.1. Given a measure pu € 9, (G), we consider the following (left)
stabilizer group associated to it:

Stab(u) :={g€G:g - p=p}
={9€G: u(p(x)) = pn(p(g - x)) for all p(z) € L(G)}.
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Below we use the characterization of definability of a measure from Fact 2.3(3),
and we follow the notation there.
Definition 5.2. Assume that p, € 9,(G) is definable over a small model G < G.

(1) Fix a formula @(z;y) € £ and n € N5o. We write ¢'(z;y, ) to denote the
formula ¢(z - x;y), and given i € I, we write

71 1
@gl"(y,z) = \/ q);p ’n(:%z,).

(2) Consider the following formula with parameters in G' (where e is the identity
of G):
1
Staby, ™ (2) :=
vy A (027 e = 02 w2)) A (07 (5 2) = @7 (we)) )

i€, i>3

(3) We define the following partial type over G:
Stab,(z) = /\ Stabif’% (2).

@(I7y)€£7neN>0
Proposition 5.3. Let u € M, (G) be definable. Then Stab(u) = Stab,(G).

Proof. Assume g ¢ Stab(u). Then there exist some ¢(x,y) € £ and b € GY such
that taking r := pu(p(x,b)) = u(¢'(z;b,¢)) and s := p(p(g-2,b)) = p(¢'(z,b, g)) we
have r # s. Say r > s (the case r < s is similar). We choose n € Ny large enough
so that |r —s| > 2 (so in particular r > 2). As {<I>“0 ( ): i € I} is a covering of
gv® by Fact 2.3(3a), there is some ¢ € I,, such that = <I>¢ (b, e), so in particular
E @;i’“ (b,e). Hence |r—i| < 1 by Fact 2.3(3b) (hence i > 3). If = <I)(/J 3 )(b, 9),

then by Fact 2.3(3b) again we must have pu(¢'(z;b,9)) >i—2 -1 sos i3
1

and 7 — s < 4, contradicting the choice of n. Hence g [~ Stab;'™ (2).
Assume g € Stab(u), and let p(z,y),b € GY,n > 1 and i > % in I,, be arbitrary.

Assume that = @i;’%(b e) holds, then by Fact 2.3(3b) we have u(¢'(x;b,e)) >
i— i If = —|<I>50 3 2)(b g), as {<I>S(J X (G) i € I,} is a covering, we must have

E @f’”(b,g) for some j < i — 2 in I,. But then pu(¢'(z;b,9)) < j+ L by
Fact 2.3(3b) again. Hence u(¢'(z;b,9)) < i — + < p(¢'(x;b,e)), contradicting

" n1
g € Stab(u). Similarly, we get that &= @;i’" (b, g) implies = <I>§ (b, e), hence

(i-2)

gE Stabﬁ’% (z) as wanted. O

5.2. Stable groups and group chunks. As before, T is a theory extending a
group in a language £, and we let G be a monster model of T'. In this section we
review some results on stable groups that will be needed for our purpose.

Fact 5.4. (see e.g. [22, Fact 1.8] + [3]) Let G be a stable group and G < G a small
model. Let H be a subgroup of G type-definable over G (by a partial type H(x) over
G). Let Sg(G) :={p € S.(G) : p(x) b H(z)} be the set of types over G concentrated
on H. Then the following hold.
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(1) For p,q € Su(G), we have that p * q (well-defined as all types are definable
by stability) is equal to tp(a-b/G), where a = p,b |= q in a bigger model of
T and a J/g b (in the sense of forking independence).

(2) The semigroup (S (G),*) has a unique minimal closed left ideal I (also the
unique minimal closed right ideal) which is already a subgroup of (S (G), *).

(8) I is precisely the generic types of H, and with its induced topology I is a
compact topological group (isomorphic to H/H°).

(4) H admits a unique left invariant Keisler measure i (which is also the unique
right invariant Keisler measure) with S(u) = I. Viewing p as a regular
Borel measure on S (G) and restricting to the closed set I, ju [g(,) coincides
with the Haar measure on 1.

In what follows, we let _C'7 > G be a larger monster model of T. We will be
following the notation from [18].

Definition 5.5. (1) Throughout this section, A will denote a finite invariant
set of formulas, i.e. formulas of the form ¢(u -z -v,y) € L (so a right or a
left translate of an instance of ¢ is again an instance of ¢).

(2) We write Ra to denote Shelah’s A-rank, note that it is invariant under
two-sided translation since A is.

(3) For P C S,(G), we let cl(P) denote the topological closure of P in S;(G),
and *P denote the closure of P under *.

(4) For P C 5,(G), let gen(P) denote the set of r € cl(xP) such that there is
no q € cl(xP) with Ra(r) < Ra(q) for all A and Ra(r) < Ra(q) for some
A.

(5) For P C S,(G), let (P) denote the smallest G-type-definable subgroup of G

~ -~

containing P(G), where P(G) = {b€ G : b |= p for some p € P}.

The following two facts are stated in [18] for strong types over (). Our statements
here for types over G follow by applying them in the stable theory Ty with all of
the elements of G named by constants (for which G is still a monster model).

Fact 5.6. (1) [18, Fact 2.1] If P C 5,(G) is non-empty, then gen(P) is a non-
empty closed subset of S;(G).
(2) [18, Lemma 2.2] Ra(p % q) > Ra(p), Ra(q) for any p,q € S.(G) and A
(this follows by the symmetry of forking, invariance of Ra under two-sided
translations, and the fact that forking is characterized by a drop in rank).

Fact 5.7. [18, Theorem 2.2] Assume T is stable. Let P C S,(G) be a non-empty
set of types. Then

(P) = {a € G : tp(a/G) * gen(P) = gen(P) setwise}
is a G-type-definable subgroup ofé and gen(P) is precisely the set of generic types
of (P) over G.

5.3. Classification of idempotent measures. We are ready to prove the main
result of this section.

Theorem 5.8. Let G be a monster model of T, and let p € M, (G) be a global
Keisler measure (in particular, p is dfs by Fact 2.2(3a)). Then the following are
equivalent:
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(1) w is idempotent;
(2) w is the unique right-invariant (and also the unique left-invariant) measure
on the type-definable subgroup Stab(u) of G.

Proof. (2) implies (1) by Proposition 3.19, and we show that (1) implies (2).

Let p € M, (G) be an idempotent measure, by Fact 2.2(3a) u is definable over
some small model G < G by Proposition 5.3.

By Corollary 4.4, S(u) is a closed subset of S,(G) and is closed under *, hence
A(x8(1)) = S() and gen(S()) € S(p).

We claim that gen(S(u)) is a two-sided ideal in (S(u),*). Indeed, let r €
gen(S(p)) and ¢ € S(u) be arbitrary. If r x ¢ is not in gen(S(n)), then there
exists some p € S(u) with Ra(p) > Ra(rxq) > Ra(r) for all A and some inequal-
ity strict (by Fact 5.6(2)), contradicting r € gen(S(u)). But also if g % r is not in
gen(S(p)), then there exists some p € S(u) with Ra(p) > Ra(g*1) > Ra(r) and
some inequality strict, again by Fact 5.6(2), contradicting r € gen(S(u)). Hence
gen(S(p)) = S(u) by Theorem 4.7.

We now fix a larger monster model é >~ G as above (and view G as a small
elementary submodel of it). Then, by Fact 5.7, we have that

H o= (S(p)) ={a e G:a = p for some p € S(u)}

is a G-type-definable subgroup of G and S(p) = gen(S(p)) is precisely the set of
generic types of H over G. Note that the definition of H a priori uses all of the
parameters in G. We will show that it can be defined over a subset of G that is
small with respect to G, and that it is equal to the stabilizer of p. Let H(z) be a
partial type over G defining H, i.e. H(G) = H. Given p € S,(G), we let p € S,(G)
be its unique G-definable extension, and given v € M, (G) we let ¥ € M, (G) be the
unique G-definable extension of v (by Fact 2.4). We have the following sequence of
observations.
(1) pxg=1r <= pxq=r for any p,q,r € S(G).

~

(2) The same holds for measures, in particular i is an idempotent of (zmw (9), *) )

Indeed, assume p,v € M, (G) are definable over some small G’ < G. Then
1t x U is definable over G’ (by Proposition 3.15) and extends u * v, hence
[i * U = i * v by uniqueness of definable extensions (Fact 2.4).

(3) Stabu(é) = Stab(iz) (by Proposition 5.3 and definability of the measure).

(1) S() = {7 p € S}
Indeed, suppose p € S(u), but p ¢ S(f), then there is some ¢(x,b) € p such
that fi(¢(x,b)) = 0. In particular, = d,p@(b), where d,(y) € Ly(c) for some
finite tuple ¢ C G is a -definition for p. By |G|*-saturation of G, we can
find some b’ € GY with b’ =¢. b. By definability (and hence invariance) of i
over G, we have = d,(b') and p(p(z, b)) = ez, b)) = 0. So ¢(z, V') € p,
contradicting p € S(u).
Conversely, suppose r € S(i1). As i is definable over G, in particular it is
non-forking over G, hence every type in its support is non-forking over G.
In partiﬁl_lkmr r is non-forking over G, hence definable over G by stability,
so r = (r|g) and r|g is clearly in S(u).

(5) The generics of H(z) over G are precisely {p : p is a generic of H over G}.
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By stability, every generic r of H(z) over G does not fork over G, so it

is definable over G and r|g is a generic of H(z) over G, hence r = @
Conversely, a definable (non-forking) extension of a generic type is generic.
(6) Hence, by (4) and (5), S(fz) is precisely the set of the generics of H (z) over
G, in particular (S(R), *) is a topological group by Fact 5.4(3).
(7) Viewed as a regular Borel measure on S, (G), 7i restricted to (S(fi), %) is
right-*-invariant.
Indeed, (S(fi),*) is a group by (6), so for any p € S(z), p~' € S(n) is
well-defined. By regularity of the measure, it suffices to check *-invariance
for clopen subsets. Let ¢(x,b) € L4(G). Then for any p € S(i) we have

1i({p(x, b)) xp) =i ({g *p: o(x,b) € q})

=0 ({g:p(z,0) € gxp'}) = (p(z - b)),

where ¢ = p~!|4;. And by Corollary 4.16, fi(p(z - ¢, b)) = ji(¢(x,b)).

(8) By Fact 5.4(4) for 7, there is a unique right-H-invariant Keisler measure
v € M,(G) such that v(H(z)) = 1, S(v) is the set of generics of H(x) over
QA, and v [g@,) (viewed as a Borel measure) is the Haar measure on the
compact topological group (S(v), ).

(9) Thus S(z) = S(v) using (6), and as both p, v are right #-invariant restrict-
ing to S(v), by uniqueness of the Haar measure we have 11 [gz)= v [s(),

-~

hence i = v (as for any formula ¢(z) € L,(G) we have u(p(x)) = u(p(xz)N
S(p)) and the same for v, by Proposition 2.7(2)).

(10) By (8) we have # C Stab(v) (the stabilizer in G), and in fact H = Stab(v)
(as any two cosets of H in Stab(v) would give two disjoint sets of y-measure
1). Using (8) (and (3)) it follows that S(fi) C H = Stab(v) = Stab(ji) =
Stabu(é), so 11 is a left- (and also right, by stability) invariant measure on
the G-type-definable group Stabu(é). Hence p is a right-invariant measure
on the G-type-definable group Stab,(G).

O

Remark 5.9. It was pointed out by the referee that type-definability of H over a
small subset of G is immediate from Hrushovski’s theorem that in a stable theory T,
any type-definable group is given by an intersection of at most |T'|-many definable
groups (see e.g. [21, Lemma 6.18]). However, showing that H is the stabilizer
appears to require some additional argument along the lines presented above.

Remark 5.10. Some of these results can be generalized for idempotent measures
in NIP groups, and we hope to address it in future work.

6. DESCRIBING THE CONVOLUTION SEMIGROUP ON FINITELY SATISFIABLE
MEASURES AS AN ELLIS SEMIGROUP

6.1. Dynamics. We begin this section by recalling the construction of the Ellis
semigroup. Let X be a compact Hausdorff space and S be a semigroup acting on
X by homeomorphisms. In particular, there is a map 7 : S X X — X such that
for each s € S, the map 7, : X — X,z + 7(s,x) is a homeomorphism. Let X%
be the space of functions from X to X equipped with the product topology. Then,
{ms : s € S} is naturally a subset of XX. Finally, the Ellis semigroup of the action
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(X, S,7) is (cl({ms : s € S}),0), where we take the closure of {7, : s € S} in X*X.
When the action map  is clear, we will denote this semigroup as E(X, S).

Let now T be a first order theory expanding a group, G a saturated model of T,
and G < G a small elementary substructure. Recall that S;(G,G) denotes the set
of global types finitely satisfiable in G. There is a natural action of G on S, (G, G)

via g-p={p(z): p(g~" - x) € p}.

Fact 6.1 (Newelski [19]). There exists a semigroup isomorphism (which is also a
homeomorphism of compact spaces) E(S.(G,G),G) = (5.(G, G), *).

In this section, we provide an analogous description for the convolution semi-
group on finitely satisfiable measures in NIP theories. Recall that 9, (G,G) C
M..(G) is the collection of global measures finitely satisfiable in G, and this space
of measures is naturally identified with a closed convex subset of a real topological
vector space (of all bounded real-valued measures on S;(G)). We identify G with the
set {0y : g € G} C M, (G, @), and let conv(G) denote the convex hull of G. There is
a natural semigroup action of conv(G) on M, (G, G): for any Y .| r;id,, € conv(G)
(with g; € G and r; € Rxo,> 1 = 1), p € M, (G, G) and ¢(z) € L,(G), we
define (Z?:l riégi) p € My (G, G) by

((Z Tz'5gi,> -u) (p(x)) = Zmu(@(gi - ).

For the rest of this section, we will denote elements of conv(G) as k, the semi-
group action described above as 7 : conv(G) x M, (G, G) — M4;(G, G), and the map
p— mw(k,pn) as m,. It is not difficult to see that for every k € conv(G), the map
7, is continuous. Therefore, we can consider the Ellis semigroup of this semigroup
action, namely E (MM, (G, G), conv(Q@)).

We will show that if T is NIP, then this Ellis semigroup is isomorphic to the
convolution semigroup of global measures finitely satisfiable in G, i.e. (M. (G, G), %)
(Theorem 6.10). We demonstrate that that these two semigroups are isomorphic
by considering the map p : M, (G, G) = M, (G, G)™+(9C) defined by p(v) = p, :=
v * —, and proving that the image of p is precisely the Ellis semigroup. Before
continuing, we check that p is well-defined, and that 9,(G, G) is a semigroup.

Proposition 6.2. Let T be NIP and assume that p € M, (G, G). Then:

(1) w is Borel-definable over G;

(2) for any v € My (G, G), pxv € Ma(G, G);

(3) the operation x on M, (G, G) is associative, hence (M, (G, G), ) is a semi-
group.

Proof. (1) follows from Fact 2.2(2a) while (2) follows from Proposition 3.15(2).

(3) We show that the operation * is associative on 9™ (G, G) (note that it
is closed under #*, as under the NIP assumption the ®-product of two invariant
measures is invariant, see e.g. [27, Section 7.4]). The proof is similar, but not
identical, to the proof that ® is associative on invariant measures in NIP theories [6].
Fix a formula ¢(x) € L,(U). Let 0(x,y; 2) := p(z-y-2) and p(x;y,2) := p(x-y-2)
(where y, z are variables of the same sort as z). Assume that u,v, A € M2 (G, G)
— all Borel-definable over G by Fact 2.2(2a). Without loss of generality, we may
assume that G contains all of the parameters from ¢.
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Let A be a smooth extension of Mg such that X is smooth over some small
H; = G. Let U be a smooth extension of v|g, such that U is smooth over some
small model Hs such that G < Hy < Hs. We are following the notation of Section
3.2, in particular ¢'(z;z) = p(x - z). We have:

(a) F&ff)’z) (r) = ngf@gzg(r) for all 7 € S,(G) — as for any b € U? realizing r
we have F(r) = (1 v)a(p(x ) = ptz @ vy (0 - y - b)) = Flg, (1),

(b) Fglg’xj% (p) = ((;’”*2\)( H)( ) for all p € S,.(Hs) — similar to (a);

(c) (W@ MN)|e =(®MN)|g, hence (Ux\)|g = (v*A)|g — by the Claim in the proof
of [6, Theorem 2.2].

Note that p is invariant over both G and Ho, hence for any measure v € M,.(G)
and formula ¥ (z;y, z) € L(G) we have (as in Proposition 3.3):

) fsyz(c;) F;ﬁcd(’ﬂc‘) = fSyZ(HZ) F$H2d(7|H2)'

Finally, we also have:

(e) U ® X is smooth over H, (by Fact 3.8(4));
(f) U A is dfs over Hy (by Proposition 3.15(1) and (2));

Using these observations we calculate:

(%) 5 (@) = [(1% 1) ® M) (ol - 2) = /S o FEiEd0ulo)

(a) T,Y;z
= / Fui(@fiy ad(A:le)
S(G)

= [(tz @ 1y) @ A)(0(, 9 2)) = [(1e @ vy) @ Ae](p(2 -y - 2))
= [t ® (vy @ A)(p(2 -y - 2)) (by Fact 3.8(5))

T3Y,2 (C) x3Y,2 ~ >
:/ FIU99d (v, @ X.)l6) =/ Frey >d((yy®xz)|g)
Sy=(G) )

Yz

_ Py g (5 @ N i
AR I CEPSIEY
(by (d) with v, := 7, ® A, and ¥(z;y, 2) := p(a;y, 2))

Sy (H2) vy
© PP (= )
- /S'T(H2) (V*A)z, (/J’I|H2)
= / ML,(I Z)d ((/V\*}:)z|H2) (by (f) and Fact 3.8(3))
Sz (Hz)

:/ FE G0 (0 3):16) (by (@) with . = (7% ). and g(a;2) = ¢/ (252))
S.(G) ¢

—~

C

9 RNl
S:(G)

= px (v * N)(o(a)).

N2
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Hence the map p : M(G, G) — M, (G, G)™=(9S) is well-defined. In the next
subsection we show that it is also left-continuous.

6.2. Left-continuity of convolution. We begin with a general continuity result
in arbitrary NIP theories. Let T be an NIP theory, &/ a monster model of T, and
M a small elementary substructure of U.

Proposition 6.3 (T NIP). Let M < U and let MV (U, M) be the closed set of
global M -invariant measures (Definition 2.1). If v € M, (U) and ¢(z;y) is any
partitioned L., (U) formula, then the map — @ v(p(z;y)) « MU, M) — [0,1] s
continuous.

Proof. Choose Ny < U small and such that M < Ny, and Ny contains the param-
eters of . Then, choose a small N < U such that Ny < N and there exists some
v € My(U) such that |y, = v|n, and ¥ is smooth over N (by Fact 2.5). Fix
e € Ry, by Fact 2.2(1a) let b = (by,...,b,) be some (¢*,¢)-approximation for v
over N (where ¢*(y;z) = ¢(x;y) and b is some element in (N¥)<%, see Definition
2.1(7)). Note that every pu € M2 (U, M) is invariant over both Ny and N. Then
we have (the last equality holds as in the proof of Proposition 3.3):

pertplan) = [ Frndbind = [ Frd@ln = [ Fyd@ly).
Sy(No) Sy (No) Sy(N)

As U is smooth over N, by Fact 3.8(1) we have

[ v = [ FEdl).
Sy(N) Sz(N)

x

Note that FKVE)N(p) = %Z?:l X{TESI(N):LP(I,bi)GT‘}(p) for every p € Sm(N)7
where y is the characteristic function. Now, using that b C N is a (¢*,¢)-
approximation for 7, we have the following (note that we identify ¢(x,b;) with
the set of types satisfying it over NV in the first step, and over U in the second step).

[ mdt ~ [ FE )
Sz(N) Sz(N)

x

/S(N)< wab)> %!
- ’112; </SI<N> Xt d(ply) > ZMN
= = Z/S X (x,b;)

Clearly, each map [ Xy (a5,) 1 Ma(U) — [O, 1] is continuous by the definition of the
topology on the space of measures. Therefore, each map [ Xo(z,b;) ° MV (U, M) —
[0,1] is continuous, hence their sum is continuous as well. Since the choice of b is
independent of the choice of u, we have

1 n
pev(ip(r;y)) — = / Xoo(,b;) Al
n ; S.) o(,b:)

sup <E.

pEMIBY (U, M)
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Therefore, the map — ® v(¢(x;y)) is a uniform limit of continuous functions and
hence continuous. ]

Now, we apply this to our group theoretic context. Let again T be an NIP theory
expanding a group, G a monster model of T, and G < G a small model.

Proposition 6.4. Let v € M, (G, G). Then the map —*v : M, (G,G) — M,(G,G)

15 continuous.

Proof. Let U be a basic open subset of 9, (G,G). That is, there exist formulas
©1(2), ...y n(x) in L,(9) and real numbers r1, ..., 7y, S1, ..., Sy, € [0, 1] such that

U=({peM(G,G):ri < plpi(x)) < si}.
i=1
Then we have

(— *y)_l(U) = ﬂ{,u EML(G,.GQ) :r; < uxv(pi(z)) < s}

i=1

ﬂ 1€ M(G,G) 1 < pa @ vy(i(x - y)) < si}

=N (=ew (el 9) ™ (10 € MaA(G.G) 11 < liue)) <)),

Therefore by continuity of the map —® v(¢(z-y)) (Proposition 6.3), the preimage
of U under — x v is a finite intersection of open sets, and therefore open. O

6.3. The isomorphism. In this subsection we show that the map p : M, (G, G) —
EM.(G,G),conv(G)) given by p(v) = p, = v* — is an isomorphism. We begin by
recalling the topology on M, (G, G)™=(9:),

Remark 6.5. The topology on 9, (G, G)™=(9:C) is generated by the basic open
sets of the form
U=(Wf: MG, G) = MG, G) | s < f(1i)(¢hi(x)) < s},
i=1

withn € N, r;, 8, € R, ¥ (x) € L,(G), and v; € M, (G, G) (with possible repetitions
of v;’s and ¥;’s).

Lemma 6.6. The map p is injective.

Proof. Note that for every v € M, (G,G), p,(dc) = v, where e is the identity of
g. O

Lemma 6.7. If i € M, (G, G), then p, € cl ({m), : k € conv(G)}). So
p(M(G,G)) € EM,(G,G), conv(G)).

Proof. Let U be an open subset of M, (G, G)™=(9¢) containing p,. It is a union of
basic open sets (see Remark 6.5), hence we can choose some n € N, a sufficiently
small € > 0 and some ¥ (z), ..., Y (x) € Ly(U) and vy, ..., vy, € M4(G, G) such that

B. = ﬂ{f () (@i(2)) = pu(v) Wi (2)] < 2} €U,
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Let Hy < G be a small model containing G and the parameters of 91, ...,1,. By
Fact 2.4, we can choose a small model H < G and measures 7; € 9, (G) such that:

e GHy=<H< g;

® Uilm, = VilH,, for all 1 <4 <n;

e U; is smooth over H, for all 1 <7 < n.
Take some 0 < g9 < 5. Recall from Section 3.2 that ¢’ (x;y) = ¥(x - y) € Lyy(Ho).
By Fact 2.2(1a), let b; = (b;; : 1 < j <m;) € H<“ be a ((1})", £0)-approximation
for 7;. Then, using that u is invariant over both Hy and H and 7; is smooth over
H as in Proposition 6.3, for every 1 < i < n we have:

pu(vi)(Wi(2)) = pxvi(Pi(@)) = p @ vi(Yi(z - y))

b, P
- Fll i) = [ FYlyd@iln)
/Sy(Ho) Y e R

: ;)"
- / F d(@ ) = / FYY dtul )
Sy (H) Sz (H)

~o [ PR ) = mzZu vile b))

Let ¥ = {¢;(z-b;;): 1 <i<mn,1<j<m;}. Since p is finitely satisfiable in G,
we can find some k,, € conv(G) such that k,(0(z)) ~., u(f(x)) for each 0(z) € ¥
(see the proof of Proposition 2.11). We claim that then 7, is in B.. This follows
directly from running the equations above in reverse: for each 1 < i < n we have
(using that k,, is obviously invariant over G, hence also over Hy)

m;

—Zwm bi.j)) ~eq Zk (Wil - bi j))

[ A sl e [ B d )
Sq (H) H)

x

:/ F];lf:,Hd(l//\AH):/ Flj:,Hod(/V\’i‘Ho)
Sy(H) Sy (Ho)

= ku @vi(Yi(x - y)) = mr, (i) (Pi ().
Hence p,(v;)(¥i(x)) ~3e, Tk, (vi)(i(x)) for each 1 < i < n, so m, € B. CU and
we are finished. O

Lemma 6.8. p(M,(G,G)) = E(M,(G, G), conv(G)).

Proof. Let f € E (M, (G, G),conv(G)) be arbitrary. Then f € cl ({my : k € conv(G)}),
and so there exists a net (k;);er with k; € conv(G) such that lim;ey 7, = f. Then,
using Remark 6.5, for every ¢ (z) € £,(G) and v € M, (G, G) we have

limmy, (v) (¥ (2)) = f(r)(%(2)).

Consider 0., where e € G is the identity. Let py := f(dc) € M,(G,G). We claim
that the net (k;);er converges to pf in M, (G, G). Indeed, for any (x) € L,(G) we
have

lim k; ((2)) = lim 7y, (3e) (¢(2)) = F(0e) (¢ () = s (¢ ().

iel el
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Next, we claim that for any v € M, (G, G), we have that f(v) = p,,(v). Indeed,
first we have

fv) =limmy, (v) = limfmy, © p,)(0) = U pro (3 ) = lim(k; * v].
The map — xv : M, (G, G) = M, (G, G) is continuous by Proposition 6.4, hence it
commutes with net limits. Therefore,
lzlenfl[kZ *x V] = [lzleHIlkl] *U =g xkvV=pu, (V).
We conclude that f = p,, = py* —. O
Lemma 6.9. The map p~! : E(M.(G,G),conv(G)) — M. (G, Q) is a continuous
bijection.

Proof. The map p~! is a well-defined bijection by Lemmas 6.6 and 6.8. Let U be
a basic open subset of M,.(G, G), say

n

U= ({reM(G,G):ri < plpi()) < si}

i=1
for some n € N, ¢;(z) € L,(U) and 7;,s; € [0,1]. Then,

(0™ (U) = (" € EON(G. G), conv(G)) : i < [(8e)(wil)) < si}-

i=1
This is a restriction of a basic open subset (see Remark 6.5) to E(9M, (G, G), conv(G)),
hence open in the subspace topology. (Il

Theorem 6.10. The map p : (M,(G,G),*) - E(M,(G, G),conv(Q)) is a homeo-
morphism which respects the semigroup operation, and therefore an isomorphism.

Proof. The map p is a homeomorphism since, by Lemma 6.9, p~! is a continuous

bijection between compact Hausdorff spaces. And note that p(uxv)(A) = (u*xv)*\ =
px (vxX) = pu(v*AX) = puop,(X), hence p(u*v) = p,op,. O
Remark 6.11. On the other hand, if T is NIP, then

EM.(9,G),G) = E(5:(9,G),G),

and so = (5;(G,G), *) by Fact 6.1. For a countable G < G, this is an immediate
consequence of the corresponding observation in the context of tame metrizable
dynamical systems (see e.g. [11, Theorem 1.5]); and for an arbitrary small G < G, an
approximation argument with smooth measures (as in Lemma 6.7) can be adapted.
As typically (M, (G, G),*) % (S:(G,G), ), we see that it was crucial to consider
the action of conv(G) rather than G in our characterization of (M, (G, G), %) as an
Ellis semigroup.
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