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The global scientific community continues to   
 warn that increasing climate change and biodiversity 

loss will have reinforcing and codetrimental impacts on 
humanity. These impacts include increasing vulnerability to 
food insecurity, health risks and disrupted livelihoods, and 
even involuntary displacements leading to potential social 
unrest (e.g., IPBES 2019, IPCC 2021, 2022). As the window 
to avoid far-reaching and irreversible impacts on people and 
nature rapidly closes (IPBES 2019,  IPCC 2021, 2022), the 
current actions to address these global challenges are insuf-
ficient (e.g., Ripple et al. 2017, Arneth et al. 2020). Strategies 
to address some of the negative trends have been proposed. 
However, the feedback loops and interactions among bio-
diversity, climate, and society at multiple spatial, temporal, 
and organizational scales—what we label in the present 
article the biodiversity–climate–society (BCS) nexus—are 
generally ignored (Pörtner et al. 2021). This is problematic 
because the connections among climatic, ecological, and 
social systems transmit risks from one system to another. 
Response strategies that ignore these nexus interactions may 
significantly misestimate those risks, thereby increasing the 
chance of irreversible environmental changes across the 
planet (Simpson et al. 2021).

To simultaneously address interlinked global challenges, 
the scientific community has increasingly emphasized the 
need for deep and urgent transformative changes across 
economies and societies. Transformative change is under-
stood as game-changing shifts, or “fundamental, system-
wide reorganizations across technological, economic, and 
social factors, including paradigms, goals, and values” 
(IPBES 2019: 14). Such emphasis by the global scientific 
community contrast with the policies being currently 
proposed that focus on incremental changes or changes 
restricted to actions that are accommodated within existing 
system structures and goals—for example, actions geared 
to increase energy efficiency within production life cycles 
under an overarching goal of constant and exponential 
economic growth. Given the current situation, we posit that 
incremental changes are unlikely to gain sufficient traction 
to be scaled up if they are not accompanied by broader sys-
tem-wide institutional changes to create the structural con-
ditions for such scaling up to occur. Incremental changes 
also risk being too slow to avoid severe negative impacts on 
people and nature. The Intergovernmental Panel on Climate 
Change's (IPCC) recent report (IPCC 2021) indicated that, 
if current emission levels continue, the 1.5 degrees Celsius 
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temperature threshold could be surpassed this decade. 
Similarly, the Intergovernmental Science-Policy Platform 
on Biodiversity and Ecosystem Services (IPBES) concluded 
in its Global Assessment that reversing the processes of bio-
diversity decline can only be achieved through intentional 
and transformative changes across economic, social, politi-
cal, and technological systems (IPBES 2019). The need for 
transformative change was also one of the key messages 
to policymakers of the first joint workshop report by the 
IPCC and the IPBES (Pörtner et al. 2021), which pointed 
out the need for a system-wide reconfiguration of societal 
structures and institutions (i.e., conventions, norms, and 
rules), because these largely determine societal goals, val-
ues, and behaviors, all of which are essential to address the 
underlying drivers of the climate and biodiversity crises. In 
other words, bringing about transformative change requires 
transformative governance, which would need to address 
the inherent complexities of the BCS nexus, particularly 
around speed, scope, scale, and social impacts and feedback 
loops.

The question we attempt to answer in the present article is 
this: How can transformative governance be achieved for the 
BCS nexus? Although much literature has addressed trans-
formative change in a general sense (e.g., Horlings 2016, 
Colloff et al. 2017, Barnes et al. 2020, Hysing and Lidskog 
2021), the specific needs for transformative governance 
around climate and biodiversity have, to date, gone largely 
unidentified. We delineate key conditions required for shift-
ing from (at best) a stepwise (incremental) agenda aimed at 
modest reforms to one that intentionally embraces deeper 
(i.e., tackling underlying or indirect drivers of change) and 
more rapid transformative potential to address fundamental 
BCS interactions, limits, and thresholds.

We draw on the frame of the BCS nexus of the first joint 
IPCC–IPBES report to which we contributed (Pörtner et al. 
2021). We first outline how the elements of the nexus inter-
act, such as through cobenefits, trade-offs, and codetriments, 
as well as the importance of both negative and positive tip-
ping points, to identify the conditions for transformative 
governance for climate and biodiversity. To be transforma-
tive, governance approaches will likely need to include inte-
grative, adaptive, and equitable elements in order to account 
for the social complexities of the BCS nexus.

To illustrate the opportunities, barriers, and challenges 
for transformative governance, we draw on four examples in 
forest ecosystems, marine ecosystems, urban environments, 
and the Arctic. Ideally, transformative governance would 
catalyze and create inclusive (but sometimes intentionally 
disruptive) approaches for upscaling of more effective and 
just interventions in the BCS space, such as by triggering 
positive social tipping points or by avoiding negative bio-
physical tipping points (Stadelmann-Steffen et al. 2021). 
But our examples show this is rarely achieved. By drawing 
on lessons from these case studies, we identify general but 
actionable principles that are likely to be required for trans-
formative governance of the BCS nexus.

Key elements of the BCS nexus
The BCS nexus is characterized by a complex and dynamic 
interaction space. Recognition of these interactions can help 
avoid negative thresholds while achieving positive thresh-
olds that enable transformative change.

Recognizing BCS interacting dynamics.  The biodiversity and 
climate crises and their societal causes and consequences 
have traditionally been explored by focusing either on the 
biophysical level, including biodiversity (B)–climate (C) 
interactions, or on the societal (S) level, including policy 
interventions and institutional structures (for a summary, 
see Chapin and Díaz 2020). The IPCC–IPBES report argues 
that it is necessary to consider the joint three-way interac-
tions among biodiversity, climate, and society in order to 
effectively maximize cobenefits and minimize trade-offs and 
codetrimental outcomes (Pörtner et al. 2021). In this section, 
we provide examples of how moving from a siloed approach 
of considering BCS component separately toward rethinking 
their interaction space as a nexus with explicit links between 
its components can lead to more positive outcomes in all 
three dimensions. We specifically consider how the soci-
etal dimension flows into and feeds out of BC interactions 
(figure 1). Such a nexus approach has the advantage of mak-
ing the entire system better able to respond to the speed and 
scale of the coupled climate and biodiversity crises.

Biophysical interactions typically involve the relationships 
among climate, biodiversity, and ecosystem functioning, 
including productivity and carbon removal and storage 
(Duffy 2009) and the tolerance and adaptation limits of 
species and ecosystems (Pires et al. 2018, Hoegh-Guldberg 
et al. 2019). The social dimension refers mostly to issues of 
human well-being and justice, as well as to the associated 
governance challenges (i.e., the establishment of new institu-
tions or the redesign of already existing ones that could help 
navigate the biophysical BC interactions). The social dimen-
sion depends in part on how the BC interaction occurs. For 
example, the impacts of biodiversity restoration projects 
on society can vary depending on the restored community 
composition (e.g., if restored species can be used as wild-
harvested foods or were only chosen for carbon priorities) 
or on the degree to which climate change shifts the biogeo-
graphic distribution of restored species (Robledo et al. 2012, 
Wessels et al. 2021).

The social dimension also actively shapes BC interactions 
(Bennett et al. 2017). Take, for example, antipoverty inter-
ventions based on the simplistic assumption that well-being 
effects of economic growth automatically trickle down to 
small farmers. In fact, agricultural growth strategies can 
become a potent trigger of land grabbing to favor capital 
accumulation by the agribusiness sector while eroding the 
ecological resource base of agroecosystems and increas-
ing social inequalities (Borras and Franco 2018, Ceddia 
2020, Gras and Cáceres 2020). This, in turn, can cascade 
and amplify negative impacts on the BC interaction space, 
harming both biodiversity and climate. This may happen by 
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replacing undisturbed biodiverse high-carbon storage eco-
systems with agricultural monocultures that have poor car-
bon-storage capacities. Societal impacts then flow once again 
out of the BC interaction space: In the agribusiness example, 
a focus on maximizing short-term economic growth could 
lock in maladaptive responses, including land degradation 
and the displacement of smaller-scale landholders’ resilient 
agricultural practices and institutions such as social norms 
for collective action (Albizua et al. 2019, Labeyrie et al. 
2021). Other examples of societal impacts flowing out of BC 
interactions include the expansion of monoculture afforesta-
tion for carbon sequestration that misses the opportunity to 
increase native biodiversity and sustain local people's liveli-
hoods (Abreu et al. 2017, Doelman et al. 2020) rather than 
supporting restoration efforts based on local knowledge and 
practices that might produce cobenefits for ecosystems and 
people (Reyes-García et al. 2019).

Interactions in the BCS nexus from a particular action 
can be placed into three broad categories, each character-
ized by the outcomes of interactions across the biophysical 
and social subsystems: cobenefits (when the action leads to 
all BCS components to have positive outcomes), trade-offs 
(when the action leads to negative outcomes for B, C, or S, 
and the remainder positive or neutral), and codetriments 
(when the action leads to all BCS components to show nega-
tive outcomes; figure 1). Although these broad categories 
provide a useful heuristic, recognizing the complexities 
that underlie BCS interactions is important—particularly, 
the specific social–ecological or spatiotemporal context to 
be considered. For example, BCS interactions may involve 
nonlinearities in the shape of their association, including 
synergistic or saturating functions, cascades and feedback 
loops, and off stage (i.e., spatially and temporally distant and 
diffuse) environmental impacts (Pascual et al. 2017, Pörtner 
et al. 2021, Meyfroidt et al. 2022).

Broadly, these complexities call for a 
holistic understanding of BCS interac-
tions, including considering how interac-
tions change over time and have different 
effects across spatial scales. The resto-
ration of diverse, high-carbon storage 
ecosystems provides an example of such 
complexities. Restoration might have 
immediate benefits for biodiversity and 
local populations and their future liveli-
hoods via enhanced options for adapting 
to climate change (Colloff et al. 2020), 
but restoration might have delayed ben-
efits for carbon storage, which might 
taper over time as the ecosystem matures 
(Bindoff et al. 2019, Leo et al. 2019, Yang 
et al. 2019). Another example includes 
runaway biodiversity–climate feedback 
loops in which human-induced biodi-
versity loss diminishes ecosystem func-
tions, including carbon storage. This 

then leads to further warming, in turn triggering additional 
loss of biodiversity that may result in significantly larger cli-
mate and biodiversity deterioration than when considering 
each component in isolation and, therefore, underestimating 
the negative effects on vulnerable communities’ well-being 
(Bergstrom et al. 2021, Trisos et al. 2021).

Transformative governance approaches and specific pol-
icy options can be improved by better understanding the 
speed, scope, scale, and impacts of the interacting BCS 
nexus components. Social–ecological systems include a mix 
of processes that operate at both fast and slow rates (Walker 
and Salt 2006, Walker et al. 2012). Examples of fast processes 
include political electoral cycles and fast turnover in domi-
nance of exotic species, as well as short-lived climate forcers, 
such as methane or crop-production cycles. By contrast, 
slow processes include those associated with shifting socially 
shared values and visions about progress and well-being, 
ice-sheet melting, sea-level rise, and decomposition of soil 
organic matter. These slow processes can take generations. 
Addressing multiple interactions over vastly different time 
scales but potentially occurring at the same time requires 
institutional (including policy) flexibility, continual inno-
vation, social learning and adjustment, and adaptation of 
governance arrangements (Ramm et al. 2018, Reyers and 
Selig 2020).

Understanding the scope of interactions should include 
attention to the considerable asymmetries inherent in the 
BCS space. The negative effects of climate policy interven-
tions on biodiversity are more prevalent than the negative 
effects of biodiversity policy interventions on climate 
(Pörtner et al. 2021), with potential complementary effects 
across multiple ecosystems and scales (Manes et al. 2022). 
Similarly, the direct and immediate social impacts of land-
based biodiversity and climate interventions are typically 
higher on rural than on urban populations (Karlsson et al. 

Figure 1. Outcomes of interactions within the biodiversity–climate–society 
(BCS) nexus. The triangle represents the BCS nexus, including biophysical 
interactions between biodiversity and climate and their explicit links with 
the social dimension. The interactions and outcomes of the BCS nexus shape 
the inputs and outputs to policy intervention. Transformative governance 
might help guide BCS nexus interactions toward more cobeneficial outcomes 
or, at least, toward those with minimal and controlled trade-offs, whereas 
incremental governance might lead to strong trade-offs.
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2020). Multiple scales are also in effect in uneven ways in 
the BCS space; for example, climate impacts are driven 
by globally accumulating greenhouse gases, which can be 
felt in local and regional levels, whereas biodiversity loss 
impacts are almost always locally experienced and thereby 
affect the capacity of ecological systems to benefit people 
as local public good but whose aggregate global effect may 
be declining across global taxa and their associated gene 
pools (i.e., a global public good; Perrings and Kinzig 2021).

Governance institutions also cross multiple dimensions 
and scales—for example, from those based on collective 
action by local communities to global environmental agree-
ments such as those under the Convention of Biological 
Diversity. This creates complexity for any specific level 
of jurisdiction to grapple with and temporal, spatial, and 
institutional scale mismatches (Bai et al. 2016a). Moreover, 
if these scales are not properly aligned, they can lead to 
institutional inertia. However challenging, integrating sys-
tems thinking into governance is much needed to address 
the increasingly telecoupled nature of BCS interactions 
(Liu et al. 2018, Simpson et al. 2021, Meyfroidt et al. 2022). 
Awareness of and devising mechanisms to adapt to the 
synergistic outcomes (both positive and negative) that are 
characteristic of the BCS nexus can help inform policy inter-
ventions to optimize cobenefits, minimize trade-offs, and 
avoid codetrimental impacts.

Negative and positive thresholds in the BCS nexus.  In the absence 
of policy interventions to address the climate and biodi-
versity crises, the risks of exceeding biophysical limits and 
crossing critical thresholds that trigger tipping points can 
be high (e.g., Zhang et al. 2020). This would likely result in 
system feedback loops that propel the coupled biophysical 
BC space into a new state from which recovery may be dif-
ficult. Such shifts are often associated with abrupt changes 
in ecosystem function (i.e., red lines; Lenton et al. 2019). 
Biophysical tipping points generally occur over different 
temporal trajectories, with some being approached gradu-
ally, whereas others are more abrupt. In all cases, however, 
they could cascade through the social subsystem, affecting 
all human societies, likely exacerbating social inequality and 
the vulnerability of marginalized communities (Otto et al. 
2017, van Ginkel et al. 2020, Simpson et al. 2021). Although 
many climate- and biodiversity-related tipping points in 
key biomes across the world are known (IPCC 2014, 2019a, 
2019b, Steffen et al. 2015), predicting with relative high 
degrees of accuracy the likely location and timing of trig-
gering conditions remains challenging (Scheffer et al. 2015).

The potential for feedback loops and nonlinear effects 
associated with BC interactions implies that when governing 
the BCS nexus, special attention should be paid to avoid-
ing tipping points that negatively affect nature and people 
in irreversible ways. An example is the shifts from coral to 
algae-dominated systems on reefs. These shifts are driven by 
the rising temperatures associated with climate change (and 
are exacerbated by ocean acidification and local stressors 

such as overfishing and pollution) and have led to widespread 
bleaching of corals, allowing algal communities to become 
dominant (Bruno et al. 2019). This regime shift suppresses 
an important ecosystem engineer (i.e., corals), thereby caus-
ing the reef-associated fish assemblage to degrade, negatively 
affecting reef fisheries and fishers’ livelihoods (Ainsworth and 
Mumby 2015). Another example involves the tipping point 
of shifts from sea-ice- to open-water-dominated systems, 
involving transitions from predominant sea ice (sympagic) 
and benthic productivity to primarily pelagic productivity 
caused by increased temperatures. This affects human societ-
ies, including Inuit communities, who directly depend on sea 
ice to hunt and as a base for transportation (Duarte et al. 2012, 
Steiner et al. 2021). In this case, the thresholds on environ-
mental temperature for retaining sea ice are exceeded, altering 
biological community composition, trophic structure, and the 
downstream consequences for people, including harm to their 
livelihoods and cultural identity.

Despite research in cases such as coral reefs and kelp for-
ests, the complexity of BCS interactions makes it challenging 
to identify the precise triggers of tipping points. Proactive 
climate and biodiversity conservation policies are therefore 
critical to staying well away from critical thresholds (IPBES 
2019, Lenton et al. 2019, van Ginkel et al. 2020). Inherent 
uncertainties require prioritization of the precautionary 
principle, which, although it has been incorporated into 
multiple legal instruments, still often fails to be in full effect 
(Read and O'Riordan 2017). It is also possible to think of 
BCS-related positive social tipping points.

Tipping points can also be understood from a social per-
spective. Social tipping points represent situations associated 
with large and abrupt shifts within the social system, which 
can lead to transformative change. Generally, social tipping 
dynamics are understood as processes linked to the spread-
ing of norms, opinions, behaviors, and actions through 
social networks in ways that are difficult to stop or reverse 
(Milkoreit et al. 2018, Stadelmann-Steffen et al. 2021). 
Although attention is often paid to social tipping points with 
negative outcomes that are triggered by political, economic, 
or food crises, among others, positive social tipping points 
that involve actions with desirable social transformations are 
also possible. However, positive social tipping points have 
only recently come to the fore within a BCS nexus perspec-
tive (Franzke et al. 2022). The dynamics of positive social 
tipping are also often nonlinear, where a small social inter-
vention by political and social actors triggers an accelerating 
feedback response that leads to a substantial and potentially 
irreversible change in the social system via positive conta-
gious dynamics (Milkoreit et al. 2018, Stadelmann-Steffen 
et al. 2021). Examples of BCS-related positive social tipping 
points include well designed restoration programs that not 
only induce positive land cover changes in implementing 
communities but that have spilled over into other nearby 
areas, as well as benefits experienced by neighbors (Buxton 
et al. 2021). Likewise, rapid shifts in public opinion, as well 
as individual preferences, behaviors, and values leading to 
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behavioral change in societies, such as the rapid uptake of 
electric vehicles beyond early adopters in Norway (Lenton 
et al. 2021), are examples of social tipping dynamics that 
could hopefully apply to the willingness to support the 
institutional changes needed to tackle the biodiversity and 
climate crises in effective and just ways (Brulle et al. 2012). 
Social tipping dynamics require technological, political, and 
behavioral processes. They are also a function of cultural 
conventions, including habits, norms, and regulations, and 
they are therefore hard to compare across different social 
contexts (Milkoreit et al. 2018). Although successful social 
tipping interventions in one social context may serve as an 
inspiration for others, it is important to not assume that all 
such successful interventions could become silver bullets 
across distinct social contexts.

Activating global positive social tipping dynamics through 
targeted actions (e.g., divesting from fossil fuels by a number 
of large investors, which could potentially trigger rapid and 
widespread divestment by others seeking to avoid losses) 
requires a mix of interventions that shift collectively shared 
norms and deeply held societal values (e.g., revealing the 

moral implications of continuing to burn 
fossil fuels). Activating social tipping 
dynamics also entails acting on psycho-
logical elements that underpin everyday 
individual behavior, including consump-
tion choices (O'Brien 2020), and entails 
confronting the political inertia and 
resistance by strong vested interests that 
favors the status quo (IPBES 2019, Otto 
et al. 2020) and that takes advantage of 
the rigidity inherent in political and eco-
nomic decision-making.

Actions are needed that disrupt the 
social mechanisms that maintain the 
status quo and that amplify reinforcing 
the global environmental crisis. Social 
tipping dynamics require identifying 
key intervention nodes at which small 
shifts, which are often hard to see (e.g., 
shifting values that are aligned with 
respect toward nature and future gen-
erations), can lead to activating strong 
motivations for behavioral change that 
can then spread quickly to become a 
major accepted practice (Markard et al. 
2020).  Figure 2 illustrates the idea that 
social tipping interventions might has-
ten BCS interactions toward cobeneficial 
pathways for people and nature.

Conditions and challenges for 
transformative BCS governance
Theorizing and defining transforma-
tive governance requires attention to the 
concepts of both transformation and 

governance. Governance generally refers to the use of a 
combination of formal and informal and public and private 
institutions (including norms, rules, and rulemaking sys-
tems) across actor networks at multiple levels (Biermann 
et al. 2009). Transformation implies fundamental changes 
across both societal structures and beliefs and behavioral 
dimensions such that new social–ecological systems are 
created, and it is contrasted with more reformist, shallow, 
or incremental changes that do not question current power 
structures nor lead to fundamental reorganizations (IPBES 
2019). Therefore, transformative governance aims to engage 
societal actors with contested perspectives about what are 
desirable societal values and goals, whether transformation 
is indeed desirable (and to whom) or existentially needed, 
and who is included in decision-making to transform cur-
rent institutional systems, particularly about vested interests 
who often oppose such actions (Bai et al. 2016b, Patterson et 
al. 2017, Blythe et al. 2018, Pickering et al. 2021).

What transformative governance would look like and 
how it is different from or related to existing theories 
of governance is a topic of much current discussion 

Figure 2. Social tipping points under the biodiversity–climate–society (BCS) 
system. Cobeneficial pathways are illustrated by movement toward desirable 
deep attractor basins in the BCS space (i.e., those that have positive cobeneficial 
outcomes across the three elements of the BCS nexus). Social outcomes are 
depicted by the color shading of the balls representing the state of the system 
over time. The landscape has different types of possible interactions: a 
cobeneficial one that society might aspire toward, depicted toward the center 
of the landscape; trade-offs in the BC space, depicted toward either side of the 
landscape; and codetrimental, depicted to the farthest ends of the landscape. 
Although fully cobeneficial pathways are an ideal to strive toward, it can be 
difficult to achieve fully positive outcomes in all three BCS dimensions (i.e., 
the middle pathway in the figure). Instead, the system might move away from 
a shallow attractor basin, with biodiversity–climate interaction trade-offs or 
negative social outcomes (deeper parts of the landscape represent greater system 
stability). Source: Adapted from Pörtner and colleagues (2021).
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(see  table 1). It is generally seen as governance that 
“has the capacity to respond to, manage, and trigger 
regime shifts in coupled social–ecological systems at 
multiple scales” (Chaffin et al. 2016). Although transfor-
mative governance is often depicted as being good for 
all, the reality is that the envisaged need for widespread 
changes across societies will most likely result in win-
ners and losers. Therefore, it has been hypothesized 
that governance needs to be integrated, adaptive, and 
equitable across natural and social systems in order to 
be truly transformative (Visseren-Hamakers et al. 2021). 
Furthermore, not only should issues of social equity be 
at the core of transformative governance discourses, but, 
correspondingly, problems of justice and asymmetric 
power relations, corporate capture, or greenwashing need 
to be tackled as well (Teichmann et al. 2020, Kenner and 
Heede 2021, Supran and Oreskes 2021), because vested 
interests by powerful actors often limit or derail attempts 
at sustainability transformations (Blythe et al. 2018, 
Pickering et al. 2021, Visseren-Hamakers et al. 2021).

Transformative governance needs to account for BC 
interactions while addressing structural and systemic 

social conditions and drivers of change (including cultural 
and economic). In other words, transformative changes for 
the BCS nexus need to be integrative (across scales, issues, 
and sectors), equitable (sensu inclusive and pluralist; i.e., 
giving voice to those whose interests are currently mar-
ginalized and who rely on different knowledge systems) 
and adaptive (incorporating flexibility and learning by 
continuous engagement with stakeholders and rightshold-
ers in incubating, facilitating, accumulating, and sustain-
ing innovative practices; Visseren-Hamakers et al. 2021). 
These conditions can be translated into the BCS nexus in 
terms of governance systems that seek to set meaningful 
integrative societal objectives (e.g., such as those related to 
the United Nations’ [UN] sustainable development goals) 
that minimize climate risks while maximizing biodiversity 
protection, seeking to avoid hard trade-offs or codetrimen-
tal outcomes; recognize the diverse worldviews, values, and 
epistemology of different actors, including those world-
views that have historically been marginalized, particu-
larly those of Indigenous peoples and local communities 
(IPLCs), who also tend to be significantly more directly 
reliant on the natural resource base and are therefore 

Table 1. Comparing governance concepts across environmental issues.
Governance concepts Definition and main theoretical 

focus
Relationship to transformative 
change

Applicability to the BCS nexus

Environmental governance Processes, mechanisms and 
organizations by which multiple 
actors across governmental, 
market and nonstate sectors 
influence environmental actions 
and outcomes (e.g., Armitage 
et al. 2012, Lemos and Agrawal 
2006)

Often reactive and is 
not specifically aimed at 
transformation

Focus on fit, scale, and hybrid 
forms of governance relates to 
BCS challenges

Earth systems governance Examination of forms, effects 
and complexity of governance at 
and across multiple levels aimed 
at achieving sustainability (e.g., 
Biermann et al. 2010,  
Burch et al. 2019)

Because of conflicts across 
scales and norms across 
administrative boundaries, 
often lack capacity for fostering 
transformative changes

Focused on agents and 
architectures; less focus on 
feedback loops, systems and 
biophysical dynamics

Adaptive governance Aimed at enhancing resilience 
by governing through continuous 
adjustments in response to 
feedback loops (e.g., Folke et al. 
2005, Chaffin et al. 2014)

Can be transformative if aimed at 
changing system states, but often 
not aimed at doing so.

Applications to ecosystem 
management but not necessarily 
on multiscalar BCS thresholds.

Anticipatory governance Building capacities and steering 
mechanisms in the present to 
govern future transformations 
through foresight, engagement, 
and integration (e.g., Guston 
2014, Burch et al. 2019)

Aimed at managing 
transformations already occurring, 
but not necessarily sparking them

Generally applied more to 
technological innovations than 
environmental problems

Polycentric governance Governance that manifests in 
nested scales and overlapping 
functions, often supporting 
institutional diversity (e.g., Ostrom 
1990, 2010)

Does not explicitly address 
transformation

Elements of multiscalar 
interactions can help address 
telecoupling with a BCS nexus, 
but often applied to single 
sectors (e.g., polycentric climate 
governance)

Transformative governance Governance that manages regime 
shifts across multiple scales in 
social–ecological systems while 
encouraging social change and 
innovation (e.g., Chaffin et al. 
2016, Patterson et al. 2017, 
Visseren-Hamakers et al. 2021)

Explicitly aimed to achieve 
transformative change

Implicitly focused across sectors 
and scales given integrative 
approach; aimed at managing 
thresholds

Abbreviation: BCS, biodiversity–climate–society.
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especially vulnerable to codetrimental BC interactions; and 
avoid interventions that may lock in maladaptive develop-
ment pathways that are prone to trigger negative biophysi-
cal tipping points or undermine conditions for propelling 
positive social tipping dynamics.

Some emerging political discourse, such as the conversa-
tions embodied within the 2050 vision of “living in harmony 
with nature” (Locke et al. 2019) focus on achieving BCS 
cobenefits. But few positive examples of integrated, equitable, 
and adaptive governance approaches within the BCS space are 
available, and even fewer offer detailed guidance about what 
combination of objectives, actors, levels, information, and 
participatory decision-making approaches can ensure desir-
able (i.e., effective and just) governance approaches (Albert 
et al. 2021). Even for these positive cases, demarcating gover-
nance approaches into those that can be deemed truly trans-
formational, rather than having incremental (sensu reformist) 
potential, is challenging (IPCC 2022).

Key focal areas for governing the BCS nexus
We use four focal areas of interest for the BCS nexus (i.e., 
forest ecosystems, marine ecosystems, human urban envi-
ronments, and the Arctic) to illustrate key enabling condi-
tions and challenges that might be encountered when trying 
to build more transformative approaches to governing the 
BCS nexus. These four focal areas cover a wide range of 
broad social–ecological systems. For each focal area, we 
discuss key interactions in the BCS space. We also reflect on 
the extent and mechanism of the key elements of transfor-
mative governance that might be applied under the nexus 
perspective. The governance approaches that are analyzed 
include Reducing Emissions from Deforestation and Forest 
Degradation (REDD+) programs in the tropics, the use of 
fisheries subsidies in the world's oceans, new developments 
in green urban planning, and codesign of natural resource 
management in the Arctic including recognition and incor-
poration of indigenous and local traditional knowledge. 
We also note some associated representative examples from 
across different ecosystems and disturbance types (box 1) 
that help illustrate the opportunities and challenges of vari-
ous governance models that are being applied around the 
world. These four case studies also allow us to identify a 
series of basic principles that would need to be applied for 
governance to be truly transformative.

Governing tropical forest systems with REDD+.  REDD+ programs 
have emerged in much of the tropics to reduce deforestation 
and enhance forest carbon stocks, given that carbon losses 
from deforestation have risen since the Paris Agreement was 
signed (currently nearly 4.9 gigatons of carbon dioxide per 
year), and many of these areas of degradation and deforesta-
tion are biodiversity rich (Palomo et al. 2019). Major drivers 
of forest loss include commercial agriculture in REDD+ 
countries (Hosonuma et al. 2012, Curtis et al. 2018) and 
feedback-loop mechanisms that have already appeared. 
For example, carbon-sink capacities have diminished by 

one-third in major tropical forest basins such as the Amazon 
and the Congo, which are suffering combined effects from 
biodiversity loss, drought, higher temperatures, and defor-
estation (Hubau et al. 2020), with real concerns that such 
forests may reach a tipping point, becoming carbon sources 
rather than sinks. At the same time, continuing social ineq-
uities in both basins, such as the benefits of deforestation 
to migrants on frontiers and uneven rights accorded to 
Indigenous peoples, have amplified the governance chal-
lenge (Megevand 2013, Pereira and Viola 2021).

REDD+ investments have been prioritized to simul-
taneously provide carbon sequestration and biodiversity 
cobenefits (Gardner et al. 2012, Phelps et al. 2012) but gen-
erally lack a global equity perspective (Palomo et al. 2019). 
Comprehensive BCS integration has been difficult; a survey 
of 80 REDD+ projects showed that, although most of them 
touted biodiversity cobenefits, 40% had no specific goals or 
monitoring for them (Panfil and Harvey 2016). Furthermore, 
although many REDD+ programs have proposed social 
safeguards, particularly via equity considerations, the social 
outcomes have been mixed, with few examples of social 
cobenefits across multiple dimensions (Hajjar et al. 2021). 
This is largely because of altered resources provisioning and 
access by forest-dependent communities and conflicts over 
land tenure issues and inequitable benefit sharing (Patel et 
al. 2013, Pascual et al. 2017, Alusiola et al. 2021). REDD+ 
projects have bifurcated into those mainly providing some 
social benefits (e.g., in Indonesia where Indigenous com-
munities used REDD+ programs to assert land rights 
claims; Setyowati 2020) but where climate-biodiversity cobe-
nefits are unclear and those projects that have focused on 
biodiversity–climate cobenefits to the exclusion of social 
concerns, including unequal distribution of burdens on local 
people because of displacement of ecosystem services access 
(Pascual et al. 2017) and insufficient attention to legal rights 
of communities that have incurred high costs in project 
implementation (Luttrell et al. 2013).

One problem with REDD+ and other offset-type mecha-
nisms is that they are not sufficiently adaptive, because they 
are unable to respond quickly enough to ecosystem state 
changes (e.g., driven by disturbance, wildfires or invasive 
pests, or increasingly, climate change) because of the com-
plexity of monitoring and results-based payment require-
ments (Nguon and Kulakowski 2013). So far, little evidence 
exists that REDD+ has enabled conditions for positive social 
tipping points (i.e., forest management that shifts values and 
scales up behavioral change). Moreover, concerns have been 
raised about potential negative indirect impacts—partic-
ularly, crowding out intrinsic social motivations for forest 
conservation when REDD+ favors the commoditization of 
forest carbon to fit carbon market requirements set by actors 
that have little knowledge or concern for BCS interactions at 
the local level (Baynes et al. 2021).

The mixed results to date demonstrate that integration 
of BCS governance through existing REDD+ approaches 
has been challenging, with siloed approaches continuing 
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Box 1. Examples about challenges and opportunities for transformative governance.

Governing REDD+ in the Brazilian Amazon.
We present four examples about the challenges and opportunities for transformative governance in the BCS space in forested, marine, 
urban and Artic contexts.
Brazil plays a key role in REDD+ because it harbors a large portion of Amazon forests while facing critical levels of deforestation that 
have accelerated in the last years. Brazil was the first country to receive results-based payments (almost US$100 million) to reduce 
carbon emissions in 2014 and 2015. Brazil implemented REDD+ (UN-REDD 2018) through a special program (Floresta+) that aimed 
to incentivize conservation and the recovery of native vegetation. However, after 15 years, many projects that were focused on the BCS 
nexus remain on paper only, and some funded projects coordinated by local communities have been interrupted (e.g., the Suruí Carbon 
Project), with questions raised about their legitimacy (Nantongo 2017). The governance space has been diminished because of political 
change and a lack of attention to equity by the Bolsonaro administration, whose current interest is confined to reinforcing the volun-
tary carbon market, putting into question deeper transformative approaches in the context of the Amazon through REDD+. This also 
runs the risk of triggering negative biophysical tipping points, leading to irreversible transitions to a less productive dry forest system.
High seas fishing and governance.
The high seas encompass about 40% of the planet surface, rendering it the largest ecosystem in Earth. Human activities have been 
expanding and intensifying in the high seas—in particular, fishing (Merrie et al. 2014) supported by government subsidies even when 
fish stocks are overexploited and fishing becomes unprofitable (Sala et al. 2018). Because of its remoteness and vastness, operating in 
the high seas contributes disproportionately to carbon emissions, rendering high seas fisheries those with the highest carbon footprint 
(Mariani et al. 2020, Sala et al. 2021). Biodiversity in the high seas is affected by overexploitation of targeted and nontargeted species, 
climate change, pollution, and other extractive activities (Bindoff et al. 2019, IPBES 2019). A process is ongoing within the UN Law 
of the Sea to address governance gaps in the high seas. To succeed, this process needs to raise its ambition and aim for transformative 
change under the focus of the BCS nexus, rather than provide quick fixes to the current status quo. For example, in the case of governing 
BCS challenges, only about 5% of the Southern Ocean is protected. The Convention on the Conservation of Antarctic Marine Living 
Resources (CCAMLR), the body responsible for Antarctic marine conservation, adopted the Ross Sea Marine Protected Area in 2016. 
This is the world’s largest marine protected area, and CCAMLR is the only management body to have adopted no-take marine protected 
areas (MPAs) in the high seas at the time of its designation (Brooks et al. 2021). However, the CCAMLR has not been able to agree on 
new MPAs in the Weddell Sea, the Antarctic Peninsula, and East Antarctica, the latter of which was first proposed in 2011 (Syal 2021).
Redlining and tree planting in urban areas.
Tree-planting schemes are often restricted to cities with already high socioeconomic status or well-off locations within cities. This leads 
to social inequity in who benefits from urban tree planting policies (Pataki et al. 2021). Through redlining and institutional racism, 
locations with lower socioeconomic status within cities are already more sparsely planted and therefore warmer and more vulnerable to 
heatwaves (Schell et al. 2020) The elevated temperature in these locations cascades to further economic depression because of elevated 
cooling costs and exacerbated health conditions. However, these interconnections provide an opportunity for transformative change 
with cobenefits: Urban tree plantings that are diverse and implemented in different socioeconomic contexts in cities can achieve climate 
mitigation and biodiversity conservation and can aid in social well-being.
Inuit comanagement of marine ecosystems.
Inuit codevelopment and comanagement are key components of recent marine conservation efforts in the Canadian Arctic (e.g., Steiner 
et al. 2021). The Tuvaijuittuq MPA, off the northwest coast of Ellesmere Island, is considered unique because of the presence of mul-
tiyear pack ice. It is also recognized as a culturally and historically significant region long used by Inuit for travel and harvesting and 
is the only MPA specifically designated because of its sea–ice ecosystem. Likewise, the Anguniaqvia Niqiqyuam MPA and the Tarium 
Niryutait MPA have the objective to maintain habitat and support populations of species such as beluga whales, Arctic char, and ringed 
and bearded seals, all of which are key species for Inuit subsistence. The Government of Canada and the Qikiqtani Inuit Association 
recently signed the Inuit Impact and Benefit Agreement, which was required for the establishment of the Tallurutiup Imanga National 
Marine Conservation Area (NMCA), which states that “Inuit Qauijimajatuqangit (traditional knowledge) will inform future decision-
making for the management and protection of the NMCA, and the NMCA will protect Inuit harvesting rights… while ensuring the 
protection of species at risk and their habitat” (Parks Canada 2021). The codesign of conservation objectives by Inuit and federal parties 
allows for a rights-based approach to governing conservation areas that includes Inuit active participation and represents a governance 
approach that can provide cobenefits in terms of protecting species and ecosystems, climate change adaptation and mitigation, and 
sustaining Inuit livelihoods and subsistence harvesting.

to dominate the forest sector (McElwee et al. 2016, Morita 
and Matsumoto 2018). Movements toward improved and 
integrated forest governance have included more attention 
to both cross-scale and cross-stakeholder models in jurisdic-
tional approaches, which focus on subnational governments 

or watersheds in which collaboration is intended to apply to 
all stakeholders within the jurisdiction (Wunder et al. 2020, 
von Essen and Lambin 2021). However, the potential for 
success of jurisdictional approaches depends on engagement 
of multiple stake- and rightsholders, buy-in across policy 

biac031.indd   8 18-05-2022   04:31:41 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/advance-article/doi/10.1093/biosci/biac031/6593160 by R

utgers U
niversity Libraries user on 01 June 2022

https://www.pc.gc.ca/en/amnc-nmca/cnamnc-cnnmca/tallurutiup-imanga


Forum

https://academic.oup.com/bioscience 	 XXXX XXXX / Vol. XX No. XX • BioScience   9   

scales, and efficiency of investments, which all face chal-
lenges (Myers et al. 2018).

Given the current visions about REDD+, especially by 
international donors, its role in fostering deeper transforma-
tive change is likely to be unachievable (Lund et al. 2017). 
One main challenge is that the outcomes from REDD+ are 
highly dependent on the distribution of international funds, 
and significant uncertainty remains around the effectiveness 
of market incentives versus development aid approaches 
in being able to properly value and balance across the BCS 
nexus (Asiyanbi and Lund 2020, Streck 2020). For example, 

integrated REDD+ approaches that include biodiversity 
monitoring and social equity are likely to suffer in com-
petitive markets funded by carbon pricing or as transac-
tional expenses covered through traditional development 
aid (Pascual et al. 2018, Garcia et al. 2021). Further concerns 
have been raised that offset-type mechanisms (including 
REDD+) can create perverse incentives for inaction on 
fossil fuel reductions and perpetuate policy lock-in and 
unsustainable long-term emission trajectories (Asiyanbi and 
Lund 2020). This also comes at the expense of integrating 
behavioral change and social tipping points (e.g., consumer 

Box 1. Continued.

Figure 3. (a) Many REDD+ projects have been targeted to the Brazilian Amazon. Photograph: Neil Palmer/CIAT/
CIFOR). (b) Research vessel in Ross Sea Marine Protected Area. Photograph: Argonne National Laboratory, CC 
BY-NC-SA 2.0). (c) Association between reduced tree cover (bottom left), increased pavement cover (bottom right), 
increased temperature (top right) and redlining (top left; category D)—that is, areas designated as hazardous for 
home loans by the Home Owners’ Loan Corporation in the United States. Source: Modified from Hoffmann and 
colleagues (2020). (d) Community of Paulatuk in Darnley Bay, Canada, which harbors the Anguniaqvia niqiqyuam 
Marine Protected Area.

biac031.indd   9 18-05-2022   04:31:42 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/advance-article/doi/10.1093/biosci/biac031/6593160 by R

utgers U
niversity Libraries user on 01 June 2022



Forum

10   BioScience XXXX XXXX / Vol. XX No. XX	 https://academic.oup.com/bioscience

demands for deforestation-free products or reduced con-
sumption of luxury forest goods). The inability of forest 
offset markets to price in disturbance risks or to account 
for evidence of slowing carbon sink capacities of forests, not 
to mention evidence of systematic overcrediting in existing 
markets, prevents REDD+ from being anticipatory—for 
example, with respect to climate change impacts. Together, 
this indicates a great difficulty of carbon markets to under-
stand and effectively respond to feedback loops in the BCS 
space (Hurteau et al. 2019, Badgley et al. 2022).

Fisheries management in the world's oceans.  Having multiple 
objectives in relation to the individual components of the 
BCS nexus is increasingly common in marine conservation 
and fisheries management (Bryndum-Buchholz et al. 2021, 
Cheung et al. 2021). Although marine ecosystems contribute 
to regulating climate and supporting people's livelihoods, 
food and culture (Bindoff et al. 2019), human activities, 
including fishing, are affecting oceans’ essential regulating, 
material, and nonmaterial contributions to people (IPBES 
2019). Globally, the biomass of commercially exploited 
fish stocks has more than halved since the 1950s (Watson 
et al. 2013), with some populations considered at high con-
servation risk from both overfishing and climate change 
(Dulvy et al. 2014, Cheung et al. 2018, Pollom et al. 2021). 
Simultaneously, BC interactions in marine life include the 
dangers of progressive warming, acidification, and hypoxia of 
ocean waters and by associated extremes, especially marine 
heatwaves, or by the exacerbating interactions of these direct 
drivers (Pörtner et al. 2014, Deutsch et al. 2015, Parker et 
al. 2017, Tripp-Valdez et al. 2017, Dahlke et al. 2018). The 
impacts of these changing ocean conditions vary among 
life stages, species, and regions. For example, the strongest 
impacts are often experienced by embryonic and early life 
stages of marine fishes and invertebrates (Dahlke et al. 2020) 
and in regions where rapid warming and loss of oxygen occur 
currently (Deutsch et al. 2015, Reddin et al. 2020, Sampaio 
et al. 2021). Biological responses to these environmental 
changes include poleward biogeographical shifts, the loss 
of spawning habitat, increased local mortalities, reduced 
productivity of calcifiers and carbonate habitats, and shifts 
in species interactions and in ecosystem composition and 
functions (Hoegh-Guldberg et al. 2014, Pörtner et al. 2014).

Ocean biodiversity–climate interactions feed back into 
the social sphere through declining catches in fisheries 
(Bindoff et al. 2019). In addition, the social component 
can be mostly associated with economic and governance 
drivers behind exploitation of fisheries (Finkbeiner et al. 
2017). Specifically, social and economic factors such as 
fishing capacity-enhancing subsidies and ineffective fisher-
ies governance and management contribute largely to his-
torical overfishing (Hatton et al. 2021). In many cases, the 
effects of these socioeconomic drivers are exacerbated by 
environmental changes. At the same time, BCS interacting 
outcomes on fisheries often have the strongest impacts on 
small-scale artisanal fisheries and the associated low-income 

groups because of systemic vulnerabilities driven by their 
high dependence on fishing for income, livelihood, and 
nutrition and low capacity to adapt to changes in resource 
availability or access (McClanahan et al. 2015). Furthermore, 
small-scale sectors are often powerless to address the struc-
tural drivers that underpin overfishing and climate change 
(Pörtner et al. 2014, Chuenpagdee and Jentoft 2018).

Positive feedback dynamics leading to biophysical tipping 
points are observed in ecosystems that are important to 
biodiversity and that provide benefits to coastal communi-
ties (Eddy et al. 2021). Overall, climate change is projected 
to result in declines in potential catches of fishes and inver-
tebrates globally, particularly in tropical regions (Bindoff 
et al. 2019, Tai et al. 2021), with cascading negative impacts 
on economics and employment levels (Sumaila et al. 2019, 
Cheung et al. 2021). Although overfishing continues and 
fishing efforts may increase to compensate for these negative 
climate effects on yield in the short term, overfishing will 
exacerbate the climate impacts on fisheries in the long term. 
Furthermore, the removal of ocean biodiversity and biomass 
and the disturbance of seabed carbon storage through exces-
sive bottom trawls (Sala et al. 2021) exacerbate unfavorable 
BCS interactions through other feedback mechanisms. For 
example, declines in marine animal biomass affect their 
capacity to sequester carbon from the surface to the deep 
ocean through various pathways, from sinking fecal pellets 
to carcasses (Mallo et al. 2019, Mariani et al. 2020, Saba et 
al. 2021). Moreover, marine and coastal blue carbon storage 
mechanisms are being disturbed by climate warming and 
associated loss of habitat (Marbà et al. 2015).

On the governance side, integrative spatial planning of 
marine areas can ideally balance multiple human demands 
and sustain healthy ecosystems while also dealing with the 
impacts of climate change (Frazão Santos et al. 2020)—for 
example, well planned marine protected area networks 
(Sala et al. 2021). To be more integrative, combining care-
ful spatial planning of marine protected areas together 
with the removal of harmful fisheries subsidies offers an 
immediate opportunity for transformative changes to sub-
stantially reduce overfishing (Cisneros-Montemayor et al. 
2016, Sumaila et al. 2021) and the associated loss of carbon-
sequestration potential and stock. This would also contrib-
ute to reducing carbon footprints from capture fisheries 
(e.g., because of fuel oil subsidies that increase emissions 
from this sector; Mariani et al. 2020).

Nearly half of the world's fishing efforts—particularly, 
deep-sea bottom trawling (which is associated with sig-
nificant carbon emissions)—are estimated to be unprofit-
able without subsidies (Sala et al. 2018). Some subsidies are 
especially detrimental to adaptive management strategies 
because they skew incentives, are mismatched to ocean and 
ecosystem scale, and often lock in harmful fishing practices 
(Grafton 2010). Eliminating harmful subsidies would also 
improve the efficiency of the fishing sector with greater 
potential to benefit coastal and small-scale fisheries, increas-
ing the sector's equitability (Cheung et al. 2017, Schuhbauer 
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et al. 2017, Sumaila et al. 2021). In addition, harmful fisher-
ies subsidies often disproportionally favor industrial fisher-
ies, putting disadvantages on small-scale fisheries that are 
supporting the livelihood and well-being of coastal com-
munities, particularly in developing countries (Schuhbauer 
et al. 2017). Small-scale fisheries are often considered under-
represented in terms of their worldviews, values, and knowl-
edge systems in fisheries governance (Kaltenborn et al. 2017, 
Johnson et al. 2019).

However, despite long-standing research on the harmful 
effects of fisheries subsidies (Sumaila and Pauly 2007) and 
the robust evidence of the large potential BCS cobenefits 
of their removal, examples of transformative ocean gover-
nance across scales (international, national, and local) have 
rarely been explicitly integrated within a BCS nexus frame. 
Reframing subsidies as not only a fishing or biodiversity 
issue but as one of climate and carbon as well could bring 
more active consideration of ocean-based solutions in 
policy discussions at the international and national levels 
(Machado et al. 2021, Sala et al. 2021, Sumaila et al. 2021). At 
the same time, ensuring social equity would require atten-
tion to any vulnerable fishers that depend on subsidies not 
being harmed by their removal (Harper and Sumaila 2019, 
Merayo et al. 2019).

Integrating BCS policies in cities.  Cities, where the majority of the 
human population now resides (United Nations 2019), have 
substantial impacts on biodiversity and climate change and, 
in many cases, enhance codetrimental effects and their associ-
ated risks (Haase et al. 2012, McDonald et al. 2020, Zhao et al. 
2021), with some notable exceptions (e.g., cities as bioarks of 
biodiversity; Shaffer 2018). Given the strong BCS interactions 
that occur within urban administrative boundaries (Grimm 
et al. 2008, Elmqvist et al. 2013, Bai et al. 2018, Roches et al. 
2021), cities also provide a ready opportunity to optimize BCS 
cobenefits—for example, via urban nature-based climate solu-
tions (McPhearson et al. 2015, Haase et al. 2017, Raymond et al. 
2017, Seddon et al. 2020). An integrative systems approach to 
urban governance that simultaneously accounts for each BCS 
component and its interactions is required in most urban 
contexts (Bai et al. 2016a). To date, only incremental, stepwise 
progress has been made to understand bilateral interactions. 
For example, biodiversity–society interactions have been 
examined from the urban ecosystem-services perspective, 
including renewed attention to urban nature as a food source, 
especially for marginalized groups (Marselle et al. 2021). 
Similarly, climate–society interactions have been examined 
from the perspective of the climate change and health nexus 
(Endlicher et al. 2008). However, a focus on biodiversity–
climate interactions in urban areas is lagging behind. Many 
cities consider increased urban density as a means to achieve 
climate mitigation via reduced transportation-energy require-
ments, but this often leads to reduced urban green cover, with 
negative impacts on biodiversity (Lin et al. 2015) and human 
health (IPCC 2022). However, devoting renewed attention to 
careful governance of biodiversity–climate interactions is vital 

as increasing evidence emerges on the critical role of urban 
green infrastructure in mitigating extreme climatic condi-
tions (e.g., via heat island effects) that tend to affect the well-
being of the more vulnerable directly (Zolch et al. 2016) and 
indirectly—for example, via green gentrification and planning 
processes that add to environmental injustice (Anguelovski et 
al. 2019, Schell et al. 2020). Biodiversity–climate interactions 
themselves feed back to the social sphere with positive effects 
of urban vegetation and biodiversity on climate mitigation 
and, in turn, on human health, as became readily apparent 
through COVID-19 lockdowns (Bowler et al. 2010, Imran 
et al. 2019, Roll et al. 2021).

Adopting an integrated systems approach would partly 
enable the conditions for transformative governance in urban 
planning. For example, bright spot opportunities are possible 
in urban contexts, such as sponge cities in China, which use 
green roofs, urban wetlands, pervious pavements, and rain 
gardens, among other innovations, to absorb water during 
storms. These innovations can also lead to cobeneficial out-
comes in the BCS space (Zevenbergen et al. 2018). However, 
the traditional mental model of cities as a place rather than 
a system and the siloed design of and inertia in many urban 
institutions mean that integration remains challenging (Bai 
et al. 2016a). This is true not only across but even within each 
BCS component. For example, the integration of mitigation 
and adaptation measures within the climate domain is dif-
ficult (Silva et al. 2012). For many cities, limited financial 
capacity leaves little room to look beyond the bare minimum 
of providing basic municipal services (Gouldson et al. 2016, 
Colenbrander et al. 2018). Even cities that are willing and able 
often find themselves constrained by the lack of information 
and understanding or proper decision-support tools that are 
tailored to their context (Bai et al. 2018).

To achieve urban transformative governance, several 
enabling conditions should be met. These include institu-
tional redesign that enhances the inclusive collaboration 
in and the accountability of decision-making, promoting 
regenerative culture and design, stronger science–policy 
links to coproduce locally tailored knowledge and under-
standing, and enhanced financial capacities of cities through 
both empowering and enabling conditions from national 
governments and building innovative partnerships across 
social sectors (Bai et al. 2016a, Norström et al. 2020, 
Thomson and Newman 2020). In addition, breaking away 
from negative system inertia, building positive inertia, and 
changing the urban system's identity are crucial to create the 
conditions for social tipping points (Irvine and Bai 2019). 
Urban sustainability experiments in cities have proven to be 
effective in this (Bulkeley and Castán Broto 2013, Evans et al. 
2016. Marvin et al. 2018, Irvine and Bai 2019). At the same 
time, innovative practices need to be shared across cities to 
facilitate colearning for more adaptive and equitable urban 
planning that can feed larger-scale transformative change.

Governance of drivers of change in the Arctic.  The Arctic is experi-
encing accelerated changes in climate and biodiversity (AMAP 
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2021, IPCC 2019a, 2021). Climate change, primarily gener-
ated outside the Arctic (Carter et al. 2021), is changing spe-
cies compositions and lowering ecosystem resilience; this, in 
turn, has social impacts—for example, through declining food 
availability; requiring changes in traditional harvesting times, 
locations, and techniques; and the erosion of cultural security 
(ICC 2008, Steiner et al. 2019, AMAP 2021). BCS interactions 
feed back to limit the capability within human communities to 
reverse or decelerate the experienced changes (Huntington et 
al. 2019, Steiner et al. 2021). For example, historical marginal-
ization and conflicting traditional and Western lifestyles have 
induced trauma in Inuit communities, and these likely amplify 
climate-change-related risks (Huntington et al. 2019, Mitchell 
et al. 2019).

Governance plays a central role in linking the drivers 
of change, nature, and people in the Arctic context, and 
to achieve transformative change, representation of Inuit 
in governance is a critical issue (Reyes-García et al. 2022). 
An integrated and inclusive BCS governance approach is 
engrained in the stated Inuit priorities that highlight the 
protection and advancement of their rights and interests, 
support for healthy ecosystems, the need to face climate 
change, and support for coproduced knowledge based on 
research that is meaningful for Inuit communities and 
their governance approaches (Inuit Tapiriit Kanatami 
2019). Multilevel governance has allowed these priorities 
to be heard. For example, at the international level, the 

Arctic Council, which includes six permanent Indigenous 
participants, has amplified the voice of Arctic people 
affected by climate change impacts and has mobilized 
action (Koivurova 2016). The Inuit Circumpolar Council 
(ICC) has developed the comprehensive Inuit Arctic Policy 
to strengthen circumpolar unity, promote Inuit rights and 
interests internationally (including long-term policies that 
safeguard the Arctic environment), and seek full and active 
partnership in the development of the circumpolar regions 
(ICC 2010).

However, the Arctic covers multiple nations and, although 
the ICC provides a unified voice, transformative governance 
also needs to happen at the national or regional level, and 
the status of transformation can vary extensively across the 
Arctic. For example, within Canada, Inuit governance is 
established nationally (Inuit Tapiriit Kanatami) and region-
ally, to a large part related to land-claim agreements between 
the Inuit people and the federal government. Elsewhere, 
potentially diverging definitions of land entitlement and 
ownership by Indigenous peoples and countries can make 
transformative governance more challenging. The norms 
and rules of the Inuit nations that frame the governance of 
their natural resources can support both climate mitigation 
and adaptation efforts—for instance, by directly influencing 
regulations and agreements, including through ocean-based 
local measures (e.g., conservation areas). Although local 
measures may have limited roles to mitigate climate change 

Table 2. Lessons from case studies regarding BCS nexus perspectives and transformative governance potential.
Case studies Multifunctional 

actions recognizing 
BCS feedback loops

Integration across 
scales and BCS 
nexus elements

Opportunities for 
social tipping points

Engagement of 
multiple actors and 
coalitions

Recognition of 
social equity 
dimensions

Governing tropical 
forest systems with 
REDD+

Slow to respond to 
ecosystem state 
changes and lack 
of clear BCS nexus 
approach

Some potential 
for jurisdictional 
approaches across 
scales, but currently 
not widespread

Limited because of 
focus on producers 
not consumers

Limited and mostly 
where IPLCs are more 
involved

Limited because of 
market-pricing focus

Fisheries 
management in the 
world's oceans

Lack of focus on the 
many BCS feedback 
loops in the design 
and elimination of 
harmful fisheries 
subsidies

High potential for 
BCS nexus focused 
fisheries policies 
but currently largely 
insufficient

Limited opportunities 
because of barriers 
from competing 
interests between 
countries and sectors 
particularly industrial-
scale fisheries

International and 
local coalitions that 
focus on specific 
issues, but limited 
consistent coalitions 
on BCS nexus

Limited because 
of differences in 
economic and 
political powers 
between countries, 
and between 
industrial and small-
scale fisheries

Integrating BCS 
policies in cities

Siloed approach 
in many urban 
institutions means 
integrated BCS 
actions remains 
limited

Some incremental 
progress has been 
made regarding 
bilateral interactions 
between nexus 
elements

High potential 
via continued 
sustainability 
experiments in 
individual cities and 
cross city learning 
and upscaling, 
although breaking 
away from negative 
system inertia remain 
challenging

High potential but 
still rather limited 
inclusive collaboration 
in urban planning 
and accountability of 
decision-making

High potential but 
social equity not 
sufficiently prioritized 
in urban decision-
makers’ greening 
agendas

Arctic ecosystems 
climate change, and 
the Inuit

Inuit traditional 
knowledge is key for 
integrating BCS nexus 
into multifunctional 
actions, but these are 
still mostly lacking

National, regional 
and international 
Arctic policies 
are increasingly 
coordinated but 
largely lacking a BCS 
nexus perspective

Advancing on issues 
of land entitlement 
and ownership by 
Indigenous peoples 
needed

Some advances 
at regional levels 
through Inuit 
traditional knowledge 
inclusion Multiactor 
coordination on 
international levels

Power relations need 
to balance to better 
recognize leadership 
and self-determination 
of Inuit and northern 
communities

Abbreviation: BCS, biodiversity–climate–society.
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(IPCC 2019a), they can still help to effectively address local 
risks, and they have potential cobenefits.

To ensure (equitable) transformative change, codesign 
and comanagement by Inuit and provincial governance 
institutions is essential. Improved adaptive governance can 
also be driven through the coproduction of knowledge—
for example, by Inuit involvement in climate science. Such 
changes would require power relations between the Inuit 
and external scientific communities to be more equitable. 
This is particularly relevant when setting research agen-
das and participating in research (including an increased 
emphasis on Indigenous and local knowledge; Loseto et al. 
2018, Waugh et al. 2018, Sidik 2022), by carrying out coastal 
monitoring, improved and accessible weather and seasonal 
predictions and climate projections and by investing in 
enhanced trauma-informed mental and physical health care 
(Pörtner et al. 2021, Trisos et al. 2021). Decolonizing the way 
knowledge is produced and used in the context of BCS inter-
actions in the Arctic requires empowering Inuit communi-
ties to use, design, manage, and lead science (Huntington et 
al. 2019). Decolonization and self-determination are neces-
sary to have the Inuit represented and their voices heard 
(and to ensure these voices have weight) outside the Arctic 
to influence decisions that affect them indirectly, given that 
carbon emissions are concentrated outside the Arctic but 
also given that the impacts are felt most heavily in the Arctic.

Any such measures require evaluation in terms of social 
equity among Inuit and Northern and subpolar communi-
ties and within the communities themselves. The leadership 
and self-determination of the Inuit and Northerners in the 
assessment of climate-change impacts, in developing climate 
research needs, and in implementing adaptation measures 
can foster transformative governance of the Arctic under 
a BCS nexus. This includes continuing to strengthen the 
capacity of Arctic and Northern communities and the capac-
ity of Indigenous peoples to acquire and apply available data 
and research, participate in research, and develop method-
ologies and approaches for climate change communication 
(Kukutai and Taylor 2016). Regional governments or com-
munity organizations need to be involved in the distribution 
of benefits that result from such measures.

The case studies help both to identify BCS interactions, key 
opportunities, and the current challenges for policy interven-
tions and to catalyze transformative governance, which could 
be upscaled with a BCS nexus perspective (table 2). The exam-
ples show that existing approaches to governing the BCS nexus 
are largely siloed, fragmented, inconsistent, rigid, and slow, 
which prevents them from being effective when the most seri-
ous BCS challenges are cross-cutting, feedback loop oriented, 
nonlinear, and potentially fast. In fact, most current governance 
approaches to deal with BCS interactions do not sufficiently 
address their causes and impacts at appropriate scales, nor 
do they adequately engage the range of actors (from global to 
local) who have divergent worldviews and their associated val-
ues about human–nature relations (ranging from corporations 
to cities to IPLCs). Furthermore, very rarely do governance 

approaches in the BCS space consider feedback effects and 
trade-offs, nor do they often aim to spark social tipping points.

Principles for transformative BCS governance under 
the BCS nexus
Given the unprecedented scope and speed of existing and 
projected climate and biodiversity interactions and changes, 
transformative governance at the BCS nexus is critical, also 
in light of the widening implementation gap indicated by 
global targets to be widely missed. A reflexive approach is 
needed to address the failures and challenges of existing 
ideas and mechanisms about governance (table 1) and to 
identify the necessary conditions for deeper transformation. 
Operating with a BCS nexus approach implies recognizing 
the biophysical limits and interactive dynamics in the BC 
space, in addition to the distributive benefits and costs of any 
policy intervention across different social sectors and groups 
(Pörtner et al. 2021). In addition, where policy interventions 
facilitate transforming social structures to create the neces-
sary conditions for tipping positive social behavior (e.g., 
by shifting norms, rules, and—ultimately—social values), 
they are more likely to succeed in addressing the climate 
and biodiversity crises. Therefore, governance systems will 
need to bring about behavioral changes across all relevant 
actors while targeting larger structural issues at the root of 
the coupled climate and biodiversity crisis. In other words, 
transformative governance requires combining short-term 
nudge-based policy instruments and approaches that may 
buy humanity some time to address the climate and bio-
diversity crises with deeper institutional (including regula-
tory) changes and adaptive management approaches.

Therefore, transformative governance for the BCS nexus 
needs to be based on understanding the specific feedback 
loops and interactions in the BCS space, to aim at integrating 
and redesigning institutions at different levels and scales, to 
acknowledge meaningful and equitable participation of a wide 
range of social actors (stakeholders and rightsholders) across 
coalitions, to have a concern for equity of outcomes at its core, 
and to build in the potential for positive social tipping points to 
tackle both changes in individual agency and structural resets 
that are needed. These conclusions come from our under-
standing of the specificities of the BCS nexus (see the “Key 
elements of the BCS nexus” section), our reading of the gov-
ernance literatures and their limitations (see the “Conditions 
and challenges for transformative BCS governance” section), 
and the case studies (see the “Key focal areas for governing the 
BCS nexus” section), which provide a sense of these challenges 
and barriers as well as opportunities for reframing transforma-
tive governance to overcome them. We therefore highlight five 
principles that we believe policy interventions could follow to 
facilitate moving from reformist (incremental and shallow) 
to deeper transformational governance for the BCS nexus 
(figure 4). These five principles are as follows.

Focus on multifunctional interventions.  Overall, the focus should 
be on investing in toolboxes of adaptive solutions (Vira and 
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Adams 2009) that recognize the complexity of feedback 
loops and trade-offs, rather than single silver bullets that 
rely on simplified or overly optimistic assessments of suc-
cess without accounting for counterfactuals, difficulties in 
scaling up, or unintended offstage burdens (e.g., Pascual et 
al. 2017, Bastin et al. 2019). This implies accepting solutions 
for multifunctionality rather than maximizing performance 
on single indicators (such as greenhouse gas removal or 
installed renewable energy) to produce multiple benefits to 
a diversity of actors (Gren et al. 2010, Brauman et al. 2020). 
For example, the failures of REDD+ to generate biodiver-
sity and socioeconomic cobenefits across the BCS nexus 
are in part a result of mechanisms for funding that have 
stressed optimizing the climate element rather than accept-
ing higher transaction costs that would also bring benefits 
to both nature and people. Interdisciplinary and place-based 
transdisciplinary approaches that involve the coproduction 
of knowledge can help build such resilient toolboxes for 
multifaceted solutions (Seppelt et al. 2018), as was noted in 
the Arctic case study, where marine protected areas serve 
multifunctional roles for Inuit communities and others.

Integrate and innovate across scales.  Global BCS governance 
is still largely tackled in silos, by specialized reports and 
negotiations, and by dedicated experts who work in sepa-
rate ministries and who are assigned to separate interna-
tional conventions (e.g., the UN Framework Convention 
on Climate Change and the Convention on Biological 
Diversity). International secretariats are increasingly facili-
tating cooperation, but it is crucial to align content and 
messages across key reports and multilateral environmental 
agreements that relate to biodiversity, the climate, or the 
oceans, but this alignment is currently still very limited 
(van Asselt 2011, Solecki et al. 2017, Smith et al. 2019, 
Stephens 2019). Current global governance approaches also 
have nation-states at their core. This limits the flexibility of 
cross-boundary governance models, even though the driv-
ers of vulnerability often occur at the larger regional scale 
(Birkmann et al. 2021) and even though strong and equitable 

responses are often grounded at the local scale, as is seen in 
urban contexts. At the same time, although an enhanced and 
coordinated global system for governing BCS interactions is 
needed (i.e., through more integration of institutions), giv-
ing space to regional or local autonomy is equally important. 
Therefore, transformative governance should be sensitive to 
local people’s autonomy and rights of self-determination, 
especially with regard to Indigenous peoples and local 
communities, so that they also have the capacity to decide 
what is meant to be just and sustainable according to their 
worldviews, values, and knowledge systems. The Arctic case 
study shows that local self-determination and the use of 
appropriate local knowledge systems can enhance adaptive 
and equitable governance but that it cannot work alone, 
especially when the drivers of biodiversity loss and climate 
change are happening elsewhere.

Create coalitions of support.  Transformative governance requires 
opening political opportunities and building political will. 
Political opportunity can be created in part by various actors 
from the private sector, civil society, and governments by 
intervening in creative ways to enable broad and focused 
public support (Chan et al. 2020). However, not all actors are 
equal in terms of their responsibilities in driving carbon emis-
sions and biodiversity loss, nor in terms of their vulnerability 
to their impacts (Milner-Gulland et al. 2020). For example, 
the private corporate sector is a major driver of carbon emis-
sions and biodiversity loss, and it often represents powerful 
and vested interests rather than collective ones aligned with 
the common good (IPBES 2019, Nyström et al. 2019). As was 
seen in the fisheries case study, one reason subsidy reform has 
been advocated for many years—but rarely implemented—
is precisely this power misalignment (Sumaila et al. 2021). 
Therefore, approaches to tip powerful private sector interests 
that benefit from subsidies toward more sustainability should 
involve strengthening the coalition of interests advocating for 
reform, such as by including the full range of BCS benefits 
in socioeconomic analyses and enjoining local priorities and 
interests (such as the food security of small-scale fishers) in 
political coalitions.

Ensure equitable approaches.  Equity-based approaches to 
addressing the BC nexus can deliver multiple benefits in 
ways that strengthen all three dimensions. For example, 
policies that target the most poor and vulnerable people and 
that link mitigation and adaptation, such as using renewable 
energy to increase rural electrification or using revenues 
from a carbon tax to increase social assistance, could support 
the eradication of poverty under near-term climate change 
(Hallegatte et al. 2016, Aklin et al. 2018). Integrating climate 
and biodiversity risks into the design of social protection 
programs can help build long-term resilience and large-
scale social support, especially by the more disadvantaged 
social groups (Hallegatte et al. 2016). For example, public 
works programs can deliver biodiversity, climate, and social 
benefits by targeting ecosystem conservation and carbon 

Figure 4. Key principles can facilitate transformative 
governance across the biodiversity–climate–society nexus. 
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sequestration, as is exemplified by South Africa's Working for 
Water Programme, which restores river catchments to reduce 
fire risk and increase water supplies in regions prone to 
droughts from human-induced climate change (Turpie et al. 
2008, Norton et al. 2020). Ignoring the societal dimension in 
interventions, such as REDD+ programs that have failed to 
address legal rights or benefits, diminishes joint biodiversity 
and climate outcomes rather than improving them.

Build social tipping points.  Transformative change to address 
the intertwined underlying drivers of the mutual climate 
and biodiversity challenge involves dealing with the over-
consumption of natural resources (including terrestrial 
and marine biomass), raw materials (e.g., minerals), and 
unsustainable energy (including fossil fuels, large-scale 
renewable energy infrastructure and bioenergy crops; 
Pörtner et al. 2021). Capturing offstage (diffuse, distant, 
and delayed) impacts along commodity value chains, 
including leakage effects, would likely have significant 
potential for inducing a shift across consumption and 
production decisions (Pascual et al. 2017). Such a shift to 
more ecological economies will necessarily also involve a 
range of behavioral and institutional changes. Therefore, 
tools designed to facilitate inducing social tipping dynam-
ics, supported by grass-roots mobilizations, while at the 
same time anticipating BCS interactions, are more likely to 
be successful than ones that fail to build these concepts in. 
This has potential consequences for the current penchant 
for voluntary or market-based measures, which tend to be 
less effective or associated with less impact (e.g., slower 
carbon reductions) than regulatory approaches (Auld et al. 
2014). They also tend to be less equitable than interven-
tions with inclusive processes to guarantee participation 
from the affected communities from the start (Hill et al. 
2016) or with mechanisms to ensure fair benefit sharing, 
as is seen in the REDD+ example above.

A transition toward transformative BCS governance is not 
only possible but potentially underway, and many local—as 
well as national and international—initiatives provide some 
hope, such as the European Union’s Green Deal or Greta 
Thunberg's School Strike for Climate, both of which have 
demonstrable potential to spur social tipping dynamics toward 
ambitious implementation. Ensuring that this transition gath-
ers momentum and deepens across local, national, and inter-
national scales and organizations to foster a shared future will 
require transformative governance at the BCS nexus.

Conclusions
There is an urgent need to further develop and imbue ideas 
of transformative governance associated with different con-
texts, including a diversity of institutional settings, with a BCS 
nexus perspective. International science-policy initiatives are 
already aware of the need to enhance a nexus and transforma-
tive change perspective—for instance, the IPBES assessment 
on the multiple values of nature, which is to be complemented 
by forthcoming assessments on transformative change and 

the nexus among biodiversity, water, food, and health. We 
hope that this effort by the global scientific community will 
be followed by the integration of biodiversity and climate sci-
ences through enhancing the BCS nexus perspective. In addi-
tion, we suggest that future research may be focused on how 
the five principles outlined above could be applied in different 
social–ecological contexts and what synergies and trade-offs 
may result from the principles. This line of research could also 
provide novel insights that shed light on the types of social 
resistance and political lock-in processes that need to be over-
come when applying the principles. In addition, the research 
community can help to further understand the conditions for 
interventions to shift away from stepwise incremental change 
(i.e., the dominant reformist agenda) and instead focus on 
the conditions for interventions to become accumulative and 
genuinely (i.e., deeply) transformative.
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